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Abstract: The final state interaction contribution to D+ decays is computed for the

K−π+π+ channel within a light-front relativistic three-body model for the final state in-

teraction. The rescattering process between the kaon and two pions in the decay channel is

considered. The off-shell decay amplitude is a solution of a four-dimensional Bethe-Salpeter

equation, which is decomposed in a Faddeev form. The projection onto the light-front of the

coupled set of integral equations is performed via a quasi-potential approach. The S-wave

Kπ interaction is introduced in the resonant isospin 1/2 and the non-resonant isospin 3/2

channels. The numerical solution of the light-front tridimensional inhomogeneous integral

equations for the Faddeev components of the decay amplitude is performed perturbatively.

The loop-expansion converges fast, and the three-loop contribution can be neglected in

respect to the two-loop results for the practical application. The dependence on the model

parameters in respect to the input amplitude at the partonic level is exploited and the

phase found in the experimental analysis, is fitted with an appropriate choice of the real

weights of the isospin components of the partonic amplitude. The data suggests a small

mixture of total isospin 5/2 to the dominant 3/2 one. The modulus of the unsymmetrized

decay amplitude, which presents a deep valley and a following increase for Kπ masses above

1.5 GeV, is fairly reproduced. This suggests the assignment of the quantum numbers 0+

to the isospin 1/2 K∗(1630) resonance.

Keywords: Phenomenological Models, Hadronic Colliders

ArXiv ePrint: 1404.3797

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2014)135

mailto:karin.fornazier@gmail.com
mailto:odilon@cca.ufscar.br
mailto:wayne@ita.br
mailto:tobias@ita.br
mailto:alberto@cbpf.br
http://arxiv.org/abs/1404.3797
http://dx.doi.org/10.1007/JHEP08(2014)135


J
H
E
P
0
8
(
2
0
1
4
)
1
3
5

Contents

1 Introduction 1

2 Kπ S-wave amplitude 4

3 D+ → K−π+π+ decay with FSI 7

3.1 Three-body Bethe-Salpeter approach 8

3.2 s-channel two-meson amplitude 9

3.3 D+ → K−π+π+ problem 10

3.4 Phase and amplitude separation 12

4 FSI light-front dynamics in heavy meson decay 12

4.1 QPA and decay amplitude 13

4.2 Effective LF interaction for three-particles 14

4.3 LF Faddeev equations for DLF 15

5 LF model for D+ → K−π+π+ decay 17

5.1 Phase and amplitude separation 19

6 Perturbative solutions 20

6.1 Interaction in IKπ = 1/2 state 20

6.2 Interaction in IKπ = 1/2 and 3/2 states 22

7 Results for the phase and amplitude in the D+ → K−π+π+ decay 24

7.1 Single-channel with IKπ = 1/2 interaction 25

7.2 Coupled-channels with IKπ = 1/2 and 3/2 interactions 28

8 Summary and conclusions 30

1 Introduction

Weak decays of heavy flavored hadrons provide unique opportunities to probe the interplay

of the electroweak theory and Quantum Chromodynamics (QCD). The weak part of these

decays involve short-distance transitions at the quark-level, whereas the hadron formation

is governed by the long-distance, low-energy strong interactions.

Due to the non-perturbative character of the strong interactions involved in heavy

flavor decays, the hadronization is not calculable from first principles. In the kaon sector,

chiral perturbation methods are applicable, given the small value of the s quark mass.

In the opposite extreme, the mass of the b quark is heavy enough to allow for reliable
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calculations based on effective field theories. The charm quark is in between these two

cases, which makes the computation of decay rates a challenging task.

The study of the C harge-Parity (CP) violation [1, 2] is an important example where

the hadronic part of the decay amplitude needs to be quantitatively understood. CP)

violation is a phenomenon where manifestations of new physics are expected. In the Stan-

dard Model (SM), CP violation processes are related to the complex phase in Cabibbo-

Kobayashi-Maskawa matrix (CKM) [3, 4], which describes the mixture between different

generations of quarks. SM predicts very small CP violation effects in charm decays, in

spite of large uncertainties. This makes charm decays a very interesting place to search for

new sources of CP violation. New physics would introduce additional CP -violating phases,

but disentangling these from the SM CP violation require the control of the overwhelming

strong phases.

We emphasize the advantages of the experimental investigation of the three-body

charm meson decays. These decays are, in general, dominated by resonant intermedi-

ate states, with a small non-resonant component [5]. With three-body decays one can

search for local CP violation effects, but the description of the decay dynamics requires

the understanding of hadronic effects such as the three-body final state interactions and

the role of the S-wave component.

In this paper we address the issue of three-body final state interactions (FSI) in the

decay D+ → K−π+π+,1 with emphasis on the S-wave component of the K−π+ amplitude.

This channel is chosen for several reasons: it is abundant, being studied by different exper-

iments like E791 [6, 7], FOCUS [8, 9] and CLEO [10]; it has a dominant S-wave component

and a small non-resonant amplitude; it allows the continuously study of the Kπ S-wave

amplitude from threshold, at 633 MeV/c2, up to 1.7 GeV/c2, covering the whole elastic

regime. With the D+ → K−π+π+ decay one can fill the gap of the existing data on Kπ

scattering from the LASS experiment [11] (LASS data for the Kπ scattering starts only at

825 MeV/c2).

The resonant structure of three-body decays are determined by the analysis of the

Dalitz plot [12]. In this two-dimensional diagram, the probability density of a pseudo-

scalar particle P , decaying into three pseudoscalar particles (d1, d2, d3), is given by

dΓ(P → d1d2d3) ∝ 1

M3
P

|M(s12, s13)|2 ds12 ds13 (1.1)

where MP is the mass of the parent particle. The phase-space density, M−3
P , is constant, so

the structures reveal the decay dynamics, forming the resonances, which are also affected

by final state interactions. The goal of the Dalitz plot analysis is to determine the matrix

element M(s12, s13).

The Dalitz plot analysis of the D+ → K−π+π+ was performed by different experi-

ments, such as MARK III [13–16], NA14 [17, 18], E691 [19, 20], E687 [21, 22], E791 [6]

and FOCUS [8, 9], using different decay models. These decay models differ in the way the

S-wave is described: the sum of Breit-Wigners plus a constant nonresonant term, referred

1Charge conjugation is implicit throughout this paper.
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to as the Isobar Model, the K-matrix formalism and a model independent partial wave

analysis (MIPWA), to which we give special attention.

The MIPWA technique, developed by E791 [23], is intended to extract, in a inde-

pendent way, the S-wave Kπ amplitude of the D+ → K−π+π+ decay. In the MIPWA,

the S-wave Kπ amplitude is a generic function, A0(s) = a0e
iφ0(s), given by the fit of the

Dalitz plot. The P and D wave are determined according the Isobar Model. Although

the MIPWA is the most model-independent approach, the extraction of the phase is an

inclusive measurement, comprising different isospin amplitudes and FSI.

As a matter of fact, the comparison between the S-wave from scattering and from D

decays show important differences which need to be understood. In addition to an overall

shift of approximately 150 degrees, the two amplitudes have different shapes.

The S-wave Kπ amplitude depends on the isospin and orbital angular momentum of

the system. There are two isospin states possible for this system, namely, I = 1/2 and

I = 3/2. In the case of the LASS experiment, it was shown that resonances and the

corresponding scattering amplitude poles are present only in the isospin 1/2 channel, as

verified in the analysis of the phase δI=1/2(mKπ) [24]. It is expected that this phase would

be common to all processes having a Kπ system, in the absence of rescattering involving

other particles in the final state. This should be valid to all angular momentum states,

according to the Watson theorem [25].

The S-wave phase-shift obtained from the D+ → K−π+π+ decay with the MIPWA

(FOCUS and E791) differ from that obtained from Kπ scattering (LASS). There is an

energy dependent discrepancy that cannot be cured by any combination of δI=1/2 and

δI=3/2. Indeed, up to an overall shift of ∼ 150◦ , such an energy dependence was reproduced

quite nicely below K∗0 (1430) in a chiral three-body model of the Kππ decay with S-wave

Kπ interaction, in the resonant isospin 1/2 channel and computed up to two-loops [26].

We should mention that a previous attempt [27, 28] to describe the decay D+ → K−π+π+

considering only two-body FSI (no 3-body FSIs and factorization of the weak vertex) was

also quite successful phenomenologically below K∗0 (1430).

Our aim is to further explore theoretically the three-body final state interaction in

the D+ → K−π+π+ decay. The motivation of our study is the possibility of three-body

rescattering in D+ → K−π+π+ decay for Kπ interactions in both isospin channels, while

fitting the LASS data in the whole kinematical region of the experiment up to 1.89 GeV.

Our study is based in a relativistic model for the three-body final state interaction in

D+ → K−π+π+ decay, starting with the three-meson Bethe-Salpeter equation [26, 29, 30].

In the model developed here, the decay amplitude is separated into a smooth term

and a three-body fully interacting contribution, which is factorized in the standard two-

meson resonant amplitude times a reduced complex amplitude for the bachelor meson, that

carries the effect of the three-body rescattering mechanism. The off-shell bachelor reduced

amplitude is a solution of an inhomogeneous Faddeev type integral equation, that has as

input the S-wave isospin 1/2 and 3/2 K−π+ transition matrix. The theoretical contribution

of the present work is to use in the three-body rescattering equations the S-wave two-body

Kπ amplitude in both isospin states, 1/2 and 3/2, fitted up to 1.89 GeV. We neglect the

interaction between the identical charged pions.
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The three-body model of the decay amplitude is recasted in a Bethe-Salpeter like equa-

tion, which is conveniently rewritten in terms of a Faddeev expansion. The contribution

of the final state interaction in the three-body decay of a heavy-meson in our model of the

S-wave Kπ transition amplitude is encoded by a bachelor amplitude associated with each

Faddeev component of the full decay amplitude. The bachelor function modulates the Kπ

scattering amplitude in the final decay channel and in general carries a phase. The advan-

tage of using the Faddeev decomposition of the decay amplitude, is that (i) the integral

equation for the bachelor function has a connected kernel, and (ii) the kernel is written in

terms of the two-body scattering amplitude directly, instead of the potential. We use a

parametrization of the Kπ scattering amplitude in I = 1/2 and 3/2, which is input to the

bachelor integral equations, and constitutes one source of the energy dependence seen in the

D+ → K−π+π+ S-wave phase shift, besides the phase of the Kπ amplitude. Technically,

we perform the light-front projection of the equations [31–37], to simplify the numerical

computation of the observables by three-dimensional integrations. These techniques are

well exemplified in the reviews of applications of light-front field theory to nuclear and

hadron physics [38, 39]. In particular, we should mention the application of light-front

quantization to describe three-body systems, see e.g. [40–44].

The work is organized as follows. In section 2, we present our fitting model for the

Kπ I = 1/2 S-wave phase-shift up to about 1.89 GeV of the LASS data [11]. In the

following sections, the relativistic formalism to compute the contribution of three-body

final state interaction in heavy-meson decays is developed. In section 3, we present the

derivation of a covariant and four-dimensional Bethe-Salpeter equation for the three-body

decay with rescattering effects. In section 4, we present the light-front projection technique

and derive the three-dimensional equations for the bachelor amplitude. In section 5, the

isospin projection of the LF equations for the bachelor amplitudes derived in the preceding

section is performed. Also we discuss the approximation of neglecting the interaction

between the identical charged pions. The perturbative solution of the LF integral equations

are constructed in section 6 for the bachelor amplitude up to three-loops, namely, up to

terms in third order in the two-body transition matrix to check convergence. In section 7

the numerical results for the D+ → K−π+π+ with three-body final state interaction and

Kπ interactions in I = 1/2 and 3/2 states are presented. In section 8, we summarize the

main contributions of this work to both the experimental and theoretical analysis of the

D+ → K−π+π+ decay.

2 Kπ S-wave amplitude

The S-wave amplitudes of the Kπ elastic scattering in the resonant IKπ = 1/2 and the

non-resonant one IKπ = 3/2 states are the inputs of our model of the 3 → 3 T-matrix,

which brings the final state interaction between the three mesons to the D+ → K−π+π+

decay. As we already mentioned, the interaction of the identical pions is neglected. Here,

we just follow [29, 37] for the parametrization of the LASS data [11] in the S-wave resonant

IKπ = 1/2 channel. In addition to the K∗0 (1430), we use the resonances K∗0 (1630) (in

Particle Data Group [45] there is no assignment of spin to K(1630)) and K∗0 (1950)). The
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lowest resonance and broad one K∗0 (800) comes with the effective range parameters. In

ref. [26], it was the result of the low energy chiral dynamics and unitarity, appearing

naturally as a pole in the S-channel.

The motivation to include the higher radial excitations of K∗0 comes from recent pro-

posal to interpret the scalar meson family (f0) as radial excitations of the σ meson as

proposed in refs. [46, 47]. This result was obtained by using a Dynamical AdS/QCD

model [48], where the backreaction between the dilaton field and a deformed anti-de Sitter

metric is taken into account. Using a different approach, in ref. [49] a systematics of radial

Regge trajectories for light scalars, which couples these resonances to the ππ channels was

also proposed. By analogy, if these analyses are extended to the strange sector it would

suggest a mass spectrum (M2× n) for the kappa family with a rough slope of ∼ 0.6 GeV2,

and also the decay of these mesons in the Kπ S-wave IKπ = 1/2 channel. The fitting of

the LASS data in this isospin channel is the main reason to use more resonances, namely,

K∗0 (1630) and K∗0 (1950) besides K∗0 (1430). Being conservative, these further resonances

can be considered at the moment as a practical way to fit the data in the whole kinematical

range up to 1.89 GeV.

The parametrization of our relativistic model of the S-wave IKπ = 1/2 scattering am-

plitude extends the one used in ref. [50], where we introduce also K∗0 (1630) and K∗0 (1950).

The relativistic scattering amplitude as a function of M2
Kπ is written in terms of the S-

matrix (S1/2

Kπ) as:

τ1/2
(
M2
Kπ

)
= 4π

MKπ

k

(
S1/2

Kπ − 1
)

(2.1)

where

S1/2

Kπ =
k cot δ + i k

k cot δ − i k
3∏
r=1

M2
r −M2

Kπ + izrΓ̄r
M2
r −M2

Kπ − izrΓr
(2.2)

and zr = kM2
r /(krMKπ), with the c. m. momentum of each meson of the Kπ pair given by

k =

[(
M2
Kπ +m2

π −m2
K

2MKπ

)2

−m2
π

]1/2

. (2.3)

For each resonance, we associate the parameters Mr, Γr, Γ̄r and kr. The momentum kr
corresponds to eq. (2.3) at the resonance position. The inelasticity in Kπ S-matrix comes

by allowing Γ̄r and Γr distinct, such that −Γr < Γ̄r < Γr. The width of the resonance is Γr
and in the case of Γr = Γ̄r, the parametrization corresponds to the standard unitary Breit-

Wigner one. The resonance parameters (Mr,Γr, Γ̄r) in GeV for K∗0 (1430), K∗0 (1630) and

K∗0 (1950) are (1.48,0.25,0.25), (1.67, 0.1,0.1) and (1.9, 0.2, 0.14), respectively [29, 37]. The

non-resonant component of the S-matrix is parameterized by the effective range expansion:

k cot δ =
1

a
+

1

2
r0 k

2 (2.4)

with a = 1.6 GeV−1 and r0 = 3.32 GeV−1.

– 5 –
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Figure 1. Magnitude (a) and phase (b) obtained from both, I = 1/2, and I = 3/2 Kπ S-wave

amplitude, eq. (2.1) and eq. (2.5), respectively. Circles: LASS phase-shift data [11] for IKπ = 1/2.

The S-wave I = 3/2 Kπ amplitude is given by

τ3/2
(
M2
Kπ

)
= 4π

MKπ

k

(
S3/2

Kπ − 1
)
, (2.5)

where

S3/2

Kπ =
k cot δ + i k

k cot δ − i k , (2.6)

where the effective range expansion of k cot δ comes from eq. (2.4), and parameters a =

−1.00 GeV−1 and r0 = −1.76 GeV−1 from ref. [51]. The relative momentum of the Kπ

pair is written in eq. (2.3).

The results from the three-resonance model eq. (2.2) are shown in figure 1 up to 2 GeV.

The IKπ = 1/2 S-wave phase-shift is compared to the LASS. We privileged the fit of the

phase-shift and the model parametrization from [29, 37] is able to reproduce the LASS

data for the phase reasonably well. The results of the parametrization for |S1/2

Kπ − 1|/2 as

shown in the upper panel of figure 1, reproduce the data up to about K∗(1430).

On the other hand as shown in figure 2, the phase-shift analysis for the D+ → K−π+π+

decay from E791 [6, 7] and FOCUS [8, 9] collaborations, considering the dominance of this

isospin channel in the final state interaction of this decay [26], suggest that the magnitude

from the model parametrization (2.1), with the structure shown in figure 1 may be possible.

The deep minimum observed in figure 2 around 1.53 GeV, is consistent with the zero of

|τ1/2
(
M2
Kπ

)
|, as clearly depicted in the figure. As we are going to show in detail by

calculations of three-body final state interactions in sections 6 and 7, this feature is kept.
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Figure 2. Magnitude of the IKπ = 1/2 S-wave amplitude as a function of the Kπ mass. Solid

line: |τ1/2
(
M2
Kπ

)
| from eq. (2.1) with arbitrary normalization. The data come from the phase-shift

analysis of E791 (empty squares) [6, 7] and FOCUS collaboration (full inverted triangles) [8, 9].

To be complete both isospin 1/2 and 3/2 are shown in figure 1 for comparison, and

close to the minima of the magnitude of the IKπ = 1/2 amplitude, the 3/2 one becomes

important, just anticipating what would come from the D decay. The data for IKπ = 3/2

is not shown as the effective range parametrization is the fit of the phase-shifts of this

channel already presented in [51].

3 D+ → K−π+π+ decay with FSI

The collisions between the mesons in the final state of the D+ → K−π+π+ is represented

diagrammatically in figure 3. The rescattering series is summed up in the 3→ 3 transition

matrix, which composes the full decay amplitude as (see [26]):

A(kπ, kπ′) = D(kπ, kπ′) +

∫
d4qπd

4qπ′

(2π)8
T (kπ, kπ′ ; qπ, qπ′)Sπ(qπ)

× Sπ(qπ′)SK(K − qπ′ − qπ)D(qπ, qπ′) , (3.1)

where the momentum of the pions are kπ and kπ′ .

The source of the mesons in the final state is given by the partonic amplitude expressed

by the function D(kπ, kπ′), which is the first term of (3.1) and the gray blob in figure 3.

It corresponds to a smooth amplitude given by the direct partonic decay amplitude deter-

mined by short-distance physics.

The second term of (3.1) brings the long range physics, which is represented by the sum

of rescattering diagrams in the figure, has the 3 → 3 transition matrix T (kπ, kπ′ ; qπ, qπ′)

– 7 –
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+ + + · · ·

Figure 3. D decay process into Kππ in the three-body ladder approximation. The source term

(partonic amplitude) is represented by the gray blob. The fully off-shell Kπ transition matrix is

represented by the black blob.

convoluted with the source term, including the off-shell mesonic Feynman propagators

Si(qi) = i(q2
i −m2

i + iε)−1 , where the masses are mi (i = π,K, π′) and the self-energies

are disregarded. In the approximation considered in our work, the 3→ 3 transition matrix

sums the connected scattering series from ladder graphs. All possible 2→ 2 collision terms

are summed up in the Kπ transition matrix, represented by the black blobs in figure 3. As

a matter of fact, in the model we develop the T-matrix operator acts on the isospin space of

the Kππ system, while D(kπ, kπ′) is an amplitude in the isospin space of the Kππ system.

3.1 Three-body Bethe-Salpeter approach

The final state interaction between the mesons in the three-body decay channel, are given

by the full three-body T-matrix. It is a solution of the Bethe-Salpeter (BS) equation,

which will be written in the Faddeev form. We consider spinless particles, disregard self-

energies and three-body irreducible diagrams. Under these assumptions, the interactions

between the mesons are assumed to be only due to two-body interactions. To be concise

the momentum dependences will be omitted in the discussion below.

The three-particle BS equation for the T-matrix can be written as

T =
∑

Vi +
∑

ViG0 T, (3.2)

where the sum runs over the three two-body subsystems i = (j, k). Formally, the potential

in the four-dimensional equation is built by multiplying the two-body interaction V
(2)
jk from

all two-particle irreducible diagrams in which particles j and k interact, and by the inverse

of the individual propagator of the spectator particle i, Si

V =

3∑
i=1

Vi ; Vi = V(2)jkS
−1
i . (3.3)

The propagator of particle i is Si = ı
[
k2
i −m2

i + ıε
]−1

, ki being its four-momentum. The

three-particle free Green’s function is

G0 = SiSjSk . (3.4)

Eq. (3.2) can now be rewritten in the Faddeev form. The transition matrix is decomposed

as T = T 1 + T 2 + T 3 with the components T i = Vi + ViG0 T .

The relativistic generalization of the connected Faddeev equations is

T i = Ti + TiG0

(
T j + T k

)
, (3.5)

– 8 –
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where the two-body T-matrices are solutions of

Ti = Vi + ViG0Ti, (3.6)

within the three-body system. The full 3 → 3 ladder scattering series is summed up

by solving the integral equations for the Faddeev decomposition of the scattering matrix.

Therefore, the three-body unitarity holds for the 3→3 transition matrix built from the

solution of the set of Faddeev equations (3.5) below the threshold of particle production

from two-body collisions, where the two-body amplitude is unitary.

The full decay amplitude, eq. (3.1), can be decomposed according to eq. (3.5) as

A = D +
∑

Di , (3.7)

where the Faddeev components of the decay vertex are

Di = T iG0D . (3.8)

They are solutions of the connected equations

Di = Di + TiG0

(
Dj +Dk

)
, (3.9)

with

Di = TiG0D. (3.10)

The Faddeev equations for the decay vertex, eqs. (3.9)–(3.10) are general once self-energies

and three-body irreducible diagrams are disregarded. In the following they will be partic-

ularized to allow a separable form of the three-body decay amplitude.

3.2 s-channel two-meson amplitude

The matrix elements of the two-particle transition matrix is assumed to depend only on

the Mandelstam s-variable and, within the three-body system, they read

Ti(k
′
j , k
′
k; kj , kk) = (2π)4τi(si)S

−1
i (ki) δ(k

′
i − ki) , (3.11)

where a delta of four-momentum conservation has been factorized out. The S-wave scat-

tering amplitude τi(si) of particles i and j, depends on the Mandelstam variable si =

(kj + kk)
2. The three-body unitarity in our formulation is maintained, once the amplitude

τ(s) is unitary.

It is interesting to observe that in chiral theories (see e.g. refs. [52, 53]) the off-shell

parts of the two-body T-matrices are canceled by genuine three-body interactions. In

the momentum loops corresponding to the three-body rescattering process from chiral

Lagrangians, terms like p2 − m2 from the off-shell two-meson T-matrices elements are

canceled by chiral three-body interactions, and therefore only on-shell T-matrices remains

in the computation of three-body physical amplitudes. TheKπ T-matrix given by eq. (3.11)

has no off-shell momentum dependence, which is the basic assumption of our work.

– 9 –
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Introducing eq. (3.11) in eqs. (3.9)–(3.10), one gets that

Di(kj , kk) = τi(si)ξ
i(ki), (3.12)

where

ξi(ki) = ξi0(ki) +

∫
d4qjd

4qk
(2π)4

δ(ki − qi)Sj(qj)Sk(qk)
(
Dj(qk, qi) +Dk(qi, qj)

)
, (3.13)

and

ξi0(ki) =

∫
d4qj
(2π)4

Sj(qj)Sk(K − ki − qj)D(qi, qj) , (3.14)

with qk = K − ki − qj . One can simplify the form of eq. (3.13) by using the separation of

the momentum dependences given by eq. (3.12),

ξi(ki) = ξi0(ki)+

∫
d4qjd

4qk
(2π)4

δ(ki−qi)Sj(qj)Sk(qk)
(
τj(sj)ξ

j(qj) + τk(sk)ξ
k(qk)

)
, (3.15)

and, integrating the δ’s, the formula is simplified to

ξi(ki) = ξi0(ki) +

∫
d4qj
(2π)4

Sj(qj)Sk(K − ki − qk)τj(sj)ξj(qj)

+

∫
d4qk
(2π)4

Sj(K − ki − qk)Sk(qk)τk(sk)ξk(qk) . (3.16)

The separable form of the two-body T-matrix allows to simplify the integral equation for

the Faddeev components of the vertex function, reducing it to a four-dimensional integral

equation in one momentum variable.

The full decay amplitude considering the final state interaction computed with

eq. (3.12) reduces to the expression

A0(ki, kj) = D(ki, kj) +
∑
α

τ(sα)ξα(kα) , (3.17)

where all the mesons in the three-body decay channel interact. The subindex in A0 just

denotes the s-wave two-meson scattering.

The complex function ξ(ki) in eq. (3.17) carries the three-body rescattering effect

by an amplitude and phase depending on the bachelor meson on-mass-shell momentum,

while τ(si) takes into account two-meson resonances. In the particular case of the D+ →
K−π+π+ decay, and assuming that the identical pions do not interact, eq. (3.1) reduces

to eq. (3.17) under the assumption that the matrix elements of the Kπ transition matrix

depend only on the Mandelstam s-variable.

3.3 D+ → K−π+π+ problem

The Kππ → Kππ rescattering process is accounted by the D± decay amplitude expressed

by eq. (3.17), where the bachelor amplitudes ξ(k) are solutions of the connected Faddeev-

like equations (3.16). Furthermore, we simplify the problem and disregard the interaction

– 10 –
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= +

Figure 4. Diagrammatic representation of the integral equation for the three-body function

τ(M2
Kπ′)ξ(kπ) (gray box). The driving term contains the partonic amplitude convoluted with

the two-body scattering amplitude (black).

between the equal charged pions. The effective S-wave interaction between the kaon and

pion is local on the fields with the Kπ scattering amplitude τi(M
2
Kπ) parameterized to

reproduce the Kπ S-wave phase-shift in the isospin 1/2 and 3/2 channels from the LASS

experiment [11], as presented in section 2.

The model assumptions for the D+ → K−π+π+ decay amplitude together with the

chosen Kπ S-wave amplitude, reduces eq. (3.17) to

A0(kπ, kπ′) = D(kπ, kπ′) + τ(M2
Kπ)ξ(kπ′) + τ(M2

Kπ′)ξ(kπ) , (3.18)

where the interaction between the identical pions is suppressed. The amplitude given in

eq. (3.18) is a sensible representation of the decay process, where the Kπ resonant and

nonresonant scattering phases are shifted by the momentum dependent bachelor phase

from the three-body rescattering. The bachelor pion on-mass-shell momentum is given by

|kπ| =
[(

M2
D +m2

π −M2
Kπ′

2MD

)2

−m2
π

] 1
2

, (3.19)

with an analogous expression for |kπ′ |. This implies that each rescattering term in eq. (3.18)

is a function only of M2
Kπ or M2

Kπ′ .

The resummation of the three-body scattering series results in an inhomogeneous in-

tegral equation for the function ξ(k) of the bachelor momentum,

ξ(k) = ξ0(k) +

∫
d4q

(2π)4
τ
(
(K − q)2

)
SK(K − k − q)Sπ(q) ξ(q), (3.20)

derived from eq. (3.16) and shown diagrammatically in figure 4. Note that for convenience,

the diagrammatic representation of the integral equation for the product τ
(
M2
Kπ′
)
ξ(kπ)

is presented in the figure.

The driving term

ξ0(k) =

∫
d4q

(2π)4
Sπ(q)SK(K − k − q)D(k, q), (3.21)

carries the partonic decay amplitude to the rescattering process. The second term in the

r.h.s. of eq. (3.20) comes from three-body connected diagrams. For example, the lowest

order rescattering term is the connected amplitude given by the third diagram in figure 3.

Physically, the three-body rescattering in eq. (3.20) is built by mixing resonances of

the two possible Kπ pairs, and it is a function of the momentum of the bachelor pion.
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Therefore, we can say that the decay amplitude has two contributions: one that is a smooth

function of the momentum of the pions, D(kπ, kπ′), and another one, τ
(
M2
Kπ′
)
ξ(kπ),

that contains the result of the three-body rescattering, which modulates the Kπ scatte-

ring amplitude.

The Kπ S-wave amplitude τ is an isospin conserving operator acting on the isospin

states 1/2 and 3/2. The second and third terms in the r.h.s. of eq. (3.18) carry the full

effect of the final state interaction through the Kπ scattering amplitude, considered an

operator in isospin space, τ , times a spectator amplitude, ξ, that contains the three-body

rescattering contributions. The solution of eq. (3.20) built the rescattering series, and the

term τ(M2
Kπ)ξ(kπ′) + τ(M2

Kπ′)ξ(kπ) of the decay correspond to the sum of the second,

third and higher order diagrams depicted in figure 3. They represent the full hadronic

rescattering series of the Kππ system, disregarding three-body irreducible diagrams.

3.4 Phase and amplitude separation

The S-wave decay amplitude for the D → K−π+π+ from eq. (3.18) can be written as a

Bose-symmetrized complex function with respect to the identical pions,

A0 = A0

(
M2
Kπ,M

2
Kπ′
)

+A0

(
M2
Kπ′ ,M2

Kπ

)
. (3.22)

where A0 are complex functions of the two invariant masses squared, M2
Kπ = (K − kπ′)2

and M2
Kπ′ = (K − kπ)2, which specify the decay kinematics.

For the D → K−π+π+ S-wave amplitude in our model, the dependence on the Kπ

subsystem mass of A0(M2
Kπ′ ,M2

Kπ) can be reduced to a complex function of only one

variable M2
Kπ′ as

A0(M2
Kπ′) = a0(M2

Kπ′)eiΦ0(M2
Kπ′ ) =

1

2
〈Kππ|D〉+ 〈Kππ|τ(M2

Kπ′)|ξ(kπ)〉, (3.23)

where the bachelor pion on-mass-shell momentum is written as a function M2
Kπ′ as given

by eq. (3.19), and |Kππ〉 represents the state in isospin space.

4 FSI light-front dynamics in heavy meson decay

The projection onto the light-front (LF) of the four-dimensional field-theoretical heavy

meson three-particle decay amplitude with FSI, as expressed by eq. (3.1), reduces it to a

three-dimensional form. The coupled set of eqs. (3.9) for the Faddeev components of the de-

cay amplitude are turned into three-dimensional forms, simplifying the numerical treatment

to solve them. We follow the LF projection technique of four-dimensional Bethe-Salpeter

like equations as developed in ref. [31] based on the quasi-potential approach (QPA). The

reduced amplitudes derived using the tools developed in a series of works [31–35] and

reviewed in [36], depends only three-dimensional variables, namely, the kinematical LF

momentum k ≡ (k+,~k⊥), defined by k+ = k0 + k3 and ~k⊥ = {kx, ky}. The phase-space

integration is normalized according to dk+d2k⊥/2(2π)3.

– 12 –
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4.1 QPA and decay amplitude

The potential in the four-dimensional equation for the three-boson BSE is given by eq. (3.3)

and in terms of the quasi-potential formulation, the BSE for the transition matrix eq. (3.2),

is substituted by

T = W +WG̃0T . (4.1)

The quasi-potential W and auxiliary Green’s function (G̃0) keep the dynamical content of

the original BSE, when W is the solution of

W = V + V∆0W , (4.2)

with ∆0 := G0− G̃0. The decay amplitude given by eqs. (3.7) and (3.8), can be written in

terms of the full three-body T-matrix as

A = D + T G0D , (4.3)

and inserting the QP equation (4.1) in eq. (4.3), one has that

T G0D = W G0D +W G̃0 T G0D . (4.4)

The QPA allows to perform a three-dimensional reduction of the four-dimensional

equation (4.3). In particular, the auxiliary Green’s function G̃0 can be conveniently chosen

to project the four-dimensional three-body equation (4.4) onto the light-front hypersurface

(see [31]), and formally it reads

G̃0 := G0| g−1
0 |G0 , (4.5)

where g0 = |G0| is the free light-front resolvent, including phase-space factors. The “bar”

operation on the right or on the left of a four-dimensional matrix element corresponds to

the integration over k− = k0 + k3, which eliminates the relative light-front time between

the particles. In our three-particle case, the elimination of the relative LF time requires an

integration over two independent momenta k−, due to four-momentum conservation, and

we introduce the following operation

|A :=

∫
dk−1 dk

−
2 〈k−1 k−2 |A,

A| :=

∫
dk−1 dk

−
2 A|k−1 k−2 〉, (4.6)

with A being a matrix element of an operator that has matrix elements function of two

independent momenta after the center of mass motion is factorized.

Explicitly the free three-particle Green’s function is given by

〈k−1 , k−2 |G0|k′−1 , k′−2 〉 =
−i

(2π)2

δ(k−1 − k′−1 )

k̂+
1 k̂

+
2 (K+ − k̂+

1 − k̂+
2 )(k−1 − k̂−1on)

× δ(k−2 − k′−2 )

(k−2 − k̂−2on)(K− − k−1 − k−2 − (K − k̂1 − k̂2)−on)
, (4.7)
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where the hat means operator character and the on-minus-shell momentum k−ion = (~k2
⊥ +

m2
i )/k

+. The on-minus-shell momentum (K − k̂1 − k̂2)−on carries the mass of the third

particle m3. By performing the LF projection using eq. (4.6), the free LF Green’s function

comes as

g0(k1, k2) =
iθ(K+ − k+

1 − k+
2 )θ(k+

1 )θ(k+
2 )

k+
1 k

+
2 (K+ − k1

+ − k+
2 )(K− − k−1on − k−2on − (K − k1 − k2)−on)

, (4.8)

In refs. [31, 36] the reader can follow the details of the formal manipulations within QPA

used to project onto the light-front the BSE. Two convenient operators were introduced

in ref. [35], which helps to make the notation more transparent, namely the so-called free

light-front reversed operators

Π0 = G0| g−1
0 , Π0 = g−1

0 |G0 , (4.9)

which can only be applied to the right and to left of a three-body four-dimensional quantity,

respectively. These operators also transform a tridimensional quantity to four dimensional

ones, when acting on the left and on the right of an amplitude dependent on the kinematical

light-front momenta, respectively. For example, with these operators, we have that the

auxiliary Green’s function (4.5) is simply written as

G̃0 = Π0 g0 Π0. (4.10)

Our aim is to obtain the decay amplitude of the heavy meson in three mesons in the

final state, using the three-dimensional projection onto the LF of eq. (4.4). By applying

the projection operator Π0 in eq. (4.4), we get that

Π0T G0D = Π0W G0D + Π0W G̃0 T G0D , (4.11)

which translates to

DLF ≡ |G0TG0D = |G0WG0D + w g0DLF , (4.12)

after the explicit form given in eq. (4.9) is used. The function DLF depends only on

the independent kinematical LF momenta of the particles, and the key dynamical ingre-

dient is the effective LF potential w = |G0W G0| containing the interaction among the

three particles.

4.2 Effective LF interaction for three-particles

In order to calculate w, we decompose the QP eq. (4.2) in three terms, each given by

Wi = Vi + Vi ∆0W (4.13)

with W being the sum over the Faddeev components, i.e., W =
∑

iWi, and w =
∑

iwi =∑
i |G0WiG0|.

The integral equation for the Faddeev component of the quasi-potential is obtained

from the classical form by reintroducing W as a sum of three terms in eq. (4.13), giving

Wi = Vi + Vi∆0(Wi +Wj +Wk) (4.14)
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which can be rewritten as (1 − Vi∆0)Wi = Vi + Vi∆0(Wj + Wk), and multiplying to the

right by (1− Vi∆0)−1, one has that

Wi = W(2)i +W(2)i∆0(Wj +Wk), (4.15)

where the two-body quasi-potential within the three-body system is

W(2)i = Vi + Vi∆0W(2)i, (4.16)

for particle i acting as a spectator.

The solution of eq. (4.15) is obtained in a form of an expansion in powers of Vi where

the series for the two-body quasi-potential, W(2)i = Vi + Vi∆0Vi + Vi∆0Vi∆0Vi + · · · , is

used, and terms in Vi collected. The result is

Wi = Vi + Vi∆0(Vi + Vj + Vk) + Vi∆0(Vi + Vj + Vk)∆0(Vi + Vj + Vk) + . . . . (4.17)

The leading order (LO) and next-to-leading-order (NLO) terms, the first and second power

in the interaction Vi, are given by WLO
i = Vi and by WNLO

i = Vi + Vi∆0(Vi + Vj + Vk),

respectively. Therefore, the Faddeev components of LF effective potential in LO and NLO

are written in terms of the above expansion as

wLOi = g−1
0 |G0ViG0| g−1

0 , (4.18)

wNLOi = wLOi + g−1
0 |G0Vi∆0(Vi + Vj + Vk)G0| g−1

0 . (4.19)

The effective interactions wi builds the dynamical equation for the decay amplitude DLF ,

eq. (4.12), and the leading order calculation corresponds to a truncation at the valence

states, which will be used in the next to build a model for the heavy meson decay. We

should note that the NLO interaction includes induced light-front three-body forces, namely

terms like g−1
0 |G0 Vi∆0 Vj G0| g−1

0 , and already pointed out in [54].

4.3 LF Faddeev equations for DLF

The LF projected decay amplitude solution of eq. (4.12) is decomposed in a sum DLF =∑
iD

i
LF , where the Faddeev components are

Di
LF = |G0WiG0D + wi g0DLF . (4.20)

The standard manipulation leads to

Di
LF = diLF,0 + ti g0

(
Dj
LF +Dk

LF

)
, (4.21)

where diLF,0 = (1 − wig0)−1|G0WiG0D and the reduced LF transition matrix ti is the

solution of ti = wi−wig0ti. Assuming, that the partonic amplitude D is weakly dependent

in k− and the main dependence on k− in the integrand comes from the free propagator

and Wi, we can write that

diLF,0 = (1− wig0)−1|G0WiG0|D = (1− wig0)−1g0wig0D = tig0D, (4.22)
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which will be exactly valid if D is constant, as in our numerical application. The LF

Faddeev equation for the component of the vertex simply becomes

Di
LF = tig0D + ti g0

(
Dj
LF +Dk

LF

)
, (4.23)

and in next the model for ti is considered.

The LF front model for the two-body scattering amplitude comes from eq. (3.11), using

the relation ti = Π0TiΠ0:

〈k′j , k′k|g0tig0|kj , kk〉 = 〈k′j , k′k| |G0TiG0| |kj , kk〉 =

= (2π)4

∫
dk′−j dk

′−
k

∫
dk−j dk

−
k

∫
dq−j dq

−
k

∫
dq′−j dq

′−
k S−1

i (qi) δ(q
′
i − qi)〈k′−j k′−k |G0|q′−j q′−k 〉

× τi(si) 〈q−j q−k | G0|k−j k−k 〉

= 2δ(K − k′j − k′k − ki)
∫
dk′−j dk

−
j dk

−
i i

6 Sj(k
′
j)Sk(K − k′j − ki)

× τi((K − ki)2)Si(ki)Sj(kj)Sk(K − kj − ki). (4.24)

Performing the Cauchy integration in each variable k′−j , k−j and k−i , and given that

τi((K − ki)2) is analytical in the lower-half of the k−i complex-plane, the result is

〈k′j , k′k|ti|kj , kk〉 = 2(2π)3k+
i δ(k

′
i − ki)τi

(
M2
jk

)
, (4.25)

where M2
jk = (K − kion)2. Owing to the separable form of the two-body amplitude, the

Faddeev component of the decay amplitude separates as

Di
LF (kj , kk) = τi

(
M2
jk

)
ξi(ki), (4.26)

as also happens for the four-dimensional case shown in eq. (3.12).

The integral equation for the reduced decay amplitude, ξi(ki) becomes

ξi(ki) = ξi0(ki)+ (4.27)

+
i

2(2π)3

∫ K+−k+i

0

dq+j

q+j (K+ − k+i − q+j )

∫
d2qj⊥

τj
(
(K − qjon)2

)
ξj(q

j
)

K− − k−ion − q−jon − (K − ki − qj)−on + iε

+
i

2(2π)3

∫ K+−k+i

0

dq+k
q+k (K+ − k+i − q+k )

∫
d2qk⊥

τk
(
(K − qkon)2

)
ξk(q

k
)

K− − k−ion − (K − ki − qk)−on − q−kon + iε
,

where

ξi0(ki) =
i

2(2π)3

∫ K+−k+i

0

dq+j

q+j (K+−k+i −q+j )

∫
d2qj⊥

D(q
j
; ki)

K−−k−ion − q−jon − (K−ki−qj)−on + iε
.

(4.28)

Rewriting eqs. (4.27) and (4.28) in terms of momentum fractions, one gets

ξi(y,~k⊥) = ξi0(y,~k⊥) (4.29)

+
i

2(2π)3

∫ 1−y

0

dx

x(1− x− y)

∫
d2q⊥

[
τj
(
M2
ik(x, q⊥)

)
ξj(x, ~q⊥)

M2 −M2
0 (x, ~q⊥; y,~k⊥) + iε

+ (j ↔ k)

]
,
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where M2 = KµKµ, y = k+
i /K

+, x = q+
j /K

+ or x = q+
k /K

+ in the first or second integral

in the right-hand side of the equation. The free three-body squared mass is

M2
0 (x, ~q⊥; y,~k⊥) =

k2
⊥ +m2

i

y
+
q2
⊥ +m2

j

x
+

(~k⊥ + ~q⊥)2 +m2
k

1− x− y . (4.30)

The argument of the two-body amplitude τj
(
M2
ik(x, q⊥)

)
should be understood as

M2
ik(x, q⊥) = (1− x)

(
M2 −

q2
⊥ +m2

j

x

)
− q2
⊥ . (4.31)

The driven term in eq. (4.29) is rewritten as

ξi0(y,~k⊥) =
i

2(2π)3

∫ 1−y

0

dx

x(1− y − x)

∫
d2q⊥

D(x, ~q⊥; y,~k⊥)

M2 −M2
0 (x, ~q⊥; y,~k⊥) + iε

. (4.32)

The LF model for the three-body heavy meson decay modeled by eqs. (4.26) and (4.29)

assumes the dominance of the valence state in the intermediate state propagations and the

s-channel description of the two-meson amplitude. To be complete, the LF counterpart of

the decay amplitude in eq. (3.17) is

A0 = D +
∑
α

τ(sα)ξα(y,~k⊥) , (4.33)

where sα = (K − kαon)2 and the partonic function D is a function on the momentum

of the on-mass-shell particles in the decay channel. We concluded the general formalism

for the calculation of the heavy meson decay amplitude in three spinless mesons. For the

D+ → K−π+π+ process eq. (4.33) reduces to

A0(kπ, kπ′) = D(kπ, kπ′) + τ(M2
Kπ)ξ(kπ′) + τ(M2

Kπ′)ξ(kπ) , (4.34)

where as we have assumed, also in the four-dimensional case, see eq. (3.18), the interaction

between the identical pions is suppressed. In order to keep the rotation invariance of the

calculation, the z−direction is chosen transverse to the decay plane in the rest frame of

the D± meson. This choice makes optimal use of the kinematical nature of the rotation

in the transverse plane, adopted as the plane where the momentum of each meson in the

final state are.

5 LF model for D+ → K−π+π+ decay

The light-front model for the D+ → K−π+π+ decay with FSI is given by the inho-

mogeneous integral equation for the bachelor meson amplitude (4.29), with the driven

term (4.32), and full decay amplitude written in eq. (4.34). Besides the partonic ampli-

tude, which defines the driven term for the bachelor amplitude, the two-meson scattering

amplitude is the input for the calculations. We disregard the ππ interaction in isospin 2

charged states, and consider only the neutral channels Kπ states. The isospin states for

K∓π± are IKπ = 1/2 and IKπ = 3/2, the parametrization of the S-waves amplitudes given
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in section 2. The dominant Kπ amplitude is the resonant IKπ = 1/2 one below K∗0 (1430),

but above it the IKπ = 3/2 amplitude has a comparable contribution for the scattering [11].

Therefore, to explore the available phase-space for the D decay above K∗0 (1430), one has to

consider not only IKπ = 1/2 but also IKπ = 3/2. Indeed, below K∗0 (1430) the calculations

were previously performed in ref. [26]. The IKπ = 3/2 interaction was also included in the

D decay amplitude up to two-loops in ref. [55].

In this section, we present a isospin conserving light-front model, including interaction

in both Kπ isospin states, and perform calculations up to three-loops, in order to check

the convergence of the results. The possible total isospin states (IT ) are 5/2 and 3/2 with

IzT = ±3/2. The bachelor amplitude, solution of eq. (4.29), carries the total isospin index,

and the interacting pair isospin, namely ξ
IzT
IT ,IKπ

(y, k⊥), we keep for convenience, the isospin

projection. We restrict our calculations only to s-wave states and the bachelor amplitude

depends only on |~k⊥| ≡ k⊥. The partonic decay amplitude has now to be projected on two

Kπ isospin states, and total isospin, i.e.,

|D〉 =
∑

IT ,IKπ

α
IzT
IT ,IKπ

|IT , IKπ, IzT 〉+
∑

IT ,IKπ′

α
IzT
IT ,IKπ′

|IT , IKπ′ , IzT 〉 . (5.1)

As a first approach, we will consider in this work the amplitude in eq. (5.1) as mo-

mentum independent, i.e., there is no dependence on kπ or k′π in α
IzT
IT ,IKπ

(α
IzT
IT ,IKπ′

) or

in |IT , IKπ, IzT 〉 (|IT , IKπ′ , IzT 〉). It will be necessary to include an arbitrary normalization

constant in our calculations in order to fit our total amplitudes to the experimental ones.

A microscopic model for the partonic amplitude which is beyond the present calculations

is required to normalize the partonic amplitude. We named this constant as N .

The projected LF inhomogeneous integral equations for the bachelor amplitudes ξ
IzT
IT ,IKπ

built from eq. (4.29), are given by a set of isospin coupled systems, with the driven term

weighted by the partonic amplitude (5.1), and written as

ξ
IzT
IT ,IKπ

(y, k⊥) = 〈IT , IKπ, IzT |D〉 ξ0(y, k⊥)+

+
i

2

∑
IKπ′

R
IzT
IT ,IKπ ,IKπ′

∫ 1−y

0

dx

x(1− y − x)

∫ ∞
0

dq⊥
(2π)3

×KIKπ′ (y, k⊥;x, q⊥) ξ
IzT
IT ,IKπ′

(x, q⊥), (5.2)

where the kernel carrying the isospin of the interacting pair is

KIKπ′ (y, k⊥;x, q⊥) =

∫ 2π

0
dθ

q⊥ τIKπ′
(
M2
Kπ′(x, q⊥)

)
M2
D −M2

0,Kππ(x, q⊥, y, k⊥) + iε
. (5.3)

The isospin recoupling coefficients in eq. (5.2) are R
IzT
IT ,IKπ ,IKπ′

= 〈IT , IKπ, IzT |IT , IKπ′ , IzT 〉.
The free squared mass of the Kππ system is

M2
0,Kππ(x, q⊥, y, k⊥) =

k2
⊥ +m2

π

y
+
q2
⊥ +m2

π

x
+
q2
⊥ + k2

⊥ + 2q⊥k⊥ cos θ +m2
K

1− x− y , (5.4)

and the squared-mass of the virtual Kπ system is

M2
Kπ(z, p⊥) = (1− z)

(
M2
D −

p2
⊥ +m2

π

z

)
− p2
⊥. (5.5)

– 18 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
5

The driving term is regularized by one subtraction, at the scale µ, and one finite

subtraction constant λ(µ2), and is written as

ξ0(y, k⊥) = λ(µ2) +
i

2

∫ 1

0

dx

x(1− x)

∫ 2π

0

dθ

∫ ∞
0

dq⊥q⊥
(2π)3

×
[

1

M2
Kπ(y, k⊥)−M2

0,Kπ(x, q⊥) + iε
− 1

µ2 −M2
0,Kπ(x, q⊥)

]
(5.6)

where the free squared-mass of the virtual Kπ system in the driven term is

M2
0,Kπ(x, q⊥) =

q2
⊥ +m2

π

x
+
q2
⊥ +m2

K

1− x . (5.7)

Performing the angular and radial integrations one gets that

ξ0(y, k⊥) = λ(µ2) +
i

4

∫ 1

0

dx

(2π)2
ln

Λ1

Λ2
, (5.8)

where

Λ1 = (1− x)(xM2
Kπ(y, k⊥)−m2

π + ixε)− xm2
K , (5.9)

Λ2 = (1− x)(xµ2 −m2
π)− xm2

K . (5.10)

The light-front D decay model with isospin dependence on the Kπ pair will be explored

further in two situations: i) only Kπ s-wave interaction in the resonant I = 1/2 state

(single-channel model); and ii) Kπ s-wave interaction in I = 1/2 and 3/2 (coupled-channel

model). In both cases we disregard the pion-pion interaction in I = 2 states.

5.1 Phase and amplitude separation

The full D → K−π+π+ S-wave decay amplitude from the solution of eq. (3.18) is sym-

metrized in respect to the identical pions as given in eq. (3.22), and written as

A0 = A0(M2
Kπ′) +A0(M2

Kπ). (5.11)

as each amplitude depends only on the Mandelstam s-variable of each Kπ subsystem.

In detail, each amplitude in eq. (5.11) has the bachelor amplitude and Kπ scattering

amplitude, i.e.,

A0(M2
Kπ′) =

∑
IT ,IKπ′ ,I

z
T

〈
K−π+π+

∣∣ IT , IKπ′ , IzT 〉 (5.12)

×
[

1

2
〈IT , IKπ′ , IzT | D〉+ τIKπ′ (M

2
Kπ′)ξ

IzT
IT ,IKπ′

(kπ)

]
= a0(M2

Kπ′)eiΦ0(M2
Kπ′ ) ,

where the projection onto the final Kππ isospin state is performed. In the bachelor ampli-

tude the pion momentum is on-mass-shell and, due to the total momentum conservation,

its modulus is defined by eq. (3.19) as a function of M2
Kπ′ .

It is worthwhile to discuss the present approximation, where we have neglected the

S-wave Iππ = 2 interaction. The phase-shifts for this channel are comparable to the ones
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for the Kπ S-wave IKπ = 3/2 state in the energy range available for the D decay (see e.g.

refs. [56–58]). In principle, the ππ interaction should have a contribution to the final state

interaction comparable to the one in the isospin 3/2 channel. In our model it would correct

the S-wave amplitude given in eq. (5.12) by adding the following new term,

∆A0(M2
Kπ′) =

1

4

∑
IT

C
1/2 2 IT
−1/2 2 3/2

∫
d cos θKπ′ τIππ=2(M2

ππ) ξ̄
IzT
IT ,Iππ=2(kK), (5.13)

where the Clebsh-Gordan coefficient is C
1/2 2 IT
−1/2 2 3/2 = 〈K−π+π+| IT , Iππ = 2, IzT 〉. The mass

of the ππ system and the momentum of the bachelor kaon kK are functions of M2
Kπ′ and

cos θKπ′ , with θKπ′ the angle between the K and π′ momenta. The S-wave amplitude A0 is

obtained after the integration over the angle θKπ′ . The factor 1/4 in (5.13) is composed by

a factor 1/2 that comes from the normalization of the angular integral, cf. eq. (5.12), times

a factor 1/2, which after symmetrization composes the contribution of the ππ interaction

in the full S-wave amplitude in (5.11). The effect of the S-wave ππ interaction in I = 2

state, due to the angular integration, smooths out and it is mainly overtaken by the fitting

of the partonic amplitude |D〉. Although the S-wave interactions for ππ I = 2 and Kπ

I = 3/2 states are of the same order, the particular variables used in the definition of

A0, emphasizing the final state interaction between the pion and kaon, disfavor a clear

signature of the non-resonant ππ interaction channel. In a refined version of the model this

I = 2 ππ interaction should be addressed.

6 Perturbative solutions

The perturbative solution of the integral equations for the bachelor amplitudes (5.2) in the

different isospin channels, is found by iteration starting from the driving term. The terms

in the perturbative series are obtained by loop integrations. The bachelor amplitude found

from the driving term corresponds to a one-loop calculation. In ref. [26], a calculation up

to two-loops were performed. For the single-channel model, we calculate up to three-loops

to check the convergence of the perturbative series. For the coupled-channel, where the

total isospin states I = 3/2 can be formed either by coupling IKπ = 1/2 or IKπ = 3/2,

we also perform calculations up to three-loops. Also the IT = 5/2 is considered, where the

only contribution from the Kπ interaction happens in the isospin 3/2 states. Indeed such

contributions to the Kππ phase are marginal.

6.1 Interaction in IKπ = 1/2 state

Our aim in the single channel example is to solve numerically the light-front eq. (5.2) for

the bachelor amplitude when we consider only Kπ interaction in the resonant isospin 1/2

states. In this case, eq. (5.2) reduces to

ξ3/23/2,1/2(y, k⊥) = N
√

1

54
ξ0(y, k⊥)− i

3

∫ 1−y

0

dx

x(1− y − x)

×
∫ ∞

0

dq⊥
(2π)3

K 1/2(y, k⊥;x, q⊥) ξ 3/2

3/2,1/2(x, q⊥), (6.1)
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Figure 5. Real and imaginary parts of the I = 1/2 S-wave Kπ amplitude as a function of p⊥
for some z values in the unphysical mass region. The M2

Kπ value is related to p⊥ and z through

eq. (5.5).

where the driving term is computed by considering only α
3/2
3/2,1/2 in eq. (5.1) nonvanishing.

The perturbative solution of the integral equation (6.1) up to three-loops is given by

ξ3/23/2,1/2(y, k⊥) = N
√

1

54

[
ξ0(y, k⊥)− i

3

∫ ∞
0

dq⊥
(2π)3

∫ 1−y

0
dxK1/2(y, k⊥;x, q⊥) ξ0(x, q⊥)+

− 1

9

∫ ∞
0

dq⊥
(2π)3

∫ 1−y

0
dxK1/2(y, k⊥;x, q⊥)

×
∫ ∞

0

dq′⊥
(2π)3

∫ 1−x

0
dx′K1/2(x, q⊥;x′, q′⊥) ξ0(x′, q′⊥)

]
(6.2)

where K1/2(x, q⊥, y, k⊥) is defined by eq. (5.3).

For the numerical calculation of the bachelor amplitude up to three-loops in eq. (6.2),

we introduce a momentum cut-off, Λ = 2 GeV for numerical convenience, which is enough

to provide converged results. Note that the imaginary part of the s-wave Kπ amplitude

from eqs. (2.1) and (2.2) in the unphysical region, as plotted in figure 5, goes fast enough to

zero for large momentum and shows that the momentum loop integrals in the perturbative

calculation in eq. (6.2) are finite. In the figure, we plot the real and imaginary parts of the

Kπ amplitude as a function of z and p⊥, which are the arguments of the squared mass of

the interacting virtual Kπ system given in eq. (5.5), and corresponds to x and q⊥ in the

kernel of eq. (6.2), respectively.

The analytic continuation of the s-wave isospin 1/2 Kπ scattering amplitude to the

unphysical region of the Kπ amplitude, i.e., for M2
Kπ < (mK + mπ)2, is chosen as the
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imaginary part of τ1/2, with the effective range in eq. (2.4) turned off. For the isospin

3/2 case, also the effective range in eq. (2.5) is disregarded in the unphysical region in

order to avoid bound states poles in the S-matrix. Note that in the kernel of the integral

equations only the imaginary part of the Kπ amplitude is used in the unphysical region,

which corresponds to a real scattering amplitude, as it should be.

In our calculations of eq. (6.2), we have considered finite values of ε in the meson

propagators, we use 0.2 and 0.3 GeV, which induces absorption and mimics coupling to

other decay channels. The subtraction constant in the driving term is chosen for µ2 = 0 to

be λ(0) = 0.12 + i0.06, which matches the driving term computed in ref. [26]. We remind

that µ and λ(0) come from the regularization and renormalization of eq. (5.6), where a

subtraction constant is introduced. The results are sensitive to the values chosen for this

subtraction constant. The same can be said about ε adding further uncertainties to the

computations. Therefore, besides the variation of ε, we test the change in the subtraction

parameter, by keeping λ(µ2) fixed to λ(0), while moving µ2.

In figure 6, we study the convergence of the loop expansion for the phase and amplitude

of the bachelor function up to three-loops. We choose µ2 = (0.4,−0.1,−1) GeV2 with

ε = 0.3 GeV2. The values of |µ| are chosen within the hadronic scale between ∼ 0.3 to

1 GeV, spanning values of µ2 above and below zero in order to verify the sensitivity of the

bachelor function. Irrespectively to the value of µ2, the 2-loops solution is good enough and

can be used to compute the bachelor amplitude. However, the phase can be either positive

or negative, but it increases with M2
Kπ. For µ2 = −0.4 GeV2 and µ2 = −1 GeV2, the

phase difference between the threshold and the maximum for the mass of the Kπ system,

the phase shows a quite large variation of about 60o. The modulus increases with M2
Kπ for

all µ2 values.

6.2 Interaction in IKπ = 1/2 and 3/2 states

The inclusion of the two possible isospin channels for the Kπ interacting system, namely,

1/2 and 3/2, results in a coupled set of inhomogeneous integral equations from eq. (5.2)

for IT = 3/2, which reads

ξ3/23/2,1/2(y, k⊥) = Aw ξ0(y, k⊥)+

+
iR3/2

3/2,1/2,1/2

2

∫ 1−y

0

dx

x(1− y − x)

∫ ∞
0

dq⊥
(2π)3

K1/2(y, k⊥;x, q⊥) ξ3/23/2,1/2(x, q⊥)+

+
iR3/2

3/2,1/2,3/2

2(2π)3

∫ 1−y

0

dx

x(1− y − x)

∫ ∞
0

dq⊥
(2π)3

K3/2(y, k⊥;x, q⊥) ξ3/23/2,3/2(x, q⊥), (6.3)

ξ3/23/2,3/2(y, k⊥) = Bw ξ0(y, k⊥)+

+
iR3/2

3/2,3/2,1/2

2

∫ 1−y

0

dx

x(1− y − x)

∫ ∞
0

dq⊥
(2π)3

K1/2(y, k⊥;x, q⊥) ξ3/23/2,1/2(x, q⊥)+

+
iR3/2

3/2,3/2,3/2

2

∫ 1−y

0

dx

x(1− y − x)

∫ ∞
0

dq⊥
(2π)3

K3/2(y, k⊥;x, q⊥) ξ3/23/2,3/2(x, q⊥). (6.4)
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Figure 6. Modulus and phase of ξ3/23/2,1/2 for ε = 0.3 GeV2 and different µ2 values.

For IT = 5/2 eq. (5.2) is single channel and interaction only in IKπ =3/2 is possible. In

this case, the inhomogeneous equation for the bachelor amplitude is

ξ3/25/2,3/2(y, k⊥) = Cw ξ0(y, k⊥)+

+
iR3/2

5/2,3/2,3/2

2

∫ 1−y

0

dx

x(1− y − x)

∫ ∞
0

dq⊥
(2π)3

K3/2(y, k⊥;x, q⊥) ξ3/25/2,3/2(x, q⊥), (6.5)

where the weights Aw, Bw and Cw appearing in the driving terms are computed from the

initial distribution of isospin states from the partonic amplitude (5.1).

The weights in the driven terms of eqs. (6.4) and (6.5) are computed from the overlap of

isospin state with the initial isospin distribution of the decay from the partonic amplitude,

Aw = 〈IT = 3/2, IKπ = 1/2, IzT = 3/2| D〉 , (6.6)

Bw = 〈IT = 3/2, IKπ = 3/2, IzT = 3/2| D〉 , (6.7)

Cw = 〈IT = 5/2, IKπ = 3/2, IzT = 3/2| D〉 , (6.8)

and, evaluating in details the isospin coefficients, one gets

Aw = α3/2

3/2,1/2(1 +R3/2

3/2,1/2,1/2) + α3/2

3/2,3/2R
3/2

3/2,1/2,3/2, (6.9)

Bw = α3/2

3/2,3/2(1 +R3/2

3/2,3/2,3/2) + α3/2

3/2,1/2R
3/2

3/2,3/2,1/2, (6.10)

Cw = α3/2

5/2,3/2(1 +R3/2

5/2,3/2,3/2). (6.11)

The coefficients α appearing above comes from the initial decay amplitude (5.1), and now
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we define them in terms of the parameters Wi (i = 1, 2, 3), and the constant N , such that

α3/2

3/2,1/2 = NW1

2
C1/2 1 3/2

1/2 1 3/2 C
1 1/2 1/2

1 -1/2 1/2 , (6.12)

α3/2

3/2,3/2 = NW2

2
C3/2 1 3/2

1/2 1 3/2 C
1 1/2 3/2

1 -1/2 1/2 , (6.13)

α3/2

5/2,3/2 = NW3

2
C3/2 1 5/2

1/2 1 3/2 C
1 1/2 3/2

1 -1/2 1/2 , (6.14)

which in the particular case of |D〉 = N |K−π+π+〉 one has that W1 = W2 = W3 = 1.

We allowed different values for Wi, meaning the possibility that the partonic source term

|D〉 could be composed by different weights for the total isospin, constrained only by the

total charge.

To be complete, the respective Clebsch-Gordan and recoupling coefficients necessary for

all computations are C1/2 1 3/2

1/2 1 3/2 = 1 , C1 1/2 1/2

1 -1/2 1/2 =
√

2/3 , C3/2 1 3/2

1/2 1 3/2 = −
√

2/5 , C1 1/2 3/2

1 -1/2 1/2 =

1/
√

3 , C3/2 1 5/2

1/2 1 3/2 =
√

3/5 , R3/2

3/2,1/2,1/2 = −2/3 , R3/2

3/2,1/2,3/2 =
√

5/3 , R3/2

3/2,3/2,3/2 = 2/3 ,

R3/2

3/2,3/2,1/2 =
√

5/3 , and R3/2

5/2,3/2,3/2 = 1 .

In terms of W1, W2, and W3, the constants Aw, Bw, and Cw are written as

Aw = N
√

1

54
(W1 −W2), (6.15)

Bw = N
√

5

54
(W1 −W2), (6.16)

Cw = NW3√
5
, (6.17)

which implies that if Aw = Bw only total isospin 5/2 contributes to the decay. This

happens, in particular, for the initial state of |D〉 = N |K−π+π+〉. Therefore, the initial

state should have be a mixture of states. Indeed, the fittings we will show suggest W1 6= W2

and W3 smaller than W1 or W2.

We compute up to three-loops the bachelor amplitude from the coupled equations

for IT = 3/2, eq. (6.3), and for the single channel equation for IT = 5/2, eq. (6.5),

with momentum cut-off of 2 GeV. In figure 7, we show results for ε = 0.3 GeV2 and

µ2 = −0.1 GeV2, with W1 = 1, W2 = 2 and W3 = 0.2. The convergence ξ
IzT
IT ,IKπ

regarding

the loop expansion is evident, and two-loop calculations are enough for our purposes.

The bachelor amplitudes, present a considerable change in the phase and modulus, both

increasing with MKπ.

7 Results for the phase and amplitude in the D+ → K−π+π+ decay

We will restrict our calculations up to two-loops as it was already shown in section 6 to be

enough to compute bachelor amplitudes. Results for two cases will be given, for the single

channel model with interaction restricted to IKπ = 1/2, and the case where IKπ = 1/2 and

3/2 interactions are present in the Kππ system.
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Figure 7. Modulus and phase of ξ
IzT
IT ,IKπ

for ε = 0.3 GeV2 and µ2 = −0.1 GeV2. The parameters

in the the expansion of the initial state are W1 = 1, W2 = 2 and W3 = 0.2.

7.1 Single-channel with IKπ = 1/2 interaction

The physical amplitude for the s-wave D+ → K−π+π+ decay is obtained by considering

only Kπ scattering in isospin 1/2 states, with the bachelor amplitude calculated by collect-

ing the appropriate contributions up to two-loops in eq. (6.2). It is parametrized according

to eq. (5.12) and written as

A0(M2
Kπ) =

√
2

3

[
N
√

1

216
+ τ1/2(M

2
Kπ)ξ3/23/2,1/2(kπ′)

]
. (7.1)

Notice that due to the structure of eq. (6.2), N becomes an overall constant. The modulus

and phase of this amplitude is shown in figure 8 and compared to the experimental analysis

from E791 [6, 7] and FOCUS collaboration [8, 9]. The Kπ isospin 1/2 s-wave amplitude

is fitted to the LASS data in section 2. To obtain the bachelor amplitude a small and

finite imaginary term (ε = 0.2 GeV) was introduced in the three-meson propagator, it also

represents absorption to other decay channels, which is beyond the model. An arbitrary

experimental point was chosen in order to fix the constant N of eq. (7.1). Notice that

all curves cross each other at the same point in figure 8a. Even though, there is some

sensitivity to the subtraction scale µ from the driving term, the change in this parameter

is not enough to fit the data (see ref. [26]).

The fit found in ref. [26] below K∗0 (1430) suggested that the partonic amplitude has

little overlap with the K∓π±π± final state channel, i. e., the first term in the left-hand-

side of eq. (7.1) should vanish. Here, we also show in figure 9, results computed only

by considering A0(M2
Kπ) ≈ τ1/2(M

2
Kπ)ξ3/23/2,1/2(kπ′). As in the previous work [26], a better
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Figure 8. (a) Modulus and (b) phase of the D+ → K−π+π+ S-wave amplitude obtained from

eq. (7.1). Values for µ2 in GeV2: 0.4 (dotted line), −0.1 (dashed-line), and −1 (solid line). The

data come from the phase-shift analysis of E791 [6, 7] and FOCUS collaboration [8, 9].

fit to the experimental data below K∗0 (1430) is found, compared to the results showed in

figure 8. However, note that a structure in the phase is seen in the model which incorporates

K∗0 (1630) and K∗0 (1950), as also verified in the LASS data. A better fit of the LASS data

above K∗0 (1430) seems necessary to find a better agreement with the valley in the modulus

and the structure in the phase, as well. The conclusion is somewhat independent on the

subtraction point, at least for those small values given in the figure.

In order to check the effect of the fitting to LASS data above K∗0 (1430), we remove from

theKπ s-wave amplitude theK∗0 (1950) andK∗0 (1630) resonances, as shown in figure 10. For

this study, we fix the subtraction point at µ2 = −0.1 GeV2. In the two sets of calculations,

we turned off: (i) K∗0 (1950) (dotted line), (ii) and both K∗0 (1950) and K∗0 (1630) (solid line).

In case (i), both the structure of the valley in the modulus and phase is somewhat kept,

and make distinct the results from ref. [26], while in case (ii) as happens for the reference

calculation, the valley and mainly the phase, loose part of their structure. We should note

that for calculation (ii), the parameters of τ1/2 were not refitted to the LASS data, and

this can be observed by the shift in the valley position of the modulus. Essentially, we

restate that the on-shell Kπ amplitude should be represented well in order to compute

the rescattering three-body effects. Also, a simple fitting of the low-energy Kπ amplitude

without the detailed physics of chiral symmetry, which leads to the broad κ∗ resonance, is

somewhat poor below 0.8 GeV, as the figure suggests.
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7.2 Coupled-channels with IKπ = 1/2 and 3/2 interactions

We calculated the bachelor amplitudes iterating the coupled equations (6.3)–(6.4) and the

single channel equation for total isospin 5/2, eq. (6.5), up to two-loops. In this case the

amplitude for the s-wave D+ → K−π+π+ decay is written as

A0(M2
Kπ) = C1

[
Aw
2

+ τ1/2(M
2
Kπ)ξ3/23/2,1/2(kπ′)

]
+ C2

[
Bw
2

+ τ3/2(M
2
Kπ)ξ3/23/2,3/2(kπ′)

]
+ C3

[
Cw
2

+ τ3/2(M
2
Kπ)ξ3/25/2,3/2(kπ′)

]
= a0(M2

Kπ)eiΦ0(M2
Kπ), (7.2)

where the constants Aw, Bw and Cw are defined in eqs. (6.6). The constants Ci are given by

C1 =
〈
K−π+π+

∣∣ IT = 3/2, IKπ = 1/2, IzT = 3/2〉 , (7.3)

C2 =
〈
K−π+π+

∣∣ IT = 3/2, IKπ = 3/2, IzT = 3/2〉 , (7.4)

C3 =
〈
K−π+π+

∣∣ IT = 5/2, IKπ = 3/2, IzT = 3/2〉 , (7.5)

which comes from eq. (5.12). The driving terms of the integral equations for ξ
IzT
IT ,IKπ

, see

eqs. (6.3)–(6.5), and the functional form of the amplitude given in eq. (7.2), depend on only

two free parameters, namely, W1−W2 and W3 (the constant N is determined by matching

a particular experimental point). Actually, if we set W3 = 0, there are no free parameters

anymore, since N (W1 −W2) became an overall constant in the amplitude.

The first striking result is that for W1 = W2 and W3 nonzero, which is also the

case for |D〉 = N |K−π+π+〉 (Wi = 1) is shown in figure 11. Only total isospin 5/2 is

allowed and the Kπ pair interacts in isospin 3/2 state. All the structure in the phase and

amplitude is washed out, as the figure shows, excluding that possibility as dominant for

the partonic amplitude.

The relevant partonic weight Wi should be guided by the difference W1 −W2, which

means dominance of the total isospin 3/2 in the initial state. In figure 12, we present

results for W1 = 1 and W2 = W3 = 0, which corresponds to a partonic amplitude given by

|D〉 = α3/2

3/2,1/2 |IT = 3/2, IKπ = 1/2, IzT = 3/2〉+ α3/2

3/2,1/2 |IT = 3/2, IKπ′ = 1/2, IzT = 3/2〉 .
(7.6)

In the figure, we present results for µ2 = 0.4,−0.1 and 1 GeV2 and ε = 0.2 GeV2. A

reasonable account of the experimental phase and modulus is given by µ2 = −1 GeV2 and

µ2 = −0.1 GeV2. At low MKπ below 1 GeV, the model does not describe the modulus,

where the different analysis of E791 and FOCUS present a large dispersion. The model

tends to underestimate the modulus in the low mass region. The bachelor amplitude

increases with MKπ (see e.g. figure 7), which leads model to underestimate the modulus of

the decay amplitude for low Kπ masses. The characteristics valley and the follow-up height

is somewhat described by the model, with exception of the region close to the boundary

of the decay phase-space, where the data seems to indicates an increase of the amplitude

and the model presents a noticeable decrease.

We performed variations of the weight parameters and verified that a small mixture of

total isospin 5/2 improves the fittings. We have used W1 = 1, W2 = 0 and W3 = −0.3 to
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Figure 11. (a) Modulus and (b) phase of the D+ → K−π+π+ amplitude for a initial state with

W1 = W2 and W3 = 1 in eqs. (6.12)–(6.14). The data come from the phase-shift analysis of

E791 [6, 7] and FOCUS collaboration [8, 9].
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obtain the results shown by the solid lines in figure 13 for µ2 = −1 GeV2. Notice also that

the effect of the resonances in the fit of the Kπ isospin 1/2 amplitude to the LASS data,

in the last model results, is similar to the single channel case we have already discussed.

The region close to the valley appearing in the modulus is sensitive mainly to our fit of the

LASS data in the neighborhood of K∗0 (1630), while K∗0 (1950) presents a smaller effect in

part due to the competition with the interaction in the IKπ = 3/2 state. The pronounced

minimum in the modulus of the decay amplitude, which appears in the D−decay phase-

shift data at 1.53 GeV, should be contrasted with the LASS phase-shift in figure 1, where

the deep in not well pronounced and placed at 1.65 GeV.

8 Summary and conclusions

We have investigated the three-body final state interaction effects in D+ decays focusing

in the K−π+π+ channel. In order to formulate the final state interaction contribution

to the decay, we used a relativistic three-body model for the final state interaction in a

heavy meson decay based on an approximation of the Bethe-Salpeter-Faddeev equations

proposed in ref. [26] and generalized to include different isospin channels of the interacting

pair. The numerical calculations were performed in three-dimensions, corresponding to

the projection of the Bethe-Salpeter like equations for the Faddeev components of decay

amplitude to the light-front. We generalized the quasi-potential approach applied to the

light-front projection of the Bethe-Salpeter equation to account for the three-body final

state interaction in heavy-meson decays. The calculations were performed with a truncated
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light-front equation to the valence states and rotational symmetry was kept under control.

The particular kinematics of the decay in three-mesons, allows to choose the transverse

plane as the decay plane. This particular rotation around the z-direction is of kinematical

nature and therefore preserved by the truncation of the Fock-space.

The Kπ S-wave amplitude model is fitted to the LASS data for isospin 1/2, including

the resonances K∗0 (1430), K∗0 (1630) and K∗0 (1950). The isospin 3/2 amplitude is taken

from an effective range formula already presented in ref. [11]. We allowed the partonic

amplitude to have nonzero weight in the three possible isospin states with IT equal to 3/2

and 5/2. A small contribution of IT = 5/2 seems to improve the fit of the data of amplitude

and phase from E791 [6, 7] and FOCUS [8, 9] collaborations.

We showed that the loop-expansion to calculate three-body rescattering effects in the

Kππ channel converges fast, and the solution of the integral equations for the bachelor

amplitudes by iteration at the three-loop level gives a contribution that can be neglected

in respect to the two-loop results. We explored the dependence on the model parameters

in respect to the partonic amplitude.

We found that the negative value of the phase seen in the data [6–9], can be obtained

by an appropriate choice of the real weights of the three isospin components of the partonic

amplitude, with a small mixture of total isospin 5/2. The feature of the modulus of the

unsymmetrized decay amplitude presenting a deep valley and a following increase, for Kπ

masses above 1.5 GeV, is fairly reproduced, which indicates an assignment of 0+ to the

isospin 1/2 K∗(1630) [45] omitted from the PDG summary table. Below 1 GeV the model

underestimate the data for the modulus, as happens close to the end of the available

phase-space around 1.8 GeV.

Certainly, a better comprehension of the Kπ amplitude in the physical and unphysical

region, and in particular above K∗(1430) can bring more realism to the description of the

three-body final state interaction in D decays. The challenge of applying the formalism to

B decays and CP violation [59] by extending ref. [60] to include three-body FSI, is let to

a future work.
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[55] P.C. Magalhães and M. C. Birse, A model for final state interactions in D+ → K−π+pi+,

PoS(QNP2012)144.

[56] W. Hoogland et al., Measurement and Analysis of the π+π+ System Produced at Small

Momentum Transfer in the Reaction π+p→ π+π+n at 12.5 GeV, Nucl. Phys. B 126 (1977)

109 [INSPIRE].

[57] C.D. Froggatt and J.L. Petersen, Phase Shift Analysis of π+π− Scattering Between 1.0 and

1.8 GeV Based on Fixed Momentum Transfer Analyticity. II, Nucl. Phys. B 129 (1977) 89

[INSPIRE].

[58] G. Janssen, B.C. Pearce, K. Holinde and J. Speth, On the structure of the scalar mesons

f0(980) and a0(980), Phys. Rev. D 52 (1995) 2690 [nucl-th/9411021] [INSPIRE].

[59] LHCb collaboration, Measurement of CP-violation in the phase space of B± → K±π+π− and

B± → K±K+K− decays, Phys. Rev. Lett. 111 (2013) 101801 [arXiv:1306.1246] [INSPIRE].

[60] I. Bediaga, T. Frederico and O. Lourenço, CP violation and CPT invariance in B± decays

with final state interactions, Phys. Rev. D 89 (2014) 094013 [arXiv:1307.8164] [INSPIRE].

– 34 –

http://dx.doi.org/10.1006/aphy.1994.1091
http://arxiv.org/abs/nucl-th/9311035
http://inspirehep.net/search?p=find+EPRINT+nucl-th/9311035
http://dx.doi.org/10.1103/PhysRevC.67.037001
http://arxiv.org/abs/nucl-th/0207073
http://inspirehep.net/search?p=find+EPRINT+nucl-th/0207073
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://inspirehep.net/search?p=find+J+Phys.Rev.,D86,010001
http://dx.doi.org/10.1016/j.physletb.2010.08.045
http://arxiv.org/abs/0908.4282
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.4282
http://dx.doi.org/10.1142/S0218271810018001
http://dx.doi.org/10.1142/S0218271810018001
http://arxiv.org/abs/1004.0709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0709
http://dx.doi.org/10.1103/PhysRevD.79.075019
http://arxiv.org/abs/0806.3830
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3830
http://dx.doi.org/10.1103/PhysRevD.85.094006
http://dx.doi.org/10.1103/PhysRevD.85.094006
http://arxiv.org/abs/1203.4782
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4782
http://dx.doi.org/10.1103/PhysRevD.80.112001
http://arxiv.org/abs/0905.3615
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.3615
http://dx.doi.org/10.1016/0550-3213(78)90238-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B133,490
http://dx.doi.org/10.1103/PhysRevD.78.074031
http://arxiv.org/abs/0801.3635
http://inspirehep.net/search?p=find+J+Phys.Rev.,D78,074031
http://dx.doi.org/10.1140/epja/i2008-10625-3
http://arxiv.org/abs/0804.4670
http://inspirehep.net/search?p=find+J+Eur.Phys.J.,A37,233
http://dx.doi.org/10.1007/s00601-009-0054-3
http://arxiv.org/abs/0811.1100
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1100
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(QNP2012)144
http://dx.doi.org/10.1016/0550-3213(77)90154-7
http://dx.doi.org/10.1016/0550-3213(77)90154-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B126,109
http://dx.doi.org/10.1016/0550-3213(77)90021-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B129,89
http://dx.doi.org/10.1103/PhysRevD.52.2690
http://arxiv.org/abs/nucl-th/9411021
http://inspirehep.net/search?p=find+J+Phys.Rev.,D52,2690
http://dx.doi.org/10.1103/PhysRevLett.111.101801
http://arxiv.org/abs/1306.1246
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1246
http://dx.doi.org/10.1103/PhysRevD.89.094013
http://arxiv.org/abs/1307.8164
http://inspirehep.net/search?p=find+J+Phys.Rev.,D89,094013

	Introduction
	K pi S-wave amplitude
	D+ –> K- pi+ pi+ decay with FSI
	Three-body Bethe-Salpeter approach
	s-channel two-meson amplitude
	D+ –> K- pi+ pi+ problem
	Phase and amplitude separation

	FSI light-front dynamics in heavy meson decay
	QPA and decay amplitude
	Effective LF interaction for three-particles
	LF Faddeev equations for D(LF)

	LF model for D+ –> K- pi+ pi+ decay
	Phase and amplitude separation

	Perturbative solutions
	Interaction in I(K pi)=1/2 state
	Interaction in I(K pi)=1/2 and 3/2 states

	Results for the phase and amplitude in the D+ –> K- pi+ pi+ decay
	Single-channel with I(K pi)=1/2 interaction
	Coupled-channels with I(K pi)= 1/2 and 3/2 interactions

	Summary and conclusions

