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1 Introduction

Describing the strong coupling regime is one of the main complications when studying the

low energy behaviour of quantum field theories. Because the perturbative approach breaks

down some non-perturbative analysis is necessary.

For instance, one can sometimes find a dual picture in terms of new degrees of freedom,

describing the same physics. A popular example is the electric-magnetic duality introduced

by Seiberg in [1] which provides a dual description of N = 1 SQCD.

A closely related setup is the N = 2 three dimensional case, that can be obtained by

dimensional reduction from N = 1 in four dimensions. It is natural to expect an extension

of Seiberg-duality in this setup. However, the three dimensional dynamics is quite different

and finding Seiberg-like dualities was not straightforward.
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A first possibility was discussed by Aharony in [2]. This duality maps two three

dimensional SQCD like theories; the dual magnetic theory includes extra degrees of freedom

with respect to the four dimensional cousin. After that the subject has not been pursued

for almost ten years, mainly for lack of non-perturbative techniques in three dimensional

theories. In the last years there have been important results in this direction. First, the

discovery of the AdS4/CFT3 duality [3] provided a holographic description of the strongly

coupled dynamics. Then, localization gave access to quantum exact results [4], which

extend to the non-perturbative regime.

Another duality, between three dimensional SQCD like theories with Chern-Simons

(CS) interaction, was discovered by Giveon and Kutasov in [5]. This duality was derived

from the brane transition of [6] and can be generalized to quiver gauge theories [7, 8]. It

was then shown [9] that Giveon-Kutasov duality can also be obtained by an RG flow from

Aharony duality. Recently the existence of “reverse” flows has been discovered too [10–12].

We will turn back to this point in section 4 and in appendix B. Similar flows have been

applied in [13] to generate new classes of dualities. Furthermore other generalizations of

Seiberg-like dualities, with a richer matter content, have been studied [14–19].

Standard techniques in four dimensions, as ’t Hooft anomaly matching and a-

maximization [20], do not exist in three dimensions. However, a powerful technology

for analyzing the IR dynamics of three dimensional supersymmetric field theories has re-

cently been provided by localization. The partition function on some compact manifolds

as S2×w S
1 and S3 has been reduced to a matrix integral [21–24]. In this paper we will be

mostly interested in the partition function on the squashed three-sphere S3
b [25], involving

integrals of “hyperbolic hypergeometric functions”. Recently non-trivial identities among

these integrals have been derived in the mathematical literature [26]; quite remarkably

in [9, 13] it has been shown that some of these identities relate the partition functions of

the dual pairs discussed above. This provides a highly non-trivial check of Seiberg-like

dualities in three dimensions.

However these identities contain an extra phase, which did not have an immediate

physical interpretation. Interestingly, it was found in [13] that this phase corresponds to

CS terms for global symmetries, generated when flowing from Aharony duality. A more

intrinsic interpretation of the CS terms was then given in [27, 28]. It was observed that

they are related to contact terms in the two point functions of global symmetry currents.

This represents a new check of dualities, in a very broad sense reminiscent of ’t Hooft

anomaly matching in four dimensions.

In this paper we apply this check to various dual pairs and match the result with

the one obtained from localization. We first analyze the dualities studied in [2, 5, 13],

then we study certain generalizations of [16, 18]. Moreover we propose some new dualities

between unitary and symplectic gauge theories and test them both with localization and

by computing the contact terms.

The paper is organized as follows. In section 2 we review relevant aspects of N = 2

theories in three dimensions. In section 3 we introduce the contact terms of two point

functions and their relation with dualities. We study them in a simple example. In section 4

we discuss gauge theories with fundamental matter. In section 5 we study gauge theories
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with adjoint matter, that are dual to theories without gauge groups. In section 6 we

argue for a new duality between an unitary and a symplectic theory. In appendix A we

review some aspects of the partition function on the squashed three sphere, summarize the

integral identities that we used in the paper and discuss the relation between the partition

function and the contact terms. In appendix B we discuss some RG flow between dual

pairs, generalizing the reverse flows of [10–12].

2 Aspects of N = 2 three dimensional theories

In this section we review some general aspects of N = 2 three dimensional gauge theories

that we will use in the rest of the paper.

These theories have four supercharges as do N = 1 theories in four dimensions and the

supersymmetric representations are closely related. However there are some differences.

There is an additional real scalar σ in the vector multiplet. A generic non zero vev for this

scalar breaks the gauge group G to U(1)r, where r is the rank of G.

Another extra feature in three dimensions is that one can dualize the photon into a

scalar, F = ∗dφ. This allows to trade abelian vector multiplets for chiral multiplets with

lowest component eΦ = eiφ+σ. The Coulomb branch U(1)r can hence be parameterized by

r chiral multiplets eΦi . In the UV they correspond to monopole operators. Furthermore,

there are r symmetries U(1)Ji related to the topological currents Ji = ∗Fi, conserved

by the Bianchi identity. These symmetries shift the corresponding dual photons and

hence the monopole operators are charged under them. At quantum level, most of

the classical Coulomb branch is lifted by a superpotential generated by instantons [29].

However, for theories with matter fields, typically some directions of the Coulomb branch

remain unlifted and one topological U(1)J survives. Another global symmetry that

plays an important role in our analysis is the SO(2)r ≃ U(1)r R-symmetry that rotates

the supercharges. Moreover in three dimensions there are no anomalies and e.g. axial

symmetries are allowed in the quantum theory.

Another important characteristic of three dimensional theories is the appearance of

the topological CS action for the vector multiplet

SCS =
k

4π

∫
tr

(
A ∧ dA+

2

3
A3 − λλ̃+ 2σD

)
(2.1)

Invariance under global gauge transformations constrains the CS level k to be integer [30].1

We can turn on real masses for the chiral fields through their coupling to the global

symmetries. By weakly gauging the symmetries and assigning a vev to the scalars σi in the

i-th background multiplet we generate the mass term
∫
d4θX†eµθθX. Here µ =

∑
qimi,

where mi = 〈σi〉 and qi is the charge of X under U(1)i. Also the topological U(1)J can

contribute to the real mass. In this case the vev of the background scalar appears as an FI

term for the gauge multiplet.

1See also [28] for a recent discussion.

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
1
4
4

Integrating out fermions with a real mass shifts the CS level of the global and local

symmetries. These shifts are generated at one loop by

keffij = kij +
1

2

∑
qψi q

ψ
j sgn(µψ) (2.2)

where kij is the bare CS level for the two symmetries U(1)i and U(1)j and the sum is over

the massive fermions ψ with real masses µψ. Since keff has to be integer, it follows that the

bare CS level is quantized in units of 1
2

∑
qψi q

ψ
j mod 1 and possibly parity is broken [31, 32].

Note that for non-abelian symmetries we have

keff = k +
1

2

∑
sgn(µψ)T2(Rψ) (2.3)

where T2(Rψ) is the quadratic index of the representation Rψ of the fermion ψ.

3 Contact terms and duality

In this section we outline the basic logic of this paper. We first discuss the contact terms

that appear in two point functions of global symmetry currents and their usefulness for

checking dualities. We review some of their properties discussed in [28] and summarize the

relation with duality and localization. Finally we elucidate the strategy by discussing an

instructive example in subsection 3.1.

Consider two global U(1) currents jiµ and jjν in a three dimensional QFT. The correlator

of the two point function is

〈jiµ(x) j
j
ν(0)〉 =

(
δµν∂

2 − ∂µ∂ν
) τij
32π2x2

+
ikij
2π

ǫµνλ∂
λδ(3)(x) (3.1)

The first term is the usual correlator of two point functions, governing the physics at

separated points. The second term contains a delta function and hence is a contact term,

describing the behavior at coincident points. In the action it is associated to a CS term

kij for the background gauge fields of the global symmetries jiµ and jjν .

The study of contact terms in three dimensions is interesting for various reasons [27, 28].

The fractional part of k is an unambiguous observable of the field theory and a non-

vanishing fractional part of some counterterms lead to a new anomaly in superconformal

field theories. Finally, global CS terms are also useful in the analysis of Seiberg-like dualities

and this is the focus in the following.

Localization. The partition function of an N = 2 three dimensional theory on the

squashed three sphere S3
b can be exactly computed at one loop by localization. Here

b denotes the squashing parameter [25]. The final result is an expression for the path

integral in terms of a matrix model involving some integrals of “hyperbolic hypergeometric

functions” as reviewed in the appendix A. In the recent mathematical literature integral

identities for these functions have been studied [26]. It was observed [9, 13] that these

identities relate the partition functions of pairs of dual field theories.
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There is an extra phase in these relations, that is crucial for the forthcoming. It arises in

localization from the global CS couplings associated with the contact terms. The supersym-

metric saddle point for the background multiplets is DI = iσI and a vev 〈σI〉 = mI of the

background real scalars, with Lagrangian (2.1), gives rise to a phase in the partition func-

tion. Note that for preserving supersymmetry on the three sphere we need to switch on an

imaginary background for the R-symmetry [33], which makes this phase actually complex.

Dualities. In [13] the authors derived this phase in a physical picture by constructing

various dualities through flowing in from Aharony duality. Integrating out matter generates

the CS terms for the global symmetries and hence determines the phase. Matching this

result with the mathematical identities is an additional check.

The alternative approach of [28] is related to the contact terms. Indeed the contact

terms of the two point functions are related to CS terms for the global symmetries that

appear in the action. Integrating out all matter brings the theory to a purely topological

one, for which the contact terms have been computed [28]. By adding the 1-loop CS

couplings, which are generated along the flow, as counterterms to the UV duality one

reconstructs the contact terms of the topological theory.

At this point of the discussion we can summarize our strategy. For a given dual pair

we integrate out the matter fields, generating global CS terms via (2.2). In this way we

flow to a duality between two topological theories. Combining the 1-loop CS terms with

the contact terms of the topological theory we determine the relative contact terms of the

original duality. Finally we check that these match with the complex phase that appears

in the partition function on the three sphere.

3.1 A warm-up example

In this subsection we discuss a simple but instructive example, containing the typical

technical aspects of the computations in this paper. It is a subcase of the “(p, 0)-duality”

studied in [13] and analyzed in section 4. Physically, this duality is needed when generating

monopoles along an RG-flow; indeed we will use the results obtained here in the third

part of section 4.

On the electric side we have a chiral U(k)k/2 gauge theory with k fundamental and

no anti-fundamental flavors. This theory is dual to a gauge singlet [10, 12, 13, 34, 35],

corresponding to the monopole of the electric theory with magnetic flux (1, 0, . . . , 0) in the

Cartan of the gauge group. There are three global U(1) symmetries: the axial U(1)A, the

R-symmetry U(1)R and the topological U(1)J .

We start by computing the contact terms of the electric theory. Each chiral field has

charge 1 under the axial symmetry and R charge ∆. We consider an effective theory at

scales much lower than the real masses of the quarks. As modus operandi in this note we

choose the sign of the masses such that the effective CS coupling does not hit zero. Hence

we consider positive real masses for the quarks when integrating them out. This generates

via (2.2) at 1-loop the global CS terms

kerr =
1

2
k2(∆−1)2 kerA =

1

2
k2(∆−1) keAA =

1

2
k2 keAG = k kerG = k(∆−1) (3.2)

Note that the fermion of the chiral multiplet has R charge ∆ − 1, in total it has k colour

and k flavour components. After this step we are left with a pure CS gauge theory U(k)k.
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Due to the chiral matter content, we generated also the mixed global-gauge CS couplings

kAG and krG. In the Lagrangian, they give rise to FI terms of the gauge group G

δL = (kAGmA + krGω)trD (3.3)

Here ω is related to the background vev for the R symmetry. On a curved space it has to

be properly chosen in order to preserve supersymmetry, after embedding the R symmetry

in a background gravity multiplet [33]. For the case of the squashed sphere S3
b we have

ω = i
2(b+

1
b ) [25]. Recall that the real mass parameter for the U(1)J symmetry also appears

in the Lagrangian as an FI term −1
2λ trD. We can combine the U(1)J symmetry with the

axial and the R-symmetry to absorb the mixed terms kAG and krG. In other words, in the

IR we have an effective topological symmetry

U(1)
J̃
= U(1)J − kAGU(1)A − krGU(1)r (3.4)

with a “real” mass parameter that is related to the original parameters as λ̃ = λ−2kAGmA−

2krGω. Note that the real mass for U(1)J is 1
2λ.

Finally, the pure CS theory gives two extra contributions to kerr and to ke
J̃J̃

as explained

in [28]. They are

ke,λrr = −
1

2
k2 ke

J̃J̃
= −1 (3.5)

where ke,λrr comes from integrating out the gaugini λ with R charge 1 and topological mass

proportional to −k. Also, ke
J̃J̃

is the CS coupling of the effective theory for the background

vector describing the U(1)
J̃
symmetry [28].

On the magnetic side we have a singlet T with R charge ∆T = 1 − k
2 (1 + ∆), axial

charge −k/2 and topological charge 1. It is dual to the electric monopole and its U(1)

charges can be computed by a 1-loop computation from the fermion spectrum [36–38]. By

integrating out T we get

kmrr = −
1

2
(∆T − 1)2 kmrJ = −

1

2
(∆T − 1)

kmrA =
1

4
k(∆T − 1) kmAJ =

1

4
k

kmAA = −
1

8
k2 kmJJ = −

1

2

(3.6)

Eventually, by combining the electric and the magnetic results, in terms of the original

symmetries we have the following counterterms to add to the magnetic theory

∆krr = −
1

8
(1 + 2∆− 3∆2)k2 ∆krJ = −

1

4
k(1− 3∆)

∆kAA =
3

8
k2 ∆kAJ =

3

4
k

∆krA = −
1

8
(1− 3∆)k2 ∆kJJ = −

1

2

(3.7)

where ∆krr = kerr + ke,λrr − kmrr + k
J̃ J̃

(krG)
2 etc.

We can check the validity of this computation by comparing with the results from

localization. Indeed via (A.15) the global CS couplings reproduce the phase in the integral

identity that relates the partition functions of the duality [13].
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4 Dualities with fundamental matter

In this section we compute the CS counterterms for various dualities with unitary gauge

group and matter fields transforming in the fundamental representation. In [28] this study

has been initiated for Giveon-Kutasov duality, here we will extend this check to other

dualities.

Aharony duality. This generalization of four dimensional Seiberg duality was intro-

duced in [2].

• The electric phase is a U(Nc)0 gauge theory without CS term, F pairs of fundamentals

and antifundamentals Q, Q̃ and vanishing superpotential.

• The magnetic dual is a U(Ñc)0 gauge theory with Ñc = F − Nc. There are F

dual (anti-)fundamentals q and q̃. As in four dimensional Seiberg duality there is

also a meson M = QQ̃. However, in three dimensions, there are two additional

gauge singlets T and T̃ , corresponding to the monopole and the antimonopole of

the electric theory, with magnetic flux (±1, 0, . . . , 0). These singlets couple to the

magnetic monopoles t, t̃. The superpotential is

Wdual =Mqq̃ + tT + t̃T̃ (4.1)

The charges of the fields under the global symmetries are summarized in table (B.1).

Here we briefly report that the relative contact terms in the duality identically vanish.

Integrating out the matter fields we find

keRR = NcF (∆− 1)2

kmRR = −ÑcF∆
2 +

1

2
F 2(2∆− 1)2 − (F (1−∆)−Nc)

2 ≡ keRR −
1

2
(N2

c + Ñ2
c )

keRA = NcF (∆− 1)

kmRA = −ÑcF∆+ F 2(2∆− 1) + F (F (1−∆)−Nc) ≡ keRA

keAA = NcF kmAA = −ÑcF + 2F 2 − F 2 ≡ keAA

keJJ = 0 kmJJ = −1

keSU(F )L
= keSU(F )R

=
Nc

2
kmSU(F )L

= kmSU(F )R
= −

1

2
(Ñc + F )

(4.2)

We see that the relative global CS terms which are generated along the flow directly

reproduce the contact terms of the topological theory [28] and no counterterms are required.

(p, 0) and (p, q)-duality. In this section we consider the (p, 0) and the (p, q) Seiberg-like

dualities with chiral field content introduced in [13]. In that paper the contact terms for

the global symmetries have been determined while deriving these dualities through a flow

from Aharony duality, giving masses to a set of chiral matter fields. Here we reproduce

this result by calculating the contact terms as described above. Let us give some details

on the (p, 0)-duality, the (p, q)-case is very similar.
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• The electric theory has gauge group U(Nc)k with k = −FR−FL

2 and FR > FL. There

are FL fundamental and FR antifundamental fields.

• The magnetic theory is an U(FR−Nc)−k gauge theory with FR fundamental and FL

antifundamentals. The singlets are the meson M = QQ̃ and a monopole T . There is

a superpotential

Wdual =Mqq̃ + tT (4.3)

The charges under the global symmetries are found in table (B.1). There is a small extra

complication with respect to Aharony duality, since integrating out chiral matter generates

mixed global-gauge CS terms

keRG = keAG(∆− 1) = −
1

2
(FR − FL) (4.4)

and similarly, but with opposite sign, in the magnetic sector. As discussed in section 3.1,

these mixed CS couplings will shift the IR topological symmetry as U(1)
J̃
= U(1)J+

1
2(FL+

FR)(U(1)A + (∆− 1)U(1)r). By integrating out the fermions we find

keRR =
1

2
(−Nc(FL + FR)(∆− 1)2)

kmRR =
1

2
(Ñc(FL + FR)∆

2 + FLFR(2∆− 1)2 + (∆T − 1)2)

keRA = −
1

2
Nc(FL + FR)(∆− 1)

kmRA =
1

2
(Ñc(FL + FR)∆− FLFR(2∆− 1)−

1

2
(FL + FR)(∆T − 1))

keAA = −
1

2
Nc(FL + FR)

kmAA =
1

2
(Ñc(FL + FR)− 4FLFR −

1

4
(FL + FR)

2)

kmJJ =
1

2
kmAJ =

1

4
(FL + FR) kmrJ = −

1

2
(∆T − 1)

(4.5)

and a pure gauge theory on both sides of the duality. We can integrate out also the gaugini

and from the effective Lagrangian for the shifted topological U(1)
J̃
we get [28]

ke
J̃J̃

= −
Nc

k − 1
2(FL + FR)

km
J̃J̃

= −
Ñc

−k + 1
2(FL + FR)

(4.6)

As counterterms on the magnetic side, the 1-loop terms reproduce via (A.15) precisely the

complex phase in the partition functions of the (p, 0)-duality in [13]. Note that the real

mass parameter for U(1)J is 1
2λ while the one for U(1)

J̃
is 1

2(λ+(FL+FR)(mA+(∆−1)ω)).

Given the contact terms of Aharony duality above, our check is complementary to the

analysis in [13]. We have also checked that a very similar analysis reproduces the contact

terms of (p, q)-duality, here we skip the details.
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(p, q)∗ -duality. The (p, q)∗ duality introduced in [13] requires some more comments.

• The electric theory is a U(Nc)k gauge theory with k = f − 1
2(FL + FR) and FR >

f > FL. There are FL fundamentals Q and FR antifundamentals Q̃.

• The magnetic theory is a U(FR − Nc)−k gauge theory with FR fundamentals q̃, FL

antifundamentals q and a meson M = QQ̃. There is a superpotential

Wdual =Mqq̃ (4.7)

The charges under the global symmetries are displayed in table (B.1). Along the RG flow

to the topological theory we run into the difficulty that at some point the effective CS

level vanishes. In such a situation extra fields appear and the gauge group is broken to

some smaller rank [10], see also [11, 12]. We hence reduce the dual pair to the vector like

Aharony duality, for which we have computed the contact terms above. The flow can be

achieved by giving a large negative mass to f − FL and a large positive mass to FR − f

of the electric antiquarks. Integrating out the heavy fermions, the effective CS coupling

vanishes. We are left with FL pairs of (anti-)fundamentals Q, Q̃.

In the magnetic dual also FR−FL of the adjoint scalars in U(FR−Nc) get a large vev,

similar to the cases studied in [10–12], f − FL with a negative and FR − f with a positive

sign. This breaks the dual gauge group to U(FL − Nc) × U(f − FL) × U(FR − f). We

choose the large vevs of the gauge scalars such that FL quark-antiquark pairs (q, q̃) of the

U(FL − Nc) sector, f − FL antiquarks in the U(f − FL) sector and FR − f antiquarks in

the U(FR − f) sector remain massless. At the same time, the spectrum of heavy quarks is

UFL−Nc
Uf−FL

UFR−f SU
L
FR−f SU

L
f−FL

SUL
FL

SUR
FL

sgn(µ)

� 1 1 1 � 1 1 +1

� 1 1 � 1 1 1 −1

1 � 1 1 1 � 1 −1

1 � 1 � 1 1 1 −1

1 1 � 1 1 � 1 +1

1 1 � 1 � 1 1 +1

(4.8)

while the spectrum of heavy antiquarks is

UFL−Nc
Uf−FL

UFR−f SU
L
FR−f SU

L
f−FL

SUL
FL

SUR
FL

sgn(µ)

1̃ � 1 1 1 1 � +1

1̃ 1 � 1 1 1 � −1

(4.9)

and the heavy components of the mesons are given by

UFL−Nc
Uf−FL

UFR−f SU
L
FR−f SU

L
f−FL

SUL
FL

SUR
FL

sgn(µ)

1 1 1 1 � 1 � −1

1 1 1 � 1 1 � +1

(4.10)
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Here we use the short-hand notation UL,R
N ≡ U(N)L,R. The effective CS couplings are

0, −1
2(f − FL) and 1

2(FR − f) for the three surviving gauge groups, respectively. Note

that the last two sectors are chiral-like theories of the type U(k) k

2
and U(k)− k

2
with k

antifundamentals as the example discussed in section 3.1. They are hence both dual to a

singlet with topological charge ±1, which can be interpreted as the electric monopoles [10].

Knowing the spectrum of heavy fermions (4.8)–(4.10) we can calculate the CS terms as

in the last sections. Together with the extra phase that we get from dualizing the two chiral

sectors into monopoles, one obtains the relative contact terms of the (p, q)∗-duality [13].

5 Dualities with tensor matter

In this section we consider gauge theories with anti(fundamental) and adjoint matter. We

consider cases with U(Nc) and Sp(2Nc) gauge groups, with and without CS terms. We

choose the interactions, the field content and the values of the CS levels such that the

models are superconformal field theories (SCFTs) and the dual phases have a vanishing

gauge group. These dualities are generalizations of the one discovered in [16] and further

studied in [18, 39].

The dualities that we introduce can be connected by an RG flow. We will show that

the dual partition functions are identical, due to some mathematical identities summarized

in the appendix. Moreover we show that the contact terms reproduce the complex phase

in these identities.

5.1 Dualities among U(Nc) models

In this section we study a set of dualities between U(Nc) theories and theories of singlets,

with a vanishing gauge group.

U(Nc)0 with one fundamental, one anti fundamental and an adjoint field. Here

we consider a U(Nc) gauge theory with a fundamental Q, an antifundamental Q̃ and an

adjoint field X. The superpotential and the CS level are vanishing. The fundamentals

have charge 1 under U(1)A and R-charge ∆. The adjoint has R-charge ∆X .

This theory is dual to a set of singlets, with vanishing gauge group. We identify three

types of singlets.

1. The mesons of the electric theory. They are gauge invariant combinations of the

matter fields of the form

Mj = QXjQ̃ with j = 0, . . . , Nc − 1 (5.1)

2. A set of operators Uj =TrXj+1, for j = 0, . . . , Nc − 1

3. The “dressed” monopole operators of the electric theory. They have been first ana-

lyzed in [19] in a similar context. Again there is a whole tower of singlets: the usual

“bare” electric monopole operators of Aharony duality T0 and T̃0 are dressed with

additional matter fields Tj = tr(T0X
j) and T̃j = tr(T̃0X

j) with j = 0, . . . , Nc − 1.
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The singlets and their charges under the global symmetries are

U(1)A U(1)R U(1)j

Uj 0 (j + 1)∆X 0

Mj 2 2∆ + j∆X 0

Tj −1 (1−∆)−∆X(Nc − j − 1) 1

T̃j −1 (1−∆)−∆X(Nc − j − 1) −1

(5.2)

As a first check, we use the mathematical identity (A.5) to show that the two partition

functions of the electric and the magnetic theory are identical. Similar to Aharony duality

studied in section 4 this matching does not involve any complex phase. We verify the

absence of the phase by computing the relative contact terms as above. Integrating out all

matter fields we have

kmrr =
1

2

Nc−1∑

j=0

((∆Xj + 2∆− 1)2 − 2(∆ +∆X(Nc − 1− j))2 + (∆X(j + 1)− 1)2)

kerr = Nc(∆− 1)2 +
1

2
N2

c (∆X − 1)2 ≡ kmrr +
1

2
N2

c

kmAA =
1

2

Nc−1∑

j=0

(4− 2) ≡ keAA = Nc kmJJ = −
1

2

Nc−1∑

j=0

((+1)2 + (−1)2) = −Nc

(5.3)

and we are left with a pure CS gauge theory with effective level 1. Adding, as in section 3.1,

the contact terms of this theory we find that the overall relative contact terms vanish. Note

that the effective CS level for the background vector of U(1)J is keJJ = −Nc [28].

U(Nc)1/2 with one fundamental and an adjoint field. In this section we obtain

a second dual pair by flowing from the duality discussed in the last section. The flow is

generated by assigning a positive real mass to the antifundamental Q̃. We remain with

an U(Nc) gauge theory with one fundamental Q, one adjoint X and CS level k = 1/2,

generated at one loop. In the dual theory the mesons Mj and the antimonopoles T̃j
acquire a mass. The dual theory is a collection of singlets Uj and monopoles Tj . The

global charges of the singlets in this case are

U(1)A U(1)R U(1)j

Uj 0 (j + 1)∆X 0

Tj −1
2

1
2(1−∆)−∆X(Nc − j − 1) 1

(5.4)

We check this duality by matching the electric and the magnetic partition functions. In-

deed, this reproduces the mathematical integral identity (A.6), up to a complex phase.

This phase can again be obtained from the contact terms, the computation is very similar

as in the warm-up example of section 3.1. Due to the chiral matter content the topological

symmetry of the pure CS gauge theory is shifted

U(1)
J̃
= U(1)J +

1

2
U(1)A +

1

2
(∆− 1)U(1)r (5.5)
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The final result for the relative contact terms is

∆krr =
1

8
Nc(1−∆)(3∆ + 1 + 2(Nc − 1)∆X) ∆krJ =

1

8
Nc(3∆− 1 + (Nc − 1)∆X)

∆kAA = −
3

8
Nc ∆kAJ =

3

8
Nc

∆krA =
1

8
Nc(1− 3∆ + (1−Nc)∆X) ∆kJJ =

1

8
Nc

(5.6)

Using (A.15) these contact terms reproduce indeed the complex phase of (A.6).

U(Nc)1 with an adjoint field. By integrating out the remaining fundamental, again

with positive mass, we obtain a U(Nc)1 gauge theory with an adjoint X. The magnetic

dual reduces to the set of singlets Uj . This duality has already been studied by [18],

generalizing the one discovered in [16].

In [18] the duality has been checked by matching the superconformal indices of the

two phases. Moreover the matching of the partition functions has been performed in [39]

based on the integral identity (A.7).

The two dual partition functions are again identified up to a complex phase. Here we

verify that this phase can be deduced from the fermionic spectrum. The relative contact

terms are

∆krr = Nc

(
1

3
∆2

X (Nc − 1) (2Nc − 1) + 2∆X (Nc − 1) + 2

)
∆kJJ = −Nc (5.7)

and they indeed give rise to the complex phase in (A.7) via (A.15).

Let us make two additional comments. We can connect these dualities to other dualities

studied in the literature. As observed in [18] by adding a superpotential deformation

W = TrXNc+1 one can recover the limiting case of the duality of [14, 15] in the case with

k = 1 and F = 0, where indeed Ñc = 0. Also the first duality that we discussed above

can be deformed in the same way. In this case one recovers the limiting case of the duality

studied in [19], still with Ñc = 0.

We assigned a generic value ∆X to the R-charge of the adjoint X. It follows that the

singlets Uj have R-charge j∆X , even if free chiral multiplets have usually R-charge 1/2

in three dimensional SCFTs. This signals that the exact superconformal R-symmetry is

accidental and one should compute it as in [39]. In our calculation we do not discuss the

case with the exact R-charges and assign the UV value to the singlets Uj .

5.2 Dualities among Sp(2Nc) models

Dualities with tensor matter exist also for symplectic gauge groups.2 We consider Sp(2Nc)2k
gauge theories with 2F fundamental quarks Q and a totally antisymmetric tensor X. We

study the following classes of theories: (2k, 2F ) = {(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)}. The

last case has been already introduced in [18]. Observe that as before one can start from

the case with 2F = 4 and 2k = 0 and obtain the others by integrating out matter fields.

2Here we consider the convention Sp(2)2k = SU(2)k.
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All the dual phases have a vanishing gauge group and the field content consists of a

set of singlets. In the first case k = 0 there are mesons Mab
i ∼ QaJ(XJ)iQb, monopoles Tj

and singlets Uj = tr(XJ)j+1, with J being the invariant tensor of the symplectic group.

In the cases with 2k = 1 and 2k = 2 there are no monopoles in the dual phase, but only

mesons and singlets Ui. In the cases with 2k = 3 and 2k = 4 there are just the singlets Uj .

SU(2F ) U(1)A U(1)r

Q 2F 1 ∆

X 1 0 ∆X

Mj F (2F − 1) 2 ∆X + 2∆

Tj 1 −F 2− 4∆−∆X(Nc − 1 + j)

Uj 1 0 (j + 1)∆X

(5.8)

As before we can test these dualities with the partition function. In appendix A.2 we

review the mathematical identities discovered in [26]. We observe that in all the models

listed above the partition functions match up to complex phases. We computed also the

relative contact terms in each duality and found that they reproduce these complex phases

through (A.15).

In the case with 2k = 0 and 2F = 4 the relative contact terms vanish and the phase is

absent. In the other cases we can write the relative abelian contact terms as

∆krr =
1

2
(2F − 1)F

Nc−1∑

j=0

(2∆ + j∆X − 1)2 +
1

2

Nc−1∑

j=0

((j + 1)∆X − 1)2

−2(∆− 1)2NcF −
1

2
Nc (2Nc − 1) (∆X − 1) 2 +

1

2
(2Nc + 1)Nc

∆krA =
1

2
NcF (−4∆ + (2F − 1)(4∆ + (Nc − 1)∆X − 2) + 4)

∆kAA = 4NcF (F − 1) (5.9)

For 2F = 2, 3 we also have a non-abelian flavour symmetry with relative contact terms

∆kSU(2F ) = Nc(F − 2).

6 Dualities between U(N) and Sp(2N) theories

In this section we propose some new dualities between gauge theories with unitary and

symplectic gauge groups. These dualities are supported by some integral identities between

their three sphere partition functions that we review in appendix A.2. We perform another

check of these dualities by matching the relative contact terms with the complex phases.

U(Nc)0 and Sp(2Nc)2.

• The electric theory is an U(Nc)0 gauge theory with two pairs of quarks and antiquarks

and with an adjoint field X.
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• The magnetic theory is an Sp(2Nc)2 gauge theory with four flavors and a totally

antisymmetric tensor Y . There are extra singlets Mj and Nj interacting through the

superpotential

∆W =

Nc−1∑

j=0

(
MjqJ(Y J)

Nc−1−jq +NjpJ(Y J)
Nc−1−jp

)
(6.1)

The electric theory has a global SU(2)L×SU(2)R×U(1)A×U(1)r×U(1)J symmetry. The

matter fields have charges

SU(2)L SU(2)R U(1)A U(1)r U(1)J

Q 2 1 1 ∆Q 0

Q̃ 1 2 1 ∆Q 0

X 1 1 0 ∆X 0

(6.2)

The global flavor symmetry of the dual phase is SU(4). This symmetry is broken to

SU(2)2 × U(1)V by the superpotential (6.1). There are also an axial U(1)A and an U(1)r
R-symmetry. The charges of the matter fields are

SU(2)L SU(2)R U(1)A U(1)r U(1)V

q 2 1 1 ∆q −1

p 1 2 1 ∆p 1

Y 1 1 0 ∆Y 0

Mj 1 1 −2 2(1−∆q)−∆Y (Nc − 1− j) 2

Nj 1 1 −2 2(1−∆p)−∆Y (Nc − 1− j) −2

(6.3)

where the global charges of the singlets Mj and Nj have been computed from (6.1). These

charges coincide with the ones of the electric monopoles Ti and T̃i after the identifications

∆Q = ∆q = ∆p = ∆ ∆Y = ∆X (6.4)

and

U(1)J = 2U(1)V (6.5)

such that λ = 4φ. Note that the topological symmetry of the unitary theory appears as a

flavour symmetry in the symplectic side.

By inserting the real masses according to the global charges in the relation (A.13) we

conclude that the two models have the same partition function modulo an extra complex

phase.

In the rest of this section we compute the CS contact terms for the global symmetries

and match the result with the phase in (A.13). In the unitary case we have

kerr = −
1

2
N2

c + 2Nc(∆− 1)2 +
1

2
N2

c (∆X − 1)2, keAA = 2Nc, keJJ = −
1

2
Nc

kerA = 2Nc(∆− 1), kerJ = 0, keAJ = 0, keSU(2)L
=

1

2
Nc, keSU(2)R

=
1

2
Nc

(6.6)
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while in the dual symplectic case we have

kmrr = −
1

4
Nc(Nc + 1) + 2Nc(∆− 1)2 +

1

2
Nc(Nc − 1)(∆X − 1)2 +

Nc−1∑

j=0

(1− 2∆− j∆X)2

kmrA = Nc(1−∆) + 2

Nc−1∑

j=0

(1− j∆X − 2∆), kmV V = 0

kmAA = −2Nc, kmrV = 0, kmAV = 0, kmSU(2)L
= Nc, kmSU(2)R

= Nc

(6.7)

These contact terms reproduce the phase in (A.13).

U(Nc)1 and Sp(2Nc)4. We can obtain another duality from this by integrating out

some matter fields. In the unitary phase we integrate out one quark and one antiquark,

with positive real mass. In the dual phase we integrate out one q quark, one p quark and

the monopoles. We end up with the following two theories.

• The electric theory is an U(Nc)1 gauge theory with one quark and one anti-quark

and an adjoint field X.

• The magnetic theory is an Sp(2Nc)4 gauge theory with two flavors and with a totally

antisymmetric tensor Y .

The global symmetry of the unitary phase is U(1)A × U(1)r × U(1)J with charges as

in table (6.2). In the symplectic dual we have U(1)A × U(1)r × U(1)V symmetry with

charges (6.3). We again identify the global U(1)V of the magnetic phase with the topological

U(1)J of the electric phase as U(1)J = 2U(1)V such that 4φ = λ. The partition functions of

the two models are related by the integral identity (A.14), up to the usual complex phase.

To match also the phase we integrate out the matter fields and flow to a pure CS

theory. The contributions to the contact terms from the electric phase are

kerr = −
1

2
N2

c +Nc(∆− 1)2 +
1

2
N2

c (∆X − 1)2, keAA = Nc

keJJ = −
1

2
Nc, kerA = Nc(∆− 1), kerJ = 0, keAJ = 0

(6.8)

With this choice the contact terms of the magnetic phase are

kmrr = −
1

2
Nc(2Nc + 1) + 2Nc(∆− 1)2 +Nc(2Nc − 1)(∆X − 1)2

kmAA = 2Nc, kmV V = Nc, kmrA = Nc(∆− 1) kmrV = 0 kmAV = 0
(6.9)

The relative contact terms obtained from (6.8) and (6.9) reproduce the complex phase

in (A.14).

7 Conclusions

In this paper we computed the relative contact terms of two point functions of global

symmetries for pairs of dual three dimensional N = 2 theories. The calculation provides
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an extra check of these dualities. We found agreement with the results obtained from

localization. We also generalized some known dualities and proposed a new one, between

symplectic and unitary gauge groups.

Extensions of our results are possible. First it would be interesting to study the

dualities with tensor matter and a polynomial superpotential [14, 15, 17–19]. In those cases

the integral identities between the dual partition functions have, to our knowledge, not been

studied in the literature. By computing the contact terms one can determine the possible

complex phase in these identities and hence predict some new mathematical relations as the

ones derived in [26]. An independent derivation would be given by dimensional reduction

from the four dimensional superconformal index [40, 41] along the lines of [42].

The duality between unitary and symplectic gauge theories requires further investi-

gation. First, it would be desirable to formulate it for arbitrary values of Nc, Nf and k.

Then, additional checks are necessary, such as computing the superconformal index and

the Witten index after having lifted the moduli space. Other dualities between unitary

and real groups have already been suggested in the literature [7]. It would be interesting

to connect this scenario to our results.

We would like to conclude with an observation on the Aharony like dualities, i.e.

dualities with vanishing CS levels. In all these cases there is no extra phase in the integral

identities or, equivalently, the relative contact terms vanish. One may wonder if this is

related to the parity invariance of the theory.3
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A Partition function and contact terms

In this appendix we report some results concerning the localized partition function on the

squashed three sphere computed in [25] from localization.4 We first review the definition

of the matrix integral. Then we report some integral identities between pairs of matrix

integrals. They represent the relation between the dual pairs studied in the paper. We

conclude by discussing the extra complex phases appearing in these identities and their

relation with the contact terms.

A.1 The partition function on the squashed three sphere

The partition function of a three dimensional N = 2 supersymmetric CS matter theory

localized on a squashed three sphere S3
b corresponds to a matrix integral. For a general

3We are grateful to Ken Intriligator for interesting comments on this point.
4See also [21, 23, 24] for related computations on the round sphere.
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gauge group G it can be written as

ZS3
b

=
1

|W |

∫ rank[G]∏

i=1

dσi ZV

∏

I∈R

ZI c
(
2λTrσ − 2kTrσ2

)
(A.1)

Let us briefly review the different factors. The integral is over the Cartan of the gauge

group, here parameterized by the diagonal entries σi of the real scalar σ in the vector

multiplet of the gauge field. The function c(x) is

c(x) = e
iπx

2ω1ω2 (A.2)

where ω1 = ib and ω2 = i/b with b being the squashing parameter of the sphere Sb. The

term c
(
2λTrσ − 2kTrσ2

)
is the contribution from the classical action, a CS term at level

k and an FI term with parameter λ/2. |W | represents the sum over the Weyl degeneracies.

The one loop determinants ZV and ZI are the contributions from the vector and the matter

multiplet respectively,

ZI =
∏

ρI ,ρ̃I

Γh (ω∆I + ρI(σ) + ρ̃I(µ)) , ZV =
∏

α

Γ−1
h (±α(σ)) (A.3)

where Γh(±x) ≡ Γh(x)Γh(−x). The “hyperbolic Gamma function” Γh, which features

prominently in these expressions, has been the interest of recent mathematical research,

see e.g. [26] for which we refer for further details. It can be written as

Γh(z;ω1, ω2) ≡ Γh(z) ≡
∞∏

n,m=1

(n+ 1)ω1 + (m+ 1)ω2 − z

nω1 +mω2 + z
(A.4)

Note that in most expressions we suppress the periodicities ω1 and ω2 which for us will

always be as in (A.2). The contribution of the vector multiplet is parameterized by the

positive roots α of the gauge group. The matter sector gets a contribution from each chiral

multiplet labeled by I in the representation R. It depends on the weights ρI of the gauge

representation, the weights ρ̃I of the flavor representation and the R charge ∆I . We also

defined ω ≡ (ω1 + ω2)/2.

A.2 Integral identities

U(Nc) models with an adjoint. In this appendix we report the mathematical identities

discovered in [26] that show the matching between the partition function of the U(Nc) gauge

theories with adjoint matter and dual theories made of free singlets. We discussed these

dualities in section 5.

The first identity relates a U(Nc)0 gauge theory with one fundamental, one antifunda-

mental and an adjoint to a set of mesons, dressed (anti-)monopoles and singlets Uj . We have

ZU(Nc)0(µ, ν, τ, λ) =

Nc−1∏

j=0

(
Γh

(
ω ±

1

2
λ−

1

2
(µ+ ν)− ωτ(Nc − 1− j)

)

×Γh((j + 1)τ) Γh(jωτ + µ+ ν)

)
(A.5)

where µ = ν = mA + ω∆.
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The second identity relates a U(Nc)1/2 gauge theory with one fundamental and an

adjoint to a set of dressed monopoles and singlets Uj .

ZU(Nc) 1
2

(µ, τ, λ) =

Nc−1∏

j=0

(
Γh((j+1)τ) Γh

(
1

2
(ω + λ− µ)−ωτ(Nc−1−j)

))
(A.6)

×ζ−Ncc

(
1

4
Nc

(
(λ−ω)2−3µ2+2µ(3λ+ω) + 2ωτ(Nc − 1)(λ+ ω − µ)

))

where µ = mA + ω∆.

The last identity relates a U(Nc)1 gauge theory with an adjoint to a set of singlets Uj .

ZU(Nc)1(τ, λ) = ζ−3Nc
Nc−1∏

j=0

Γh((j + 1)τ) (A.7)

×c

(
1

2
Nc

(
2ω2 + ω2τ + λ2 + 2(Nc − 1) +

1

3
ω2τ2(Nc − 1)(2Nc − 1)

))

Sp(2Nc) models with a totally antisymmetric field. In this appendix we report the

mathematical identities,5 discovered in [26], that show the matching between the partition

function of the Sp(2Nc) gauge theories with totally antisymmetric matter and dual theories

made of free singlets. We discussed these dualities in section 5. The first identity relates a

Sp(2Nc)0 gauge theory with four fundamentals and a totally antisymmetric field to a set

of mesons, dressed monopoles and singlets Uj .

ZSp(2Nc)0(µ, τ, λ) =

Nc−1∏

j=0

(
Γh((j + 1)τ)Γh

(
2ω −

4∑

α=1

µα − ωτ(Nc + j − 1)

)

×
∏

0≤α<β≤3

Γh(jωτ + µα + µβ)

)
(A.8)

where the four components of the vector µ are all equal to ma + ω∆.

The second identity relates a Sp(2Nc)1 gauge theory with three fundamentals and a

totally antisymmetric field to a set of mesons and singlets Uj . We have

ZSp(2Nc)1(µ, τ, λ) =

Nc−1∏

j=0

(
Γh((j + 1)τ)

∏

0≤α<β≤2

Γh(jωτ + µα + µβ)

)
(A.9)

×c

(
Nc

(
2

∏

0≤α<β≤2

µαµβ + 2ωτ(Nc − 1)

3∑

α=1

µα +
1

3
ω2τ2(Nc − 1)(4Nc − 5)

))

where the three components of the vector µ are mA + ω∆.

5In some case we manipulate the identities such that they appear more directly related to the physical

dualities that we discussed in the paper.
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The third identity relates a Sp(2Nc)2 gauge theory with two fundamentals and a totally

antisymmetric field to a set of mesons and singlets Uj . We have

ZSp(2Nc)2(µ, τ, λ) =

Nc−1∏

j=0

(
Γh((j + 1)τ)Γh(jωτ + µ1 + µ2)

)
(A.10)

×c

(
Nc

(
2ω(µ1 + µ2) + ωτ(Nc − 1)(µ1 + µ2 + 2ω) +

2

3
ω2τ2(Nc − 1)(Nc − 2)

))

The fourth identity relates a Sp(2Nc)3 gauge theory with one fundamentals and a totally

antisymmetric field to a set of singlets Uj . We have

ZSp(2Nc)3(µ, τ, λ) = ζ−Nc

Nc−1∏

j=0

Γh((j + 1)τ) (A.11)

×c

(
Nc

(
4µω−2µ2+ω2+3ω2τ(Nc−1)+

1

6
ω2τ2(Nc−1)(2Nc−7)

))

where µ = mA + ω∆.

The last identity relates a Sp(2Nc)4 gauge theory with a totally antisymmetric field to

a set of singlets Uj . We have

ZSp(2Nc)4(τ, λ) = ζ−3Nc

Nc−1∏

j=0

Γh((j + 1)τ) (A.12)

×c

(
Nc

(
3ω2(τ(Nc − 1) + 1) +

1

6
ω2τ2(Nc − 1)(2Nc − 7)

))

U/SP relations.

U(Nc)0 and Sp(2Nc)1.

ZU(Nc)0(µ; ν; τ ;λ)=ZSp(2Nc)1(µσ′ ; τ)

Nc−1∏

j=0

Γh

(
2ω ±

1

2
λ−

1

2

∑

α=1,2

(µα + να)−τ(Nc−1−j)

)

×c

(
Nc

(
4σ′

2
−2µ1µ2 − 2ν1ν2 − (Nc − 1)τ

∑

α=1,2

(µα + να)−
2

3
(Nc − 1)(Nc − 2)τ2

))
(A.13)

where µ and ν are 2-vectors. Moreover 4σ′ = ν1+ ν2−µ1−µ2−λ and µσ′ = (µ1+σ
′, µ2+

σ′, ν1 − σ′, ν2 − σ′).

U(Nc)1 and Sp(2Nc)2.

ZU(Nc)1(µ; ν;τ ;λ) = ZSp(2Nc))2

(
(3µ+ ν − λ)/4, (µ+ 3ν + λ)/4; τ

)
(A.14)

×c

(
1

2
Nc

(
λ2 + (µ+ ν)2 − 4(µ+ ν)ω − 4(Nc − 1)τω + 2(Nc − 1)τ2

))

where µ and ν are 1-vectors.
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A.3 Localization and contact terms

Let us summarize here the relationship between the extra phase appearing in most of the

mathematical identities displayed in the last section and the relative contact terms for

the corresponding dualities. As discussed in section 3 the contact terms are associated

with global CS couplings in the Lagrangian. The saddle point of the background vector

multiplet contributing to the localized partition function is Aµ = λ = 0, D = iσ = const.

We consider generic vevs for the global (non-R) symmetry multiplets 〈σI〉 = mI . The R

symmetry instead plays a special role. Preserving supersymmetry on a curved manifold

such as the squashed three sphere requires embedding Ar
µ in a gravity multiplet and turning

on a particular imaginary background value, which is determined by the geometry [33].

The phase appearing in the mathematical identities that we want to match with our

computations corresponds to the relative contact terms for two dual theories. On the

supersymmetric locus the electric and magnetic CS Lagrangians (2.1) generate the phase

c

(
−

(
2ω2∆krr + 4ω

∑

I

∆krI + 2
∑

I,J

∆kIJ mImJ

))
(A.15)

see also [13] for a related discussion. Note that ω = i
2(b+

1
b ) is related to the background

value of the R symmetry and that ∆ denotes the difference between the two dual pairs,

∆k = km − ke.

B Flowing between dualities

As discussed in the introduction the dualities of [5] and [13] can be obtained from the

Aharony duality by a real mass flow. The existence of reverse flows was not obvious. A

first result in this direction was obtained in [10] for k = −1 and generalized to generic

values of the level in [12]. Moreover it has been shown in [12] that one check this flow on

the three sphere partition function.

In this appendix we first review the flow from the Giveon-Kutasov to the Aharony

duality. Then we construct another reverse flow, from the (p, 0) to the Aharony duality and

check its validity on the partition function. As a last example we study a flow connecting

two chiral theories, from the (p, 0) duality to the (p, q)∗ case.

The charges of the fields under the global symmetries are

SU(FL)L SU(FR)R U(1)A U(1)r U(1)J

Q � 1 1 ∆ 0

Q̃ 1 � 1 ∆ 0

q � 1 −1 1−∆ 0

q̃ 1 � −1 1−∆ 0

M � � 2 2∆ 0

T 1 1 −1
2(FL + FR) 1−Nc +

1
2(FL + FR)(1−∆) 1

T̃ 1 1 −1
2(FL + FR) 1−Nc +

1
2(FL + FR)(1−∆) −1

(B.1)

where for vector-like dualities FL = FR = F .
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B.1 From Giveon Kutasov to Aharony duality

In the electric phase of the Giveon-Kutasov duality the flow is generated by assigning real

masses to the same amount of fundamentals and antifundamentals. When the number of

masses coincides with the CS level one can choose the opportune sign of the masses to

cancel it. This leaves with the electric phase of the Aharony duality. The magnetic side

of the flow is more involved. Indeed it is also necessary to break the gauge symmetry

by assigning a non zero vacuum expectation value to the real scalar σ inside the vector

multiplet. This gauge symmetry breaking gives three gauge sectors. One of them is the

dual gauge sector of the Aharony duality. The other two sectors can be further dualized to

singlets. It turned out that these singlets have the same quantum numbers of the electric

monopole operators that couple to the magnetic monopole operator in the dual phase. By

considering the gauge sector and these singlets one reconstruct the Aharony’s dual phase.

B.2 From (p, q)∗ to Aharony duality

Here we study the flow from the (p, q)∗ duality to the Aharony duality. The electric theory

has CS level k = s− 1
2(FL+FR) (with FL > s > FR) while the magnetic theory has CS level

−k and W =Mqq̃. By giving a large real mass to some of the quarks the (p, q)∗ dual pair

flows to the Aharony pair. In the dual theory the gauge symmetry is broken by shifting the

real scalar in the vector multiplet. In the electric theory we assign a positive large mass to

FL − s quarks and a negative one to s− FR. After these fields are integrated out we have

a U(Nc)0 gauge theory with FR light quarks and antiquarks without superpotential. This

is the electric side of the Aharony duality.

In the magnetic theory we assign the masses consistently to the dual quarks and

mesons. Moreover the σi scalar in the vector multiplet must get a vev to preserve the

duality. There are FR − Nc unshifted components. The other FL − FR are split. FL − s

acquire a large negative vev while the remaining s − FR acquire a large positive vev. By

integrating out the massive fields one has three sectors. The first one has gauge group

U(FR − Nc)0 with FR quarks and antiquarks q and q̃, a singlet M with F 2
R components

and superpotential W = Mqq̃. The second sector has gauge group U(FL − s) 1
2
(FL−s)

with FL − s light chiral fields and the third one has gauge group U(s − FR) 1
2
(FR−s) with

s − RR light chiral fields. As discussed in [10, 12, 13] these sectors are both dual to a

single chiral superfield. One couples to the magnetic monopole the other to the magnetic

anti-monopole. They indeed correspond to the electric monopole and anti-monopole that

appear as singlets in the dual superpotential.

This flow can be studied on the partition function along the lines of [12]. The relation

between the (p, q)∗a and the (p, q)∗b theory is given in [13, 26]. We turn on the real masses

as discussed above and obtain the relation

ZU(Nc)0(µ, ν;λ) = ZU(FR−Nc)0(ω − ν, ω − µ;−λ)

FR∏

α,β=1

Γh(µα + νβ)

×c
(
2 ((mA − ω) (kFR (ω − 3mA)− FL (kmA − 3kω + λ))− ωNc (4kmA − 4kω + λ))

)

×ZU(FL−s) 1
2 (FL−s)

(M1, 0;λ1) Z
(s−FR,0)
U(s−FR) 1

2 (FR−s)
(M2, 0;λ2) (B.2)
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where µ and ν are (FR)-vectors. We also have an (FL−s)-vector M1 and an (s−FR)-vector

M2, with each component equal to ω−mA. The shifted FI terms in the two chiral sectors

are respectively

λ1 = −λ− kmA +
1

2
(FLmA) +

3

2
FRmA + 2ωNc + 2kω − FLω − FLω

λ2 = −λ− kmA −
1

2
FLmA −

3

2
FRmA − 2ωNc + 2kω + FLω + FLω (B.3)

These integral can be computed as in [13, 26] and finally we have

ZU(Nc)0(µ, ν;λ)) = ZU(FR−Nc)0(ω − ν, ω − µ;−λ)

FR∏

α,β=1

Γh(µα + νβ)

×Γh

(
±

1

2
λ−mAFR + (FR −Nc + 1)ω

)
(B.4)

the correct relation for the Aharony duality with NC colors and FR flavors.

B.3 From (p, q)∗ to (p, 0) duality

In this appendix we consider a second flow from the (p, q)∗ duality to the (p, 0) duality.

The electric theory is a U(Nc)k gauge theory with FR light quarks and FL light antiquarks.

The CS level is k = s− (FL + FR)/2 and FL > s > FR. The dual theory has gauge group

U(FL − Nc)−k with FR antiquarks and FL quarks, and FL × FR singlets, the mesons of

the electric theory. For simplicity we fix k > 0, i.e. s − FR > FL − s and integrate out

(FL − s) antiquarks with large positive mass. The electric phase flows to the (p, 0)b theory

a U(Nc)(s−FR)/2 CS matter theory with FR quarks and s light antiquarks.

In the dual phase one has to assign the masses to the dual quarks and to the mesons

consistently. Moreover one has to assign a vacuum expectation value to the scalar in the

vector multiplet, by giving a large negative shift to FL − s components. In this dual

theory we distinguish two sectors. In the first sector we have gauge sector with U(s −

NC)−(s−FR)/2 gauge symmetry with FR light dual antiquarks, s light dual quarks and

s×FR light singlets, corresponding to the mesons of the electric theory. The second sector

is a U(s− FL)(s−FL)/2 gauge theory with FL − s light quarks. This sector can be dualized

to a monopole. Eventually one obtains the (p, 0)b duality.

This flow can be followed on the partition function. We start from the equality (5.19)

in [13] and assign the large masses and vevs to the fields. By performing the large mass

limit we arrive to the relation

ZU(Nc) 1
2 (s−FR)

(µ, ν;λ) = ZU(s−Nc)
−

1
2 (s−FR)

(ω − ν, ω − µ;−λ+ (s− FR)ω)

×

FR∏

α=1

s∏

β=1

Γh(µα + νβ) ZU(FL−s) 1
2 (FL−s)

(M, 0; λ̃)

×c

(
(s− FR)

s∑

β=1

m2
β + ωNc(4(FL − s)mA + 2λ+ 5sω − (4FL + FR)ω)

)

×c
(
ω−mA)(λ−2FL(FR(mA−ω)+2sω)+F 2

L(3ω−mA)−sFR(ω−3mA))
)

(B.5)
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where µ is an (FR)-vector and ν is an s-vector. In this case there is also an (FL − s)-

vector M. Each component of M is equal to ω −mA. The shifted FI in the chiral sector

is λ̃ = −λ + FL (2ω −mA) − FRmA − 2ωnc − sω + FRω. The partition function of the

U(s− FL) can be explicitly computed. We eventually have

ZU(Nc) 1
2 (s−FR)

(µ, ν;λ) = ZU(s−Nc)
−

1
2 (s−FR)

(ω − ν, ω − µ;−λ+ (s− FR)ω)

×

FR∏

α=1

s∏

β=1

Γh(µα + νβ) Γh

(
−

1

2
λ−

1

2
(s+ FR)mA + ω

(
1

2
(s+ FR)−Nc + 1

))

×c
(
(s− FR) (s+ FR)ωmA − s (s− FR)m

2
A − (s− FR)ω

2 ((s−Nc))
)

×c

(
1

4
((s+FR)mA+2ωNc−λ−3sω+FRω)

2−(s−FR)
s∑

β=1

m2
β−λ (s−FR)mA

)
(B.6)

One can check that this is the right phase of the (p, 0)b duality. It can be obtained from

the (p, 0)a by acting with parity as discussed in [13].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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