New physics in $e^{+} e^{-} \rightarrow Z \gamma$ at the ILC with polarized beams: explorations beyond conventional anomalous triple gauge boson couplings

Abstract

B. Ananthanarayan, ${ }^{a}$ Jayita Lahiri, ${ }^{a}$ Monalisa Patra ${ }^{b}$ and Saurabh D. Rindani ${ }^{c}$ ${ }^{a}$ Centre for High Energy Physics, Indian Institute of Science, Bangalore 560 012, India ${ }^{b}$ Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India ${ }^{c}$ Theoretical Physics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India E-mail: anant@cts.iisc.ernet.in, jayita@cts.iisc.ernet.in, monalisa@theory.tifr.res.in, saurabh@prl.res.in

Abstract: One of the most-studied signals for physics beyond the standard model in the production of gauge bosons in electron-positron collisions is due to the anomalous triple gauge boson couplings in the $Z \gamma$ final state. In this work, we study the implications of this at the ILC with polarized beams for signals that go beyond traditional anomalous triple neutral gauge boson couplings. Here we report a dimension-8 CP-conserving $Z \gamma Z$ vertex that has not found mention in the literature. We carry out a systematic study of the anomalous couplings in general terms and arrive at a classification. We then obtain linear-order distributions with and without CP violation. Furthermore, we place the study in the context of general BSM interactions represented by $e^{+} e^{-} Z \gamma$ contact interactions. We set up a correspondence between the triple gauge boson couplings and the four-point contact interactions. We also present sensitivities on these anomalous couplings, which will be achievable at the ILC with realistic polarization and luminosity.

Keywords: Beyond Standard Model, CP violation

ArXiv ePrint: 1404.4845

Contents

1 Introduction 1
2 Formalism for the process $e^{+} e^{-} \rightarrow Z \gamma$ 4
2.1 BSM physics with anomalous triple gauge boson couplings 4
2.2 BSM physics in the form of contact interactions 9
2.3 Reduction of anomalous TGC interactions to contact type interactions 11
3 Discrete symmetries of the BSM interactions 12
4 Angular asymmetries for anomalous TGCs 13
5 Numerical analysis 16
6 Discussion and conclusions 20
A Conversion of anomalous TGCs involving the Levi-Civita symbol 23

1 Introduction

The Standard Model (SM) is a well-established theory now and is being tested at very high precision in a variety of sectors, e.g., in the Higgs sector at the Large Hadron Collider (LHC), and in the flavour sector at low-energy and high-intensity experiments, to name a couple of examples. Furthermore, the gauge sector of the SM is predictive and highly constrained. The study of gauge-boson pair production will be an important process to look for new physics at the International Linear Collider (ILC) [1, 2]. The ILC is a proposed next generation collider after the LHC that will collide electrons and positrons at high energy and luminosity. The availability of beam polarization, either longitudinal or transverse, of one or both of the beams, will also significantly enhance the sensitivity to new physics interactions $[3,4]$. The rate for gauge-boson pair production will be sensitive to the gaugeboson self-interactions, which arise through the non-Abelian nature of the electroweak sector $\mathrm{SU}(2)_{L} \times \mathrm{U}(1)_{Y}$. Thus, it would be important to look for deviations from SM predictions in this sector. Nevertheless, gauge invariance and Lorentz invariance as well as renormalizability place powerful constraints on the possible structures that can arise. Thus a model independent classification of terms has been a rich and highly developed field, see refs. [5-10]. The work of Hagiwara et al. [5] will be used by us as a standard touchstone in the considerations associated with anomalous couplings in the neutral-boson sector.
Of the many diboson processes that have been considered, $e^{+} e^{-} \rightarrow Z \gamma$ has received substantial attention in the past. The $Z \gamma Z$ and $Z \gamma \gamma$ couplings are absent at tree level, and also highly suppressed when allowed by internal particle loops in the SM, forbidding the s-channel production of $Z Z$ and $Z \gamma$. Therefore any deviation from the tree-level SM predictions will signal the presence of beyond-SM (BSM) physics. We will first return to the anomalous couplings for this process that were introduced some decades ago [5, 8, 10]. In particular, these authors have provided a standard basis, in terms of 8 couplings, denoted
by $h_{i}^{V}, V=Z, \gamma, i=1,2,3,4$, with $i=1,2$ denoting dimension- 6 and -8 CP-violating couplings while $i=3,4$ denote dimension- 6 and -8 CP-conserving couplings. The individual values of these triple gauge boson couplings (TGCs) as described before are zero at tree level in the SM, with non-zero values arising at higher orders or in composite models. These anomalous couplings have been extensively studied in the literature in the context of different colliders ${ }^{1}$ [11-24]. Moreover there has been a lot of work in the literature [8, $10,13,17,23]$ where effective Lagrangians or effective momentum-space vertices and the associated form factors in neutral gauge boson production have been discussed.

In all previous work on the subject, there have been no deviations from the set initially considered by ref. [5], in which the terms are implicitly symmetric under the interchange of $Z \leftrightarrow \gamma$. The lowest-dimension effective operators within the effective Lagrangian approach for the neutral anomalous couplings, with all the particles being off-shell, has been discussed in refs. [25, 26]. In that work, there is the possibility that there can be terms that do not respect this symmetry at the Lagrangian level. However, we have checked that even those terms produce the same anomalous TGCs. In the present work, we have tried to push this hypothesis further, and indeed at dimension- 8 we uncover a new term. Here, we report our finding that an additional coupling involving only the Z exists, with $Z \gamma Z$ coupling consistent with Lorentz invariance, electromagnetic gauge invariance and Bose symmetry, which has not been explicitly reported in the literature. We consider this to be an important addition to the body of literature on anomalous TGCs.

Searches for these neutral anomalous couplings have been performed at LEP [27, 28], the Tevatron $[29,30]$ and the LHC. The most stringent bounds have come from the ATLAS [31] and CMS [32] collaborations, with the data taken at $\sqrt{s}=7 \mathrm{TeV}$. Since the anomalous gauge couplings would give rise to photons with large transverse momentum, p_{T}^{γ}, the LHC collaborations have placed limits on the couplings by measuring the total production cross section and looking at the p_{T} distribution of the photon. As the photon transverse energy spectrum has similar sensitivity to CP-conserving and CP-violating couplings, the experimental results are generally in terms of the CP-conserving couplings h_{3}^{V} and h_{4}^{V}. These analyses are all based on what are claimed to be the most general Lorentz invariant effective interactions given by ref. [5]. The 95% CL limits in our convention are as follows: ${ }^{2}$

[^0]- ATLAS: $\left|h_{3}^{Z}\right|<0.028,\left|h_{4}^{Z}\right|<1.74 \times 10^{-4},\left|h_{3}^{\gamma}\right|<0.027,\left|h_{4}^{\gamma}\right|<1.58 \times 10^{-4}$
- CMS: $\left|h_{3}^{Z}\right|<5.4 \times 10^{-3},\left|h_{4}^{Z}\right|<2.6 \times 10^{-5},\left|h_{3}^{\gamma}\right|<4.9 \times 10^{-3},\left|h_{4}^{\gamma}\right|<2.5 \times 10^{-5}$

It has been pointed out by the authors of [33-36] that one economical way of fingerprinting BSM physics is to use model-independent contact interactions. In the present work, we approach the question of studying the distributions produced by the anomalous couplings in relation to those produced by contact terms, as there has been no detailed comparison of these approaches. We have tried, in as general a manner as possible, to rewrite the anomalous TGC occurring in $e^{+} e^{-} \rightarrow Z \gamma$ in terms of contact-type interactions. As it happens, the effective couplings from the former (anomalous TGC) after reducing to effective couplings with the q^{2} dependence of the propagators accounted for, appear quite different at first sight from the latter (apart from the q^{2} dependence which is assumed to be absent), especially since the anomalous couplings are written down in terms of the Levi-Civita symbols. At first instance the complete mapping has not been possible because in some cases, in the anomalous TGC sector, the basis chosen has been one that involves the Levi-Civita symbol (CP conserving case). The conventional treatment of contact interactions does not involve this symbol. However, it is possible through the use of Dirac matrix identities to choose an equivalent basis for the contact interactions as well, which could lead to a direct identification. We have studied the structures in detail and uncovered these relations so as to establish the correspondence. We have found that apart from the contact interactions studied earlier [33-35], a coupling containing three Dirac matrices is also required. The form factor containing the three Dirac matrices was introduced in [36] and the authors have also pointed out that this form factor receives a contribution from a dimension- 8 operator of the form $\bar{l} \gamma^{\mu} l \epsilon_{\mu \nu \sigma \tau} D^{\nu} B^{\sigma \lambda} B_{\lambda}^{\tau}$, which is CP even and was considered earlier in ref. [37].

In order to make contact with experiment, it is important to ask what the contributions of the TGCs at leading order would be to the diboson distribution, in the presence of the two kinds of polarization. We study this using realistic degrees of polarization, and with the design luminosity at the various proposed ILC energies. We present detailed results for centre-of-mass energy (\sqrt{s}) of 1000 GeV along with an integrated luminosity $\left(\int \mathcal{L} d t\right)$ of $1000 \mathrm{fb}^{-1}$ and degrees of polarization for electron of 80% and positron of 20%. We have also studied in detail the consequences for $\sqrt{s}=500 \mathrm{GeV}$ and $\int \mathcal{L} d t=500 \mathrm{fb}^{-1}$, degrees of polarization for electron of 80% and positron of 30% and report these results as well. We note here that our inputs are consistent with the luminosities and degrees of polarization given in the ILC Technical Design Report (TDR) [1].

The BSM contribution from the contact interactions or the effective couplings can be measured as deviations from the SM predictions in various kinematic distributions, and with this in mind we have carried out a thorough numerical analysis by the construction of various asymmetries. In particular the effect of beam polarization has been concentrated upon. In our previous work [22, 38], we were concerned only with the dimension-six CPviolating operators. Explicit distributions in the presence of longitudinal polarization (LP) and transverse polarization (TP) were obtained for this case. However, such an analysis has not been performed for the dimension-eight CP-violating operator, nor for any of the

CP-conserving cases, at least not in the forms discussed in these references. One of the aims of this work is to obtain such distributions so as to set the stage for a thorough comparison with the types of distributions obtained with the contact interactions.

The layout of the paper is as follows. The process $e^{+} e^{-} \rightarrow Z \gamma$ is discussed in section 2, which is divided into three subsections. We list in section 2.1 the most general $Z \gamma V^{*}$ coupling, where $V=Z, \gamma$ and present the distributions in the presence of the anomalous couplings with polarized beams, both TP and LP. The new physics effect in the form of the contact interactions will be discussed in section 2.2 and the mapping of contact interactions with triple gauge boson couplings is addressed in section 2.3. The CPT properties of the different anomalous couplings are discussed in section 3. In section 4 we discuss how angular asymmetries may be constructed which could be used to get information on the couplings. We do a full numerical analysis on the anomalous couplings and give limits on those in section 5. Finally we conclude in section 6. Appendix A discusses the reduction of the anomalous TGCs with the Levi-Civita symbol to an equivalent basis of the contact interactions.

2 Formalism for the process $e^{+} e^{-} \rightarrow Z \gamma$

In this section we discuss the properties of the process

$$
\begin{equation*}
e^{+}\left(p_{+}, s_{+}\right)+e^{-}\left(p_{-}, s_{-}\right) \rightarrow Z\left(k_{2}, h_{Z}\right)+\gamma\left(k_{1}, h_{\gamma}\right) \tag{2.1}
\end{equation*}
$$

where h_{γ} can take values ± 1 and the value for h_{Z} can be ± 1 and 0 . In figure 1 , we show the different diagrams which contribute to neutral gauge boson pair production. The first two diagrams (a and b) show the leading contribution coming from the standard model t and u-channel electron exchanges. The new-physics effect in the form of anomalous TGCs due to the s-channel Z and γ exchanges is shown in the third diagram (c), which will be discussed in detail in section 2.1. The effect due to contact interactions is shown in the final diagram (d), and will be the matter of discussion in the upcoming section 2.2. In the final subsection 2.3 we present a detailed discussion of the TGCs in terms of the framework of contact interactions.

2.1 BSM physics with anomalous triple gauge boson couplings

The $Z \gamma$ production may have a contribution from the anomalous $Z \gamma Z^{*}$ or $Z \gamma \gamma^{*}$ couplings through the s channel, where Z, γ are on shell, while Z^{*} / γ^{*} is off shell. Since we neglect the electron mass, when the off-shell photon or Z couples to fermions, the corresponding current is conserved. Assuming $\mathrm{U}(1)_{e m}$ gauge invariance and Lorentz invariance, the most general anomalous $Z \gamma V$ coupling, where $V=Z^{*}, \gamma^{*}$ is given by

$$
\begin{align*}
\Gamma_{\beta \alpha \nu}^{Z \gamma Z^{*}}\left(k_{2}, k_{1}, q\right)=\frac{e\left(s-m_{Z}^{2}\right)}{2 m_{Z}^{2}}\{ & h_{1}^{Z}\left(k_{1 \nu} g_{\beta \alpha}-k_{1 \beta} g_{\nu \alpha}\right)+\frac{h_{2}^{Z}}{m_{Z}^{2}} q_{\beta}\left(q \cdot k_{1} g_{\nu \alpha}-k_{1 \nu} q_{\alpha}\right) \\
& +h_{3}^{Z} \epsilon_{\nu \beta \alpha \rho} k_{1}^{\rho}+\frac{h_{4}^{Z}}{m_{Z}^{2}} q_{\beta} \epsilon_{\nu \alpha \rho \sigma} q^{\rho} k^{1 \sigma} \tag{2.2}\\
& \left.+\frac{h_{5}^{Z}}{2 m_{Z}^{2}}\left[\left(s-m_{Z}^{2}\right) \epsilon_{\alpha \nu \beta \sigma}\left(k_{2}+q\right)^{\sigma}-4 k_{2 \alpha} \epsilon_{\nu \beta \tau \sigma} k_{1}^{\tau} q^{\sigma}\right]\right\} .
\end{align*}
$$

(a)

(b)

(d)
(c)

Figure 1. Feynman diagrams contributing to the neutral gauge boson production. Diagrams (a) and (b) are the SM contributions. Diagram (c) corresponds to contributions from the anomalous $Z \gamma Z$ and $Z \gamma \gamma$ couplings and diagram (d) corresponds to contribution from the contact interactions.

$$
\begin{align*}
\Gamma_{\beta \alpha \nu}^{Z \gamma \gamma^{*}}\left(k_{2}, k_{1}, q\right)=\frac{e s}{4 s_{W} c_{W} m_{Z}^{2}}\{ & h_{1}^{\gamma}\left(k_{1 \nu} g_{\beta \alpha}-k_{1 \beta} g_{\nu \alpha}\right)+\frac{h_{2}^{\gamma}}{m_{Z}^{2}} q_{\beta}\left(q \cdot k_{1} g_{\nu \alpha}-k_{1 \nu} q_{\alpha}\right) \\
& \left.+h_{3}^{\gamma} \epsilon_{\nu \beta \alpha \rho} k_{1}^{\rho}+\frac{h_{4}^{\gamma}}{m_{Z}^{2}} q_{\beta} \epsilon_{\nu \alpha \rho \sigma} q^{\rho} k^{1 \sigma}\right\} . \tag{2.3}
\end{align*}
$$

We note that the coupling $\Gamma_{\beta \alpha \nu}^{Z \gamma V^{*}}$ was first written down in [5]. However, [5] did not have the h_{5}^{Z} term. The unusual anomalous $Z \gamma Z^{*}$ vertex in the h_{5}^{Z} term, to our knowledge, has not been noted in the literature. Surprisingly, it does not have a $Z \gamma \gamma^{*}$ counterpart.

We have scaled the coupling constants by a factor of $1 / 2$ in case of $\Gamma^{Z \gamma Z^{*}}$ and $1 /\left(4 s_{W} c_{W}\right)$ in case of $\Gamma^{Z \gamma \gamma^{*}}$, in relation to those in [5]. This has been done to effect a simple comparison with the contact interactions case, where such factors are already absorbed into the definition of the relevant couplings. The choice is to either rescale the h_{i}^{V} terms of [5] or to rescale the contact terms of [33, 34], and we choose the former.

The effective Lagrangian generating the vertices of eq. (2.2) is given by

$$
\begin{align*}
\mathcal{L}^{Z \gamma Z^{*}}=\frac{e}{2}\{ & \frac{h_{1}^{Z}}{m_{Z}^{2}}\left(\partial^{\sigma} Z_{\sigma \nu}\right) Z_{\alpha} F^{\nu \alpha}+\frac{h_{2}^{Z}}{m_{Z}^{4}}\left[\partial_{\beta} \partial_{\alpha}\left(\square+m_{Z}^{2}\right) Z_{\nu}\right] Z^{\beta} F^{\nu \alpha} \\
& +\frac{h_{3}^{Z}}{m_{Z}^{2}}\left(\partial_{\sigma} Z^{\sigma \rho}\right) Z^{\beta} \tilde{F}_{\rho \beta}+\frac{h_{4}^{Z}}{2 m_{Z}^{4}}\left[\left(\square+m_{Z}^{2}\right) \partial^{\sigma} Z^{\rho \beta}\right] Z_{\sigma} \tilde{F}_{\rho \beta} \\
& \left.+\frac{h_{5}^{Z}}{m_{Z}^{4}}\left(\partial^{\tau} F^{\alpha \lambda}\right) \tilde{Z}_{\alpha \beta} \partial_{\tau} \partial_{\lambda} Z^{\beta}\right\} \tag{2.4}
\end{align*}
$$

whereas the Lagrangian generating the vertices of eq. (2.3) is given by

$$
\begin{align*}
\mathcal{L}^{Z \gamma \gamma^{*}}=\frac{e}{4 s_{W} c_{W}}\{ & \frac{h_{1}^{\gamma}}{m_{Z}^{2}}\left(\partial^{\sigma} F_{\sigma \nu}\right) Z_{\alpha} F^{\nu \alpha}+\frac{h_{2}^{\gamma}}{m_{Z}^{4}}\left[\partial_{\beta} \partial_{\alpha} \partial^{\rho} F_{\rho \nu}\right] Z^{\beta} F^{\nu \alpha} \\
& \left.+\frac{h_{3}^{\gamma}}{m_{Z}^{2}}\left(\partial_{\sigma} F^{\sigma \rho}\right) Z^{\beta} \tilde{F}_{\rho \beta}+\frac{h_{4}^{\gamma}}{2 m_{Z}^{4}}\left[\square \partial^{\sigma} F^{\rho \beta}\right] Z_{\sigma} \tilde{F}_{\rho \beta}\right\} . \tag{2.5}
\end{align*}
$$

Here,

$$
\begin{equation*}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} ; \quad Z_{\mu \nu}=\partial_{\mu} Z_{\nu}-\partial_{\nu} Z_{\mu} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{F}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} F^{\alpha \beta} ; \quad \tilde{Z}_{\mu \nu}=\frac{1}{2} \epsilon_{\mu \nu \alpha \beta} Z^{\alpha \beta} . \tag{2.7}
\end{equation*}
$$

The matrix element from the SM t - and u-channel electron exchanges, and the anomalous coupling introduced by the vertices of eqs. (2.2) and (2.3), which introduce respectively diagrams with s-channel Z and γ exchanges, is given by

$$
\begin{equation*}
\mathcal{M}=\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{3}+\mathcal{M}_{4} \tag{2.8}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{M}_{1} & =\frac{e^{2}}{4 c_{W} s_{W}} \bar{v}\left(p_{+}\right) \notin\left(k_{2}\right)\left(g_{V}-g_{A} \gamma_{5}\right) \frac{1}{\not p_{-}-\not p_{1}} \notin\left(k_{1}\right) u\left(p_{-}\right) \\
\mathcal{M}_{2} & =\frac{e^{2}}{4 c_{W} s_{W}} \bar{v}\left(p_{+}\right) \notin\left(k_{1}\right) \frac{1}{\not p_{-}-\not k_{2}} \notin\left(k_{1}\right)\left(g_{V}-g_{A} \gamma_{5}\right) u\left(p_{-}\right) \\
\mathcal{M}_{3} & =\frac{i e}{2 c_{W} s_{W}} \bar{v}\left(p_{+}\right) \gamma_{\mu}\left(g_{V}-g_{A} \gamma_{5}\right) u\left(p_{-}\right) \frac{\left(-g^{\mu \nu}+q^{\mu} q^{\nu} / m_{Z}^{2}\right)}{q^{2}-m_{Z}^{2}} \Gamma_{\beta \alpha \nu}^{Z \gamma Z^{*}}\left(k_{2}, k_{1}, q\right) \epsilon^{\alpha}\left(k_{1}\right) \epsilon^{\beta}\left(k_{2}\right), \\
\mathcal{M}_{4} & =i e \bar{v}\left(p_{+}\right) \gamma_{\mu} u\left(p_{-}\right) \frac{\left(-g^{\mu \nu}\right)}{q^{2}} \Gamma_{\beta \alpha \nu}^{Z \gamma \gamma^{*}}\left(k_{2}, k_{1}, q\right) \epsilon^{\alpha}\left(k_{1}\right) \epsilon^{\beta}\left(k_{2}\right) \tag{2.9}
\end{align*}
$$

Here, the vector and axial-vector couplings of the Z to the electron are given by

$$
\begin{equation*}
g_{V}=-1+4 s_{W}^{2}, \quad g_{A}=-1 \tag{2.10}
\end{equation*}
$$

where $c_{W}=\cos \theta_{W}, s_{W}=\sin \theta_{W}, \theta_{W}$ being the weak mixing angle.
The three-index object $\Gamma_{\beta \alpha \nu}^{Z \gamma V^{*}}\left(k_{2}, k_{1}, q\right)$ is effectively contracted with $-\gamma_{\nu} / q^{2}$ in case of γ and $\left(-\gamma_{\nu}+q q^{\nu} / m_{Z}^{2}\right) /\left(q^{2}-m_{Z}^{2}\right)$ in case of Z boson, which yields a convenient twoindex object which we denote as $\Gamma_{\alpha \beta}^{Z, \gamma}$. We now list in table 1 the various terms in $\Gamma_{\alpha \beta}^{Z, \gamma}$ in a much simplified form after dealing with the redundancies, and after dropping q terms which vanish (in the limit of vanishing electron mass) on using the Dirac equation.

When the e^{-}and e^{+}beams have longitudinal polarizations P_{L} and \bar{P}_{L}, we obtain the differential cross section for the process (1) to be

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}{ }_{L}=\mathcal{B}_{L}\left(1-P_{L} \bar{P}_{L}\right)\left[\mathcal{A}_{L} \frac{1}{\sin ^{2} \theta}\left(1+\cos ^{2} \theta+\frac{4 \bar{s}}{(\bar{s}-1)^{2}}\right)+C_{L}\right] \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{s} \equiv \frac{s}{m_{Z}^{2}}, \mathcal{B}_{L}=\frac{\alpha^{2}}{16 \sin ^{2} \theta_{W} m_{W}^{2} \bar{s}}\left(1-\frac{1}{\bar{s}}\right) \tag{2.12}
\end{equation*}
$$

h_{i}^{V}	$\Gamma_{\alpha \beta}^{Z, \gamma}$
$h_{1}^{\gamma, Z}$	$\gamma^{\alpha} k_{1}^{\beta}-g^{\alpha \beta} k_{1}$
$h_{2}^{\gamma, Z}$	$k_{1}^{\beta}\left(k_{1} k_{2}^{\alpha}-\gamma^{\alpha} \frac{s-m_{Z}^{2}}{2}\right)$
$h_{3}^{\gamma, Z}$	$\gamma_{\nu} \epsilon^{\alpha \beta \nu k_{1}}$
$h_{4}^{\gamma, Z}$	$-\gamma_{\nu} k_{1}^{\beta} \epsilon^{\alpha \nu k_{1} q}$
h_{5}^{Z}	$\gamma_{\nu}\left(2 k_{2}^{\alpha} \epsilon^{\beta k_{2} \nu q}+\frac{m_{Z}^{2}-s}{2}\left(\epsilon^{\alpha \beta k_{2} \nu}+\epsilon^{\alpha \beta q \nu}\right)\right)$

Table 1. The two-index object $\Gamma_{\alpha \beta}^{Z, \gamma}$ obtained by contracting the three-index object $\Gamma_{\beta \alpha \nu}^{Z \gamma V^{*}}\left(k_{2}, k_{1}, q\right)$ with $\frac{\left(-\gamma_{\nu}+\phi q^{\nu} / m_{Z}^{2}\right)}{q^{2}-m_{Z}^{2}}$ in case of the Z and $\frac{-\gamma_{\nu}}{q^{2}}$ in case of γ. A factor $\left(g_{V}-g_{A} \gamma_{5}\right)$ has to be multiplied on the right for all the $\Gamma_{\alpha \beta}^{Z}$ terms. An overall factor of m_{Z}^{-2} has to be included for the $h_{1}^{Z, \gamma}$ and $h_{3}^{Z, \gamma}$ terms, and a factor m_{Z}^{-4} for the rest.

Coupling	Coefficient
$\operatorname{Im} h_{1}^{Z}$	$-\frac{1}{2} \mathcal{A}_{L}(\bar{s}-1) \cos \theta$
$\operatorname{Im} h_{1}^{\gamma}$	$-\frac{1}{2}(\bar{s}-1)\left(g_{V}-P g_{A}\right) \cos \theta$
$\operatorname{Im} h_{2}^{Z}$	$\frac{1}{4} \mathcal{A}_{L} \bar{s}(\bar{s}-1) \cos \theta$
$\operatorname{Im} h_{2}^{\gamma}$	$\frac{1}{4} \bar{s}(\bar{s}-1)\left(g_{V}-P g_{A}\right) \cos \theta$
$\operatorname{Re} h_{3}^{Z}$	$-\frac{1}{2}(\bar{s}+1)\left(2 g_{V} g_{A}-P\left(g_{V}^{2}+g_{A}^{2}\right)\right)$
$\operatorname{Re} h_{3}^{\gamma}$	$-\frac{1}{2}(\bar{s}+1)\left(g_{A}-P g_{V}\right)$
$\operatorname{Re} h_{4}^{Z}$	$\frac{1}{4} \bar{s}(\bar{s}-1)\left(2 g_{V} g_{A}-P\left(g_{V}^{2}+g_{A}^{2}\right)\right)$
$\operatorname{Re} h_{4}^{\gamma}$	$\frac{1}{4} \bar{s}(\bar{s}-1)\left(g_{A}-P g_{V}\right)$
$\operatorname{Re} h_{5}^{Z}$	$-\frac{1}{4}\left(1+6 \bar{s}+\bar{s}^{2}\right)\left(2 g_{V} g_{A}-P\left(g_{V}^{2}+g_{A}^{2}\right)\right)$

Table 2. The coefficients L_{i}^{V} of individual new couplings in the expression for the longitudinal polarization dependent part C_{L}, eq. (2.15), of the cross section.
with

$$
\begin{align*}
P & =\frac{P_{L}-\bar{P}_{L}}{1-P_{L} \bar{P}_{L}}, \tag{2.13}\\
\mathcal{A}_{L} & =\left(g_{V}^{2}+g_{A}^{2}-2 P g_{V} g_{A}\right), \tag{2.14}\\
C_{L} & =\sum_{V=Z, \gamma}\left[\sum_{i=1}^{2}\left(\operatorname{Im} h_{i}^{V}\right) L_{i}^{V}+\sum_{i=3}^{4}\left(\operatorname{Re} h_{i}^{V}\right) L_{i}^{V}\right]+\left(\operatorname{Re} h_{5}^{Z}\right) L_{5}^{Z} . \tag{2.15}
\end{align*}
$$

We choose the convention that P_{L}, \bar{P}_{L} are negative (positive) for left-handed (right-handed) polarization. C_{L} is a linear combination of the couplings $h_{i}^{V},(i=1, \ldots, 5)$, where $V=Z, \gamma$ for $i=1-4$. We list in table 2 the coefficient of each coupling L_{i}^{V} in the expression for C_{L}, eq. (2.15) against the coupling.

Coupling	Coefficient
$\operatorname{Im} h_{1}^{Z}$	$-\frac{1}{2}(\bar{s}-1) \cos \theta\left(g_{V}^{2}+g_{A}^{2}-\left(g_{V}^{2}-g_{A}^{2}\right) P_{T} \bar{P}_{T} \cos 2 \phi\right)$
$\operatorname{Im} h_{1}^{\gamma}$	$-\frac{1}{2}(\bar{s}-1) g_{V} \cos \theta\left(1-P_{T} \bar{P}_{T} \cos 2 \phi\right)$
$\operatorname{Im} h_{2}^{Z}$	$\frac{1}{4} \bar{s}(\bar{s}-1) \cos \theta\left(g_{V}^{2}+g_{A}^{2}-\left(g_{V}^{2}-g_{A}^{2}\right) P_{T} \bar{P}_{T} \cos 2 \phi\right)$
$\operatorname{Im} h_{2}^{\gamma}$	$\frac{1}{4} \bar{s}(\bar{s}-1) g_{V} \cos \theta\left(1-P_{T} \bar{P}_{T} \cos 2 \phi\right)$
$\operatorname{Im} h_{3}^{Z}$	$\frac{1}{2}(\bar{s}-1)\left(g_{V}^{2}-g_{A}^{2}\right) P_{T} \bar{P}_{T} \sin 2 \phi$
$\operatorname{Im} h_{3}^{\gamma}$	$\frac{1}{2}(\bar{s}-1) g_{V} P_{T} \bar{P}_{T} \sin 2 \phi$
$\operatorname{Im} h_{4}^{Z}$	$-\frac{1}{4} \bar{s}(\bar{s}-1)\left(g_{V}^{2}-g_{A}^{2}\right) P_{T} \bar{P}_{T} \sin 2 \phi$
$\operatorname{Im} h_{4}^{\gamma}$	$-\frac{1}{4} \bar{s}(\bar{s}-1) g_{V} P_{T} \bar{P}_{T} \sin 2 \phi$
$\operatorname{Im} h_{5}^{Z}$	$\frac{1}{4}\left(\bar{s}^{2}-1\right)\left(g_{V}^{2}-g_{A}^{2}\right) P_{T} \bar{P}_{T} \sin 2 \phi$

Table 3. The coefficients $T_{i}^{V, I}$ of the imaginary part of the individual new couplings in the expression for the transverse polarization dependent part C_{T}, eq. (2.18), of the cross section. Only the non-zero entries are listed here.

The differential cross section for transverse polarizations P_{T} and \bar{P}_{T} of e^{-}and e^{+}is given by

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}{ }_{T}=\mathcal{B}_{T}\left[\mathcal{A}_{T} \frac{1}{\sin ^{2} \theta}\left(1+\cos ^{2} \theta+\frac{4 \bar{s}}{(\bar{s}-1)^{2}}+P_{T} \bar{P}_{T} \frac{g_{V}^{2}-g_{A}^{2}}{g_{V}^{2}+g_{A}^{2}} \sin ^{2} \theta \cos 2 \phi\right)+C_{T}\right] \tag{2.16}
\end{equation*}
$$

where \bar{s} is as defined before,

$$
\begin{align*}
\mathcal{B}_{T} & =\frac{\alpha^{2}}{16 \sin ^{2} \theta_{W} m_{W}^{2} \bar{s}}\left(1-\frac{1}{\bar{s}}\right), \tag{2.17}\\
C_{T} & =\sum_{V=Z, \gamma}\left\{\sum_{i=1}^{4}\left[\left(\operatorname{Im} h_{i}^{V}\right) T_{i}^{V, I}+\left(\operatorname{Re} h_{i}^{V}\right) T_{i}^{V, R}\right]\right\}+\left(\operatorname{Im} h_{5}^{Z}\right) T_{5}^{Z, I}+\left(\operatorname{Re} h_{5}^{Z}\right) T_{5}^{Z, R} \tag{2.18}
\end{align*}
$$

with $\mathcal{A}_{T}=\left(g_{V}^{2}+g_{A}^{2}\right) . C_{T}$ in eq. (2.18) is a linear combination of the couplings and $V=Z, \gamma$, and the non-vanishing coefficients $T_{i}^{V, I}$ and $T_{i}^{V, R}$ of the various couplings in C_{T} are presented in tables 3 and 4 .

We have kept the anomalous terms up to leading order since they are expected to be small. In the above expressions, θ is the angle between the photon and e^{-}direction, with the e^{-}direction chosen as the z axis. The azimuthal angle between the photon and the electron momentum direction is chosen to be ϕ. The transverse polarization of the electron is chosen along the x axis, whereas the positron polarization direction is chosen parallel to the electron polarization direction.

It can be seen from tables 2,4 that $\operatorname{Re} h_{1,2}^{Z}$ does not contribute to the distribution, with or without beam polarization. The question of isolating Re h_{1}^{Z} to leading order was recently addressed by us [22], where we pointed out that it would be possible to fingerprint this anomalous coupling if the final-state spins are resolved. Analogously the contribution of Re h_{2}^{Z} can be studied by analyzing the spin of the final-state particles. Tables 2,3 and 4

Coupling	Coefficient
$\operatorname{Re} h_{1}^{\gamma}$	$\frac{1}{2}(\bar{s}-1) g_{A} \cos \theta P_{T} \bar{P}_{T} \sin 2 \phi$
$\operatorname{Re} h_{2}^{\gamma}$	$-\frac{1}{4} \bar{s}(\bar{s}-1) g_{A} \cos \theta P_{T} \bar{P}_{T} \sin 2 \phi$
$\operatorname{Re} h_{3}^{Z}$	$-(\bar{s}+1) g_{A} g_{V}$
$\operatorname{Re} h_{3}^{\gamma}$	$-\frac{1}{2} g_{A}\left((\bar{s}+1)+(\bar{s}-1) P_{T} \bar{P}_{T} \cos 2 \phi\right)$
$\operatorname{Re} h_{4}^{Z}$	$\frac{1}{2} \bar{s}(\bar{s}-1) g_{V} g_{A}$
$\operatorname{Re} h_{4}^{\gamma}$	$\frac{1}{4} \bar{s}(\bar{s}-1) g_{A}\left(1+P_{T} \bar{P}_{T} \cos 2 \phi\right)$
$\operatorname{Re} h_{5}^{Z}$	$-\frac{1}{2} g_{A} g_{V}\left(1+6 \bar{s}+\bar{s}^{2}\right)$

Table 4. The coefficients $T_{i}^{V, R}$ of the real part of the individual new couplings in the expression for the transverse polarization dependent part C_{T}, eq. (2.18), of the cross section. Only the non-zero entries are listed here.
also show that some of the anomalous couplings either depend on LP or TP or both. For example, the anomalous couplings $\operatorname{Re} h_{1,2}^{\gamma}, \operatorname{Im} h_{3,4}^{Z, \gamma}$ only give contributions in the presence of TP. It will therefore be possible to map the correspondence between these anomalous form factors and the contact interactions by studying the behaviour of the distributions in the presence of different beam polarizations.

In the next subsection, we turn to the issue of parametrizing the BSM physics in terms of contact interactions, viz., ones where all the new physics is integrated out, and only kinematic information is encoded in the vectors on hand. The case of anomalous TGC can be mapped to this, after accounting for the (trivial) momentum dependence coming from the propagators. The non-trivial kinematic structure due to anomalous TGC would form a proper subset of the general considerations, which we seek to establish. The two-index object introduced earlier, provides the required bridge to do this.

2.2 BSM physics in the form of contact interactions

We now introduce BSM physics arising from contact $e^{+} e^{-} \rightarrow Z \gamma$ interactions as shown in the Feynman diagram (d) of figure 1. The corresponding matrix element for the process of eq. (2.1) in the presence of contact interactions will be of the form:

$$
\begin{equation*}
\mathcal{M}=\mathcal{M}_{1}+\mathcal{M}_{2}+\mathcal{M}_{\text {contact }} \tag{2.19}
\end{equation*}
$$

where $\mathcal{M}_{1,2}$ are defined before in eq. (2.9), and

$$
\begin{equation*}
\mathcal{M}_{\text {contact }}=\frac{i e^{2}}{4 c_{W} s_{W}} \bar{v}\left(p_{+}\right) \Gamma_{\alpha \beta}^{\prime} u\left(p_{-}\right) \epsilon^{\alpha}\left(k_{1}\right) \epsilon^{\beta}\left(k_{2}\right) . \tag{2.20}
\end{equation*}
$$

The vertex factor $\Gamma_{\alpha \beta}$ of contact interactions was studied earlier in [33, 34, 36], where it was parametrized in the form:

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\text {contact }}=\frac{i e^{2}}{4 c_{W} s_{W}} \Gamma_{\alpha \beta}^{\prime}, \tag{2.21}
\end{equation*}
$$

where

$$
\begin{align*}
\Gamma_{\alpha \beta}^{\prime}=\{ & \frac{1}{m_{Z}^{4}}\left(\left(v_{1}+a_{1} \gamma_{5}\right) \gamma_{\beta}\left(2 p_{-\alpha}\left(p_{+} \cdot k_{1}\right)-2 p_{+\alpha}\left(p_{-} \cdot k_{1}\right)\right)\right. \\
& +\left(\left(v_{2}+a_{2} \gamma_{5}\right) p_{-\beta}+\left(v_{3}+a_{3} \gamma_{5}\right) p_{+\beta}\right)\left(\gamma_{\alpha} 2 p_{-} \cdot k_{1}-2 p_{-\alpha} \not \phi_{1}\right) \\
& \left.+\left(\left(v_{4}+a_{4} \gamma_{5}\right) p_{-\beta}+\left(v_{5}+a_{5} \gamma_{5}\right) p_{+\beta}\right)\left(\gamma_{\alpha} 2 p_{+} \cdot k_{1}-2 p_{+\alpha} \not \phi_{1}\right)\right) \\
& \left.+\frac{1}{m_{Z}^{2}}\left(\left(v_{6}+a_{6} \gamma_{5}\right)\left(\gamma_{\alpha} k_{1 \beta}-\not \psi_{1} g_{\alpha \beta}\right)+\left(v_{7}+a_{7} \gamma_{5}\right) \not k_{1} \gamma_{\alpha} \gamma_{\beta}\right)\right\} . \tag{2.22}
\end{align*}
$$

The above is the most general form consistent with Lorentz and gauge invariance, and written in terms of an odd number of γ matrices, so that chirality is conserved by the vertex.

When the only BSM interactions present are the triple-gauge boson couplings shown in eqs. (2.2) and (2.3), the vertex factor $\Gamma_{\alpha \beta}^{\prime}$ is effectively the sum of the $\Gamma_{\alpha \beta}^{Z, \gamma}$ terms of table 1 appropriately weighted:

$$
\begin{equation*}
\Gamma_{\alpha \beta}^{\prime}=\sum_{i=1,3} m_{Z}^{-2}\left[h_{i}^{\gamma} \Gamma_{\alpha \beta}^{\gamma, i}+h_{i}^{Z} \Gamma_{\alpha \beta}^{Z, i}\left(g_{V}-\gamma_{5} g_{A}\right)\right]+\sum_{i=2,4,5} m_{Z}^{-4}\left[h_{i}^{\gamma} \Gamma_{\alpha \beta}^{\gamma, i}+h_{i}^{Z} \Gamma_{\alpha \beta}^{Z, i}\left(g_{V}-\gamma_{5} g_{A}\right)\right] . \tag{2.23}
\end{equation*}
$$

Of course, it is always possible that there are further interactions present which do not contribute to the triple-gauge couplings, but contribute in the form of contact interactions. One of our aims here is to make a correspondence between the form factors v_{i}, a_{i} written in the contact interactions and those in the triple-gauge boson vertices. The distributions arising from the new couplings (with the exception of v_{7} and a_{7}) in the presence of both longitudinal and transverse polarization were given in $[33,34]$. We would also like to compare these distributions with those obtained in the previous section.

The contributions of the new contact interactions to the the cross section with longitudinal and transverse polarizations of the beams, as defined respectively by C_{L} and C_{T} of eqs. (2.11) and (2.16), are given by

$$
\begin{equation*}
C_{L}=\frac{1}{4}\left\{\sum_{i=1}^{7}\left(\left(g_{V}-P g_{A}\right) \operatorname{Im} v_{i}+\left(g_{A}-P g_{V}\right) \operatorname{Im} a_{i}\right) X_{i}\right\}, \tag{2.24}
\end{equation*}
$$

and

$$
\begin{align*}
C_{T}=\frac{1}{4}\{ & \sum_{i=1}^{7}\left(g_{V} \operatorname{Im} v_{i}+g_{A} \operatorname{Im} a_{i}\right) X_{i}+P_{T} \bar{P}_{T} \\
& \left.\times \sum_{i=1}^{7}\left(\left(g_{V} \operatorname{Im} v_{i}-g_{A} \operatorname{Im} a_{i}\right) \cos 2 \phi+\left(g_{A} \operatorname{Re} v_{i}-g_{V} \operatorname{Re} a_{i}\right) \sin 2 \phi\right) Y_{i}\right\} . \tag{2.25}
\end{align*}
$$

X_{i} and $Y_{i}(i=1, \cdots, 7)$ are listed in table 5.
In case of the contact interactions it is seen that, with the exception of $v_{6,7}$ and $a_{6,7}$, the anomalous form factors either contribute to the transverse polarization dependent part, or to the longitudinal polarization dependent and polarization independent parts of the differential cross section, but not both. The anomalous form factors $v_{6,7}$ and $a_{6,7}$, on the other hand, contribute to both.

i	X_{i}	Y_{i}
1	$2 \bar{s}(\bar{s}+1)$	0
2	$-\bar{s}(\bar{s}-1)(\cos \theta-1)$	0
3	0	$\bar{s}(\bar{s}-1)(\cos \theta-1)$
4	0	$\bar{s}(\bar{s}-1)(\cos \theta+1)$
5	$-\bar{s}(\bar{s}-1)(\cos \theta+1)$	0
6	$-2(\bar{s}-1) \cos \theta$	$2(\bar{s}-1) \cos \theta$
7	$2(\bar{s}-1)(1+\cos \theta)+4$	$-2(\bar{s}-1)(1+\cos \theta)$

Table 5. The contribution of the new couplings to the polarization independent and dependent parts of the cross section.

2.3 Reduction of anomalous TGC interactions to contact type interactions

In order to make a correspondence between the two approaches, we compare the matrix elements of eq. (2.9) and eq. (2.19), using eq. (2.23) and using the forms of $\Gamma_{\alpha \beta}^{Z, \gamma}$ with the Levi-Civita tensor, if any, rewritten using the results of the appendix A. On equating coefficients of the independent γ-matrix and tensor combinations, we get the relations

$$
\begin{align*}
v_{1} & =-2 i h_{Z}^{5} g_{A}, \tag{2.26}\\
v_{2}+v_{3}+v_{4}+v_{5} & =-2\left(h_{2}^{\gamma}+h_{2}^{Z} g_{V}\right), \tag{2.27}\\
v_{2}+v_{3}-v_{4}-v_{5} & =2 i h_{4}^{Z} g_{A}, \tag{2.28}\\
v_{2}-v_{3}-v_{4}+v_{5} & =0, \tag{2.29}\\
v_{2}-v_{3}+v_{4}-v_{5} & =4 i h_{5}^{Z} g_{A}, \tag{2.30}\\
v_{6} & =h_{1}^{\gamma}+h_{1}^{Z} g_{V}-i h_{3}^{Z} g_{A}+i h_{5}^{Z} g_{A}\left(s-m_{Z}^{2}\right) /\left(2 m_{Z}^{2}\right), \tag{2.31}\\
v_{7} & =i\left(-h_{3}^{Z} g_{A}+h_{5}^{Z} g_{A}\left(s-m_{Z}^{2}\right) /\left(2 m_{Z}^{2}\right)\right), \tag{2.32}
\end{align*}
$$

and

$$
\begin{align*}
a_{1} & =-2 i h_{5}^{Z} g_{V}, \tag{2.33}\\
a_{2}+a_{3}+a_{4}+a_{5} & =-2 h_{2}^{Z} g_{A}, \tag{2.34}\\
a_{2}+a_{3}-a_{4}-a_{5} & =2 i\left(h_{4}^{Z} g_{V}+h_{4}^{\gamma}\right), \tag{2.35}\\
a_{2}-a_{3}-a_{4}+a_{5} & =0, \tag{2.36}\\
a_{2}-a_{3}+a_{4}-a_{5} & =4 i h_{5}^{Z} g_{V}, \tag{2.37}\\
a_{6} & =\left(h_{1}^{Z} g_{A}-i\left(h_{3}^{\gamma}+h_{3}^{Z} g_{V}\right)+i h_{5}^{Z} g_{V}\left(s-m_{Z}^{2}\right) /\left(2 m_{Z}^{2}\right)\right), \tag{2.38}\\
a_{7} & =i\left(-h_{3}^{Z} g_{V}-h_{3}^{\gamma}+h_{5}^{Z} g_{V}\left(s-m_{Z}^{2}\right) /\left(2 m_{Z}^{2}\right)\right) . \tag{2.39}
\end{align*}
$$

These may be solved for v_{i}, a_{i} in terms of the h_{i}^{V}. The above relations hold at the amplitude level. In turn, the distributions generated by the v_{i}, a_{i} of the contact interactions would be indistinguishable from the distribution generated by the TGCs with coefficients obeying these equations. The TGCs being less in number than the contact interactions, when the
contact interactions come from TGCs, they obey constraints among themselves. These constraints can then be a test of whether the TGCs describe the full new physics or not.

3 Discrete symmetries of the BSM interactions

In order to study the properties of the different TGCs, by the construction of different asymmetries, we need to first understand the CP properties of various terms in the differential cross section. For completeness, we now provide a brief recapitulation of the discussion provided in the case of contact interactions [33, 34], which we now extend in the case of anomalous TGCs. Firstly, we consider the case of TP, for which we note the following relations:

$$
\begin{align*}
& \vec{P} \cdot \vec{k}_{1}=\frac{\sqrt{s}}{2}\left|\vec{k}_{1}\right| \cos \theta \tag{3.1}\\
& \left(\vec{P} \times \vec{s}_{-} \cdot \vec{k}_{1}\right)\left(\vec{s}_{+} \cdot \vec{k}_{1}\right)+\left(\vec{P} \times \vec{s}_{+} \cdot \vec{k}_{1}\right)\left(\vec{s}_{-} \cdot \vec{k}_{1}\right)=\frac{\sqrt{s}}{2}\left|\vec{k}_{1}\right|^{2} \sin ^{2} \theta \sin 2 \phi \tag{3.2}\\
& \left(\vec{s}-\vec{s}_{+}\right)\left(\vec{P} \cdot \vec{P} \vec{k}_{1} \cdot \vec{k}_{1}-\vec{P} \cdot \vec{k}_{1} \vec{P} \cdot \vec{k}_{1}\right)-2(\vec{P} \cdot \vec{P})\left(\vec{s}_{-} \cdot \vec{k}_{1}\right)\left(\vec{s}_{+} \cdot \vec{k}_{1}\right)=-\frac{s}{4}\left|\vec{k}_{1}\right|^{2} \sin ^{2} \theta \cos 2 \phi . \tag{3.3}
\end{align*}
$$

In the above equations, $\vec{P}=\frac{1}{2}\left(\vec{p}_{-}-\vec{p}_{+}\right)$, where p_{-}is the momentum of the electron, and p_{+} is the momentum of the positron. Moreover it is assumed that $\vec{s}_{+}=\vec{s}_{-}$; taking $\vec{s}_{+}=-\vec{s}_{-}$ would only give an overall negative sign for all the terms. Observing that the vector \vec{P} is C and P odd, that the photon momentum \vec{k}_{1} is C even but P odd, and that the spin vectors $\vec{s}_{ \pm}$are P even, and go into each other under C, we can immediately check that only the left-hand side (l.h.s.) of eq. (3.1) is CP odd, while the l.h.s. of eqs. (3.2) and (3.3) are CP even. Of all the above, only the l.h.s. of (3.2) is odd under naive time reversal T .

Many of these features can be explicitly checked from tables 3, 4: we see that the term $\cos \theta$ is accompanied by the CP violating couplings $h_{1}^{Z}, h_{2}^{Z}, h_{1}^{\gamma}, h_{2}^{\gamma}$, whereas the CP conserving couplings $h_{3}^{Z}, h_{4}^{Z}, h_{5}^{Z}, h_{3}^{\gamma}, h_{4}^{\gamma}, h_{5}^{\gamma}$ have no $\cos \theta$ dependence. It is known that invariance under CPT implies that terms with the right-hand side (r.h.s.) of (3.1) by itself, or multiplying the r.h.s. of eq. (3.3) would occur with absorptive (imaginary) parts of the form factors, whereas the r.h.s. of eq. (3.1) multiplied by the r.h.s. of eq. (3.2) would appear with dispersive (real) parts of the form factors. Therefore the imaginary part of the CP-odd terms always come with a factor of $\cos \theta$ or $\cos \theta \cos 2 \phi$ and the real parts are accompanied by the factor $\cos \theta \sin 2 \phi$. Similarly the imaginary part of the CP-even terms, which has no $\cos \theta$ dependence always come with a factor of $\sin 2 \phi$ and the real parts are either accompanied with the factor $\cos 2 \phi$ or no θ, ϕ dependence. The CPT dependence of the different anomalous couplings are used to construct the different asymmetries to be proposed and discussed in the next section.

As discussed in the earlier work [33,34], in case of the contact interactions (section 2.2), the coefficients of the combinations of couplings $r_{2}+r_{5}, r_{3}+r_{4}$, and of the coupling $r_{6},\left(r_{i}=\right.$ v_{i}, a_{i}) have a pure $\cos \theta$ dependence and are CP odd. On the other hand, the coefficients of r_{1} and of the remaining linearly independent combinations $r_{2}-r_{5}, r_{3}-r_{4},\left(r_{i}=v_{i}, a_{i}\right)$ have no $\cos \theta$ dependence. These combinations have been isolated by considering the tensors
accompanying the coefficients r_{i}. Keeping in mind the fact that under C $p_{+} \leftrightarrow p_{-}$and $k_{1,2} \leftrightarrow k_{1,2}$, these properties may be readily inferred from the form of the tensors for $i=1, \ldots, 6$. An analysis with the inclusion of r_{7} is more complicated. By construction, the r_{7} term has no straightforward transformation property under C . An analysis must include r_{6} and r_{7} jointly. Writing the r_{6} and r_{7} terms as $r_{6} \mathcal{O}_{6}+r_{7} \mathcal{O}_{7}$, where \mathcal{O}_{6} and \mathcal{O}_{7} are Dirac operators sandwiched between spinors, we can rewrite these terms as

$$
\left(r_{6}-r_{7}\right) \mathcal{O}_{6}+r_{7}\left(\mathcal{O}_{6}+\mathcal{O}_{7}\right)
$$

It may be verified $\left(\mathcal{O}_{6}+\mathcal{O}_{7}\right) \equiv\left(\gamma_{\alpha} k_{1 \beta}-\not{ }_{1} g_{\alpha \beta}+\not k_{1} \gamma_{\alpha} \gamma_{\beta}\right)$ is CP even. We conclude that while r_{6} accompanies a purely CP-odd operator \mathcal{O}_{6}, the operator multiplying r_{7} is in part CP odd (viz., $-\mathcal{O}_{6}$), and in part CP even $\left(\mathcal{O}_{6}+\mathcal{O}_{7}\right)$. Thus eqs. (2.31) and (2.32) and the corresponding eqs. (2.38) and (2.39) for the a 's are consistent with this, since $h_{3}^{Z, \gamma}$ and h_{5}^{Z} which are CP even contribute equally to r_{6} and r_{7}. This completes our discussion of the discrete symmetry properties of the BSM physics in the process.

In case of longitudinal polarization, apart from eq. (3.1), there is another CP-odd quantity, viz.,

$$
\begin{equation*}
\frac{1}{2}\left(\vec{s}_{-}+\vec{s}_{+}\right) \cdot \vec{k}_{1}=\left|\vec{k}_{1}\right| \cos \theta . \tag{3.4}
\end{equation*}
$$

While this is also proportional to $\cos \theta$ like (3.1), it is expected to appear with a factor $\left(P_{L}-\bar{P}_{L}\right)$ multiplying it. It is also CPT odd, and would therefore occur with the absorptive parts of form factors. With all these considerations in view, we now embark on the task of constructing suitable asymmetries to isolate the anomalous TGCs which is the aim of the next section.

4 Angular asymmetries for anomalous TGCs

In earlier studies, several asymmetries were considered to isolate the effects of contact interactions. Since, in this work we do not extend that sector, except for the couplings v_{7} and a_{7}, we will be primarily concerned with the task of isolating the anomalous TGCs, which form the main focus of our study. Contact interactions have been brought in for making a correspondence and showing that TGCs do not exhaust all possibilities. The angular distributions defined in tables $2,3,4$, involve several different functions of θ and ϕ, such as $\sin 2 \phi, \sin 2 \phi \cos \theta, \sin 2 \phi \sin \theta, \cos 2 \phi, \cos 2 \phi \cos \theta$ etc. We next formulate different angular asymmetries which can be used to determine or disentangle the different linear combinations of the anomalous couplings. For all our calculations we have assumed a cutoff θ_{0} on the polar angle θ of the photon in the forward and backward directions in order to stay away from the beam pipe. This cut-off may be chosen to optimize the sensitivity of the measurement.

We first present the case of transverse polarization where we have considered both CP-odd and CP-even asymmetries so as to determine the anomalous couplings. The asymmetries defined in general are an appropriate asymmetry in $\phi, A_{i 2}, i=1,2,3,4$, and the same ϕ asymmetry combined with a forward-backward asymmetry in $A_{i 1}, i=1,2,3$. The forward-backward asymmetry in $A_{i 1}$ isolates terms with a θ dependence of $\cos \theta$, i.e., it
is a CP-odd asymmetry, whereas $A_{i 2}$ isolates θ dependence which is either trivial, or proportional to $\sin \theta$. The asymmetry $A_{i 2}$ is sensitive to the CP-even couplings. The CP-odd asymmetries are defined as follows: ${ }^{3}$

$$
\begin{align*}
& A_{11}\left(\theta_{0}\right)=\frac{1}{\sigma^{S M}} \sum_{n=0}^{3}(-1)^{n}\left(\int_{-\cos \theta_{0}}^{0} d \cos \theta-\int_{0}^{\cos \theta_{0}} d \cos \theta\right) \int_{\pi n / 2}^{\pi(n+1) / 2} d \phi \frac{d \sigma}{d \Omega}, \tag{4.1}\\
& A_{21}\left(\theta_{0}\right)=\frac{1}{\sigma^{S M}} \sum_{n=0}^{3}(-1)^{n}\left(\int_{-\cos \theta_{0}}^{0} d \cos \theta-\int_{0}^{\cos \theta_{0}} d \cos \theta\right) \int_{\pi(2 n-1) / 4}^{\pi(2 n+1) / 4} d \phi \frac{d \sigma}{d \Omega}, \tag{4.2}\\
& A_{31}\left(\theta_{0}\right)=\frac{1}{\sigma^{S M}}\left(\int_{-\cos \theta_{0}}^{0} d \cos \theta-\int_{0}^{\cos \theta_{0}} d \cos \theta\right)\left(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \phi \frac{d \sigma}{d \Omega}+\int_{\frac{3 \pi}{4}}^{\frac{5 \pi}{4}} d \phi \frac{d \sigma}{d \Omega}\right), \tag{4.3}
\end{align*}
$$

whereas the CP-even asymmetries are ${ }^{4}$

$$
\begin{align*}
& A_{12}\left(\theta_{0}\right)=\frac{1}{\sigma^{S M}} \sum_{n=0}^{3}(-1)^{n} \int_{-\cos \theta_{0}}^{\cos \theta_{0}} d \cos \theta \int_{\pi n / 2}^{\pi(n+1) / 2} d \phi \frac{d \sigma}{d \Omega}, \tag{4.4}\\
& A_{22}\left(\theta_{0}\right)=\frac{1}{\sigma^{S M}} \sum_{n=0}^{3}(-1)^{n} \int_{-\cos \theta_{0}}^{\cos \theta_{0}} d \cos \theta \int_{\pi(2 n-1) / 4}^{\pi(2 n+1) / 4} d \phi \frac{d \sigma}{d \Omega}, \tag{4.5}\\
& A_{32}\left(\theta_{0}\right)=\frac{1}{\sigma^{S M}} \int_{-\cos \theta_{0}}^{\cos \theta_{0}}\left(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \phi \frac{d \sigma}{d \Omega}+\int_{\frac{3 \pi}{4}}^{\frac{5 \pi}{4}} d \phi \frac{d \sigma}{d \Omega}\right), \tag{4.6}
\end{align*}
$$

with

$$
\begin{equation*}
\sigma^{S M} \equiv \sigma^{S M}\left(\theta_{0}\right)=\int_{-\cos \theta_{0}}^{\cos \theta_{0}} d \cos \theta \int_{0}^{2 \pi} d \phi \frac{d \sigma s M}{d \Omega} \tag{4.7}
\end{equation*}
$$

The choice of the asymmetries is such that each asymmetry isolates a particular form of angular dependence. For instance in the asymmetry A_{12}, only the terms proportional to $\sin 2 \phi$ or $\sin 2 \phi \sin \theta$ survive, whereas in case of A_{11} it is the $\sin 2 \phi \cos \theta$ terms which survive. The terms proportional to $\sin 2 \phi$ or $\sin 2 \phi \sin \theta$ are CPT odd and appear with the imaginary part of the anomalous couplings whereas the $\sin 2 \phi \cos \theta$ terms are CPT even and appear with the real part of the anomalous couplings, as discussed in section 3. The SM contribution to $A_{11,12}$ is zero, since, as can be seen from eq. (2.16), it has no $\sin 2 \phi$ terms. Therefore the observation of either of these asymmetries at the ILC will point towards contribution from anomalous couplings. Similarly A_{22} has terms proportional to $\cos 2 \phi$ and $\cos 2 \phi \sin \theta$ and A_{21} has $\cos 2 \phi \cos \theta$ dependence. It can be argued like before that the SM contribution to A_{21} will be zero and A_{22} will occur with the real parts of the anomalous couplings whereas A_{21} will receive contribution from the imaginary parts. It can be checked that the other asymmetries $A_{31,32}$ contain terms which are not proportional to the transverse polarization.

[^1]We present below the dependence of the asymmetries on the various anomalous couplings. The CP-odd asymmetries are given by

$$
\begin{align*}
A_{11}\left(\theta_{0}\right)= & \mathcal{B}^{\prime}{ }_{T} g_{A} P_{T} \bar{P}_{T}(\bar{s}-1) \cos ^{2} \theta_{0}\left(\bar{s} \operatorname{Reh}_{2}^{\gamma}-2 \operatorname{Reh}_{1}^{\gamma}\right), \tag{4.8}\\
A_{21}\left(\theta_{0}\right)= & \mathcal{B}^{\prime}{ }_{T} P_{T} \bar{P}_{T}(-1+\bar{s}) \cos ^{2} \theta_{0}\left(2 \operatorname{Im} h_{1}^{Z}\left(g_{V}^{2}-g_{A}^{2}\right)+2 \operatorname{Im} h_{1}^{\gamma} g_{V}\right. \\
& \left.+\left(\operatorname{Im} h_{2}^{Z}\left(g_{A}^{2}-g_{V}^{2}\right)-g_{V} \operatorname{Im} h_{2}^{\gamma}\right) \bar{s}\right), \tag{4.9}\\
A_{31}\left(\theta_{0}\right)= & \frac{\mathcal{B}^{\prime}{ }_{T}}{4}(\bar{s}-1) \cos ^{2} \theta_{0}\left\{-g_{V}\left(\pi-2 P_{T} \bar{P}_{T}\right)\left(2 \operatorname{Im} h_{1}^{\gamma}-\bar{s} \operatorname{Im} h_{2}^{\gamma}\right)\right. \\
& \left.-\left[g_{V}^{2}\left(\pi-2 P_{T} \bar{P}_{T}\right)+g_{A}^{2}\left(\pi+2 P_{T} \bar{P}_{T}\right)\right]\left(2 \operatorname{Im} h_{1}^{Z}-\bar{s} \operatorname{Im} h_{2}^{Z}\right)\right\}, \tag{4.10}
\end{align*}
$$

and the CP-even asymmetries by

$$
\begin{align*}
A_{12}\left(\theta_{0}\right)= & 2 \mathcal{B}_{T}^{\prime} P_{T} \bar{P}_{T}(\bar{s}-1)\left(g_{V}\left(-2 \operatorname{Im} h_{3}^{\gamma}+\bar{s} \operatorname{Im} h_{4}^{\gamma}\right)\right. \\
& \left.+\left(\operatorname{Im} h_{5}^{Z}(\bar{s}+1)+2 \operatorname{Im} h_{3}^{Z}-\bar{s} \operatorname{Im} h_{4}^{Z}\right)\left(g_{A}^{2}-g_{V}^{2}\right)\right) \cos \theta_{0}, \tag{4.11}\\
A_{22}\left(\theta_{0}\right)= & 2 \mathcal{B}^{\prime}{ }_{T} P_{T} \bar{P}_{T} \cos \theta_{0}\left(4\left(g_{A}^{2}-g_{V}^{2}\right)+g_{A}(\bar{s}-1)\left(\bar{s} \operatorname{Re} h_{4}^{\gamma}-2 \operatorname{Re} h_{3}^{\gamma}\right)\right) \tag{4.12}\\
A_{32}\left(\theta_{0}\right)= & -\frac{\mathcal{B}^{\prime}{ }_{T}}{2}\left[\left\{4\left(g_{V}^{2}\left(\pi+2 P_{T} \bar{P}_{T}\right)+g_{A}^{2}\left(\pi-2 P_{T} \bar{P}_{T}\right)\right)\right.\right. \\
& +g_{A}\left[-2 P_{T} \bar{P}_{T}(\bar{s}-1)\left(\bar{s} \operatorname{Re} h_{4}^{\gamma}-2 \operatorname{Re} h_{3}^{\gamma}\right)+\pi\left(-\bar{s}(\bar{s}-1) \operatorname{Re} h_{4}^{\gamma}+2(\bar{s}+1) \operatorname{Re} h_{3}^{\gamma}\right.\right. \\
& \left.\left.\left.+2 g_{V}\left[\operatorname{Re} h_{5}^{Z}+2 \operatorname{Re} h_{3}^{Z}(\bar{s}+1)+\bar{s}\left\{\operatorname{Re} h_{4}^{Z}(1-\bar{s})+\operatorname{Reh} h_{5}^{Z}(6+\bar{s})\right\}\right]\right)\right]\right\} \cos \theta_{0} \\
& \left.+4 \pi \mathcal{A}_{T} \frac{1+\bar{s}^{2}}{(\bar{s}-1)^{2}} \log \left(\frac{1-\cos \theta_{0}}{1+\cos \theta_{0}}\right)\right], \tag{4.13}
\end{align*}
$$

where $\mathcal{B}^{\prime}{ }_{T}=\mathcal{B}_{T} / \sigma^{S M}\left(\theta_{0}\right)$, and

$$
\begin{equation*}
\sigma^{S M}\left(\theta_{0}\right)=4 \pi \mathcal{A}_{T} \mathcal{B}_{T}\left[\frac{1+\bar{s}^{2}}{(\bar{s}-1)^{2}} \log \left(\frac{1+\cos \theta_{0}}{1-\cos \theta_{0}}\right)-\cos \theta_{0}\right] . \tag{4.14}
\end{equation*}
$$

We have also considered a CP-odd asymmetry in the presence of longitudinal polarization, which is proportional to $\cos \theta$. It is shown in section 3 , eqs. (3.1), (3.4) that the term proportional to $\cos \theta$ is CPT odd and would therefore always occur with the imaginary part of the anomalous couplings. The asymmetry is a forward-backward asymmetry

$$
\begin{equation*}
A^{L P}\left(\theta_{0}\right)=\frac{1}{\sigma_{L P}^{S M}}\left(\int_{-\cos \theta_{0}}^{0} d \cos \theta-\int_{0}^{\cos \theta_{0}} d \cos \theta\right) \int_{0}^{2 \pi} d \phi \frac{d \sigma}{d \Omega}, \tag{4.15}
\end{equation*}
$$

with the form

$$
\begin{align*}
A^{L P}\left(\theta_{0}\right)= & \frac{\mathcal{B}^{\prime}{ }_{L} \pi}{2}(\bar{s}-1) \cos ^{2} \theta_{0}\left(-2\left[\left(g_{V}-P g_{A}\right) \operatorname{Im} h_{1}^{\gamma}+\mathcal{A}_{L} \operatorname{Im} h_{1}^{Z}\right]\right. \\
& \left.+\left[\left(g_{V}-P g_{A}\right) \operatorname{Im} h_{2}^{\gamma}+\mathcal{A}_{L} \operatorname{Im} h_{2}^{Z}\right] \bar{s}\right), \tag{4.16}
\end{align*}
$$

where $\mathcal{B}^{\prime}{ }_{L}=\mathcal{B}_{L} / \sigma_{L P}^{S M}\left(\theta_{0}\right)$. In the presence of longitudinal polarization, \mathcal{B}_{T} is replaced by $\mathcal{B}_{L}\left(1-P_{L} \bar{P}_{L}\right)$ and \mathcal{A}_{T} is replaced by \mathcal{A}_{L} in eq. (4.14) for $\sigma_{L P}^{S M}\left(\theta_{0}\right)$.

In the next section we evaluate these asymmetries numerically and investigate what limits on couplings may be expected by an experimental study of the asymmetries.

Figure 2. The unpolarized $S M$ cross section $\sigma^{S M}\left(\theta_{0}\right)$ defined in eq. (4.14) as a function of the cut-off angle θ_{0} at $\sqrt{s}=1000 \mathrm{GeV}$.

5 Numerical analysis

The asymmetries listed above receive contributions from combinations of the couplings. In this analysis we have summed over all the decay modes of the final state Z boson. Since the number of different types of terms in the angular distribution is not large, it will not be possible to disentangle the effects of all the anomalous couplings, without a full-fledged fit to the distributions. The presence of all of them at the same time will make the numerical analysis complicated. We have therefore estimated possible 95% CL limits on the couplings assuming only one coupling to be non-zero at a time. For our discussion we have assumed $\sqrt{s}=1000 \mathrm{GeV}$, along with $\int \mathcal{L} d t=1000 \mathrm{fb}^{-1}$. The magnitudes of electron and positron polarization are taken to be 0.8 and 0.2 respectively. The results are also presented for \sqrt{s} $=500 \mathrm{GeV}, \int \mathcal{L} d t=500 \mathrm{fb}^{-1}$ and the magnitudes of electron and positron polarization to be 0.8 and 0.3 respectively The ILC input parameters on the luminosity and the beam polarizations are chosen in accordance with the one listed in [1]. When an asymmetry arises only in the presence of BSM the 95% CL limits on the coupling, denoted by $\mathcal{C}_{\text {lim }}$, is related to the value A of the generic asymmetry for unit value of the anomalous coupling by

$$
\begin{equation*}
\mathcal{C}_{\lim } \equiv \frac{1.96}{|A| \sqrt{N_{S M}}} \tag{5.1}
\end{equation*}
$$

where $N_{S M}$ is the number of SM events. The coefficient 1.96 may be obtained from statistical tables for hypothesis testing with one estimator; see, e.g., table 36.1 of ref. [39].

We present here our results for the best limits obtainable on the anomalous couplings from various asymmetries. Since the anomalous couplings with $\sin 2 \phi$ dependence give nonzero contribution for the asymmetries $A_{11,12}$, we present our results for this case. Along with it we also consider the asymmetries $A^{L P}, A_{31}, A_{32}$. We show in figure 2 the SM cross section, with a cut-off θ_{0} in the forward and backward directions, as a function of θ_{0}.

In case of the longitudinal polarization, we have considered the forward-backward asymmetry. It can be seen from eq. (4.16) that the SM contribution is equal to zero and the couplings which contribute are $\operatorname{Im} h_{1,2}^{\gamma}$ and $\operatorname{Im} h_{1,2}^{Z}$. The coefficient of $\operatorname{Im} h_{1}^{\gamma}$ and Im

Figure 3. The asymmetry $A^{L P}\left(\theta_{0}\right)$ defined in eq. (4.16) as a function of the cut-off angle θ_{0} for the various couplings at $\sqrt{s}=$ 1000 GeV , with $P_{L}=-0.8$ and $\bar{P}_{L}=0.2$.

Figure 4. The 95% CL limits, eq. (5.1) on the anomalous couplings from $A^{L P}\left(\theta_{0}\right)$, as a function of the cut-off angle θ_{0} at $\sqrt{s}=$ 1000 GeV , for $\int \mathcal{L} d t=1000 \mathrm{fb}^{-1}$, with P_{L} $=-0.8$ and $\bar{P}_{L}=0.2$.
h_{2}^{γ} are dependent on the choice of beam polarization. For example, for a choice of beam polarization, $P_{L}=-0.8$ and $\bar{P}_{L}=0.6$, the coefficients $\left(g_{V}-P g_{A}\right)$ and \mathcal{A}_{L} are almost the same apart from a minus sign. Therefore the behaviour of the coefficients of $\left|I m h_{1}^{\gamma}\right|$ and $\left|I m h_{1}^{Z}\right|$ will be the same. They will however behave differently with unpolarized beams but with less sensitivity. We here present our results for $P_{L}=-0.8$ and $\bar{P}_{L}=0.2$. Figure 3 shows the asymmetry $A^{L P}\left(\theta_{0}\right)$ as a function of the cut-off angle θ_{0}, with the assumption of only one anomalous coupling being present at a time. We have next shown in figure 4 the 95% CL limits that can be obtained on these couplings from the asymmetry. It can be seen from figure 4 that the limit is almost independent of the cut-off angle θ_{0} for the range $20^{\circ}<\theta_{0}<40^{\circ}$. We consider an optimal value of 30°, with the sensitivity on $\operatorname{Im} h_{1}^{\gamma}$ and $\operatorname{Im} h_{1}^{Z}$ being 4.09×10^{-4} and 3.37×10^{-4}. The sensitivity of the couplings $\operatorname{Im} h_{2}^{\gamma}$ and Im h_{2}^{Z} from the asymmetry $A^{L P}$ is obtained to be 6.78×10^{-6} and 5.57×10^{-6}.

We next consider the asymmetries $A_{11,12}\left(\theta_{0}\right)$, which are dependent on a different set of couplings. We would like to repeat that the SM contribution to these asymmetries is zero. We plot in figures 5 and 6 the various asymmetries as a function of the cut-off angle θ_{0}. Each coupling is set to a value such that the linear approximation holds good while the other couplings are set to zero. The 95% CL limits obtained on the various couplings from these asymmetries are next shown in figures 7 and 8 . Analogous to the previous case, we see that the limits obtained are independent of θ_{0} in the range $20^{\circ}<\theta_{0}<40^{\circ}$ in the case of $A_{11}\left(\theta_{0}\right)$. We again consider the optimal value of 30°, with $\operatorname{Re} h_{1}^{\gamma}<3.82 \times 10^{-3}$ and Re $h_{2}^{\gamma}<6.33 \times 10^{-5}$. In case of $A_{12}\left(\theta_{0}\right)$, as can be seen from figure 8 , the limits on $\operatorname{Im} h_{3,4}^{\gamma}$ and $\operatorname{Im} h_{3}^{Z}$ have stable values over a wide range of $20^{\circ}<\theta_{0}<60^{\circ}$, with the respective limits being $\operatorname{Im} h_{3}^{\gamma}<1.97 \times 10^{-2}, \operatorname{Im} h_{4}^{\gamma}<3.26 \times 10^{-4}$ and $\operatorname{Im} h_{3}^{Z}<1.59 \times 10^{-3}$. The best limit on $\operatorname{Im} h_{4,5}^{Z}$ is 2.63×10^{-5} for $\theta_{0}=40^{\circ}$.

Finally, we present our results for the asymmetries $A_{31,32}\left(\theta_{0}\right)$. The asymmetry $A_{31}\left(\theta_{0}\right)$ as a function of θ_{0}, for the various couplings is shown in figure 9 , with the 95% CL limits on the couplings from this asymmetry shown in figure 10 . The asymmetry $A_{32}\left(\theta_{0}\right)$ contains

Figure 5. The asymmetry $A_{11}\left(\theta_{0}\right)$ defined in eq. (4.8) as a function of the cut-off angle θ_{0} for the various couplings at $\sqrt{s}=$ 1000 GeV , with $P_{T}=0.8$ and $\bar{P}_{T}=0.2$.

Figure 7. The 95% CL limits on the anomalous couplings from $A_{11}\left(\theta_{0}\right)$, as a function of the cut-off angle θ_{0} at $\sqrt{s}=1000 \mathrm{GeV}$, for $\int \mathcal{L} d t=1000 \mathrm{fb}^{-1}$, with $P_{T}=0.8$ and \bar{P}_{T} $=0.2$.

Figure 6. The asymmetry $A_{12}\left(\theta_{0}\right)$ defined in eq. (4.11) as a function of the cut-off angle θ_{0} for the various couplings, with the input parameters as given in the caption of figure 5 .

Figure 8. The 95% CL limits on the anomalous couplings from $A_{12}\left(\theta_{0}\right)$, as a function of the cut-off angle θ_{0}, with the input parameters as given in the caption of figure 7 .
the SM contribution $A_{32}^{S M}\left(\theta_{0}\right)$ in addition to the contribution from anomalous couplings, so we only plot the contribution from the anomalous couplings defined as $A_{32}^{\prime}\left(\theta_{0}\right)=\mid A_{32}\left(\theta_{0}\right)-$ $A_{32}^{S M}\left(\theta_{0}\right) \mid$. We then determine the individual $95 \% \mathrm{CL}$ limits on the couplings from $A_{32}\left(\theta_{0}\right)$, using the expression

$$
\begin{equation*}
\mathcal{C}_{\lim } \equiv \frac{1.96 \sqrt{1-\left(A_{32}^{S M}\right)^{2}}}{\left|A_{32}^{\prime}\right| \sqrt{N_{S M}}} \tag{5.2}
\end{equation*}
$$

where A_{32}^{\prime} in the denominator is the value of $A_{32}^{\prime}\left(\theta_{0}\right)$ for unit value of the coupling. This is the analogue of eq. (5.1), when there is an SM contribution to the asymmetry which has to be accounted for in obtaining the sensitivity. The SM contribution to the asymmetry $A_{32}\left(\theta_{0}\right)$ is shown in figure 11, and the additional contribution to $A_{32}\left(\theta_{0}\right)$, due to the different couplings apart from the SM, defined as $A_{32}^{\prime}\left(\theta_{0}\right)$ is shown in figure 12 . The 95% CL limits

Figure 9. The asymmetry $A_{31}\left(\theta_{0}\right)$ defined in eq. (4.10) as a function of the cut-off angle θ_{0} for the various couplings, with the input parameters as given in the caption of figure 5 .

Figure 11. The SM dependent part $A_{32}^{S M}\left(\theta_{0}\right)$ of the asymmetry $A_{32}\left(\theta_{0}\right)$ as a function of the cut-off angle θ_{0}, with the input parameters as given in the caption of figure 5 .

Figure 10. The 95\% CL limits on the anomalous couplings from $A_{31}\left(\theta_{0}\right)$, as a function of the cut-off angle θ_{0}, with the input parameters as given in the caption of figure 7 .

Figure 12. The asymmetry $A_{32}^{\prime}\left(\theta_{0}\right)$ as a function of the cut-off angle θ_{0} for the various couplings, with the input parameters as given in the caption of figure 5 .
obtained on the couplings contributing to $A_{32}\left(\theta_{0}\right)$ from eq. (5.2) is shown in figure 13 . We only present the result for this case, because the couplings which enter $A_{21,22}\left(\theta_{0}\right)$ are also present in $A_{31,32}\left(\theta_{0}\right)$. It can be seen from eq. (4.9), that $A_{21}\left(\theta_{0}\right)$ receives contribution from the couplings $\operatorname{Im} h_{1,2}^{Z}$ and $\operatorname{Im} h_{1,2}^{\gamma}$, whereas $\operatorname{Re} h_{3,4}^{\gamma}$ contributes to $A_{22}\left(\theta_{0}\right)$, eq. (4.12). As these anomalous couplings also contribute to the other asymmetries, and we have checked that the individual limits obtained on these couplings from these asymmetries are of the same order or better than the individual limits obtained from $A_{21,22}\left(\theta_{0}\right)$. Therefore we do not show the results for these asymmetries, but we list in tables the individual limits obtained in this case. Moreover in order to show the dependence of the limits on \sqrt{s}, we have shown in tables $6,7,8,9,10,11$ the individual limits obtained on the anomalous couplings from the various asymmetries at $\sqrt{s}=500(1000) \mathrm{GeV}$, for $\int \mathcal{L} d t=$ $500(1000) \mathrm{fb}^{-1}$. The results are presented for both the longitudinal and transverse cases,

Figure 13. The 95% CL limits on the anomalous couplings from $A_{32}^{\prime}\left(\theta_{0}\right)$, as a function of the cut-off angle θ_{0}, with the input parameters as given in the caption of figure 7 .

	$A^{L P}\left(\theta_{0}\right)$	
Coupling	500 GeV	1000 GeV
Im h_{1}^{Z}	9.92×10^{-4}	3.37×10^{-4}
$\operatorname{Im} h_{1}^{\gamma}$	1.18×10^{-3}	4.09×10^{-4}
Im h_{2}^{Z}	6.66×10^{-5}	5.57×10^{-6}
$\operatorname{Im} h_{2}^{\gamma}$	7.81×10^{-5}	6.78×10^{-6}

Table 6. The limits on the couplings from the asymmetry $A^{L P}\left(\theta_{0}\right)$, at $\sqrt{s}=500(1000) \mathrm{GeV}$, for $\int \mathcal{L} d t=500(1000) \mathrm{fb}^{-1}$ and $P_{L}=-0.8(-0.8), \bar{P}_{L}=0.3(0.2)$.

	$A_{11}\left(\theta_{0}\right)$	
$\sqrt{s}(\mathrm{GeV})$	$\operatorname{Re} h_{1}^{\gamma}$	$\operatorname{Re} h_{2}^{\gamma}$
500	9.12×10^{-3}	5.15×10^{-4}
1000	3.82×10^{-3}	6.33×10^{-5}

Table 7. The limits on the couplings from the asymmetry $A_{11}\left(\theta_{0}\right)$, at $\sqrt{s}=500(1000) \mathrm{GeV}$, for $\int \mathcal{L} d t=500(1000) \mathrm{fb}^{-1}$ and $P_{T}=0.8(0.8), \bar{P}_{T}=0.3$ (0.2).
and we have considered the magnitudes of electron and positron polarization to be 0.8 (0.8) and $0.3(0.2)$ respectively [1]. We find that the limits obtained with $\sqrt{s}=500 \mathrm{GeV}$ are worse than the one obtained with $\sqrt{s}=1000 \mathrm{GeV}$. Since the polarization and the integrated luminosity are different for these two different energies, we have also carried out an independent check, where we keep all the parameters same apart from \sqrt{s}. We find that the limits obtained get better with the increase in \sqrt{s}.

6 Discussion and conclusions

The gauge sector of the SM is one of the key corners which can provide a window into BSM physics. It has been one that has been studied extensively in the literature. It has also been probed to high precision at the LEP as well as at the LHC and Fermilab experiments.

	$A_{12}\left(\theta_{0}\right)$				
$\sqrt{s}(\mathrm{GeV})$	$\operatorname{Im} h_{3}^{\gamma}$	$\operatorname{Im} h_{4}^{\gamma}$	$\operatorname{Im} h_{3}^{Z}$	$\operatorname{Im} h_{4}^{Z}$	$\operatorname{Im} h_{5}^{Z}$
500	4.02×10^{-2}	2.65×10^{-3}	3.23×10^{-3}	2.14×10^{-4}	2.08×10^{-4}
1000	1.97×10^{-2}	3.26×10^{-4}	1.59×10^{-3}	2.63×10^{-5}	2.61×10^{-5}

Table 8. Table of limits on couplings obtainable at the ILC with the machine and operating parameters given in the caption of table 7 for the asymmetry $A_{12}\left(\theta_{0}\right)$.

	$A_{21}\left(\theta_{0}\right)$			
$\sqrt{s}(\mathrm{GeV})$	$\operatorname{Im} h_{1}^{\gamma}$	$\operatorname{Im} h_{2}^{\gamma}$	$\operatorname{Im} h_{1}^{Z}$	$\operatorname{Im~} h_{2}^{Z}$
500	9.71×10^{-2}	6.43×10^{-3}	7.82×10^{-3}	5.18×10^{-4}
1000	4.78×10^{-2}	7.92×10^{-4}	3.84×10^{-3}	6.37×10^{-5}

Table 9. Table of sensitivities obtainable at the ILC with the machine and operating parameters given in the caption of table 7 for the asymmetry $A_{21}\left(\theta_{0}\right)$.

	$A_{22}\left(\theta_{0}\right)$	
$\sqrt{s}(\mathrm{GeV})$	$\operatorname{Re} h_{3}^{\gamma}$	$\operatorname{Re} h_{4}^{\gamma}$
500	3.01×10^{-3}	2.14×10^{-4}
1000	1.55×10^{-3}	2.61×10^{-5}

Table 10. Table of sensitivities obtainable at the ILC with the machine and operating parameters given in the caption of table 7 for the asymmetry $A_{22}\left(\theta_{0}\right)$.

	$A_{31}\left(\theta_{0}\right)$		$A_{32}\left(\theta_{0}\right)$					
$\sqrt{s}(\mathrm{GeV})$	$\operatorname{Im} h_{1}^{Z}$	$\operatorname{Im} h_{2}^{Z}$	$\operatorname{Re} h_{3}^{Z}$	$\operatorname{Re} h_{4}^{Z}$	$\operatorname{Re} h_{5}^{Z}$			
500	2.06×10^{-3}	1.41×10^{-4}	4.82×10^{-3}	3.41×10^{-4}	2.77×10^{-4}			
1000	7.03×10^{-4}	1.08×10^{-5}	1.67×10^{-3}	2.81×10^{-5}	2.66×10^{-5}			
\sqrt{s}	$\operatorname{Im} h_{1}^{\gamma}$	$\operatorname{Im} h_{2}^{\gamma}$	$\operatorname{Re~} h_{3}^{\gamma}$	$\operatorname{Re} h_{4}^{\gamma}$				
500	3.50×10^{-2}	2.06×10^{-3}	6.75×10^{-4}	4.74×10^{-5}				
1000	1.08×10^{-2}	1.79×10^{-4}	2.43×10^{-4}	4.08×10^{-6}				

Table 11. Table of limits on couplings obtainable at the ILC with the machine and operating parameters given in the caption of table 7 for the asymmetries $A_{31}\left(\theta_{0}\right)$ and $A_{32}\left(\theta_{0}\right)$.

Anomalous triple gauge boson couplings constitute an interesting and important modelindependent method by which BSM physics has been introduced. Another less popular but equally compelling method is to introduce BSM physics through contact interactions. In fact, this latter has not received sufficient attention in the literature.

One of the missions of the present work is to explore whether anomalous TGCs capture all the essence of BSM physics, or whether one needs to go beyond that. Before embarking on this, we first asked ourselves if the anomalous TGCs considered in the literature are exhaustive or not. It turns out, surprisingly, that from the considerations of Bose symmetry, gauge invariance, etc., it is possible to generate a term that has not been found in the
literature. One of the reasons could be that this term is not one that is invariant under the symmetry $Z \leftrightarrow \gamma$. We find a $Z Z \gamma$ coupling, while there is no analogous $Z \gamma \gamma$ term.

LHC experiments obtain bounds on TGCs by looking at the transverse momentum spectrum of the photon. Since the photon energy spectrum has similar sensitivities to CP-violating and CP-conserving couplings, the LHC cannot discriminate between these couplings. Their results are interpreted in terms of the CP-conserving couplings.

The CP-violating couplings $h_{1,2}^{Z, \gamma}$ can be bounded by studying CP-violating asymmetries, the simplest being the forward-backward asymmetry of the photon in the type of experiments performed at Tevatron. The corresponding effect in $e^{+} e^{-} \rightarrow \gamma Z$ was studied in [12]. We have carried out a detailed numerical study of the implications of such BSM physics. We have considered a list of asymmetries, in the presence of both transverse and longitudinal polarization so as to give individual limits on the CP-conserving and the CP-violating couplings. These asymmetries will help to discriminate between the CP-conserving and the CP-violating couplings. Moreover we find that the limits obtained on the TGCs from the various asymmetries will be better than those obtained from the current LHC limits, and will improve with \sqrt{s}. In the presence of LP at $\sqrt{s}=1000 \mathrm{GeV}$, we find the limits $\operatorname{Im} h_{1}^{Z}<3.37 \times 10^{-4}, \operatorname{Im} h_{1}^{\gamma}<4.09 \times 10^{-4}$, $\operatorname{Im} h_{2}^{Z}<5.57 \times 10^{-6}$ and Im $h_{2}^{\gamma}<6.78 \times 10^{-6}$. The limits on the other anomalous couplings are obtained in the presence of TP and are listed in section 5 as well as in tables $7,8,9,10,11$.

Indeed the current limits from the LHC are based on the subset of data from Run 1, i.e. at \sqrt{s} of 7 and 8 TeV . There is now the distinct possibility of the High Luminosity LHC (HL-LHC), in the not so distant future, with the luminosity of the LHC increased by a factor of 10 , beyond its design value [40, 41]. It is expected that this high luminosity collider will give better limits on the anomalous couplings than the existing LHC limits, but right now there are no quantitative estimates of how they will compare with estimates for the ILC.

The two dimension-8 anomalous couplings pertaining to the $Z Z \gamma$ vertex, $h_{4,5}^{Z}$ show similar behaviour in case of the various asymmetries. At a fixed energy, it turns out that the distributions are such that the angular behaviour is the same. This is true in the case considered in this work, which is one where the polarization of the two final-state bosons is summed over. It is therefore important to discuss the matter of discriminating between these two anomalous couplings. If it is possible to have an energy scan at the ILC, then the energy dependence would reveal whether the BSM physics is due to h_{4}^{Z} or due to h_{5}^{Z}.

Alternatively, as in our previous work [22], if the spin of the Z is resolved, it is likely to lead to a situation where one may be able to discriminate between the two sources, since the vertices are actually different. It is clear from table 1 that the two-index tensor $\Gamma_{\alpha \beta}^{Z}$ is different for h_{4}^{Z} and h_{5}^{Z}. Summing over polarizations leads to the same θ and ϕ distributions. Therefore, in order to probe the full tensor structure, it is necessary to resolve the spin(s) of the boson(s). The Z polarization vector, when contracted with the h_{4}^{Z} term in eq. (2.2) or the h_{2}^{γ} term in eq. (2.3), gives a factor $q \cdot \epsilon\left(k_{2}\right)$. In the centre-of-mass frame, q has only the time component, whereas for transverse polarization, $\epsilon\left(k_{2}\right)$ has no time component, the corresponding amplitude vanishes. So only longitudinal polarization for Z contributes to h_{4}^{Z} (or h_{4}^{γ}). On the other hand, both longitudinal and transverse Z polarizations would
survive for the h_{5}^{Z} term. It is thus plausible that observing Z polarization can distinguish between h_{4}^{Z} and h_{5}^{Z}. This is beyond the scope of the present work.

In order to carry out a detailed comparison, we started out by reducing the familiar set of contact interactions to the anomalous TGCs. While the TGCs in the case of CP-conserving interactions were expressed in terms of Levi-Civita terms, and the contact interactions without, we had to carry out a detailed exercise to carry out the comparison. We have established a relation between these two approaches. While doing the analysis we found that a triple gamma term $\left(r_{7}\right)$ which has appeared only once in the literature plays a definitive role. We also found that r_{7} has no definite CP transformation property, i.e. the operator multiplying r_{7} is partly CP odd and partly CP even. Our conclusions are that anomalous TGC terms do not exhaust all possible distributions that can be generated by contact interactions.

Although our work is motivated by the immediate goal of finding a detailed physics programme for the ILC, it has a more general import. These may be listed as follows:
(a) A general analysis of the physics of gauge bosons in a model-independent manner, subject only to the constraints of gauge invariance and Lorentz invariance. This is obviously of importance also to the LHC.
(b) It is of importance to the Compact Linear Collider (CLIC) [42] which also requires a dedicated physics programme, lot of which would be common to the ILC. In the coming years, many of these analyses could be done for CLIC energies and polarization. There would be many distinguishing features between the two as regards the detector capabilities, which are beyond the scope for the present paper.

Acknowledgments

SDR thanks the Department of Science and Technology, Government of India, for support under the J.C. Bose National Fellowship program, grant no. SR/SB/JCB-42/2009. SDR also thanks Prof. Debajyoti Choudhury for interesting discussions and collaboration at early stages of this project. MP thanks Physical Research Laboratory, Ahmedabad for its hospitality where part of this work was done.

A Conversion of anomalous TGCs involving the Levi-Civita symbol

As can be seen from table 1, some of the anomalous TGC couplings involve the LeviCivita symbol. The contact interactions discussed in refs. [33, 34] however do not involve these symbols. Therefore it will be useful to convert the Levi-Civita symbols to a form equivalent to that used for contact interactions only involving the momentum four vectors and the Dirac matrices. We therefore present below a derivation of simplified forms for the anomalous couplings involving $h_{3,4,5}^{V}$ containing Levi-Civita symbols.

Firstly we would like to observe that the q terms, occurring singly, can be dropped, because they give 0 on using the Dirac equation for the electron and positron spinors:

$$
\begin{equation*}
\bar{v}\left(p_{+}\right) q u\left(p_{-}\right)=\bar{v}\left(p_{+}\right)\left(\not p_{-}+\not p_{+} u\left(p_{-}\right)=0 .\right. \tag{A.1}
\end{equation*}
$$

The terms with $\phi \gamma_{5}$ give zero in the limit of vanishing electron mass, and can also be dropped.

We now take up various terms in table 1 containing the Levi-Civita tensor by turns. At all stages, we set $k_{1}^{\alpha}, k_{2}^{\beta}$ and $q^{\nu} \equiv\left(k_{1}+k_{2}\right)^{\nu} \equiv\left(p_{+}+p_{-}\right)^{\nu}$ to 0 .

1. The $h_{3}^{\gamma, Z}$ terms have $\Gamma^{\alpha \beta}=\gamma_{\nu} \epsilon^{\alpha \beta \nu k_{1}}$. In this term, we can introduce the identity

$$
\begin{equation*}
1=\gamma_{5}^{2}=-\frac{i}{4!} \gamma_{5} \epsilon^{\rho \lambda \sigma \tau} \gamma_{\rho} \gamma_{\lambda} \gamma_{\sigma} \gamma_{\tau} \tag{A.2}
\end{equation*}
$$

to get

$$
\begin{equation*}
\Gamma^{\alpha \beta}=\frac{i}{4!} \gamma_{5} \gamma_{\nu} \gamma_{\rho} \gamma_{\lambda} \gamma_{\sigma} \gamma_{\tau} \epsilon^{\alpha \beta \nu k_{1}} \epsilon^{\rho \lambda \sigma \tau} . \tag{A.3}
\end{equation*}
$$

Of the 5 indices $\nu, \rho, \sigma, \lambda, \tau$ in $d=4$ at least 2 indices have to be equal. Because of the presence of the totally antisymmetric $\epsilon^{\rho \sigma \lambda \tau}$, only ν will be allowed to be equal to one of $\rho, \sigma, \lambda, \tau$ giving 4 equal terms. Then

$$
\begin{equation*}
\Gamma^{\alpha \beta}=\frac{i}{3!} \gamma_{5} \gamma_{\lambda} \gamma_{\sigma} \gamma_{\tau} \epsilon_{\nu}^{\lambda \sigma \tau} \epsilon^{\alpha \beta \nu k_{1}} . \tag{A.4}
\end{equation*}
$$

We now use the identity

$$
\begin{equation*}
\epsilon_{\nu}^{\lambda \sigma \tau} \epsilon^{\alpha \beta \nu k_{1}}=g^{\lambda \alpha}\left(g^{\sigma \beta} k_{1}^{\tau}-g^{\tau \beta} k_{1}^{\sigma}\right)-g^{\lambda \beta}\left(g^{\sigma \alpha} k_{1}^{\tau}-g^{\tau \alpha} k_{1}^{\sigma}\right)-k_{1}^{\lambda}\left(g^{\sigma \beta} g^{\alpha \tau}-g^{\tau \beta} g^{\alpha \sigma}\right) \tag{A.5}
\end{equation*}
$$

to get

$$
\begin{equation*}
\Gamma^{\alpha \beta}=-i \gamma_{5}\left(k_{1} \gamma^{\alpha} \gamma^{\beta}+\gamma^{\alpha} k_{1}^{\beta}-\not k_{1} g^{\alpha \beta}\right) . \tag{A.6}
\end{equation*}
$$

2. The $h_{4}^{\gamma, Z}$ terms have

$$
\begin{equation*}
\Gamma^{\alpha \beta}=-\gamma_{\nu} k_{1}^{\beta} \epsilon^{\alpha \nu k_{1} q} \tag{A.7}
\end{equation*}
$$

As before using the identity in eq. (A.2), we can write

$$
\begin{equation*}
\Gamma^{\alpha \beta}=-\frac{i}{4!} \gamma_{5} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma} \gamma_{\lambda} \gamma_{\tau} \epsilon^{\rho \sigma \lambda \tau} k_{1}^{\beta} \epsilon^{\alpha \nu k_{1} q} \tag{A.8}
\end{equation*}
$$

which on using the fact that one pair of 5 indices has to be equal, gives

$$
\begin{equation*}
\Gamma^{\alpha \beta}=-\frac{i}{3!} \gamma_{5} \epsilon_{\nu}^{\sigma \lambda \tau} \gamma_{\sigma} \gamma_{\lambda} \gamma_{\tau} k_{1}^{\beta} \epsilon^{\alpha \nu k_{1} q} . \tag{A.9}
\end{equation*}
$$

This equation reduces, on using the identity for a product of two Levi-Civita tensors to be written in terms of Kronecker deltas, to

$$
\begin{equation*}
\Gamma^{\alpha \beta}=-\frac{i}{3!2} \gamma_{5} k_{1}^{\beta}\left(\gamma^{\alpha} \not k_{1} q-\gamma^{\alpha} q \nmid k_{1}-\not k_{1} \gamma^{\alpha} q d+\not k_{1} q \gamma^{\alpha}+q \gamma^{\alpha} \not k_{1}-q \nmid k_{1} \gamma^{\alpha}\right) . \tag{A.10}
\end{equation*}
$$

We now use $q=\not p_{-}+\not p_{+}$, then anti-commute $\not p_{-}$to the extreme right and $\not p_{+}$to the extreme left, and use $\not \phi_{-} u\left(p_{-}\right)=0 ; \bar{v}\left(p_{+}\right) \phi_{+}=0$. Dropping k_{1}^{α} terms because $\left(\epsilon_{\alpha}\left(k_{1}\right) k_{1}^{\alpha}=0\right)$, the result is

$$
\begin{equation*}
\Gamma^{\alpha \beta}=-i \gamma_{5} k_{1}^{\beta}\left(p_{+} \cdot k_{1} \gamma^{\alpha}-p_{-} \cdot k_{1} \gamma^{\alpha}-p_{+}^{\alpha} k_{1}+p_{-}^{\alpha} k_{1}\right) . \tag{A.11}
\end{equation*}
$$

3. The h_{5}^{Z} term is

$$
\begin{equation*}
\Gamma^{\alpha \beta}=\gamma^{\nu} 2 k_{2}^{\alpha} \epsilon^{\beta k_{2} \nu q}-\frac{\left(s-m_{Z}^{2}\right)}{2} \gamma^{\nu}\left(\epsilon^{\alpha \beta k_{2} \nu}+\epsilon^{\alpha \beta q \nu}\right) . \tag{A.12}
\end{equation*}
$$

The first term of eq. (A.12), following the same procedure as before yields

$$
\begin{equation*}
2 \gamma_{\nu} k_{2}^{\alpha} \epsilon^{\beta k_{2} \nu q}=-\frac{4 i}{3!} k_{2}^{\alpha} \gamma_{5}\left[\gamma_{\beta}\left(k_{2} q q-q / k_{2}\right)-\not k_{2} \gamma_{\beta} \phi+q \gamma_{\beta} \not k_{2}-q \nmid k_{2} \gamma_{\beta}+\not k_{2} q \gamma_{\beta}\right] . \tag{A.13}
\end{equation*}
$$

Now using $\not q=\not p_{-}+\not p_{+}$and then commuting $\not \phi_{+}$through to the extreme left and $\not p_{-}$ to the extreme right and using the Dirac equation, the right-hand side of eq. (A.13) becomes

$$
\begin{equation*}
2 i \gamma_{5}\left[\left(p_{-} \cdot k_{2}-p_{+} \cdot k_{2}\right) \gamma_{\beta}-\left(p_{-}-p_{+}\right)_{\beta} k_{2}\right] k_{2}^{\alpha} . \tag{A.14}
\end{equation*}
$$

The second term of eq. (A.12) simplifies to

$$
\begin{equation*}
\gamma^{\nu} \epsilon_{\nu}^{\alpha \beta k_{2}}=i \gamma_{5}\left[\gamma^{\alpha} \gamma^{\beta} k_{2}-g^{\alpha \beta} k_{2}+k_{2}^{\alpha} \gamma^{\beta}\right] . \tag{A.15}
\end{equation*}
$$

Similarly the third term of eq. (A.12) is

$$
\begin{equation*}
\gamma_{\nu} \epsilon^{\alpha \beta q \nu}=i \gamma_{5}\left[\left(p_{+}-p_{-}\right)^{\beta} \gamma^{\alpha}+\left(p_{-}-p_{+}\right)^{\alpha} \gamma^{\beta}\right] . \tag{A.16}
\end{equation*}
$$

Combining eqs. (A.14), (A.15) and (A.16), $V_{\alpha \beta}$ for the h_{5}^{Z} term takes the form

$$
\begin{align*}
& i \gamma_{5}\left[2 k_{2}^{\alpha}\left(p_{-}-p_{+}\right) \cdot k_{2} \gamma^{\beta}-2 k_{2}^{\alpha}\left(p_{-}-p_{+}\right)^{\beta} k_{2}\right. \\
& \quad+\frac{\left(s-m_{Z}^{2}\right)}{2}\left\{\left(\gamma^{\alpha} \gamma^{\beta} k_{2}-g^{\alpha \beta} k_{2}+k_{2}^{\alpha} \gamma^{\beta}\right)\right. \\
& \tag{A.17}\\
& \left.\left.\quad+\left(\left(p_{-}-p_{+}\right)^{\alpha} \gamma^{\beta}-\left(p_{-}-p_{+}\right)^{\beta} \gamma^{\alpha}\right)\right\}\right]
\end{align*}
$$

In eq. (A.17), k_{2} can be replaced by $\not k_{1}$ using $k_{2}=q-\not k_{1}$. Then, using, as before, $\phi q=\not \phi_{-}+\not \phi_{+}$, and the Dirac equation after appropriately commuting through ${\not Q_{-}}$and $\not \phi_{+}$ to the extreme right and left, respectively, we get

$$
\begin{align*}
\Gamma^{\alpha \beta}=i \gamma_{5} & {\left[2 k_{2}^{\alpha}\left\{-k_{1} \cdot\left(p_{-}-p_{+}\right) \gamma^{\beta}+\left(p_{-}-p_{+}\right)^{\beta} \not k_{1}\right\}\right.} \tag{A.18}\\
& \left.+\frac{\left(s-m_{Z}^{2}\right)}{2}\left(-\not k_{1} \gamma^{\alpha} \gamma^{\beta}+k_{1}^{\beta} \gamma^{\alpha}-+2\left(p_{-}-p_{+}\right)^{\alpha} \gamma^{\beta} g^{\alpha \beta} k_{1}-2\left(p_{-}-p_{+}\right)^{\beta} \gamma^{\alpha}\right)\right] .
\end{align*}
$$

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] T. Behnke et al., The International Linear Collider Technical Design Report. Volume 1: Executive Summary, arXiv:1306.6327 [InSPIRE].
[2] H. Baer et al., The International Linear Collider Technical Design Report. Volume 2: Physics, arXiv:1306. 6352 [INSPIRE].
[3] G. Moortgat-Pick et al., The Role of polarized positrons and electrons in revealing fundamental interactions at the linear collider, Phys. Rept. 460 (2008) 131 [hep-ph/0507011] [INSPIRE].
[4] S. Riemann, A. Schalicke and A. Ushakov, Polarized positrons for future linear colliders, J. Phys. Conf. Ser. 298 (2011) 012020 [InSPIRE].
[5] K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the Weak Boson Sector in $e^{+} e^{-} \rightarrow W^{+} W^{-}$, Nucl. Phys. B 282 (1987) 253 [InSPIRE].
[6] F.M. Renard, Tests of Neutral Gauge Boson Selfcouplings With $e^{+} e^{-} \rightarrow \gamma Z$, Nucl. Phys. B 196 (1982) 93 [inSPIRE].
[7] G. Gounaris, R. Kogerler and D. Schildknecht, On $Z_{0} \rightarrow e^{+} e^{-} \gamma$ decays, Phys. Lett. B 137 (1984) 261 [inSPIRE].
[8] U. Baur and E.L. Berger, Probing the weak boson sector in $Z \gamma$ production at hadron colliders, Phys. Rev. D 47 (1993) 4889 [InSPIRE].
[9] G. Gounaris et al., Triple gauge boson couplings, hep-ph/9601233 [inSPIRE].
[10] G.J. Gounaris, J. Layssac and F.M. Renard, Signatures of the anomalous $Z \gamma$ and $Z Z$ production at the lepton and hadron colliders, Phys. Rev. D 61 (2000) 073013 [hep-ph/9910395] [INSPIRE].
[11] H. Czyz, K. Kolodziej and M. Zralek, Composite Z Boson and CP Violation in the Process $e^{+} e^{-} \rightarrow Z \gamma, Z$. Phys. C 43 (1989) 97 [INSPIRE].
[12] D. Choudhury and S.D. Rindani, Test of CP-violating neutral gauge boson vertices in $e^{+} e^{-} \rightarrow \gamma Z$, Phys. Lett. B 335 (1994) 198 [hep-ph/9405242] [INSPIRE].
[13] S.Y. Choi, Probing the weak boson sector in $\gamma e \rightarrow Z e, Z$. Phys. C 68 (1995) 163 [hep-ph/9412300] [INSPIRE].
[14] J. Ellison and J. Wudka, Study of trilinear gauge boson couplings at the Tevatron collider, Ann. Rev. Nucl. Part. Sci. 48 (1998) 33 [hep-ph/9804322] [inSPIRE].
[15] U. Baur and D.L. Rainwater, Probing neutral gauge boson selfinteractions in ZZ production at hadron colliders, Phys. Rev. D 62 (2000) 113011 [hep-ph/0008063] [InSPIRE].
[16] I. Ots, H. Uibo, H. Liivat, R.K. Loide and R. Saar, Spin polarization and alignment of the single Z boson from $e^{+} e^{-}$annihilation, Nucl. Phys. B 588 (2000) 90 [inSPIRE].
[17] S. Atag and I. Sahin, $Z Z \gamma$ and $Z \gamma \gamma$ couplings in γe collision with polarized beams, Phys. Rev. D 68 (2003) 093014 [hep-ph/0310047] [INSPIRE].
[18] I. Ots, H. Uibo, H. Liivat, R. Saar and R.K. Loide, Possible anomalous $Z Z \gamma$ and $Z \gamma \gamma$ couplings and Z boson spin orientation in $e^{+} e^{-} \rightarrow Z \gamma$, Nucl. Phys. B 702 (2004) 346 [inSPIRE].
[19] I. Ots, H. Uibo, H. Liivat, R. Saar and R.K. Loide, Possible anomalous $Z Z \gamma$ and $Z \gamma \gamma$ couplings and Z boson spin orientation in $e^{+} e^{-} \rightarrow Z \gamma$: The role of transverse polarization, Nucl. Phys. B 740 (2006) 212 [InSPIRE].
[20] A. Gutierrez-Rodriguez, M.A. Hernandez-Ruiz and M.A. Perez, Probing the $Z Z \gamma$ and $Z \gamma \gamma$ Couplings Through the Process $e^{+} e^{-} \rightarrow \nu \bar{\nu} \gamma$, Phys. Rev. D 80 (2009) 017301 [arXiv:0808.0945] [INSPIRE].
[21] S. Groote, H. Liivat and I. Ots, Symmetries and similarities for spin orientation parameters in $e^{+} e^{-} \rightarrow Z H, Z \gamma, Z Z$ at SM thresholds, Nucl. Phys. B 843 (2011) 213 [arXiv:1008.0917] [INSPIRE].
[22] B. Ananthanarayan, S.K. Garg, M. Patra and S.D. Rindani, Isolating CP-violating $\gamma Z Z$ coupling in $e^{+} e^{-} \rightarrow \gamma Z$ with transverse beam polarizations, Phys. Rev. D 85 (2012) 034006 [arXiv:1104.3645] [INSPIRE].
[23] O. Catà, Revisiting $Z Z$ and γZ production with effective field theories, arXiv:1304.1008 [inSPIRE].
[24] C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02 (2014) 101 [arXiv:1308.6323] [INSPIRE].
[25] F. Larios, M.A. Perez, G. Tavares-Velasco and J.J. Toscano, Itemization of trilinear couplings for neutral gauge bosons, AIP Conf. Proc. 531 (2000) 346 [inSPIRE].
[26] F. Larios, M.A. Perez, G. Tavares-Velasco and J.J. Toscano, Trilinear neutral gauge boson couplings in effective theories, Phys. Rev. D 63 (2001) 113014 [hep-ph/0012180] [InSPIRE].
[27] L3 collaboration, P. Achard et al., Study of the $e^{+} e^{-} \rightarrow Z \gamma$ process at LEP and limits on triple neutral-gauge-boson couplings, Phys. Lett. B 597 (2004) 119 [hep-ex/0407012] [INSPIRE].
[28] OPAL collaboration, G. Abbiendi et al., Study of Z pair production and anomalous couplings in $e^{+} e^{-}$collisions at \sqrt{s} between 190 GeV and 209 GeV, Eur. Phys. J. C 32 (2003) 303 [hep-ex/0310013] [inSPIRE].
[29] D0 collaboration, V.M. Abazov et al., $Z \gamma$ production and limits on anomalous $Z Z \gamma$ and $Z \gamma \gamma$ couplings in $p \bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, Phys. Rev. D 85 (2012) 052001 [arXiv:1111.3684] [INSPIRE].
[30] CDF collaboration, T. Aaltonen et al., Limits on Anomalous Trilinear Gauge Couplings in $Z \gamma$ Events from p \bar{p} Collisions at $\sqrt{s}=1.96$ TeV, Phys. Rev. Lett. 107 (2011) 051802 [arXiv:1103.2990] [INSPIRE].
[31] ATLAS collaboration, Measurements of $W \gamma$ and $Z \gamma$ production in pp collisions at $\sqrt{s}=7$ TeV with the ATLAS detector at the LHC, Phys. Rev. D 87 (2013) 112003 [arXiv:1302.1283] [INSPIRE].
[32] CMS collaboration, Measurement of the production cross section for $Z \gamma \rightarrow \nu \bar{\nu} \gamma$ in $p p$ collisions at $\sqrt{s}=7 \mathrm{Te} V$ and limits on $Z Z \gamma$ and $Z \gamma \gamma$ triple gauge boson couplings, JHEP 10 (2013) 164 [arXiv:1309.1117] [inSPIRE].
[33] B. Ananthanarayan and S.D. Rindani, Transverse beam polarization and CP violation in $e^{+} e^{-} \rightarrow \gamma Z$ with contact interactions, Phys. Lett. B 606 (2005) 107 [hep-ph/0410084] [INSPIRE].
[34] B. Ananthanarayan and S.D. Rindani, New physics in $e^{+} e^{-} \rightarrow Z \gamma$ with polarized beams, JHEP 10 (2005) 077 [hep-ph/0507037] [inSPIRE].
[35] K.J. Abraham and B. Lampe, Description of possible CP effects in $b \bar{b} \gamma$ events at $L E P$, Phys. Lett. B 326 (1994) 175 [inSPIRE].
[36] K.J. Abraham and B. Lampe, Possible nonstandard effects in $Z \gamma$ events at LEP-2, Phys. Lett. B 446 (1999) 163 [hep-ph/9810205] [INSPIRE].
[37] S.D. Drell and S.J. Parke, Constraints on Radiative Z_{0} Decays, Phys. Rev. Lett. 53 (1984) 1993 [InSPIRE].
[38] B. Ananthanarayan, S.D. Rindani, R.K. Singh and A. Bartl, Transverse beam polarization and CP-violating triple-gauge-boson couplings in $e^{+} e^{-} \rightarrow \gamma Z$, Phys. Lett. B 593 (2004) 95 [Erratum ibid. B 608 (2005) 274-275] [hep-ph/0404106] [inSPIRE].
[39] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [inSPIRE].
[40] ATLAS collaboration, Physics at a High-Luminosity LHC with ATLAS, arXiv:1307.7292 [inSPIRE].
[41] CMS collaboration, Projected Performance of an Upgraded CMS Detector at the LHC and HL-LHC: Contribution to the Snowmass Process, arXiv:1307.7135 [inSPIRE].
[42] CLIC Detector and Physics Study collaboration, H. Abramowicz et al., Physics at the CLIC $e^{+} e^{-}$Linear Collider - Input to the Snowmass process 2013, arXiv:1307.5288 [inSPIRE].

[^0]: ${ }^{1}$ While the issue of anomalous triple gauge bosons has been discussed for several decades now, there have been inequivalent definitions in the literature. For instance, in ref. [11] it is mentioned that they have a parametrization which is similar to, but not exactly the same as that of Hagiwara et al. [5]. The form factors of the two are related by an overall normalization, with the form factors of ref. [5] being (-2) times those of ref. [11]. In ref. [12] the effective CP-violating Lagrangian has been written down, and the anomalous couplings are denoted by λ_{1} and λ_{2}. In our work [22], we have demonstrated that these are equivalent to f_{1} and f_{2} of ref. [11].
 ${ }^{2}$ The original limits from the LHC are,

 $$
 \begin{array}{rlll}
 \text { ATLAS: } & \left|h_{3}^{Z}\right|<0.014, & \left|h_{4}^{Z}\right|<8.7 \times 10^{-5},\left|h_{3}^{\gamma}\right|<0.016, & \left|h_{4}^{\gamma}\right|<9.4 \times 10^{-5}[31] \\
 \mathrm{CMS}: & \left|h_{3}^{Z}\right|<2.7 \times 10^{-3}, & \left|h_{4}^{Z}\right|<1.3 \times 10^{-5},\left|h_{3}^{\gamma}\right|<2.9 \times 10^{-3}, \quad\left|h_{4}^{\gamma}\right|<1.5 \times 10^{-5}[32]
 \end{array}
 $$

 We have scaled the above 95% CL limits of the couplings, obtained at the LHC by the factor 2 in case of h_{i}^{Z} and $4 s_{W} c_{W}$ in case of h_{i}^{γ} of ref. [5] for reasons to be explained in the next section. All the limits given in the main text of this paper will use our convention.

[^1]: ${ }^{3}$ In case of contact interactions, A_{11} is proportional to ($\operatorname{Re} r_{6}-\operatorname{Re} r_{7}$), and $A_{21,31}$ are proportional to ($\operatorname{Im} r_{6}-\operatorname{Im} r_{7}$). We list them here as the coupling r_{7} was not discussed in [33, 34].
 ${ }^{4}$ In case of contact interactions, A_{12} is proportional to $\operatorname{Re} r_{7}$, and $A_{22,32}$ are proportional to $\operatorname{Im} r_{7}$. We list them here as the coupling r_{7} was not discussed in $[33,34]$.

