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its vacuum alignment determines the columns of Yukawa matrices. The Z5 symmetry

distinguishes the right-handed families and its breaking controls CP violation in both the

quark and lepton sectors. The Pati-Salam symmetry relates the quark and lepton Yukawa

matrices, with Y u = Y ν and Y d ∼ Y e. Using the see-saw mechanism with very hierarchical

right-handed neutrinos and CSD4 vacuum alignment, the model predicts the entire PMNS

mixing matrix and gives a Cabibbo angle θC ≈ 1/4. In particular, for a discrete choice

of Z5 phases, it predicts maximal atmospheric mixing, θl23 = 45◦ ± 0.5◦ and leptonic CP

violating phase δl = 260◦ ± 5◦. The reactor angle prediction is θl13 = 9◦ ± 0.5◦, while the
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1 Introduction

The problem of understanding the quark and lepton masses, mixing angles and CP violating

phases remains one of the most fascinating puzzles in particle physics. Following the

discovery of a Standard Model (SM)-like Higgs boson at the LHC [1, 2], it seems highly

plausible that quark masses, mixing angles and CP phase originate from Yukawa couplings

to a Higgs field. However the SM offers absolutely no insight into the origin or nature of

these Yukawa couplings, motivating approaches beyond the SM [3, 4].

In the quark sector, the Yukawa couplings are organised into 3 × 3 quark Yukawa

matrices Y u and Y d, which must be responsible for the quark mass hierarchies and small

quark mixing angles, together with the CP phase. Similarly, the charged lepton Yukawa

matrix Y e must lead to a mass hierarchy similar to that of the down-type quarks. The

origin of small quark mixing and CP violation and the strong mass hierarchies of the quarks

and charged leptons, with an especially strong hierarchy in the up-type quark sector, is

simply unexplained within the SM. The nine charged fermion masses, three quark mixing

angles, including the largest Cabibbo angle θC ≈ 13◦, and the CP phase are all determined

from experiment. From a more fundamental point of view, the three Yukawa matrices Y u,

Y d and Y e contain 54 undetermined Yukawa couplings leading to 13 physical observables

with a calculable scale dependence [5, 6].

Following the discovery of atmospheric neutrino oscillations by Super-Kamiokande in

1998 and solar neutrino oscillations by SNO in 2002 [7, 8], Daya Bay has recently accurately

measured a non-zero reactor angle [9] which rules out tri-bimaximal (TB) [10] mixing.

However, recent global fits [11–13]1 are consistent with tri-bimaximal-Cabibbo (TBC) [14]

mixing, based on the TB atmospheric angle θl23 ≈ 45◦, the TB solar angle θl12 ≈ 35◦ and

a reactor angle θl13 ≈ θC/
√

2 ≈ 9◦. The extra parameters of the lepton sector include

three neutrino masses, three lepton mixing angles and up to three CP phases, although no

leptonic CP violation has yet been observed and the lightest neutrino mass has not been

measured. The 9 additional neutrino observables, together with the 13 physical observables

in the charged fermion sector, requires 22 unexplained parameters in the flavour sector of

the SM. This provides a powerful motivation to search for theories of flavour (TOF) based

on discrete family symmetry which contain fewer parameters [15, 16].

The origin of neutrino mass is presently unknown and certainly requires some extension

of the SM, even if only by the addition of right-handed (RH) neutrinos which are singlets

under the SM gauge group. Since such RH neutrinos may have large Majorana masses, in

excess of the electroweak breaking scale, such a minimal extension naturally leads to the

idea of a see-saw mechanism [17–20], resulting from a neutrino Yukawa matrix Y ν , together

with a complex symmetric Majorana matrix MR of heavy right-handed neutrinos, leading

to a light effective Majorana neutrino mass matrix mν ∼ v2Y νM−1
R Y νT , where v is the

Higgs vacuum expectation value (VEV). However the see-saw mechanism does not explain

large lepton mixing angles, with the smallest being the reactor angle θl13 ≈ 9◦, nor does it

address any of the flavour puzzles in the charged fermion sector.

1An updated version of the results in [13] can be found at the website www.nu-fit.org, see the link

therein: “v1.2: Three- neutrino results after the TAUP 2013 Conference”.
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The origin of large lepton mixing may be accounted for within the see-saw mechanism

with the aid of sequential dominance (SD) [21–23]. For example, with an approximately

diagonal MR, the lightest right-handed neutrino νatm
R may give the dominant contribution

to the atmospheric neutrino mass m3, the second lightest right-handed neutrino νsol
R to

the solar neutrino mass m2 and the heaviest, almost decoupled, right-handed neutrino νdec
R

may be responsible for the lightest neutrino mass m1. The immediate prediction of SD is

a normal neutrino mass hierarchy, m3 > m2 � m1, which will be tested in the near future.

However SD also provides a simple way to account for maximal atmospheric mixing and

tri-maximal solar mixing by adding constraints to the first two columns of the neutrino

Yukawa matrix Y ν , with the third column assumed to be approximately decoupled from

the see-saw mechanism. In the diagonal Y e basis, if the dominant first column of Y ν is

proportional to (0, 1, 1)T then this implies a maximal atmospheric angle tan θl23 ≈ 1 [24].

This could be achieved with a non-Abelian family symmetry such as A4 [25], if the first

column is generated by a triplet flavon field with a vacuum alignment proportional to

(0, 1, 1)T . In such models, it has been shown that the vacuum alignment completely breaks

the A4 symmetry, and such models are therefore referred to as “indirect” models [26]. Such

“indirect” models are highly predictive and do not require such large discrete groups as

the “direct” models where the Klein symmetry of the neutrino mass matrix is identified as

a subgroup of the family symmetry [27–29].

Constrained sequential dominance (CSD) [30] involves the dominant right-handed

neutrino νatm
R mainly responsible for the atmospheric neutrino mass having couplings to

(νe, νµ, ντ ) proportional to (0, 1, 1), as above, while the subdominant right-handed neutrino

νsol
R giving the solar neutrino mass has various couplings to (νe, νµ, ντ ) as follows:

• CSD1: (1, 1,−1) leading to TB mixing with zero reactor angle θl13 ≈ 0◦ [30].

• CSD2: (1, 2, 0) giving θl13 ≈ 6◦ [31, 32].

• CSD3: (1, 3, 1) with a relative phase ±π/3 giving θl13 ≈ 8.5◦ [33].

• CSD4: (1, 4, 2), with a relative phase ±2π/5 giving θl13 ≈ 9◦ [33, 34].

“Indirect” models of leptons have been constructed based on A4 using both CSD3 [33]

and CSD4 [34] since these are the most promising from the point of view of the reactor

angle. From the point of view of extending to the quark sector, CSD4 seems to be the

most promising since in unified models with Y u = Y ν , the second column is proportional

to (1, 4, 2)T . This simultaneously provides a prediction for both lepton mixing and the

Cabibbo angle θC ≈ 1/4 in the diagonal Y d ∼ Y e basis [35].

The model in [35] was based on A4 family symmetry with Z4
3 × Z5

5 and quark-lepton

unification via the Pati-Salam (PS) [36] gauge subgroup SU(4)PS × SU(2)L × U(1)R and

the CSD4 alignment (1, 4, 2). The small quark mixing angles arose from higher order (HO)

corrections appearing in Y u and Y ν , providing a theoretical error or noise which blurred the

PMNS predictions. Here we discuss an alternative A4 model which has three advantages

over the previous model. Firstly it is more unified, being based on the full PS gauge

group SU(4)PS ×SU(2)L×SU(2)R [36]. Secondly it introduces only a single Z5 symmetry,
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replacing the rather cumbersome Z4
3 × Z5

5 symmetry. Thirdly, it accounts for small quark

mixing angles already at the leading order (LO), with all Higher Order (HO) corrections

being rather small, leading to more precise predictions for the PMNS parameters, such as

maximal atmospheric mixing. Unlike other A4×PS models (see e.g. [37]), the present model

does not involve any Abelian U(1) family symmetry. Instead the left-handed PS fermions

are unified into a triplet of A4 while the right-handed PS fermions are distinguished by Z5,

as in figure 1.

In the present paper, then, we propose a rather elegant TOF based on the PS gauge

group combined with a discrete A4 × Z5 family symmetry. PS unification relates quark

and lepton Yukawa matrices and in particular predicts equal up-type quark and neutrino

Yukawa matrices Y u = Y ν , leading to Dirac neutrino masses being equal to up, charm and

top masses. The see-saw mechanism then implies very hierarchical right-handed neutrinos.

The A4 family symmetry determines the structure of Yukawa matrices via the CSD4 vac-

uum alignment [33, 34], with the three columns of Y u = Y ν being proportional to (0, 1, 1)T ,

(1, 4, 2)T and (0, 0, 1)T , respectively, where each column has an overall phase determined

by Z5 breaking, which controls CP violation in both the quark and lepton sectors. The

down-type quark and charged lepton Yukawa matrices are both approximately equal and

diagonal Y d ∼ Y e, but contain small off-diagonal elements responsible for the small quark

mixing angles θq13 and θq23. The model predicts the Cabibbo angle θC ≈ 1/4, up to such

small angle corrections. The main limitation of the model is that it describes the fermion

masses and small quark mixing angles by 16 free parameters. The main success of the

model is that, since there are 6 fewer parameters than the 22 flavour observables, it pre-

dicts the entire PMNS lepton mixing matrix including the three lepton mixing angles and

the three leptonic CP phases. The model may be tested quite soon via its prediction of

maximal atmospheric mixing with a normal neutrino mass hierarchy.

The layout of the remainder of the paper is as follows. In section 2, we give a brief

overview of the essential features of the model. In section 3, we present the full model

and show how the messenger sector can lead to effective operators, then discuss how these

operators lead to Yukawa and Majorana mass matrices. In section 4, we derive the quark

masses and mixing, including CP violation, arising from the quark Yukawa matrices, first

analytically, then numerically. In section 5, we implement the see-saw mechanism, then

consider the resulting neutrino masses and lepton mixing, with modified Georgi-Jarlskog

relations, before performing a full numerical analysis of neutrino masses and lepton mixing,

including CP violation. In section 6, we consider higher order corrections to the results

and show that they are small due to the particular messenger sector. Finally section 7

concludes the paper. A4 group theory is discussed in appendix A and the origin of the

light Higgs doublets Hu and Hd in appendix B.

2 Overview of the model

2.1 Symmetries of the model

The model is based on the Pati-Salam gauge group [36], with A4 × Z5 family symmetry,

SU(4)C × SU(2)L × SU(2)R ×A4 × Z5. (2.1)
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Figure 1. A to Z of flavour with Pati-Salam, where A ≡ A4 and Z ≡ Z5. The left-handed families

form a triplet of A4 and are doublets of SU(2)L. The right-handed families are distinguished by Z5

and are doublets of SU(2)R. The SU(4)C unifies the quarks and leptons with leptons as the fourth

colour, depicted here as white.

The quarks and leptons are unified in the PS representations as follows,

Fi = (4, 2, 1)i =

(
u u u ν

d d d e

)
i

→ (Qi, Li),

F ci = (4̄, 1, 2)i =

(
uc uc uc νc

dc dc dc ec

)
i

→ (uci , d
c
i , ν

c
i , e

c
i ), (2.2)

where the SM multiplets Qi, Li, u
c
i , d

c
i , ν

c
i , e

c
i resulting from PS breaking are also shown

and the subscript i (= 1, 2, 3) denotes the family index. The left-handed quarks and

leptons form an A4 triplet F , while the three (CP conjugated) right-handed fields F ci
are A4 singlets, distinguished by Z5 charges α, α3, 1, for i = 1, 2, 3, respectively. Clearly

the Pati-Salam model cannot be embedded into an SO(10) Grand Unified Theory (GUT)

since different components of the 16-dimensional representation of SO(10) would have to

transform differently under A4×Z5, which is impossible. On the other hand, the PS gauge

group and A4 could emerge directly from string theory (see e.g. [38–40]).

2.2 Pati-Salam breaking

The Pati-Salam gauge group is broken at the GUT scale to the SM,

SU(4)C × SU(2)L × SU(2)R → SU(3)C × SU(2)L ×U(1)Y , (2.3)

by PS Higgs, Hc and Hc,

Hc = (4̄, 1, 2) = (ucH , d
c
H , ν

c
H , e

c
H),

Hc = (4, 1, 2) = (ūcH , d̄
c
H , ν̄

c
H , ē

c
H). (2.4)

These acquire vacuum expectation values (VEVs) in the “right-handed neutrino” direc-

tions, with equal VEVs close to the GUT scale 2× 1016 GeV,

〈Hc〉 = 〈νcH〉 = 〈Hc〉 = 〈ν̄cH〉 ∼ 2× 1016 GeV, (2.5)
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so as to maintain supersymmetric gauge coupling unification. Since the PS Higgs fields do

not carry any A4 × Z5 charges, the potential responsible for supersymmetric PS breaking

considered in [41] is assumed to be responsible for PS breaking here.

2.3 CP violation

Our starting point is to assume that the high energy theory, above the PS breaking scale,

conserves CP [42, 43]. We shall further assume that CP is spontaneously broken by the

complex VEVs of scalar fields which spontaneously break A4 and Z5. The scalars include

A4 triplets φ ∼ 3, A4 singlets ξ ∼ 1, and other one dimensional A4 representations such

as Σu ∼ 1′ and Σd ∼ 1′′. In addition all of the above fields carry Z5 charges denoted as

the powers αn, where α = e2πi/5 and n is an integer. For example ξ ∼ α4 under Z5. The

group theory of A4 is reviewed in appendix A, while Z5 corresponds to α5 = 1.

Under a CP transformation, the A4 singlet fields transform into their complex conju-

gates [44, 45],

ξ → ξ∗, Σu → Σ∗u, Σd → Σ∗d, (2.6)

where the complex conjugate fields transform in the complex conjugate representations

under A4×Z5. For example if ξ ∼ α4, under Z5, then ξ∗ ∼ α. Similarly if Σu ∼ 1′, Σd ∼ 1′′,

under A4, then Σ∗u ∼ 1′′, Σ∗d ∼ 1′. On the other hand, in the Ma-Rajarsakaran [25] basis

of appendix A, for A4 triplets φ ∼ (φ1, φ2, φ3), a consistent definition of CP symmetry

requires the second and third triplet components to swap under CP [44, 45],

φ→ (φ∗1, φ
∗
3, φ
∗
2). (2.7)

CP violation has also been considered in a variety of other discrete groups [46–51]. With

the above definition of CP, all coupling constants g and explicit masses m are real due

to CP conservation and the only source of phases can be the VEVs of fields which break

A4 × Z5. In the model of interest, all the physically interesting CP phases will arise from

Z5 breaking as in [42, 43].

For example, consider the A4 singlet field ξ which carries a Z5 charge α4. The VEV

of this field arises from Z5 invariant quintic terms in the superpotential [42, 43],

gP

(
ξ5

Λ3
−m2

)
(2.8)

where, as in [42, 43], P denotes a singlet and the coupling g and mass m are real due to

CP conservation. The F-term condition from eq. (2.8) is,∣∣∣∣〈ξ〉5Λ3
−m2

∣∣∣∣2 = 0. (2.9)

This is satisfied, for example, by 〈ξ〉 = |(Λ3m2)1/5|e−4iπ/5, where we arbitrarily select

the phase to be −4π/5 from amongst a discrete set of five possible choices, which are

not distinguished by the F-term condition, as in [34]. We emphasise that CP breaking is

controlled by the Abelian Z5 symmetry rather than the non-Abelian A4 symmetry.

– 6 –
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2.4 Vacuum alignment

Let us now consider the A4 triplet fields φ which also carry Z5 charges. In the full model

there are four such triplet fields, or “flavons”, denoted as φu1 , φu2 , φd1, φd2. The idea is that

φui are responsible for up-type quark flavour, while φdi are responsible for down-type quark

flavour. These VEVs are driven by the superpotential terms,

g21P21(φu2φ
d
1 ±M2

21) + g12P12(φu1φ
d
2 ±M2

12) + Pii

(
guii

(φui )5

Λ3
+ gdii

(φdi )
5

Λ3
±M2

ii

)
, (2.10)

where Pij are linear combinations of singlets as in [34]. The coupling constants gij , mass

parameters Mij and cut-off scale Λ are enforced to be real by CP while the fields φui and

φdi will develop VEVs with quantised phases. If we assume that φui both have the same

phase, eimπ/5, then eq. (2.10) implies that φdi should have phases einπ/5 such that

arg(φui ) =
mπ

5
, arg(φdi ) =

nπ

5
, n+m = 0 (mod 5), (2.11)

where n,m are positive or negative integers.

The structure of the Yukawa matrices depends on the so-called CSD4 vacuum align-

ments of these flavons which were first derived in [34], and we assume a similar set of

alignments here, although here the overall phases are quantised due to Z5,

〈φu1〉 =
V u

1√
2
eimπ/5

0

1

1

 , 〈φu2〉 =
V u

2√
21
eimπ/5

1

4

2

 , (2.12)

and

〈φd1〉 = V d
1 e

inπ/5

1

0

0

 , 〈φd2〉 = V d
2 e

inπ/5

0

1

0

 . (2.13)

We note here that the vacuum alignments in eq. (2.13) and the first alignment in eq. (2.12)

are fairly “standard” alignments that are encountered in tri-bimaximal mixing models,

while the second alignment in eq. (2.12) is obtained using orthogonality arguments, as

discussed in [34], to which we refer the interested reader for more details.

2.5 Two light Higgs doublets

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark

and neutrino Yukawa couplings and hd which lead to down-type quark and charged lepton

Yukawa couplings. In addition a Higgs bidoublet h3, which is also an A4 triplet, is used to

give the third family Yukawa couplings.

After the PS and A4 breaking, most of these Higgs bi-doublets will get high scale masses

and will not appear in the low energy spectrum. In fact only two light Higgs doublets will

survive down to the TeV scale, namely Hu and Hd. The precise mechanism responsible for

this is quite intricate and is discussed in appendix B. Analogous Higgs mixing mechanisms

are implicitly assumed in many models, but are rarely discussed explicitly (however for an

example within SO(10) see [52]).

– 7 –
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The basic idea is that the light Higgs doublet Hu with hypercharge Y = +1/2, which

couples to up-type quarks and neutrinos, is a linear combination of components of the

Higgs bi-doublets of the kind hu and h3, while the light Higgs doublet Hd with hypercharge

Y = −1/2, which couples to down-type quarks and charged leptons, is a linear combination

of components of Higgs bi-doublets of the kind hd and h3,

hu, h3 → Hu, hd, h3 → Hd. (2.14)

2.6 Yukawa operators

The renormalisable Yukawa operators, which respect PS and A4 symmetries, have the

following form, leading to the third family Yukawa couplings shown, using eqs. (2.2), (2.14),

F.h3F
c
3 → Q3Huu

c
3 +Q3Hdd

c
3 + L3Huν

c
3 + L3Hde

c
3, (2.15)

where we have used eqs. (2.2), (2.14). The non-renormalisable operators, which respect PS

and A4 symmetries, have the following form,

F.φui huF
c
i → Q.〈φui 〉Huu

c
i + L.〈φui 〉Huν

c
i , (2.16)

F.φdi hdF
c
i → Q.〈φdi 〉Hdd

c
i + L.〈φdi 〉Hde

c
i , (2.17)

where i = 1 gives the first column of each Yukawa matrix, while i = 2 gives the second

column and we have used eqs. (2.2), (2.14). Thus the third family masses are naturally

larger since they correspond to renormalisable operators, while the hierarchy between first

and second families arises from a hierarchy of flavon VEVs.

2.7 Yukawa matrices

Inserting the vacuum alignments in eqs. (2.12) and (2.13) into eqs. (2.16) and (2.17),

together with the renormalisable third family couplings in eq. (2.15), gives the Yukawa

matrices of the form,

Y u = Y ν =

0 b 0

a 4b 0

a 2b c

 , Y d ∼ Y e ∼

y0
d 0 0

0 y0
s 0

0 0 y0
b

 . (2.18)

The PS unification predicts the equality of Yukawa matrices Y u = Y ν and Y d ∼ Y e, while

the A4 vacuum alignment predicts the structure of each Yukawa matrix, essentially iden-

tifying the first two columns with the vacuum alignments in eqs. (2.12) and (2.13). With

a diagonal right-handed Majorana mass matrix, Y ν leads to a successful prediction of the

PMNS mixing parameters [34]. Also the Cabibbo angle is given by θC ≈ 1/4 [35]. Thus

eq. (2.18) is a good starting point for a theory of quark and lepton masses and mixing,

although the other quark mixing angles and the quark CP phase are approximately zero.

However above discussion ignores the effect of Clebsch factors which will alter the relation-

ship between elements of Y d and Y e, which also include off-diagonal elements responsible

for small quark mixing angles in the full model.

– 8 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
0

name field SU(4)C × SU(2)L × SU(2)R A4 Z5 R

Quarks F (4, 2, 1) 3 1 1

and leptons F c1,2,3 (4, 1, 2) 1 α,α3,1 1

PS Higgs Hc, Hc (4, 1, 2), (4, 1, 2) 1 1 0

A4 triplet φu1,2 (1, 1, 1) 3 α4, α2 0

flavons φd1,2 (1, 1, 1) 3 α3, α 0

h3 (1, 2, 2) 3 1 0

Higgs hu (1, 2, 2) 1′′ α 0

bidoublets hd,h
d
15 (1, 2, 2), (15, 2, 2) 1′ α3,α4 0

hu15 (15, 2, 2) 1 α 0

Dynamical Σu (1, 1, 1) 1′′ α 0

masses Σd,Σ
d
15 (1, 1, 1), (15, 1, 1) 1′ α3,α2 0

Majoron ξ (1, 1, 1) 1 α4 0

XF ′′1,3
(4, 2, 1) 1′′ α,α3 1

Fermion XF ′1,3
(4, 2, 1) 1′ α,α3 1

Messengers XFi
(4, 2, 1) 1 αi 1

Xξi (1, 1, 1) 1 αi 1

Table 1. The basic Higgs, matter, flavon and messenger content of the model, where α = e2πi/5

under Z5. R is a supersymmetric R-symmetry.

3 The model

The most important fields appearing in the model are defined in table 1. In addition to the

fields introduced in the previous overview, the full model involves Higgs bi-doublets h15

in the adjoint of SU(4)C , as well as messenger fields X with masses given by the VEV of

dynamical fields Σ. The effective non-renormalisable Yukawa operators therefore arise from

a renormalisable high energy theory, where heavy messengers X with dynamical masses

〈Σ〉 are integrated out, below the energy scale 〈Σ〉.

3.1 Operators from messengers

Although the Yukawa operators in the up sector of the full model turn out to be the same

as in eq. (2.16), the Yukawa operators in the down sector of the full model will involve

Clebsch factors which will imply that Y d and Y e are not equal. In addition Y d and Y e

will involve off-diagonal elements which however are “very small” in the sense that they

will give rise to the small quark mixing angles of order Vub and Vcb. The Cabibbo angle

arises predominantly from the second column of Y u, with the prediction Vus ∼ 1/4 being

corrected by the very small off-diagonal elements of Y d.

The allowed Yukawa operators arise from integrating out heavy fermion fields called

“messengers” and will depend on the precise choice of fermion messengers. In table 1
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1
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2
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Figure 2. The fermion messenger diagrams responsible for the operators leading to the up type

quark and Dirac neutrino masses. The fermions depicted by the solid line have even R-parity.

we have allowed messengers of the form XF i
for charges αi (i = 1, . . . , 4), with a very

restricted set of messengers XF ′1
(XF ′′1

) and XF ′3
(XF ′′3

) with charges α and α3, in the 1′

(1′′) representation of A4.

The assumed messengers XF i
have allowed couplings to φF as follows,

XF 1
φu1F +XF 2

φd1F +XF 3
φu2F +XF 4

φd2F. (3.1)

The messengers XF ′ and XF ′′ have allowed couplings to hF ci as follows,

XF ′1
huF

c
2 +XF ′3

huF
c
1 +XF ′′1

hdF
c
1 +XF ′′1

hd15F
c
3 +XF ′′3

hd15F
c
2 . (3.2)

The messengers couple to each other and become heavy via the dynamical mass fields Σ

which appear in table 1,

XF ′1
ΣuXF 3

+XF ′3
ΣuXF 1

+XF ′′1
(ΣdXF 1

+ Σd
15XF 2

) +XF ′′3
ΣdXF 4

. (3.3)

The leading order operators responsible for the Yukawa couplings involving the first

and second families to Higgs fields are obtained by integrating out the heavy messengers,

leading to effective operators.

The diagrams in figure 2 yield the following operators which will be responsible for the

up-type quark and neutrino Yukawa couplings,

W u
Y uk = F.

φu1
Σu

huF
c
1 + F.

φu2
Σu

huF
c
2 + F.h3F

c
3 . (3.4)

The above operators are similar to those in eq. (2.16) and will yield a Yukawa matrix

Y u = Y ν as in eq. (2.18).

The diagrams in figure 3 yield the operators which will be responsible for the diagonal

down-type quark and charged lepton Yukawa couplings,

W d,diag
Y uk = F.

φd1
Σd

15

hdF
c
1 + F.

φd2
Σd
hd15F

c
2 + F.h3F

c
3 . (3.5)

These operators are similar to those in eq. (2.17) and will yield Yukawa matrices similar

to those in eq. (2.18) but with Y d 6= Y e due to the Clebsch-Gordan coefficients from the

Higgs in the 15 dimensional representation of SU(4)C . In addition, the above messenger

sector generates further effective operators which give rise to off-diagonal down-type quark

and charged lepton Yukawa couplings,

W d,off−diag
Y uk = F.

φd1
Σd

15

hd15F
c
3 + F.

φu1
Σd

(hdF
c
1 + hd15F

c
3 ). (3.6)
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Figure 3. The fermion messenger diagrams responsible for the operators which lead to the diagonal

charged lepton and down type quark masses. The fermions depicted by the solid line have even

R-parity.

Hc Hc

Λ Λ
F c
1F c

1

ξ

Xξ4Xξ4

ξ

Λ
Xξ1Xξ1 Xξ5Xξ5

Hc Hc

F c
2 F c

2Xξ2 Xξ3 Xξ2Xξ3

Λ Λ

ξ

F c
3F c

3

Hc

Xξ5 Xξ5

Hc

Λ

Figure 4. The fermion messenger diagrams responsible for the effective operators in eq. (3.7)

leading to the diagonal heavy (right-handed) Majorana neutrino masses. The fermions depicted by

the solid line have even R-parity.

The operators responsible for the heavy Majorana neutrino masses are given by,

WMaj =
ξ2

Λ2

HcHc

Λ
F c1F

c
1 +

ξ

Λ

HcHc

Λ
F c2F

c
2 +

ξ

Λ

HcHc

Λ
F c1F

c
3 +

HcHc

Λ
F c3F

c
3 , (3.7)

corresponding to the diagrams in figure 4. These operators are mediated by the singlet

messengers Xξi and involve the explicit messenger mass scale Λ which may take values

higher than the A4×Z5 and Pati-Salam breaking scales. The first three of these operators

are controlled by the Majoron fields ξi in table 1, which carries a non-trivial phase due to

the Z5 symmetry, as discussed later.

Note that the dynamical mass Σ fields do not enter the Majorana sector since they

transform under A4 as 1′, 1′′ and hence do not couple to pairs of Xξi . Also note that

the Majoron ξ fields which transform under A4 × Z5 as ξ ∼ (1, α4) do not enter the

charged fermion sector since they do not couple XF i
to the messengers XF ′ and XF ′′

which transform under A4 as 1′ and 1′′.

3.2 Yukawa and Majorana mass matrices

According to the mechanism discussed in appendix B, the four Higgs multiplets in the

fourth block of table 1, h3, hu, hd, h
d
15, result in two low energy light Higgs doublets

Hu,Hd,

h3 → Hu,d, hu → εuHu, hd → εdHd, hd15 → Hd, (3.8)

where Hu is predominantly composed of the Higgs doublet from third component of h3 with

a small admixture εu of the Higgs doublet from hu. Hd is predominantly composed of the

Higgs doublet from hd15 plus the third component of h3, together with a small admixture εd
of the Higgs doublet from hd. The particular admixtures assumed in eq. (3.8) correspond

to a particular choice of masses in appendix B.
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With the vacuum alignments in eq. (2.12), the operators in eq. (3.4) then result in

non-diagonal and equal up-type quark and neutrino Yukawa matrices,

Y u = Y ν =

0 b 0

a 4b 0

a 2b c

 , (3.9)

where,

a ∼ εu
V u

1

〈Σu〉
, b ∼ εu

V u
2

〈Σu〉
, c ∼ 1. (3.10)

Note that since Y u = Y ν , the up-type quark masses are equal to the Dirac neutrino masses,

mu = mD
ν1, mc = mD

ν2, mt = mD
ν3. (3.11)

From eq. (3.9) the up-type quark masses are given to excellent approximation by,

mu = yuvu = avu/
√

17, mc = ycvu =
√

17bvu, mt = cvu. (3.12)

The Yukawa coupling eigenvalues for up-type quarks are given by,

yu ∼
a√
34
∼ 4.10−6, yc ∼ b

√
17

21
∼ 10−3, yt ∼ c ∼ 1, (3.13)

where we have inserted some typical up-type quark Yukawa couplings, hence,

a ∼ 2.10−5, b ∼ 10−3 −→ a

b
∼ V u

1

V u
2

∼ 2.10−2, (3.14)

where the ratio of up to charm masses is accounted for by the 2% ratio of flavon VEVs.

Similarly, with the vacuum alignments in eqs. (2.12), (2.13), the operators in eqs. (3.5),

(3.6) then result in down-type quark and charged lepton Yukawa matrices related by

Clebsch factors,

Y d =

 y0
d 0 Ay0

d

By0
d y

0
s Cy0

d

By0
d 0 y0

b + Cy0
d

 , Y e =

−y0
d/3 0 Ay0

d

By0
d −3y0

s −3Cy0
d

By0
d 0 y0

b − 3Cy0
dδ

 , (3.15)

where the diagonal Yukawa couplings for down-type quarks are given by,

y0
d ∼ εd

V d
1

〈Σd
15〉
∼ 5.10−5, y0

s ∼
V d

2

〈Σd〉
∼ 10−3, y0

b ∼ 5.10−2, (3.16)

where εu,d were defined in eq. (3.8) and for low tanβ we have inserted some typical down-

type quark Yukawa couplings, assuming that the mixing angles are small. The off-diagonal

entries to the down-type quark and charged lepton Yukawa matrices are given by,

Ay0
d ∼

V d
1

〈Σd
15〉

, By0
d ∼ εd

V u
1

〈Σd〉
, Cy0

d ∼
V u

1

〈Σd〉
, (3.17)
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where,

A ∼ C

B
∼ 1

εd
. (3.18)

From eq. (3.15) the diagonal down-type quark and charged lepton Yukawa couplings are

related by,

y0
e =

y0
d

3
, y0

µ = 3y0
s , y0

τ = y0
b . (3.19)

These are the well-known Georgi-Jarlskog (GJ) relations [53], although the factor of 1/3

which appears in the first relation above arises from a new mechanism, namely due to

non-singlet fields which appear in the denominator of effective operators as discussed in

detail in [54]. The viablity of the GJ relations for mass eigenstates is discussed in [5, 6].

However here there are small off-diagonal entries in the Yukawa matrices which will provide

corrections to the mass eigenstates, as well as other corrections to the GJ relations, as

discussed later.

Finally, from eq. (3.7), we find the heavy Majorana mass matrix,

MR =

M1 0 M13

0 M2 0

M13 0 M3

 . (3.20)

The heavy Majorana neutrino masses from eq. (3.7) are in the ratios,

M1 : M2 : M3 ∼ ξ̃2 : ξ̃ : 1, (3.21)

where,

ξ̃ =
〈ξ〉
Λ
. (3.22)

There is a competing correction to M1 coming from the off-diagonal element, namely

M2
13/M3 ∼ ξ̃2 with the same phase, which may be absorbed into the definition of the

lightest right-handed neutrino mass. Since we need to have a strong hierarchy of right-

handed neutrino masses we shall require (see later),

M1 ∼ 5.105 GeV, M2 ∼ 5.1010 GeV, M3 ∼ 5.1015 GeV, (3.23)

which may be achieved for example by,

ξ̃ ∼ 10−5. (3.24)

Typically the heaviest right-handed neutrino mass is given by,

M3 ∼
〈Hc〉2

Λ
∼ 5.1015 GeV, (3.25)

which is within an order of magnitude of the Pati-Salam breaking scale in eq. (2.5). This

implies that Λ ∼ 5.1016 GeV and hence, from eq. (3.24),

〈ξ〉 ∼ 5.1011GeV. (3.26)

The Majoron fields ξ act like a dynamical mass for M2, with an effective coupling ξN c
2N

c
2

with a coupling constant of about 0.1. In principle they could play a role in leptogenesis.

For example, the effect of Majorons on right-handed neutrino annihilations, leading to

possibly significantly enhanced efficiency factors, was recently discussed in [55].
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4 Quark masses and mixing

4.1 Convention

We shall use the convention for the quark Yukawa matrices,

L = −vuY u
iju

i
Lu

j
R − v

dY d
ijd

i
Ld

j
R + h.c. (4.1)

which are diagonalised by,

UuL Y
u U †uR =

yu 0 0

0 yc 0

0 0 yt

 , UdL Y
d U †dR =

yd 0 0

0 ys 0

0 0 yb

. (4.2)

The CKM matrix is then given by,

UCKM = UuLU
†
dL
. (4.3)

In the PDG parameterization [56], in the standard notation, UCKM = Rq23U
q
13R

q
12 in terms

of sqij = sin(θqij) and cqij = cos(θqij) and the CP violating phase δq.

4.2 Analytic estimates for quark mixing

In the above convention, the quark Yukawa matrices differ from those given in eqs. (3.9),

(3.15) by a complex conjugation,2

Y u =

0 b 0

a 4b 0

a 2b c

 , Y d =

 y0
d 0 Ay0

d

By0
d y

0
s Cy0

d

By0
d 0 y0

b + Cy0
d

 , (4.4)

where the parameters defined in eqs. (3.13), (3.16), 3.17 are given below,

a ∼ εue−imπ/5
V u

1

〈Σu〉
∼ 2.10−5, b ∼ εue−imπ/5

V u
2

〈Σu〉
∼ 10−3, c ∼ 1, (4.5)

y0
d ∼ εde−inπ/5

V d
1

〈Σd
15〉
∼ 5.10−5, y0

s ∼ e−inπ/5
V d

2

〈Σd〉
∼ 10−3, y0

b ∼ 5.10−2, (4.6)

Ay0
d ∼ e−inπ/5

V d
1

〈Σd
15〉

, By0
d ∼ εde−imπ/5

V u
1

〈Σd〉
, Cy0

d ∼ e−imπ/5
V u

1

〈Σd〉
, (4.7)

where we have displayed the phases from eqs. (2.12), (2.13) explicitly in the new convention.

Cabibbo mixing clearly arises predominantly from the up-type quark Yukawa matrix

Y u, which leads to a Cabibbo angle θC ≈ 1/4 or θC ≈ 14◦. The other quark mixing angles

and CP violating phase arise from the off-diagonal elements of Y d, which also serve to

correct the Cabibbo angle to yield eventually θC ≈ 13◦.

2The complex conjugation of the Yukawa matrices arises from the fact that the Yukawa matrices given in

eqs. (3.9), (3.15) correspond to the Lagrangian L = −vuY uijuiLucj − vdY dijdiLdcj + h.c. involving the unbarred

left-handed and CP conjugated right-handed fields. Note that our LR convention for the quark Yukawa

matrices in eq. (4.1) differs by an Hermitian conjugation compared to that used in the Mixing Parameter

Tools package [57] due to the RL convention used there.
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Recall that any 3×3 unitary matrix U † can be written in terms of three angles θij ,

three phases δij (in all cases i < j) and three phases ρi in the form [24],

U † = U23U13U12 diag(eiρ1 , eiρ2 , eiρ3) , (4.8)

where

U12 =

 c12 s12e
−iδ12 0

−s12e
iδ12 c12 0

0 0 1

 (4.9)

and similarly for U13, U23, where sij = sin θij and cij = cos θij and the angles can be made

positive by a suitable choice of the δij phases. We use this parameterisation for both U †uL
and U †dL , where the phases ρi can be absorbed into the quark mass eigenstates, leaving

U †uL = UuL23 U
uL
13 U

uL
12 , U †dL = UdL23 U

dL
13 U

dL
12 , (4.10)

where U †uL contains θuij and δuij , while U †dL contains θdij and δdij . The CKM matrix before

phase removal may be written as

U ′CKM = UuL12
†UuL13

†UuL23
†UdL23 U

dL
13 U

dL
12 . (4.11)

On the other hand, U ′CKM can be also parametrised as in eq. (4.8),

U ′CKM = diag(eiρ1 , eiρ2 , eiρ3)U23U13U12 . (4.12)

The angles θij are the standard PDG ones in UCKM , and five of the six phases of U ′CKM

in eq. (4.12) may be removed leaving the standard PDG phase in UCKM identified as [24]:

δq = δq13 − δ
q
23 − δ

q
12. (4.13)

In the present case, given Y u, it is clear that θu13 ≈ θu23 ≈ 0. Similary, given Y d, we see

that θd12 ≈ 0. This implies that eq. (4.11) simplifies to:

U ′CKM ≈ U
uL
12
†UdL23 U

dL
13 . (4.14)

Then, by equating the right-hand sides of eqs. (4.12) and (4.14) and expanding to leading

order in the small mixing angles, we obtain the following relations:

θq23e
−iδq23 ≈ θd23e

−iδd23 , (4.15)

θq13e
−iδq13 ≈ θd13e

−iδd13 − θu12e
−iδu12θd23e

−iδd23 , (4.16)

θq12e
−iδq12 ≈ −θu12e

−iδu12 , (4.17)

from which we deduce,

θq12 ≈ θ
u
12, θq23 ≈ θ

d
23, |θq13 − θ

q
12θ

q
23e

iδq | ≈ θd13, (4.18)

where,

θu12 ∼
1

4
, θd23 ∼

∣∣∣∣Cy0
d

y0
b

∣∣∣∣ , θd13 ∼
∣∣∣∣Ay0

d

y0
b

∣∣∣∣ . (4.19)
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Notice from eqs. (4.18), (4.19) that the magnitudes of the Yukawa matrix elements are all

approximately fixed in terms of physical quark mixing parameters,

θq23 ∼
∣∣∣∣Cy0

d

y0
b

∣∣∣∣ ∼ 0.040, |θq13 − θ
q
12θ

q
23e

iδq | ∼
∣∣∣∣Ay0

d

y0
b

∣∣∣∣ ∼ 0.009. (4.20)

Since |y0
d/y

0
b | ∼ 0.001, eq. (4.20) implies that,

A ∼ 9, C ∼ 40, B ∼ C/A ∼ 4, (4.21)

where the last relation uses eq. (3.18).

Concerning the phases, from eq. (4.7) we find, in the convention of eq. (4.9),

δu12 ∼ 0, δd23 ∼ − arg

(
Cy0

d

y0
b

)
∼ mπ/5, δd13 ∼ − arg

(
Ay0

d

y0
b

)
∼ nπ/5, (4.22)

where, from eq. (2.11), n+m is a multiple of 5. Hence, from eqs. (4.15), (4.16), 4.17,

δq12 ∼ 0, δq23 ∼ δ
d
23 ∼ mπ/5, δq13 ∼ − arg

(
0.009e−inπ/5 − 1

4
0.04e−imπ/5

)
, (4.23)

so the physical CP phase is given by the very approximate expression,

δq = δq13 − δ
q
23 − δ

q
12 ∼ − arg(0.009e−inπ/5 − 0.010e−imπ/5)− mπ

5
. (4.24)

Clearly CP violation requires n 6= m, indeed δq only depends on the difference n−m with

a positive value of δq ∼ 7π
18 in the first quadrant requiring n < m. Since n + m must be

a multiple of 5, then the only possibility is n = 2,m = 3 which corresponds to one of the

discrete choices of phases in eq. (2.11).

4.3 Numerical results for quark mixing

With the phases fixed by the choice of discrete choice of phases n = 2,m = 3, as discussed

in the previous subsection, the only free parameters are a, b, c in the up sector, and A,B,C

and y0
d, y

0
s , y

0
b in the down sector matrices, where we have explicitly removed the phases

from these parameters, in order to make them real,

Y u =

 0 be−i3π/5 εc

ae−i3π/5 4be−i3π/5 0

ae−i3π/5 2be−i3π/5 c

 . (4.25)

Y d =

 y0
de
−i2π/5 0 Ay0

de
−i2π/5

By0
de
−i3π/5 y0

se
−i2π/5 Cy0

de
−i3π/5

By0
de
−i3π/5 0 y0

b + Cy0
de
−i3π/5

 (4.26)

Note that we have introduced a small correction term ε in the (1, 3) entry of Y u which will

mainly affect θq13. Physically this corresponds to a small admixture of the first component

of the Higgs triplet h3 contributing to the physical light Higgs state Hu, as discussed in

– 16 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
0

10 20 30 40 50
C0

50

100

150

∆
qHdegL

10 20 30 40 50
C12.9

13.0

13.1

13.2

13.3

13.4

13.5

Θ
q
12HdegL

10 20 30 40 50
C0.0

0.1

0.2

0.3

0.4

Θ
q
13HdegL

10 20 30 40 50
C0.0

0.5

1.0

1.5

2.0

2.5

Θ
q
23HdegL

Figure 5. CKM parameters resulting from eqs. (4.25), (4.26), all plotted in degrees as a function

of C, using the parameters in eqs. (4.27), (4.28). Green dot dashed lines are for A = 5, B = 3 with

ε = 0. Purple dotted lines are for A = 5, B = 7 with ε = 0. Blue dashed lines are for A = 9, B = 7

with ε = 0. Red solid lines are for A = 9, B = 7 with ε = −2.4× 10−3.

appendix B. The previous analytic results were for ε = 0, but we find numerically that the

best fit to CKM parameters requires a non-zero value of ε.

For the following results, we shall fix the parameters which approximately determine

the six quark masses at the high scale to be,

a = 1.6.10−5, b = 0.8.10−3, c = 0.75, (4.27)

y0
d = 0.9.10−5, y0

s = 1.4.10−4, y0
b = −0.9.10−2, (4.28)

Although the quark results are insensitive to the sign of y0
b , the lepton sector results lead

to a better fit with the negative sign of y0
b as discussed later. Using the Mixing Parameter

Tools (MPT) package [57], in figure 5 we show the CKM parameters for different choices of

A,B as a function of C. θq23 is really only sensitive to C only, while θq12 is mainly sensitive to

B. θq13 and δq are both sensitive A. The effect of the correction ε is to shift the blue dashed

curve to the red solid curve, lowering θq13 while leaving θq23 almost unchanged, allowing the

best fit of the CKM parameters for C = 36.

To take a concrete example, for the red solid at the value C = 36, with the above input

parameters A = 9, B = 7 (cf. eq. (4.21)) and ε = −2.4 × 10−3, we find the quark Yukawa

eigenvalues at the high scale,

yu = 3.9.10−6, yc = 3.3.10−3, yt = 0.75, (4.29)

yd = 0.81.10−5, ys = 1.5.10−4, yb = 0.91.10−2 (4.30)
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and the CKM parameters at the high scale,

θq12 = 13.02◦, θq13 = 0.17◦, θq23 = 2.09◦, δq = 70.4◦. (4.31)

These parameters are consistent with those given, for example, in [5, 6], after including

RG corrections, in particular due to the large top Yukawa coupling. Notice that there

are as many input parameters as there are physical observables in the quark sector, so

no prediction is claimed. However we emphasise two interesting features, firstly that the

Cabibbo angle is understood to arise from Y u leading to θC ≈ 1/4 or θC ≈ 140, with a

small (one degree) correction mainly controlled by B. Secondly the phases which appear

are quantised according to Z5, which also controls the leptonic phases as discussed in the

following subsection. Indeed, with Y ν = Y u fixed by the quark sector, the entire neutrino

sector only depends on three additional right-handed neutrino masses, which determine

the three physical neutrino masses, with the entire neutrino mixing matrix then being

fully determined, with only very small charged lepton mixing corrections appearing in the

PMNS mixing matrix.

5 Lepton masses and mixing

In this section we discuss the leading order predictions for PMNS mixing which arise from

the neutrino Yukawa and Majorana matrices in eq. (3.9) which result in a very simple form

of effective neutrino mass matrix, after the see-saw mechanism has been applied.

5.1 Convention

The neutrino Yukawa matrix Y ν is defined in a LR convention by3

L = −vuY ν
αiν

α
Lν

i
R + h.c.

where α = e, µ, τ labels the three left-handed neutrinos and i = 1, 2, 3 labels the three

right-handed neutrinos.

The physical effective neutrino Majorana mass matrix mν is determined from the

columns of Y ν via the see-saw mechanism,

mν = −v2
u Y

νM−1
R Y νT , (5.1)

where the light Majorana neutrino mass matrix mν is defined by4 Lν = −1
2m

ννLν
c
L +

h.c., while the heavy right-handed Majorana neutrino mass matrix MR is defined by LRν =

−1
2MRν

c
RνR + h.c. and mν is diagonalised by

UνL m
ν UTνL =

m1 0 0

0 m2 0

0 0 m3

. (5.2)

3This LR convention for the Yukawa matrix differs by an Hermitian conjugation compared to that used

in the Mixing Parameter Tools package [57] due to the RL convention used there.
4Note that this convention for the light effective Majorana neutrino mass matrix mν differs by an overall

complex conjugation compared to that used in the Mixing Parameter Tools package [57].
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The PMNS matrix is then given by

UPMNS = UeLU
†
νL
. (5.3)

We use a standard parameterization UPMNS = Rl23U
l
13R

l
12P

l in terms of slij = sin(θlij),

clij = cos(θlij), the Dirac CP violating phase δl and further Majorana phases contained

in P l = diag(ei
βl1
2 , ei

βl2
2 , 1). The standard PDG parameterization [56] differs slightly due

to the definition of Majorana phases which are by given by P lPDG = diag(1, ei
α21
2 , ei

α31
2 ).

Evidently the PDG Majorana phases are related to those in our convention by α21 = βl2−βl1
and α31 = −βl1, after an overall unphysical phase is absorbed by UeL .

5.2 See-saw mechanism

The neutrino Yukawa and Majorana matrices are as in eq. (3.9), with Y ν = Y u in eq. (4.25),

Y ν =

 0 be−i3π/5 0

ae−i3π/5 4be−i3π/5 0

ae−i3π/5 2be−i3π/5 c

 , MR ≈

M1e
8iπ/5 0 0

0 M2e
4iπ/5 0

0 0 M3

 , (5.4)

where we have ignored the small off-diagonal Majorana mass M13 which gives a tiny mixing

correction of order 10−5 from eq. (3.24), and dropped the correction ε which is completely

negligible in the lepton sector due to sequential dominance (see below). We have also

assumed a phase in the Majoron VEV 〈ξ〉 ∼ e4iπ/5 in the operators in eq. (3.7) responsible

for the right-handed neutrino masses, as discussed below.

Using eq. (5.4), the see-saw formula in eq. (5.1) leads to the neutrino mass matrix mν ,

mν = ma

0 0 0

0 1 1

0 1 1

+mbe
2iη

1 4 2

4 16 8

2 8 4

+mce
2iη

0 0 0

0 0 0

0 0 1

 , (5.5)

where,

ma =
a2v2

u

M1
, mb =

b2v2
u

M2
, mc =

c2v2
u

M3
, (5.6)

are three real parameter combinations which determine the three physical neutrino masses

m1,m2,m3, respectively. According to sequential dominance mc will determine the lightest

neutrino mass m1 where we will have m1 � m2 < m3, so that the third term arising from

the heaviest right-handed neutrino of mass M3 is approximately decoupled from the see-saw

mechanism. (This is why the correction ε is completely negligible in the lepton sector.)

In order to understand the origin of the relative phases η = 2π/5 which enter the

neutrino mass matrix mν , it is worth recalling that the see-saw operators responsible for

the dominant first two terms of the neutrino mass matrix in eq. (5.5) have the form

mν ∼ 〈φatm〉〈φatm〉T

〈ξ〉2
+
〈φsol〉〈φsol〉T

〈ξ〉
, (5.7)

where we have written φatm = φu1 , φsol = φu2 to highlight the fact that the first term

gives the dominant contribution to the atmospheric neutrino mass m3, while the second
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term controls the solar neutrino mass m2. The mild neutrino hierarchy between m3 and

m2 emerges due to the choice of Majoron VEV 〈ξ〉 in eq. (3.24) which partly cancels the

hierarchy in the square of the flavon VEVs in eq. (3.14). The lightest neutrino mass m1

arises from smaller terms (not shown), leading to a normal neutrino mass hierarchy, where

the heaviest atmospheric neutrino mass m3 is associated with the lightest right-handed

neutrino mass M1 as in light sequential dominance [21–23].

Since 〈φatm〉 and 〈φsol〉 have the same phase, e−i3π/5, and 〈ξ〉 has a phase5 e4iπ/5,

eq. (5.7) shows that the atmospheric term has a phase (e−i3π/5)2/(e4iπ/5)2 = e−14iπ/5,

while the solar term is real. After multiplying mν by an overall phase e4iπ/5, which we

are allowed to do since overall phases are irrelevant, the atmospheric term becomes real,

while the other two terms pick up phases of e4iπ/5. This is equivalent to having a phase

η = 2π/5 in eq. (5.5). Different choices of phase for η are theoretically possible, but the

phenomenologically successful choice for the relative phase of the atmospheric and solar

terms (the first and second terms in eq. (5.5)) is η = 2π/5, whereas for example η = −2π/5

leaves the mixing angles unchanged but reverses the sign of the CP phases [33–35]. The

dependence on see-saw phases was fully discussed in [33]. Here we only note that in this

model the see-saw phases are restricted to a discrete choice corresponding to the fifth roots

of unity due to the Z5 symmetry. The fact that the decoupled third term proportional

to mc (responsible for the lightest neutrino mass m1) has the same phase as the second

term proportional to mb (responsible for the solar neutrino mass) is a new prediction of

the current model and will affect the m1 dependence of the results.

From eqs. (3.11), (3.12), the Dirac neutrino masses are equal to the up-type quark

masses which are related to a, b, yt and hence eq. (5.6) becomes,

ma = 17
m2
u

M1
, mb =

m2
c

17M2
, mc =

m2
t

M3
. (5.8)

Using eq. (5.8), the three right-handed neutrino masses M1, M2, M3 may be determined

for particular values of ma, mb, mc, and the known quark masses mu,mc,mt (evaluated at

high scales).

The neutrino mass matrix in eq. (5.5) may be diagonalised numerically to determine

the physical neutrino masses and the PMNS mixing matrix as in eq. (5.2). We emphasise

that, at leading order, with the phase η = 2π/5 fixed by the previous argument, the

neutrino mass matrix involves just 3 real input parameters ma, mb, mc from which 12

physical parameters in the lepton sector are predicted, comprising 9 lepton parameters

from diagonalising the neutrino mass matrix mν in eq. (5.5) (the 3 angles θlij , 3 phases

δl, βl1, β
l
2 and the 3 light neutrino masses mi) together with the 3 heavy right-handed

neutrino masses Mi from eq. (5.8). The model is clearly highly predictive, involving 12

predictions in the lepton sector from only 3 input parameters.

5This phase is the complex conjugate of the phase given in the previous convention in eq. (3.7).
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5.3 A first numerical example

To take a numerical example, diagonalising the neutrino mass matrix in eq. (5.5), with the

three input parameters

ma = 0.035 eV, mb = 0.002 eV, mc = 0.002 eV, (5.9)

the Mixing Parameter Tools package [57] gives the physical neutrino masses,

m1 = 3.29.10−4 eV, m2 = 8.62.10−3 eV, m3 = 4.93.10−2 eV, (5.10)

corresponding to the mass squared differences,

∆m2
21 = 7.42.10−5 eV2, ∆m2

31 = 2.43.10−3 eV2, ∆m2
32 = 2.36.10−3 eV2, (5.11)

and the lepton mixing parameters,

θl12 = 32.2◦, θl13 = 9.3◦, θl23 = 41.6◦, δl = 248◦, βl1 = 114◦, βl2 = 90◦. (5.12)

The PDG Majorana phases [56] are given by α21 = βl2− βl1 and α31 = −βl1. For the choice

of input parameters in eq. (5.9) and the high scale quark masses,

mu = 1 MeV, mc = 400 MeV, mt = 100 GeV, (5.13)

eq. (5.8) then determines the three right-handed neutrino masses to be,

M1 = 5× 105 GeV, M2 = 5× 109 GeV, M3 = 5× 1015 GeV. (5.14)

eq. (5.9) shows the 3 input parameters, while eqs. (5.10), (5.12), 5.14 shows the 12 output

predictions. One may regard the 3 input parameters in eq. (5.9) as fixing the 3 light physical

neutrino masses in eq. (5.10), with all the 6 PMNS matrix parameters in eq. (5.12) as being

independent predictions, along with the 3 right-handed neutrino masses in eq. (5.14).

So far we have ignored charged lepton corrections which are expected in the model

to be small. However the corrections are not entirely negligible as the following example

shows. The charged lepton Yukawa matrix is given from eq. (3.15),

Y e =

−(y0
d/3)e−i2π/5 0 Ay0

de
−i2π/5

By0
de
−i3π/5 −3y0

se
−i2π/5 −3Cy0

de
−i3π/5

By0
de
−i3π/5 0 y0

b − 3Cy0
de
−i3π/5

 . (5.15)

which should be compared to the down quark Yukawa matrix in eq. (4.26). The off-diagonal

elements of Y e are small, similar to those of Y d which are responsible for the small quark

mixing angles and a correction to the Cabibbo angle of one degree. The quark mixing

angles fix the three real parameters to be for example A = 9, B = 7, C = 36 and the down

quark couplings in eq. (4.28). Including the charged lepton Yukawa matrix with these

parameters and the same neutrino mass parameters as in eq. (5.9), the MPT package gives

the lepton mixing parameters,

θl12 = 32.15◦, θl13 = 8.9◦, θl23 = 45.2◦, δl = 259◦, βl1 = 92◦, βl2 = 70◦. (5.16)
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Comparing the results in eq. (5.16) to those in eq. (5.12), we see that the atmospheric angle

has increased by about 3◦ to become maximal due to the (2, 3) element in the charged lepton

Yukawa matrix, which is enhanced by a Clebsch factor of 3 relative to the same element in

the down Yukawa matrix. The reactor angle has decreased slightly, and the CP oscillation

phase has increased. With y0
b taken to be positive instead of negative, and all the other

parameters unchanged, we find the results below,

θl12 = 32.27◦, θl13 = 9.65◦, θl23 = 37.3◦, δl = 240◦, βl1 = 132◦, βl2 = 106◦. (5.17)

The main effect of the sign of y0
b is on the atmospheric and reactor angles.

5.4 Modified Georgi-Jarlskog relations

Since the charged lepton masses are known with much higher precision than the down type

quark masses, the down Yukawa couplings in practice will be predicted from inputting the

charged lepton masses in order to accurately fix y0
d, y

0
s , y

0
b . Comparing Y e in eq. (5.15) to

Y d in eq. (4.26), we find that we do not get exactly the GJ relations in eq. (3.19) due to

the off-diagonal elements which also involve Clebsch factors. Numerically we find that, for

y0
b negative and the other parameters as above, the Yukawa eigenvalues at the GUT scale

are approximately related as,

ye =
yd
2.6

, yµ = 2.8ys, yτ = 0.97yb, (5.18)

while for y0
b positive we find,

ye =
yd
3.0

, yµ = 2.7ys, yτ = 1.05yb. (5.19)

These may be compared to the phenomenological relation [5, 6],∣∣∣∣yµys ydye
∣∣∣∣ = 10.7+1.8

−0.8. (5.20)

For example for y0
b negative we find the r.h.s. to be 7.3 which differs by more than 4 sigma.

In order to bring this relation into better agreement with experiment we would need to

increase this ratio, for example by increasing the muon Yukawa eignenvalue compared to

the strange quark Yukawa eigenvalue. One way to do this is to introduce a flavon φd15
2

with the same charges as φd2 but in the adjoint 15 of SU(4)C . The middle diagram in

figure 3 involving φd15
2 involves a Clebsch factor of +9 as compared to the factor of -3 with

φd2 [54]. Below the PS the colour singlet component of φd15
2 mixes with φd2, to yield a light

flavon combination,

φd
′

2 = φd15
2 cos γ + sin γφd2. (5.21)

Hence middle diagram in figure 3 involving φd
′

2 implies the relation,

y0
µ

y0
s

= 9 cos γ − 3 sin γ. (5.22)

– 22 –



J
H
E
P
0
8
(
2
0
1
4
)
1
3
0

For example by suitable choice of the mixing angle γ we can arrange y0
µ = 4.5y0

s ,

Y e =

−(y0
d/3)e−i2π/5 0 Ay0

de
−i2π/5

By0
de
−i3π/5 −4.5y0

se
−i2π/5 −3Cy0

de
−i3π/5

By0
de
−i3π/5 0 y0

b − 3Cy0
de
−i3π/5

 . (5.23)

By comparing Y e in eq. (5.23) to Y d in eq. (4.26), we find the modified GJ relations,

ye =
yd
2.6

, yµ = 4.1ys, yτ = 0.97yb, (5.24)

and hence, ∣∣∣∣yµys ydye
∣∣∣∣ = 10.7, (5.25)

which reproduces the central value in eq. (5.20). In the above estimate we have assumed

A = 9, B = 7, C = 36 and the other couplings in eq. (4.28). Using the same neutrino mass

parameters as in eq. (5.9), the MPT package gives the same lepton mixing parameters as

for the GJ form in eq. (5.16), to very good accuracy.

5.5 Numerical results for neutrino masses and lepton mixing

In our numerical results we shall use the charged lepton Yukawa matrix in eq. (5.23),

together with the neutrino mass matrix in eq. (5.5), as summarised below,

mν = ma

0 0 0

0 1 1

0 1 1

+mbe
i4π/5

1 4 2

4 16 8

2 8 4

+mce
i4π/5

0 0 0

0 0 0

0 0 1

 , (5.26)

Y e =

−(y0
d/3)e−i2π/5 0 Ay0

de
−i2π/5

By0
de
−i3π/5 −4.5y0

se
−i2π/5 −3Cy0

de
−i3π/5

By0
de
−i3π/5 0 y0

b − 3Cy0
de
−i3π/5

 . (5.27)

As discussed previously, the lepton mixing depends on predominantly on mν which involves

the three real mass parameters ma, mb, mc, which are effectively fixed by the neutrino

masses. However there are small corrections coming from Y e, which involves the real

parameters A,B,C which determine the quark mixing angles and the real Yukawa couplings

y0
d, y

0
s , y

0
b which were previously determined from the down-type quark masses.

As discussed previously (cf. eqs. (5.12), (5.16), 5.17) the effect on lepton mixing depends

on the sign of y0
b where the negative sign pushes up the atmospheric angle towards maximal,

while also decreasing the reactor angle, while the positive sign has the opposite effect. Here

we shall show results for the negative sign of y0
b , as in eq. (4.28). We shall also use the same

real parameters A = 9, B = 7, C = 36 which gave a good fit to the quark mixing angles

and CP phase in eq. (4.31). Since lepton mixing depends mainly on the three real mass

parameters ma, mb and mc which also determine the neutrino masses, we shall show results

as a function of the neutrino mass parameters. Here we shall restrict ourselves to showing

results where we keep the parameters appearing in Y e fixed at the above “benchmark”

values, and vary only ma, mb and mc. The parameter ma is mainly responsible for the
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Figure 6. The neutrino mass squared parameters ∆m2
31 and ∆m2

21 resulting from eq. (5.26),

plotted as a function of the lightest neutrino mass m1. Each line corresponds to a fixed ma and mb

with varied mc. The (Blue, Red, Green) coloured lines correspond to ma = (0.036, 0.035, 0.034) eV,

respectively, and give (High, Central, Low) values of ∆m2
31. The (Dashed, Solid, Dotted) styles

correspond to mb = (0.00210, 0.00205, 0.00200) eV, respectively, and yield (High, Central, Low)

values of ∆m2
21. The parameter mc is varied from 0−0.004 eV corresponding to m1 = 0−0.006 eV.

atmospheric neutrino mass and hence ∆m2
31, while mb is mainly responsible for the solar

neutrino mass and hence ∆m2
21, with mc being mainly responsible for the lightest neutrino

mass m1, which is zero for mc = 0. Once the parameters ma and mb are chosen to fix

∆m2
31 and ∆m2

21 for mc = 0 , then all neutrino parameters are predicted as a function of

mc and hence m1, as described below.

Using the Mixing Parameter Tools package [57], in figure 6 we show the neutrino mass

squared differences as a function of the lightest physical neutrino mass m1, corresponding

to varying mc for various fixed values of ma,mb as given in the figure caption. Note that

∆m2
21 actually increases with m1. This is because, with fixed ma and mb, switching on

mc also increases m2. Since m2
2 increases linearly with mc, after expanding, this has a

more significant effect on ∆m2
21 than the quadratic increase of m2

1, in the region of small

mc. In figure 7 we show the resulting model predictions for the lepton mixing angles and

CP oscillation phase. In all the plots (blue, red, green) coloured lines correspond to (high,

central, low) values of ∆m2
31, while the (dashed, solid, dotted) styles correspond to (high,

central, low) values of ∆m2
21. Note that the presently 3σ allowed range of mass squared

parameters are [12, 13]: ∆m2
31 = (2.25− 2.65).10−3 eV2, ∆m2

21 = (7.0− 8.0).10−5 eV2, and

our choice of parameters covers most of these ranges. Thus the red solid curve corresponds

to central values of both ∆m2
31 and ∆m2

21 for low values of m1, while the other curves reflect

the uncertainty in the PMNS predictions due to the present precision in the neutrino mass

squared differences.

Using the Mixing Parameter Tools package [57], in figure 7 we show the PMNS pre-

dictions of the model, resulting from eqs. (5.26), (5.27), plotted as a function of the light-

est neutrino mass m1. From figure 7, the PMNS parameters are predicted to be in the

following ranges:

θl12 = 34◦ − 31◦, θl13 = 8.4◦ − 9.7◦, θl23 = 44.4◦ − 46.4◦, δl = 266◦ − 256◦. (5.28)

These predictions should be compared to the presently 3σ allowed ranges:

θl12 = 31◦ − 36◦, θl13 = 5.5◦ − 10◦, θl23 = 37◦ − 55◦, δl = 0◦ − 360◦, (5.29)
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Figure 7. PMNS predictions of the model, resulting from eqs. (5.26), (5.27), plotted as a function

of the lightest neutrino mass m1 for charged lepton parameters given by A = 9, B = 7, C = 36 and

the down quark couplings in eq. (4.28). Each line corresponds to a fixed ma and mb with varied

mc, using the same values as in figure 6, with the colour coding and line styles as before.

and the best fit values for a normal hierarchy with 1σ errors [11]:

θl12 = 34.63◦+1.02◦

−0.98◦ , θl13 = 8.80◦+0.37◦

−0.39◦ , θl23 = 48.9◦+1.6◦

−7.4◦ , δl = 241◦+115◦

−68◦ . (5.30)

The solar angle prediction is 34◦ & θl12 & 31◦, for the lightest neutrino mass in the range

0 . m1 . 0.5 meV, corresponding to a normal neutrino mass hierarchy. Since the solar

angle is very insensitive to ∆m2
31 and ∆m2

21 values, and decreases as m1 increases, an

accurate determination of the solar angle will accurately determine m1 in this model. The

model also predicts a reactor angle θl13 = 9◦ ± 0.5◦, close to its best fit value, with a

significant dependence on ∆m2
31 and ∆m2

21. A striking prediction of the model is the

atmospheric angle which is predicted to be close to maximal to within about one degree for

nearly all allowed ∆m2
31 and ∆m2

21. The bulk of the parameter space for low m1 predicts

in fact θl23 = 45◦± 0.5◦. It is worth noting that the most recent fit [11] is quite compatible

with maximal atmospheric mixing to within 1σ for the case of a normal mass squared

ordering, when the latest T2K disappearance data is included. The model also predicts

accurately the CP phase with the bulk of the parameter space around δl = 260◦ ± 5◦,

compatible with the best fit value, although the latter has a much larger error.

In general one can expect corrections coming from renormalisation group (RG) run-

ning [58, 59] as well as canonical normalisation corrections [60–62]. For a SUSY GUT with

light sequential dominance, as in the present model, the RG corrections for high tanβ ∼ 50

have been shown to be [59]: ∆θl23 ∼ +1◦, ∆θl12 ∼ +0.4◦, ∆θl13 ∼ −0.1◦, where the positive
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Figure 8. Majorana phases (in PDG convention defined below eq. (5.3)) as predicted by the model,

resulting from eqs. (5.26), (5.27), plotted as a function of the lightest neutrino mass m1 for charged

lepton parameters given by A = 9, B = 7, C = 36 and the down quark couplings in eq. (4.28). Each

line corresponds to a fixed ma and mb with varied mc, using the same values as in figure 6, with

the colour coding and line styles as before.

sign means that the value increases in running from the GUT scale to low energy, while for

low tanβ . 10 the RG corrections are negligible compared to the range of the predictions.

In particular the effect of right-handed neutrino thresholds [58] is expected to be negligible

in this model since the heaviest right-handed neutrino mass is close to the GUT scale, while

the lighter right-handed neutrinos have very small Yukawa couplings given by a ∼ 2.10−5

and b ∼ 10−3 from eq. (3.14).

We emphasise that, since the parameters in Y e in eq. (5.27) are fixed from the quark

sector, and the light neutrino masses are determined by three real parameters ma, mb, mc

in eq. (5.26), the entire PMNS matrix containing 3 mixing angles and 3 CP phases emerges

as a prediction of the model, although 2 of these CP phases will be difficult to measure

for a normal neutrino mass hierarchy, so we have not plotted their predictions. The model

may be tested most readily by its prediction of maximal atmospheric mixing and a normal

neutrino mass hierarchy. It would be interesting to perform a χ2 analysis of the quark and

lepton masses and mixing angles predicted by the model, but that is beyond the scope of

the present paper.

5.6 Majorana phases, neutrinoless double beta decay and sum of neutrino

masses relevant for cosmology

The Majorana phases α21, α31 (in PDG convention defined below eq. (5.3)) predicted by

the model are displayed in figure 8, using the same parameter sets and colour coding as

for the other plots. Note that α31 ≈ −90◦, similar to the oscillation phase δl.

The Majorana phases α21, α31 enter the effective mass |mee| observable in neutrinoless

double beta decay parameter given by,

|mee| = |m1c
2
12c

2
13 +m2s

2
12c

2
13e

iα21 +m3s
2
13e

i(α31−2δ)|. (5.31)

In the present model |mee| is predicted to be always very small and unobservable in the

foreseeable future. For example, for the parameters in eq. (5.9), (5.10) and (5.16), we find,

|mee| ≈ |0.2 + 2.4e−i0.12π + 1.2ei0.61π| meV ≈ 2.1 meV. (5.32)
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Figure 9. The neutrinoless double beta decay parameter |mee| (left panel) and the sum of neutrino

masses Σmi (right panel) as predicted by the model, resulting from eqs. (5.26), (5.27), plotted as a

function of the lightest neutrino mass m1 for charged lepton parameters given by A = 9, B = 7, C =

36 and the down quark couplings in eq. (4.28). Each line corresponds to a fixed ma and mb with

varied mc, using the same values as in figure 6, with the colour coding and line styles as before.

The sum of neutrino masses is relevant for cosmology, since it contributes to hot

dark matter, leading to a constraint on its value and eventually a measurement. This is

defined by,

Σmi ≡ Σ3
i=1mi = m1 +m2 +m3. (5.33)

Due to the rather strong normal hierarchy, this value is dominated by the value of m3,

which is controlled by the parameter ma in the neutrino mass matrix in eq. (5.26).

In figure 9 we show the neutrinoless double beta decay parameter |mee| (left panel) and

the sum of neutrino masses Σmi (right panel) as predicted by the model, using the same

parameter sets and colour coding as for the other plots. Note that for |mee| (left panel) the

three colours corresponding to different values ofma lie accurately on top of each other. The

three dashed curves predict |mee| ≈ 2.15 meV, the three solid curves predict |mee| ≈ 2.10

meV and the three dotted curves predict |mee| ≈ 2.05 meV, corresponding to the three

different values of mb = 2.15, 2.10, 2.05. This can be understood from the neutrino mass

matrix in eq. (5.26), since |mee| = |mν
11| = mb, with the charged lepton matrix in eq. (5.23)

providing only very small corrections to this result. The fact that eq. (5.31) was used to

calculate the results and agrees very accurately with the expectation |mee| = |mν
11| = mb

provides a highly non-trivial check on our calculation of PMNS parameters and neutrino

masses, and gives confidence to all our results. Note that |mee|, being equal to mb, is

approximately fixed by ∆m2
21 in figure 6. Since |mee| is predicted to be too small to

measure in the foreseeable future, an observation of neutrinoless double beta decay could

exclude the model. Similar comments apply to a cosmological observation of Σmi.

6 Higher order corrections

6.1 HO corrections to vacuum alignment

The triplet vacuum alignments are achieved by renormalisable superpotentials, as discussed

in [34]. Since the messenger scale associated with any non-renormalisable corrections to

vacuum alignment is unconstrained by the model, it is possible that any such terms may
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be highly suppressed. In the present analysis we shall therefore ignore any HO corrections

to the vacuum alignments in eqs. (2.12), (2.13).

6.2 HO corrections to Yukawa operators

Let us now consider HO corrections to the operators in eqs. (3.4), (3.5), 3.6, consisting of

extra insertions of φ, leading to effective operators of the type,

∆WY uk = F.

(
φ

Σ

)n
hF c, (6.1)

for n > 1. For example,
φd1
Σd

and
φd2
Σu

are both singlets of Z5, so either of these ratios may

in principle be inserted into any of the LO operators in eqs. (3.4), (3.5) 3.6. However in

practice, which HO insertions are allowed will depend on the details of the messenger sector.

In order for an effective operator to be allowed, it is necessary that that the messenger

diagram responsible for it can be drawn, and whether this is possible or not will depend

on the choice of charges of the messenger fields XF and XF under all the symmetries.

In order to allow such HO operators as in eq. (6.1), for n > 1, at least one of the

messenger fields XF and XF would have to be a triplet of A4 in order to permit the

coupling XFφXF where φ is a triplet, as is clear from figure 10 (left panel). Such triplet

messenger fields XF and XF are not required in order to construct the LO operators and

must be introduced for the sole purpose of allowing the HO operators of this kind.

Moreover, such triplet messenger fields would be dangerous since they may allow oper-

ators of the kind in eq. (6.1) for n = 1 involving the Higgs triplet h3 which could contribute

to up and charm quark masses for example.

For these reasons we have chosen not to introduce any messenger fields XF and XF

which are triplets of A4, thereby forbidding HO operators of the type shown in eq. (6.1)

for n ≥ 2 involving any Higgs fields or involving the A4 triplet Higgs h3 for n ≥ 1.

The couplings in eqs. (3.1), (3.2), 3.3 can also lead to HO operators of the generic kind,

after integrating out the messengers, as shown in figure 10 (right panel).

∆WY uk = F.

(
φ

Σ

)(
Σ

Σ

)n
hF c, (6.2)

where n ≥ 1. At the order n = 1, only a single operator of this kind is generated,

∆WY uk = F.

(
φd1
Σd

15

)(
Σd

Σu

)
huF

c
1 , (6.3)

which gives a correction in the (1,1) entry of Y u and hence a contribution to the up quark

Yukawa coupling,

∆yu ∼ εu
V d

1

〈Σd
15〉
〈Σd〉
〈Σu〉

∼ εu
εd

〈Σd〉
〈Σu〉

y0
d, (6.4)

where we have used y0
d given in eq. (3.16). The correction is small if εu〈Σd〉 � εd〈Σu〉.
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Figure 10. Some possible higher order diagrams. The left panel shows a generic diagram involving

triplet fermion messengers, which if present, would lead to effective higher order operators as in

eq. (6.1). In our model we assume such triplet messengers to be absent which prevents diagrams

with more than one φ field. The right panel shows a generic diagram responsible for the effective

higher order operators as in eq. (6.2).

6.3 HO corrections to Majorana operators

The relevant bilinear charges in the Majorana sector are

F c1F
c
1 ∼ α2, F c1F

c
2 ∼ α4, F c1F

c
3 ∼ α, F c2F

c
2 ∼ α, F c2F

c
3 ∼ α3, F c3F

c
3 ∼ 1. (6.5)

The messengers which transform under A4×Z5 as Xξi ∼ (1, αi) can couple to the Majoron

field ξ ∼ (1, α4) leading to the LO operators in eq. (3.7) (dropping Hc and Λ),

F c1F
c
1 ξ

2, F c1F
c
3 ξ, F c2F

c
2 ξ, F c3F

c
3 ∼ 1. (6.6)

Since each insertion of ξ carries a suppression factor of 〈ξ〉/Λ ∼ 10−5, HO operators

involving more powers of ξ, such as F c1F
c
2 ξ

4, are negligible.

7 Conclusions

In this paper we have proposed a rather elegant theory of flavour based on the Pati-Salam

gauge group combined with A4×Z5 family symmetry which provides an excellent descrip-

tion of quark and lepton masses, mixing and CP violation. Pati-Salam unification relates

quark and lepton Yukawa matrices and in particular predicts Y u = Y ν , leading to Dirac

neutrino masses being equal to up, charm and top masses. The see-saw mechanism involves

very hierarchical right-handed Majorana neutrino masses with sequential dominance. The

A4 family symmetry determines the structure of Yukawa matrices via CSD4 vacuum align-

ment, with the three columns of Y u = Y ν being proportional to (0, 1, 1)T , (1, 4, 2)T and

(0, 0, 1)T , respectively, where each column has a multiplicative phase determined by Z5

breaking, which controls CP violation in both the quark and lepton sectors. The other

Yukawa matrices Y d ∼ Y e are both approximately diagonal, with charged lepton masses

related to down quark masses by modified GJ relations, and containing small off-diagonal

elements responsible for the small quark mixing angles θq13 and θq23. The model hence

predicts the Cabibbo angle θC ≈ 1/4, up to such small angle corrections.

The main limitation of the model is that it does not predict the charged fermion masses.

However the third family masses are naturally larger since they arise at renormalisable
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order, while the hierarchy between first and second family masses can be understood to

originate from hierarchies between flavon VEVs. Although the model does not predict the

small quark mixing angles, it does offer a qualitative understanding of both CP violation

and the Cabibbo angle θC ≈ 1/4, which, as discussed above, is closely related to the lepton

mixing angles via the CSD4 vacuum alignment. Moreover, the model contains 6 fewer

parameters in the flavour sector than the 22 parameters of the SM, and hence predicts

the entire PMNS matrix, as is clear from eqs. (5.26), (5.27) where all the parameters

which appear there are fixed by fermion (including neutrino) masses and small quark

mixing angles. Hence the model predicts the entire PMNS lepton mixing matrix with

no free parameters, including the three lepton mixing angles and the three leptonic CP

phases with negligible theoretical error from HO corrections. The resulting PMNS matrix

turns out to have an approximate TBC form as regards maximal atmospheric mixing

and the reactor angle θl13 ≈ 9◦, although the solar angle deviates somewhat from its tri-

maximal value, corresponding to a negative deviation parameter s ∼ −0.03 to −0.1, where

sin θl12 = (1 + s)/
√

3 [63].

The predictions of a normal neutrino mass hierarchy and maximal atmospheric angle

will both be either confirmed or excluded over the next few years by current or near

future neutrino experiments such as SuperKamiokande, T2K, NOνA and PINGU [64–68].

The Daya Bay II reactor upgrade, including the short baseline experiment JUNO [69–

71], will also test the normal neutrino mass hierarchy and measure the reactor and solar

angles to higher accuracy, enabling precision tests of the predictions θl13 = 9◦ ± 0.5◦ and

34◦ & θl12 & 31◦, for the lightest neutrino mass in the range 0 . m1 . 0.5 meV. With

such a mass range, neutrinoless double beta decay will not be observable in the foreseeable

future. In the longer term, the superbeam proposals [72] would measure the atmospheric

mixing angle to high accuracy, confronting the prediction θl23 = 45◦ ± 0.5◦, and ultimately

testing the prediction of the leptonic CP violating oscillation phase δl = 260◦ ± 5◦.
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A A4

A4 has four irreducible representations, three singlets 1, 1′ and 1′′ and one triplet 3. The

products of singlets are:

1⊗ 1 = 1 1′ ⊗ 1′′ = 1 1′ ⊗ 1′ = 1′′ 1′′ ⊗ 1′′ = 1′. (A.1)

The generators of the A4 group, can be written as S and T with S2 = T 3 = (ST )3 = I.

We work in the Ma-Rajasakaran basis [25] where the triplet generators are,

S =

 1 0 0

0 −1 0

0 0 −1

 , T =

 0 1 0

0 0 1

1 0 0

 . (A.2)
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In this basis one has the following Clebsch rules for the multiplication of two triplets,

(ab)1 = a1b1 + a2b2 + a3b3 ;

(ab)1′ = a1b1 + ωa2b2 + ω2a3b3 ;

(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3 ;

(ab)31 = (a2b3, a3b1, a1b2) ;

(ab)32 = (a3b2, a1b3, a2b1) ,

(A.3)

where ω3 = 1, a = (a1, a2, a3) and b = (b1, b2, b3).

Under a CP transformation in this basis we require [44, 45],

a→ (a∗1, a
∗
3, a
∗
2), b→ (b∗1, b

∗
3, b
∗
2), (A.4)

so that
(ab)1′ → a∗1b

∗
1 + ωa∗3b

∗
3 + ω2a∗2b

∗
2 = (a∗b∗)1′′

(ab)1′′ → a∗1b
∗
1 + ω2a∗3b

∗
3 + ωa∗2b

∗
2 = (a∗b∗)1′ .

(A.5)

B Two light Higgs doublets Hu and Hd

We have introduced five Higgs bi-doublet multiplets h3, hu, hd, h
d
15, hu15, distinguished by

A4 and Z5 charges. Ignoring SU(4)C and A4 quantum numbers, a generic Higgs bi-doublet

under SU(2)L × SU(2)R may be written as

h = (2, 2) =

(
h1

0 h2
+

h1
− h2

0

)
(B.1)

where h1 and h2 form two SU(2)L doublets with U(1)T3R charges of −1/2 and 1/2. Hence-

forth it is convenient to use a slightly different notation as follows. We label each of the

Higgs bi-doublets as ha(2, 2) and, below the SU(2)R breaking scale, each of them will split

into two Higgs doublets, denoted as h±a (2,±1/2) labelled by their U(1)T3R charges of ±1/2,

rather than their electric charges as shown in eq. (B.1). Thus the five bi-doublets above

will yield eight Higgs doublets from h±u , h±d and the colour singlet parts of hd±15 , hu±15 , plus

additional colour triplet and octet Higgs doublets from hd±15 , hu±15 , together with the six

Higgs doublets from h±3 . We shall arrange for nearly all of these Higgs doublets to have

superheavy masses near the GUT scale, leaving only the two light Higgs doublets Hu and

Hd, as follows.

The h3 multiplet, which will be mainly responsible for the third family Yukawa cou-

plings, is a triplet of A4. We introduce a triplet φ3 ∼ 3 which is a PS and Z5 singlet and

couples as φ3h3h3. If φ3 develops a VEV in the third direction,6 〈φ3〉 ∼ (0, 0, V3), then,

using the Clebsch rules in eq. (A.5), this gives a large mass to the first two A4 components

6Vacuum alignment may be achieved by a superpotential term ζφ3φ3 where ζ is an A4 triplet driving

field, leading to 〈φ3〉 ∼ (0, 0, V3). In general, small corrections to this vacuum alignment can lead to

〈φ3〉 ∼ (ε, 0, 1)V3 corresponding to a small admixture ε of the first component of the Higgs triplet h3

contributing to the physical light Higgs state Hu, and hence a small correction to Y u in eq. (4.25). Similar

corrections to Y d may be absorbed into the existing parameters in eq. (4.26).
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Figure 11. The diagram shows the higgsino messenger diagrams responsible for the effective

operators in eqs. (B.2), (B.3) leading to GUT scale higgsino doublet masses. The higgsinos depicted

by the solid line have odd R-parity.

of h3 while leaving the third component massless. Introducing a TeV scale mass term

µh3h3 will give a light mass to the third component of h3. The Higgs bi-doublets in the

third A4 component of h3 will mix with other Higgs bi-doublets as discussed below and

two linear combinations of the mixed states, Hu and Hd, will remain light, allowing the

renormalisable third family Yukawa couplings.

The operators involving the Higgs fields hu, hd, h
d
15, hu15, collectively denoted as ha,

have the general form,

(haH
c)(Hchb)

Sab
→ 〈H

c〉〈Hc〉
〈Sab〉

h+
a h
−
b ≡Mabh

+
a h
−
b (B.2)

where Sab are Pati-Salam singlet fields which develop VEVs somewhat higher than the

Pati-Salam breaking scale. When Hc gets a VEV in its right-handed neutrino component,

it will project out the T3R = +1/2 component of ha, which we write as h+
a . Similarly when

Hc gets a VEV in its right-handed neutrino component, it will project out the T3R = −1/2

component of hb, which we write as h−b .

The diagrams responsible for generating the operators of the form in eq. (B.2) are

shown in figure 11. These diagrams should be considered as Higgsino doublet mixing

diagrams. The Higgsino messenger fields which couple to (haH
c) are denoted as XHa

and those which couple to (Hchb) are denoted as XHb
, where the messenger masses are

generated by the couplings XHaSabXHb
when Sab develops its VEV, leading to the effective

operators in eq. (B.2).

The choice of singlets S11, S33, S24, S34 with appropriate Z5 and A4 charges, lead to

the following particular operators of the general form of eq. (B.2):

(huH
c)(Hchu)

S11
+

(hd15H
c)(Hchd15)

S33

+
(hdH

c)(Hchu15)

S24
+

(hu15H
c)(Hchd)

S24

+
(hd15H

c)(Hchu15)

S34
+

(hu15H
c)(Hchd15)

S34
. (B.3)

Note that Sab has the same A4 × Z5 charges as Sba.
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In addition we require the following three operators, involving the third component of

h3, given by h3.φ3,

(φ3.h3H
c)(Hchu)

Λ3S01
+

(hdH
c)(Hch3.φ3)

Λ3S30
+

(hu15H
c)(Hch3.φ3)

Λ3S40
. (B.4)

Since the matrix of charges is symmetric (since Sab has the same A4 × Z5 charges as Sba)

the operators above must be given by a particular messenger sector which forbids similar

operators with Hc and Hc interchanged.

The operators in eqs. (B.3), (B.4) and the term µh3h3 lead to the following Hig-

gsino mass matrix, in the basis where the rows correspond to h+
3 , h

+
u , h

+
d , h

d+
15 , h

u+
15 and the

columns correspond to h−3 , h
−
u , h

−
d , h

d−
15 , h

u−
15 ,

µ M01 0 0 0

0 M11 0 0 0

0 0 0 0 M24

M30 0 0 M33 M34

M40 0 M42 M43 0.

 . (B.5)

The Higgsino masses from eq. (B.5) can be written explicitly as,

µh+
3 h
−
3 + (M01h

+
3 +M11h

+
u )h−u + h+

dM24h
u−
15

+hd+
15 (M30h

−
3 +M33h

d−
15 +M34h

u−
15 )

+hu+
15 (M40h

−
3 +M42h

−
d +M43h

d−
15 ). (B.6)

By studying these mass terms it is apparent that, only one linear combination of the Higgs

doublet h+
u and the third component of the Higgs doublet in hu+

3 has a large mass, namely

M01h
+
3 +M11h

+
u , while the orthogonal linear combination will remain light. It is also clear

that only two linear combinations of the Higgs doublet h−d and the colour singlet Higgs

doublet in hd−15 and the third component of the Higgs doublet in h−3 has a large mass, while

the orthogonal linear combination will remain light. By contrast, the Higgs doublets in h−u ,

hu−15 , h+
d , hd+

15 and hu+
15 all appear in three different terms and will all become very heavy.

In particular the colour triplet and octet components of hd±15 will combine with those of

hu∓15 so that all coloured Higgs doublets become very massive.

In summary, most of the Higgs doublets will gain large masses near the GUT scale,

leaving only two light Higgs doublets, Hu and Hd. The light Higgs doublet which couples

to up-type quarks and neutrinos, Hu, will be identified as a linear combination of the third

component of the Higgs doublet in hu+
3 and h+

u . The light Higgs doublet, Hd, which couples

to down-type quarks and charged leptons will be identified as a linear combination of the

Higgs doublet h−d , the third component of the Higgs doublet in h−3 and the colour singlet

Higgs doublet from hd−15 . The light mass term µh+
3 h
−
3 will lead to the term µHuHd term as

in the MSSM. This term may alternatively be induced by a singlet S term Sh+
3 h
−
3 which

will lead to the term SHuHd term as in the NMSSM, generating a light Higgsino mass

from the TeV scale singlet VEV.
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