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1 Introduction

Quantum phase transitions are phase transitions which take place at zero temperature and

are thus driven by quantum as opposed to thermal fluctuations. Such phase transitions are

realised by tuning a non-temperature control parameter such as pressure, chemical potential

or magnetic field. Of particular interest are second order quantum phase transitions which,

similarly to their thermal analogue, have a quantum critical point where the quantum

fluctuations driving the transition diverge and become scale invariant. The properties of

these systems near the phase transition are characterised by critical exponents, which are

independent on the microscopic details of the systems — a property called Universality.

At the critical point fluctuations of all size scales become important demanding a scale

invariant description, naturally provided by conformal field theories. Universality can then

be seen as a by-product of the fact that there are relatively few scale invariant theories.

Although quantum phase transitions take place at zero temperature, at finite tem-

perature quantum fluctuations compete with thermal fluctuations and the existence of a

“quantum critical” regime is expected, bearing remnants of the quantum critical point even

at finite temperature. Experimentally the quantum critical regime becomes manifest in an

exotic physical behaviour often signalling the existence of a novel phase.

Quantum critical points are an active area of research in condensed matter community,

where they appear in the phase diagram of high temperature superconductors [1]. Clearly
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the existence of a quantum critical regime accessible at finite temperature is crucial for such

applications, however away from the critical point one needs more than just an effective

field theory and the analysis often relies on physical arguments and approximations rather

than rigorous calculations. It is therefore, of a particular importance to come up with

clean theoretical models, which not only allow full analytic (or quasi numerical) control,

but are complex enough to release the vicinity of a quantum critical point. The holographic

quantum critical point that we propose in this paper is an example of such a model and

is potentially applicable to the qualitative description of the quantum critical regions in

realistic condensed matter systems such as high temperature superconductors.

The original AdS/CFT correspondence establishes a duality between an N = 4 super

Yang-Mills theory (SYM) in 3 + 1 dimensions, which is a conformal field theory, and su-

perstring theory on an AdS5 × S5 space-time. There is no known quantum critical point

described by N = 4 SYM. In fact, although a vast amount of novel supergravity back-

grounds dual to conformal field theories have been constructed, usually their construction

is not associated with the critical regime of a particular theory. As a result relatively

few holographic quantum critical points have been realised, usually in the context of holo-

graphic flavour dynamics.

A system with continuous quantum phase transition has been constructed in ref. [2],

however this construction involved a third order phase transition. A second order quantum

phase transition has been realised in ref. [3], where the holographic gauge theory dual to the

D3/D7 intersection at zero temperature and finite chemical potential has been explored.

A quantum critical point has also been constructed in refs [4, 5], where the holographic

gauge theory dual to the D3/D5 intersection at finite magnetic field and chemical potential

has been analysed. In this paper we porpoise a novel quantum critical point realised in a

1+2 dimensional defect field theory living on a maximal two sphere and subjected to an

external magnetic field.

Our holographic set up involves probe D5-branes in a global AdS5 × S5 space-time.

The D5-branes are extended along the radial direction and wrap a maximal two sphere

inside the AdS5 part of the geometry. The D5-branes also wrap a two sphere inside the S5

part of the geometry. The corresponding gauge theory is an N = 4 SYM theory on a three

sphere coupled to an N = 2 hypermultiplet living on a maximal two sphere. The system

is supersymmetric only at vanishing bare mass, when the D5-brane wraps a maximal two

sphere inside the S5. At finite bare mass supersymmetry is broken and the theory develops

a fundamental condensate.

The properties of the theory at zero magnetic field can be further analysed by con-

sidering a pair of external probe quarks. A key observation is that at strong coupling the

screening length is inversely proportional to the bare mass [2]. This suggests that for large

bare masses the screening length is small compared to the radius of the two sphere and the

theory is in a confined phase (separating the quarks would result in a pair production). For

small bare masses the screening length is larger than the radius of the sphere and a pair of

quarks can be separated without pair production — the theory is in a deconfined phase.

The quantum phase transition between the two regimes is of a first order [2] and is trig-

gered by the Casimir energy of the theory. In the holographic set up the phase transition
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is realised as a topology change transition for D5-brane embedding. The confined phase of

the theory corresponds to embeddings, which close above the origin of AdS5 by having the

S2 inside the S5 part of the geometry shrink to zero size, referred to as “Minkowski” em-

beddings, while the deconfined phase of the theory corresponds to embeddings which reach

all the way to the origin of AdS5 and have the S2 inside the AdS5 part of the geometry

shrinking, we will refer to them as the “Ball” embeddings.

At first glance subjecting the theory to an external magnetic field seems like an innocent

exercise. Indeed, the second betti number of the two sphere is non-zero and turning on

a magnetic field on the two sphere does not require additional electric current. In the

holographic set up this can be achieved by either introducing a pure gauge B-field or by

fixing the U(1) gauge field of the D5-brane. However, although such solutions can be

constructed relatively easy, for ball embeddings one encounters a problem. At the origin of

AdS5 the radius of the two sphere shrinks to zero size, but the magnetic flux throughout

the two sphere remains finite, as a result the norm of the U(1) field strength diverges at

the origin, signalling the presence of a magnetic monopole. One can show that a magnetic

monopole on the world volume of the D5-brane would violate charge conservation of the

RR-flux unless some number of D3-branes are attached at the position of the monopole.

On the other hand, doing so would deform the D5-brane embedding due to the tension of

the D3-branes.

In general constructing a balanced D3-D5-brane configuration can be a challenging

task, but in our case a small miracle happens: the “Ball” D5-brane embeddings are mim-

icked by Minkowski embeddings, which close at very small but finite distance above the

origin of AdS thus avoiding divergent norm of the U(1) field strength and the need of

a magnetic monopole. Furthermore, these embeddings fold along the S5 part of the ge-

ometry, while still close to the origin, developing a R × B3 × S2 throat with very small

radius of the S2, mimicking the D3-branes needed to source the magnetic monopole in the

unbalanced D3-D5-configuration (see figure 3).

One can show that Minkowski embeddings cover the whole parametric space, com-

pletely replacing the “‘Ball” embeddings, this picture persist even for an infinitesimal mag-

netic field. The first order confinement/deconfiment phase transition also has its analogue

within the confined phase described by the Minkowski embeddings.1 However, unlike the

phase transition at vanishing magnetic field, there is no associated topology change for the

D5-brane embeddings (only an approximate one between embeddings with and without

an R × B3 × S2 throat) as a result we find that at sufficiently strong magnetic field the

first order phase transition ends on a critical point of a second order phase transition.

Increasing further the magnetic field leads to the replacement of the phase transition by

a smooth cross over. Focusing on the properties of the theory near the quantum critical

point we find that all second derivatives of the free energy diverge as functions of the bare

mass and the external magnetic field with critical exponent −2/3. In addition, our studies

of the meson spectrum show that at the critical point there is a massless mode which we

1This situation is the magnetic analogue of the finite density study of ref. [6], where the radial electric

field of the probe D7-brane demands the presence of an electric monopole for Minkowski embeddings.

The fundamental strings required to source the monopole are realised as spikes of black hole embeddings

mimicking Minkowski embeddings.
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associate to the divergent correlation length of the quantum fluctuations. The derivative

of the mass of this mode with respect to the bare mass also diverges at the phase transition

with a critical exponent −2/3.

Another interesting property of the theory is its magnetic response. Our studies of the

magnetisation and magnetic susceptibility show that the theory is a diamagnetic, which

is not unusual for holographic gauge theories (see for example ref. [7]). However, our

system has peculiar properties in the limit of vanishing magnetic field. The analogue of

the deconfined phase has a persistent diamagnetic response independent on the magnitude

of the magnetic field. This behaviour is similar to the persistent diamagnetic current

observed in realistic mesoscopic systems such as nano tubes and quantum dots [8]. The

fact that this phase is realised for small radius of the two sphere, when the size of the

system is small and finite size quantum effects (such as the existence of Casimir energy) are

important, makes the comparison to mesoscopic systems plausible. Furthermore, the fact

that the observed effect is in the strongly coupled regime of the system suggests potential

applications in the description of strongly coupled condensed matter systems, exhibiting

persistent diamagnetic response.

Finally, for any finite value of the magnetic field the sable phase of the theory at

vanishing bare mass has a negative condensate. This suggests that the global symmetry

corresponding to rotations in the transverse space to the D5-branes is spontaneously broken.

In this way our system realises the effect of magnetic catalysis of chiral symmetry breaking

confirming the universal nature of this phenomena [9–14].2

The paper is organised as follows: in section 2 we review the properties of the theory

at zero magnetic field studied in refs. [2, 18]. In section 3 we explore the properties

of the theory at finite magnetic field. We show that at any finite magnetic field only

Minkowski embeddings are physical and only the confined phase of theory is realised. We

study the fundamental condensate of the theory as a function of the bare mass and show

that for sufficiently small magnetic fields there is a first order phase transition within the

confined phase, which ends on a critical point of a second order phase transition. We

also calculate the magnetisation of the theory and its magnetic susceptibility. Finally, we

study the critical behaviour of the theory near the quantum critical point and calculate

various critical exponents. In section 4 we analyse the meson spectrum of the theory. We

obtain the general quadratic action for all four scalar and six vector meson modes. We

then focus on the spectrum of one of the scalar modes, which becomes massless at the

quantum critical point, corresponding to the divergent correlation length of the quantum

fluctuations. Finally, we focus on the ground state of the spectrum near the phase transition

and calculate the corresponding critical exponent. Section 5 contains our conclusion.

2 The theory at zero magnetic field

The supergravity dual of N = 4 SYM theory on a three sphere is an AdS5×S5 space-time

in global coordinates with a metric given by:

ds2 = −
(

1 +
r2

R2

)
dt2 + r2 dΩ2

3 +
dr2

1 + r2

R2

+R2(dθ2 + cos2 θ dΩ2
2 + sin2 θ dΩ̃2

2) . (2.1)

2For recent holographic studies of this phenomena in 1 + 2 dimensional systems see refs. [15–17].
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To introduce fundamental flavours in the quenched approximation to the dual field theory

we will consider a probe D5-brane extended along the radial coordinate r and wrapping

two spheres in both the S5 and the AdS5 parts of the geometry. More explicitly if we

parameterise the S3 ⊂ AdS5 and one of the S2 ⊂ S5 by:

dΩ2
3 = dα2 + sin2 α (dβ2 + sin2 β dγ2) , (2.2)

dΩ2
2 = dα̃2 + sin2 α̃ dγ̃2 ,

then the D5-brane probe is extended along the t, α , γ , r , α̃ and γ̃ directions. Note that the

D5-brane respects the Z2 symmetry of the dial defect field theory by wrapping completely

the boundary S2 in the AdS5 part of the geometry. One can check that placing the D5-brane

at β = π/2 and allowing the D5-brane to have a non-trivial profile along θ is consistent

with the equations of motion. The most symmetric ansatz (which is also consistent with

the general equations of motion) is to consider θ = θ(r). The corresponding field theory

is coupled to an N = 2 fundamental hypermultiplet living on the two sphere. The theory

is at most N = 2 supersymmetric, and one can show that a non-trivial profile θ(r) 6= 0

completely breaks supersymmetry. When supersymmetry is broken the theory develops

a fundamental condensate, with non-trivial dependence on the bare mass of the theory.

Furthermore, the theory has a first order phase transition corresponding to a topology

change transition in the holographic set up. Indeed, generally the possible embeddings

of the D5-brane split into two classes - embeddings which close at some radial distance

above the origin of AdS5 by having the S2 inside the S5 part of the geometry shrink to

zero size (Minkowski embeddings), and embeddings which reach all the way to the origin

of AdS5 and close there, which we call “Ball” embeddings. This construction has been

investigated in ref. [2], where it has been shown that the phase transition is of a first

order. It has also been argued that this is a confinement/deconfinement phase transition

driven by the Casimir energy of the theory on S2. The properties of this theory have been

further investigated in ref. [18], where the meson spectrum of the theory has been studied

in details.

In what follows, we will briefly review the properties of the theory at zero temperature

and external magnetic field. For illustrative purposes it is instructive to introduce a new

radial coordinate u(r) given by:3

u =
1

2

(
r +

√
R2 + r2

)
, (2.3)

which enables us to write part of the geometry as a conformal R6:

ds2 = − u
2

R2

(
1 +

R2

4u2

)2

dt2 + u2

(
1− R2

4u2

)2

dΩ2
3 +

R2

u2
(du2 + u2 dΩ2

5) . (2.4)

The conformally R6 part of the geometry can be split into a conformally R3 part wrapped

by the D5-brane and a conformally R3 part transverse to the D5-brane:

du2 + u2 dΩ2
5 = dρ2 + ρ2 dΩ2

2 + dl2 + l2 dΩ̃2
2 , (2.5)

3Note that in these coordinates the origin of AdS5 is at u = R/2.
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Figure 1. A plot of the possible D5-brane embeddings. Red curves represent “Ball” embeddings

closing at the origin, while blue curves correspond to “Minkowski” embeddings closing above the

origin. The two classes are separated by a critical embedding (the black dashed curve) having both

the S̃2 ⊂ S5 and S2 ⊂ AdS5 shrinking at the origin. The plot is in units R = 1.

where ρ = u cos θ and l = u sin θ. The possible D5-brane embeddings can then be visualised

in the ρ versus l plane. While we will eventually present our results in these coordinates,

technically it is more convenient to work in the original (r,θ) coordinates. For the radial

part of the corresponding DBI action (after integrating over the S̃2 ⊂ S5 and the S2 ⊂
AdS5) one obtains:

L ∝ r2 cos2 θ
√

1 + (r2 +R2) θ′(r)2 . (2.6)

The solution to the equation of motion for θ(r) has the following asymptotic behaviour at

large r:

θ(r) =
m

r
+

c

r2
+ . . . (2.7)

and according to the AdS/CFT dictionary, the parameter m is related to the bare mass of

the fundamental multiplet mq via mq = m/(2πα′), while the parameter c is proportional

to the fundamental condensate of the theory 〈ψ̄ ψ〉 ∝ −c. Note that to arrive at the last

result one has to introduce appropriate counter terms [2] (see also [19]). However, with this

definition one obtains a constant non-zero value of the condensate at infinite bare mass,

suggesting that an additional counter term is needed.

In general the equation of motion for θ(r) derived from (2.6) has to be solved numer-

ically. One can check that for both Minkowski and “Ball” embeddings, the equation of

motion has predetermined boundary conditions at the closing point, in the sense that the

solution depends only on one parameter. This enables us to obtain a perturbative analytic

solution, which we feed into a numerical shooting technique. A set of possible D5-brane

embeddings is presented in figure 1. The red curves represent Ball embeddings reaching

the origin (the black segment), while the blue curves represent Minkowski embeddings.

One can see that the two classes are separated by a critical embedding (the dashed black

curve), which has both the S̃2 ⊂ S5 and the S2 ⊂ AdS5 shrinking at the origin. By

extracting the coefficients m and c from the asymptotic behaviour of the embeddings at

– 6 –
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large radial distances r, one can generate the plot of the condensate versus bare mass pre-

sented in figure 2, where we have introduced the dimensionless parameters m̃ = m/R and

c̃ = c/R2. Note, that the physical meaning of the parameter m̃ follows from the relation

m̃ = mR/R2 ∝ mqR2/
√
λ, where R2 is the radius of the defect S2 (which is equal to

radius of the field theory S3) and λ is the t’Hooft coupling. At large m̃ the radius of the

two sphere is large (at fixed bare mass), the Casimir energy is small and the theory is in

a confined phase (see refs. [2, 20]). As m̃ decreases the Casimir energy increases and at

m̃ ≈ 1.20 there is a first order confinement/deconfinement phase transition triggered by the

Casimir energy. One can also see from the plot that at large m̃ the condensate approaches

a constant value. In fact one can show analytically that the parameter c̃ approaches π/8.

Since large m̃ corresponds to large bare masses this is a surprising result. One would expect

that as the flavours become infinitely massive they will decouple from the theory and hence

the fundamental condensate will vanish. This suggests that a finite counter term (that was

not prescribed in refs. [2, 19]) is needed.

Given that the condensate approaches a constant value at large bare mass, and hence

the free energy grows linearly with the bare mass, the appropriate counter term should

be linear in the supergravity field θ. In fact, in order to preserve the θ → −θ symmetry

of the Lagrangian (2.6), it should be proportional to |θ|. Indeed, one can show that a

counter term proportional to
√
−γ Rγ |θ|, where γ is the induced metric on the asymptotic

boundary spanned by the field theory directions of the defect, and Rγ is the corresponding

scalar curvature, produces a term linear in |m|.4 However, this counter term induces a

discontinuity of the condensate of the theory because ∂m|m| = sign(m). Since we are

mainly interested in the properties of the theory near the phase transition, we will take

the same approach as in ref. [2] and use the present definition of the condensate (being

proportional to −c).

3 The theory at finite magnetic field

3.1 General set up

We are interested in the properties of the theory at finite magnetic field, which (as ad-

vertised in the introduction) realises a quantum critical point. Because the second betti

number of the two sphere is non-vanishing a magnetic field can be turned on without the

introduction of external electric currents. A natural choice in this case is to consider a

magnetic field proportional to the volume form of the two-sphere. In order to turn on such

a magnetic field, we turn on a pure gauge B-field:

B(2) = HR2 sinαdα ∧ dγ . (3.1)

One can check that B(2) = dΛ for Λ = −HR2 cosαdγ. Thus equivalently, we could

introduce magnetic field by turning on the Aγ component of the U(1) gauge field. In both

4Note that naively this choice of a counter term breaks the scaling symmetry of the boundary field

theory, However, the flavoured gauge theory is conformal only for vanishing bare mass, when θ ≡ 0 and

the counter term vanishes. One can show that for θ 6= 0 both conformal symmetry and supersymmetry are

explicitly broken and hence the proposed counter term does not break any further symmetries.
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Figure 2. A plot of the condensate parameter c̃ = c/R2 versus the bare mass parameter m̃ =

m/R. The blue curve represents the confined phase (Minkowski embeddings), while the red curve

represents the deconfined phase (“Ball” embeddings). At m̃ ≈ 1.20 the theory undergoes a first

order phase transition as evident by the multivalued dependence of −c̃ near the critical state.

cases one should check5 that the equations of motion for the gauge field are satisfied. The

DBI action of the D5-brane is then given by:

SDBI = −µ5

gs

∫
d6ξ e−Φ

√
−det(P [G+B] + 2πα′F ) , (3.2)

defining E = P [G+B] + 2πα′F for the equation of motion for the gauge field we obtain:

∂ν(
√
−E (Eµν − Eνµ)) = 0. (3.3)

One can easily check that for the ansatz θ = θ(r), Aµ = 0 and B(2) given by equation (3.1),

the equation of motion for the gauge field (3.3) is satisfied. The equation of motion for

θ(r) is derived by varying the DBI action (3.2):

SDBI = −µ5 (2πR)2

gs

∫
dt dr

√
r4 +R4H2 cos2 θ(r)

√
1 + (R2 + r2)θ′(r)2 . (3.4)

Naively, one expects that for moderate magnetic field the behaviour of the system should

be similar to the zero magnetic field case. One expects that the embeddings would again

split into “Ball” and “Minkowski” classes and there would be a first order phase transition

between the two, at some critical value of the parameter m̃. Furthermore, because of

5Note that as pointed out in ref. [21] the analogous ansatz in the case of D7-brane probe considered in

ref. [22] does not satisfy the equations of motion for the gauge field. The physical reason for that is that the

second betti number of the three sphere is zero and one has to introduce external currents to support such

a magnetic field. The study considered in ref. [22] has been reinterpreted as a bottom up study, where one

introduces an external F7 flux (serving as external currents) to support the magnetic field on the D7-brane.
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the universal nature of the effect of magnetic catalysis, one would expect that at strong

magnetic fields the phase transition disappears and only the confined phase, with chiral

symmetry breaking vacuum at vanishing bare mass, is stable. However, as we are going

to see, something much more intricate happens and only part of our naive expectations

are met.

3.2 Branes and magnetic monopoles

Let us calculate the norm of the B-field |B|2 = 1
2BµνB

µν , we obtain: |B|2 = R4H2/r4.

Therefore, for “Ball” embeddings the norm of the B-field diverges at the origin of AdS5.

This simply reflects the fact that for our ansatz the magnetic flux through the S2 of the

defect remains constant, and since at the origin of AdS the two-sphere shrinks to zero size,

there should be a magnetic monopole6 sitting there. The world volume of the D5-brane is

six dimensional and in six dimensions a magnetic monopole is a two dimensional object. In

our case the monopole should be wrapping the S2 ⊂ S5, which remains finite at the origin.

It has been known for quite a while that a Dp-2 brane ending on a Dp-brane sources a

magnetic monopole in the world volume of the Dp-brane [23]. We can easily see this. The

Wess-Zummino term of the D5-brane contains a coupling of the form:

µ5

∫
B(2) ∧ C(4) , (3.5)

where C(4) is a four form Ramond-Ramond potential. Now gauge invariance of the Wess-

Zummino action under the transformation C(4) → C(4) + dΛ(3) suggests that the term:

µ5

∫
B(2) ∧ dΛ(3) = −µ5

∫
dB(2) ∧ Λ(3) = −µ5 (2πR2)H

∫
Σ

Λ(3) (3.6)

should vanish, where we have used that dB2 = HR2 δ(r) sinαdr ∧ dα ∧ dγ and Σ is

spanned by the time and S2 ⊂ S5 directions at the origin of AdS. Therefore, we see that

the magnetic monopole induces a three dimensional “boundary” of the D5-brane and to

preserve gauge invariance we have to attach some number (N3) of D3-branes to the D5-

brane. The variation of the Wess-Zummino action of the D3-branes with respect to the

gauge transformation of C(4) would result in a term −N3 µ3

∫
Σ Λ(3), which can be used to

cancel the term in equation (3.6). For the number of D3-branes required to source the

magnetic monopole we obtain:

N3 =
µ5

µ3
(2πR2)H . (3.7)

To visualise the D3-branes, that we need to attach to the D5-brane, let us plot a

typical “Ball” D5-brane embedding. The resulting plot (for H = 0.01) is presented in

figure 3. The solid red curve represents a “Ball” D5-brane embedding ending at the origin

at θ = θ0 = 0.57. The green dashed segment represent a D3-brane sitting near the origin

of AdS5, wrapping an S2 ⊂ S5 and extended along θ and r, The D3-brane ends on the D5-

brane at (θ = θ0, r = 0), and closes smoothly at (θ = π/2, r = r0) thus having a topology

6Note that by magnetic monopole we mean a charged object S-dual to an electric monopole.
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Figure 3. A plot of a typical “Ball” embedding (red curve) and a D3-brane attached to it (green

dashed segment). The D3-brane ends at the D5-brane at (θ = 0.57, r = 0) and closes at θ = π/2 for

some r0, thus having a topology R×B3. The tension of the D3-brane deforms the D5-brane. The

stable configuration is a Minkowski D5-brane embedding which realises the D3-brane as a throat

of topology R × B3 × S2, with a tiny radius of the S2. The S2 ⊂ AdS5 never shrinks completely,

avoiding the need of a localised magnetic monopole.

R× B3. Of course, this configuration is not stable. The tension of the D3-brane will pull

the D5-brane and the configuration will change. Remarkably, the stable configuration is

found among the Minkowski class of embeddings! The blue curve represents a Minkowski

embedding mimicking the D3-D5 configuration. The D3-brane is realised by the Minkowski

embedding as a throat of topology R × B3 × S2, where the S2 ⊂ AdS5 has a very small

radius along the segment near the origin. Note that because Minkowski embeddings close

above the origin, the S2 ⊂ AdS5 never shrinks to zero size, avoiding the need of a localised

magnetic monopole.7

In fact, we can present further evidence that the throat of the D5-brane realises D3-

branes. Using that it is located in a region r0 < r < r0 + δr � 1, for the part of the DBI

action corresponding to the throat (to leading order) we obtain:

δSDBI = −µ5 (2πR)2

gs
R2H

∫
dt

∫ r0+δr

r0

dr cos2 θ(r)
√

1 + (R2 + r2)θ′(r)2 =

= −N3
µ3

gs

∫
dt

∫ r0+δr

r0

drdα̃dγ̃
√
−GttGα̃α̃Gγ̃γ̃

√
Grr +Gθθθ′(r)2 , (3.8)

where:

Gtt = −
(

1 +
r2

R2

)
; Gα̃α̃ = R2 cos2 θ; Gγ̃γ̃ = sin2 α̃ Gα̃α̃;

Grr =

(
1 +

r2

R2

)−1

; Gθθ = R2 , (3.9)

7Note that this situation is a magnetic analogue of the finite density study of ref. [6], where the radial

electric field of the probe D7-brane requires the presence of an electric monopole for Mikowski embedding,

the fundamental strings required to source the monopole are realised as spikes of black hole embeddings

mimicking Minkowski embeddings.
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Figure 4. Plots of the condensate as a function of the bare mass, for fixed magnetic field. Only

the lowest positive branch of the condensate curve is thermodynamically stable.

and we have used equation (3.7). Note that the integrant in the last equation in (3.8) is the

volume form associated to the induced metric on a D3-brane wrapping the S2 ⊂ S5 and

extended along θ, therefore the total expression is precisely the DBI action of a stack of N3

D3-branes wrapping the S2 ⊂ S5 and extended along θ and r for r0 < r < r0 + δr. In the

next subsection we will use this set up to study the fundamental condensate of the theory.

3.3 Fundamental condensate

Our numerical studies confirm that Minkowski embeddings cover the entire parametric

space and are the thermodynamically stable phase for any arbitrary small non-zero mag-

netic field. What is more, we find that the first order confinement/deconfinement phase

transition, at vanishing magnetic field, has an analogue and there is a first order phase

transition, within the confined phase, ending on a critical point of a second order quantum

phase transition.

To obtain our numerical results we first introduce the dimensionless radial coordinate

r̃ = r/R and study numerically the function χ(r̃) = sin θ(r̃), in these coordinates the

Lagrangian corresponding to (3.4) becomes:

L ∝
√
H2 + r̃2

√
1− χ(r̃)2

√
1− χ(r̃)2 + (1 + r̃2)χ′(r̃)2 . (3.10)

As in the previous section we will present our results in terms of the radial coordinate u

(defined in equation (2.3)), whose dimensionless analogue is given by ũ = (r̃+
√

1 + r̃2)/2.

The presence of external magnetic field does not introduce new counter terms and using

– 11 –



J
H
E
P
0
8
(
2
0
1
4
)
1
0
5

the same definition for the condensate as in the previous section, we read the bare mass

and the condensate of the theory from the asymptotic expansion of the field χ(r̃) at large r̃:

χ(r̃) = m̃/r̃ + c̃/r̃2 + . . . , (3.11)

where m̃ = m/R ∝ mqR2/
√
λ and c̃ is proportional to the fundamental condensate of the

theory 〈ψ̄ψ〉 ∝ −R3c̃. We also use that the non-linear second order differential equation for

χ(r̃) derived from (3.10) has predetermined boundary conditions at χ = 1 (θ = π/2) and

depends only on one parameter r̃0 — the radial distance above the origin of AdS5 where

the D5-brane closes. Solving perturbatively for χ(r̃) near r̃0 and feeding this solution into

a numerical shooting technique, we can generate all possible D5-brane embeddings.

A plot of the condensate as a function of the bare mass for various values of the

magnetic field has been presented in figure 4. As one can see, there is a multivalued loop

centred at the origin of the (m̃,−c̃) plane. This loops is similar to the spiral structure,

which generally appear in holographic gauge theories dual to the “flat” Dp/Dq intersection,

when subjected to an external magnetic field [24]. However, unlike the scenario described

in refs. [24, 25] in the present case the step of the spiral is extremely small and it seems that

the spiral approaches a limiting loop (rather than shrinking to zero radius). In practice, in

the plots we cannot distinguish between the spiral and the limiting loop and the curve of

the condensate winds along the loop. The origin of this behaviour in the holographic set up

can be understood after one parametrises the D5-brane embeddings by r̃ = r̃(θ) and verifies

that r̃(θ) ≡ 0 is a fixed point of the equation of motion for r̃(θ). This causes embeddings,

which start at infinitesimal radial distances (r̃0 � 1) to bend and fold along the S5 near

the origin of AdS5, with the function θ(r̃) changing rapidly form −π/2 to π/2, before they

enter a steady regime of slowly varying θ(r̃) at some still small but larger r̃0. In the steady

regime the asymptotic properties of the D5-branes depend very weakly on changes of the

initial (IR) conditions and as a result the “folding” solutions become extremely close to

some embeddings which started at larger r̃0 and give rise to practically the same values

of the bare mass condensate at infinity. A particular case of such behaviour is plotted in

figure 5. To summarise: the condensate is a singe valued function of the bare mass at large

bare masses (large initial parameter r̃0). At very small initial parameters r0 the D5-brane

embeddings are affected by the fixed point r̃(θ) = 0 and start folding along the S5 part of

the geometry near the origin of AdS5, as a result the condensate is multivalued function of

the bare mass and as the initial parameter r̃0 approaches zero the condensate curve winds

clockwise along a very tight spiral approaching a limiting loop.

Similarly to the spiral structures of refs. [24, 25] the “folding” solutions have higher

free energy (they are also unstable) and only the first (lower) branch of the spiral remains.

Furthermore, since negative bare masses can be mapped to positive bare masses with

flipped condensate, one can also show that the (lower) positive branch of the condensate

curve has the lowest free energy this is why we focus on its properties.

Finally we point out that at zero bare mass the condensate has a finite negative value

(for the stable branch) suggesting that a spontaneous breaking of the global symmetry

corresponding to rotations along the transverse two sphere is taking place. Therefore our

system realises the effect of magnetic catalysis of spontaneous symmetry breaking [9–14].
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reaching θ = π/2 before entering a steady regime. In the steady regime the “folded” embedding
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The two embeddings give rise to almost identical bare mass and condensate parameters.
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Figure 6. Plots of the condensate versus bare mass parameters zoomed in near the phase transition.

One can see that for H < Hcr there is a phase transition within the confined phase mimicking the

phase transition at H = 0, at H = Hcr the phase transition ends on a critical point of a second

order phase transition. For H > Hcr the phase transition is replaced by a smooth crossover.

3.4 Phase diagram

The most interesting property of the condensate curve is the existence of a first order phase

transition pattern for sufficiently small magnetic fields, which ends at a critical point of

a second order quantum phase transition for H = Hcr ≈ 0.015769. In figure 6 we have

– 13 –



J
H
E
P
0
8
(
2
0
1
4
)
1
0
5

0.000 0.005 0.010 0.015 0.020 0.025
H

1.16

1.18

1.20

1.22

2

Λ
Π mqR2

Figure 7. A plot of the phase diagram of the theory. The Blue curve represents a critical line

of a first order phase transition. The critical line ends at a critical point of a second order phase

transition (the solid dot).

presented plots of the condensate zoomed in near the region of the phase transition. One

can see that for for H < Hcr there is a first order phase transition within the confined phase,

which mimics the confinement/deconfinement phase transition at vanishing magnetic field.

The critical parameter m̃cr, at which the phase transition takes place, can be found using

Maxwell’s equal are law, or alternatively by computing the density of the regularised wick

rotated on-shell action, which is identified with the free energy density of the system. The

two approaches give the same result, because the condensate is a derivative of the free

energy density with respect to the bare mass (at fixed radius of the two sphere and fixed

magnetic field). One can also see that at H = Hcr the phase transition ends on a critical

point of a second order phase transition and for H > Hcr the phase transition is replaced

by a smooth cross over.

The observations from figure 6 can be summarised in the phase diagram presented

in figure 7, where we have presented the bare mass parameter in physical notations m̃ =√
2π2

λ mq R2. The blue curve in the figure represents a critical line of a first order phase

transition. The critical line ends on a critical point of a second order phase transition

(the solid dot). In the next subsection we focus on the properties of the theory at this

critical point.

3.5 Magnetisation

In this subsection we study the magnetisation of the system. Identifying the free energy

(spacial) density with the (2+1 dimensional) density of the regularised euclidean “on-shell”

– 14 –



J
H
E
P
0
8
(
2
0
1
4
)
1
0
5

action, for the free energy density we obtain:

F

N ′
=

∫ ∞
r̃0

dr̃

(√
r̃4 +H2

√
1− χ(r̃)2

√
1− χ(r̃)2 + (1 + r̃2)χ′(r̃)2 − r̃2 +

m̃2

2

)
− r̃

3
0

3
+
m̃2

2
r̃0 + c̃ m̃ , (3.12)

where N ′ = µ5 2πR3/gs, we used that the volume of the field theory S2 is 2πR2 and we

subtracted the counter terms prescribed in refs. [2, 19]. Using equation (3.12) and that

M = −∂F/∂Hphys|mq , one easily arrives at the following expression for the magnetisation:

M

2πα′N ′
= M̃ = −H

∫ ∞
r̃0

dr̃

√
1− χ(r̃)2

√
1− χ(r̃)2 + (1 + r̃2)χ′(r̃)2

√
r̃4 +H2

, (3.13)

where we have introduced the dimensionless quantity M̃ = M/(2πα′N ′). In figure 8 we

have presented a plot of the parameter M̃ at fixed magnetic field as a function of the

bare mass parameter m̃. The plots represent decreasing values of the magnetic field from

|H| = 0.30 to |H| = 10−3. Note that the magnetisation is negative (for positive H) and

hence the system is diamagnetic. The innermost (blue) curve corresponds to |H| = 10−3

and is in practise indistinguishable in the plot from the curve corresponding to the limit

H → 0+. The most interesting property of this curve is that for m̃ ≤ m̃∗ ≈ 1.20 the

magnetisation has a non-zero value8 in the limits H → 0+ and H → 0− (the lower and

upper branch of the blue curve). Therefore, in this regime the theory has a persistent

diamagnetic response, which is independent of the magnetic field. This effect is very similar

to the effect of persistent diamagnetic current in mesoscopic systems, such as nano tubes

and quantum dots [8]. Although such systems contain large namer of microscopic elements

(electrons, molecules, etc.) so that macroscopic quantities are well defined, they are still

relatively small and experience strong finite size quantum effects, which are the main cause

of their peculiar properties. Recall that the bare mass parameter m̃ is proportional to the

radius of the field theory two sphere R2 and hence to the size of the system. Therefore, the

persistent diamagnetic response is realised when the systems is sufficiently small (m̃ < m∗)

and finite size quantum effects (such as the existence of Casimir energy) are important,

this makes the analogy to mesoscopic systems even stronger. As can be seen from the

second plot in figure 8 the phase transition from ordinary to “persistent” diamagnetism

is of a first order, where the critical parameter m̃∗ ≈ 1.20 has the same value as for the

confinement/deconfinement phase transition at strictly vanishing magnetic field reviewed

in section 2. Another interesting property of the magnetisation is its behaviour near the

quantum critical point. Plots of the magnetisation M̃ and the corresponding magnetic

susceptibility χ̃m = ∂M̃/∂H as functions of the magnetic field and for m̃ = m̃cr are

presented in figure 9. From the second plot one can see that the magnetic susceptibility

diverges at the phase transition, as expected for a second order phase transition. The

question for the critical exponents that govern this behaviour will be addressed in the next

subsection where we focus on the critical regime of the theory.

8In the holographic set up the source of the finite magnetisation in the limit of vanishing magnetic field

is the D3-brane throat whose tension is proportional to H (see (3.8)).
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Figure 8. To the left: plots of the magnetisation as a function of the bare mass parameter m̃ for

fixed values of the magnetic field ranging from |H| = 10−3 to |H| = 0.30. The innermost (blue)

curve corresponding to |H| = 10−3 is representative for the limits H → 0+ and H → 0− and one

can see that for m̃ ≤ m∗ ≈ 1.20 the magnetisation remains finite suggesting that theory has a

persistent diamagnetic response in this regime. To the right: a zoom of the critical region. One

can see that at m̃ = m̃∗ there is a first order phase transition from a “persistent” diamagnetism to

a state with vanishing magnetisation.
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Figure 9. Plots of the magnetisation M̃ and the magnetic susceptibility χ̃m = ∂M̃/∂H as functions

of the magnetic field at fixed bare mass parameter m̃ = m̃cr. As expected the susceptibility diverges

at the phase transition.

3.6 Critical behaviour

In this subsection we explore the properties of the theory at the critical point, in particular

we calculate the critical exponents of various observables. For all observables that we study

we find with a very high numerical accuracy that the critical exponent is one third, and for

the corresponding diverging susceptibilities we find critical exponent −2/3. Generally, it is

expected that at a second order phase transition the second derivatives of the free energy

will diverge. In our considerations we will keep the radius of the two sphere fixed. The

variation of the free energy density is then given by:

dF = −M dHphys + 〈ψ̄ψ〉 dmq , (3.14)

where M is the magnetisation of the theory and Hphys = H/(2πα′) is the physical mag-

netic field.
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a) We begin by studying the second derivative of the free energy with respect to the

bare mass mq at fixed magnetic field ∂2F/∂m2
q = ∂〈ψ̄ψ〉/∂mq. At a fixed radius of

the two sphere we have: 〈ψ̄ψ〉 ∝ −c̃ and mq ∝ m̃, and it is sufficient to study the

behaviour of the derivative −∂c̃/∂m̃ at a fixed magnetic field (H = Hcr). We will

show that as the bare mass parameter approaches the critical value m̃cr ≈ 1.9191

the first derivative of the condensate diverges as |m̃− m̃cr|γ−1, where γ is the critical

exponent characterising the behaviour of the condensate near the phase transition,

that is near the phase transition we have:

|c̃− c̃cr| = |m̃− m̃cr|γ . (3.15)

Note that in general the crucial exponents on both sides of the transition need not

agree, however this is often the case in critical phenomena and our system is not an

exception. To determine numerically the value of the critical exponent γ we study the

logarithmic derivative ∂ log |c̃− c̃cr|/∂ log |m̃− m̃cr| whose value in the limit m̃→ m̃cr

coincides with γ. Refining our numerical techniques and focusing on the region near

the phase transition, we obtain the data presented in figure 10.

Note that the points in a very close proximity to the phase transition have been

removed to avoid the numerical evaluation of a term behaving like 0/0, which would

inevitably generate a huge numerical error. Note also that we have evaluated 1/γ. A

non-linear fit (the solid curve) to the data, provided a value for the critical exponent

of 1/γ = 3.0000 ± 0.0002 with 95% confidence. We consider this result as a very

strong indication that the critical exponent is γ = 1/3 and the second derivative of

the condensate diverges at the phase transition as:

∂2F

∂m2
∝ |m̃− m̃cr|−2/3. (3.16)

b) Our next focus is the magnetic susceptibility χm related to the second derivative of the

free energy with respect to the magnetic field: χm = ∂M/∂Hphys = −∂2F/∂H2
phys.
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For numerical studies it is convenient to introduce the dimensionless quantity χ̃m =

∂M̃/∂H, where M̃ is defined in equation (3.13). Plots of the parameters M̃ and χ̃m
have already been presented in figure 9. In this subsection we are interested in the

behaviour of the parameters across the phase transition. This is why we generate

a plot of the magnetisation at m̃ = m̃cr for a small range of the magnetic field H

around the critical value: Hcr−∆H ≤ H ≤ Hcr +∆H. In figure 11 we have presented

plots of the quantities ±(M̃ − M̃cr) versus ±(H −Hcr), the dashed curves represent

const1 x
1/3 + const2 x

2/3 fits. One can see the excellent agreement on both sides of

the phase transition, suggesting that the magnetisation approaches its critical value

as M̃ − M̃cr ∝ (H −Hcr)
1/3 and hence for the critical behaviour of the susceptibility

we obtain:

χm ∝ |H −Hcr|−2/3 . (3.17)

We see that the magnetic susceptibility has the same critical exponent as the second

derivative of the free energy with respect to the bare mass ∂2F/∂m2.

c) Finally, we are interested in the properties of the mixed derivative ∂2F/∂m∂H =

−∂M/∂m across the phase transition. To study its behaviour we generate a plot of

the magnetisation parameter M̃ at H = Hcr and for a small range of the bare mass

parameter m̃ around the critical one: m̃cr −∆m̃ ≤ m̃ ≤ m̃cr + ∆m̃. As can be seen

from the plots in figure 12, there is an excellent agreement with the const1 x
1/3 +

const2 x
2/3 fits, suggesting that the second derivative ∂2F/∂m∂H diverges as:

∂2F

∂m∂H
∝ |m̃− m̃cr|−2/3 (3.18)

across the phase transition. We will return to the critical behaviour of the theory in

the next section when we study the behaviour of the meson spectrum of the theory

near the phase transition and show that at the phase transition the theory has a

massless mode, which is also approached with a critical exponent 1/3.

4 Meson spectrum

In this section we analyse the spectrum of the quadratic fluctuations of the system corre-

sponding to the spectrum of the mesonic bound states in the dual field theory. To obtain
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the equations of motion for the fluctuations we expand near the classical profile of the

D5-brane:

β = π/2 + (2πα′)δβ; χ = χ0(r) + (2πα′)δχ; α̂ = π/2 + (2πα′)δα̂;

γ̂ = 0 + (2πα′)δγ̂ Aµ = 0 + δAµ , (4.1)

where α̂, γ̂ parameterise the S2 transverse to the D5-brane and the perturbations are al-

lowed to depend on all word volume coordinates. The next step is to expand to second

order in α′ the total action of the D5-brane:

SD5 = −µ5

gs

∫
d6ξ e−Φ

√
−det(P [G+B] + 2πα′F ) + µ5

∫ ∑
k

P [Ck ∧ e2πα′F ] , (4.2)

where 2πα′F = B + 2πα′F . Using the equations of motions for the classical embedding

of the D5-brane, one can show that the first order term in the expansion of the action

vanishes, as it should since we are expanding near a local extremum. Defining the matrix

E = P [G + B] and expanding E = E0 + (2πα′)E1 + (2πα′)2E2, for the second order

expansion of the DBI action quite generally we obtain:

S
(2)
DBI

(2πα′)2
= − µ5

2 gs

∫
d6ξ
√
−|E0|

[
Tr

(
E−1

0 E2 −
1

2
(E−1

0 E1E
−1
0 E1)

)
+

1

4

(
TrE−1

0 E1

)2]
.

(4.3)

On the other hand, since the supergravity background that we consider has a non-zero RR

potential C(4), for the second order term of the Wess-Zumino action we obtain:

S
(2)
WZ

(2πα′)2
=

µ5

(2πα′)2

∫
P [C(4)] ∧B = −4µ5R

6

gs

∫
d6ξ sinα sin α̃ χ0(r)2(1− χ0(r)2)δγ̂ ∂tδα̂ ,

(4.4)

where we have used a gauge in which the magnetic component of the background RR four

potential is given by:

C̃(4) =
1

gs
4R4γ̂ sin2 2θ sin α̃ sin α̂ dθ ∧ dα̃ ∧ dγ̃ ∧ dα̂ , (4.5)

and that χ0(r) = cos θ(r). We see that the Wess-Zumino part of the action couples the

fluctuations along α̂ and γ̂, this effect has been used in the flat case analysed in ref. [24] to
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show that the Goldstone modes of the theory obey a non-relativistic linear dispersion rela-

tion and to verify the modified counting rule valid for such modes. However, in the present

work we will focus on the properties of the theory near the quantum critical point and in

particular on the spectrum of the fluctuations along χ, since the spectrum of this mode

contains a massless particle at the critical point responsible for the divergent correlation

length. To this end we have to write the explicit expressions for the second order action

derived from equations (4.3), (4.4) and derive the corresponding equations of motion.

4.1 Quadratic lagrangian

Our results for the second order Lagrangian derived from equations (4.3), (4.4) are:

LFF ∝ −
√
−|E0|
4

Sµµ
′
Sνν

′
FµνFµ′ν′ , Lββ ∝ −

√
−|E0|
2

Gββ S
µν∂µ δβ ∂νδβ , (4.6)

Lα̂α̂ ∝ −
√
−|E0|
2

Gα̂α̂ S
µν∂µ δα̂ ∂νδα̂ , Lγ̂γ̂ ∝ −

√
−|E0|
2

Gγ̂γ̂ S
µν∂µ δγ̂ ∂νδγ̂ (4.7)

Lχχ ∝ −
√
−|E0|
2

GχχGrr
Grr +Gχχ χ′0(r)2

Sµν ∂µ δχ ∂νδχ−
1

2

∂
√
−|E0|

∂χ(r)2
δχ2

+

√
−|E0|
2

Gχχ
Grr

χ′0(r)2∂
2 log

√
−|E0|

∂χ0(r) ∂χ′0(r)
∂rδχ δχ , (4.8)

Lα̂γ̂ ∝ −4H R6 sinα sin α̃ χ0(r)2
√

1− χ0(r)2 ∂tδα̂ δγ , (4.9)

LχF ∝ Jαγ
∂
√
−|E0|

∂χ′0(r)
(∂rδχFαγ − ∂γδχFαr + ∂αδχFγr) + Jαγ

∂
√
−|E0|

∂χ0(r)
δχFαγ

= −∂rJαγ
∂
√
−|E0|

∂χ′0(r)
δχFαγ + (total derivative) , (4.10)

where Gmn are the components of the then dimensional metric and the matrices S ≡
(E−1

0 + E−1
0

T
)/2 and J ≡ (E−1

0 − E−1
0

T
)/2 are given by:

S = diag

{
G−1
tt ,

Gγγ

GααGγγ +H2R4 sin2 α
,

Gαα

GααGγγ +H2R4 sin2 α
,

1

Grr +Gχχχ′0(r)2
,

G−1
α̃α̃ , G

−1
γ̃γ̃

}
, (4.11)

Jµν =
1

sinα

H R2

r4 +H2R4

(
δµγ δ

ν
α − δνγδµα

)
. (4.12)

Note that in deriving the last expression in equation (4.10) we have used the equation

of motion for χ0(r) and the Bianchi identity for the gauge field (dF = 0). In the next

subsection we use equations (4.6), (4.8) and (4.10) to show that for modes with vanishing

angular momentum on the two sphere the equations of motion for δχ and the gauge field

decouple. Next we obtain the spectrum of the fluctuations along χ.

4.2 Spectrum along χ

In this subsection we analyse the spectrum of the fluctuations along χ. The reason to focus

on this mode is that it contain the massless mode corresponding to the divergent correlation
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length at the critical point. As one can see from equation (4.10), the fluctuations along

χ couple to the fluctuations of the gauge field. To obtain the corresponding equations

of motion we vary the combined Lagrangian Lχχ + LχF + LFF . We observe that if one

restricts the fluctuations to the “S-mode” by suppressing the angular momentum of the

two sphere, the equations of motion for the fluctuations along χ decouple from those of the

gauge field. To find the bound states we consider a consistent ansatz:

δχ(t, r) = A cos(ω t)hχ(r) , (4.13)

and solve numerically the resulting second order equation for hχ(r). One can show that

the general solution for hχ(r) at infinity behaves as:

hχ(r) =
a

r
+

b

r2
+ . . . . (4.14)

Furthermore, substituting the asymptotic solution in the “on-shell” quadratic action one

can show that only modes with a = 0 are renormalisable and correspond to bound states

with finite energy — this is our quantisation condition (a = 0). One can also show that the

regular solution for hχ(r) has predetermined boundary conditions for the first derivative

at r0 (the point where χ = 1 and the D5-brane closes). Therefore we are left with just one

parameter specifying the solution, which corresponds to an overall amplitude (the equation

is linear) which we set to one. Finally, we define the dimensionless parameters:

r̃ = r/R; ω̃ = ωR . (4.15)

We are now ready to generate the numerical solution for hχ(r̃). For each value of the

starting parameter r̃0 we select those modes for which the coefficient a in equation (4.14)

vanishes. This gives us a discrete set of values for ω̃ corresponding to the meson spectrum

associated to the fluctuations along χ. As one can expect, the spectrum depends crucially

on the magnitude of the magnetic field H. Plots of the spectrum of the first three states

as a function of the bare mass parameter (at fixed H) are presented in figures 13, 14, 15.

One can see that for large bare mass parameter m̃ (and at vanishing magnetic field) the

spectrum approaches the flat result first obtained in refs. [26, 27]:

ω =
2m

R2

√
(n+ 1/2)(n+ 3/2) n = 0, 1, 2, . . . , (4.16)

which is represented by dashed lines in the figures. Another interesting feature of the

spectrum is that at m̃ = 0 the ground state depends very weakly on the magnetic field and

for the examples that we have studied (H < 0.10) its value remains practically unchanged

from the zero magnetic field result ω = 2, obtained in [18]. However, the equidistant

structure of the spectrum (at m̃ = 0, and H = 0) is violated and the third state already

deviates significantly. For higher excited states (or at stronger magnetic fields) we expect

that a level crossing is taking place.

The most interesting for us feature of the spectrum is its behaviour near the phase

transition. In the second plot in figure 13 we have presented the spectrum of the ground

state (for H = 0.010) zoomed in near the phase transition. One can see that for the
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Figure 13. Plot of the spectrum for H = 0.010. The plots are for Re(ω̃) ≥ 0 and ω̃2 ∈ Re. For

large m̃ the spectrum approaches the flat result (4.16) represented by the dashed lines. The second

plot represents the ground state zoomed in near the phase transition. The spectrum has a finite

jump (between the small dots) and is tachyonic in the thermodynamically unstable regime.
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Figure 14. Plot of the spectrum for H = Hcr. For large m̃ the spectrum approaches the flat

result (4.16) represented by the dashed lines. The second plot represents the ground state zoomed

in near the phase transition. The spectrum has a kink at the phase transition and vanishes. This

massless mode corresponds to the diverging correlation length.

stable branches the spectrum has a discrete jump (between the black points in the figure),

which is expected for a first order phase transition. Furthermore, one can see that the

thermodynamically unstable phase of the corresponding Maxwell construction (see the

shaded region in figure 6) is tachyonic. There are also metastable regions close to the

spinodal points on each side of the phase transition.

In the second plot in in figure 14 we have presented the spectrum of the ground state for

H = Hcr near the second order phase transition. One can see that at the phase transition

the spectrum has a non-analyticity and vansihes. Therefore, there is a massless mode in

the spectrum at the critical point, which we associate to the divergent correlation length of

the quantum fluctuations. We leave the study of the the corresponding critical exponent

for the next subsection.

Finally, the second plot in figure 15 represents the ground state of the spectrum for

H = 0.10 (above the critical value Hcr ≈ 0.015769) zoomed in near the region of the cross

over. As one can see the spectrum remains smooth at the cross over.
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Figure 15. Plot of the spectrum for H = Hcr. For large m̃ the spectrum approaches the flat

result (4.16) represented by the dashed lines. The second plot represents the ground state zoomed

in near the cross over. The spectrum remains smooth at the cross over.
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Figure 16. Plots of the spectrum ω̃ as a function of m̃− m̃cr on both sides of the phase transition.

The dashed curves represent const1x
1/3 + const2x

2/3 fits.

4.3 Critical behaviour of the spectrum

In this subsection we analyse the critical behaviour of the spectrum at the phase transition.

In particular we focus on the behaviour of the ground state near the phase transition. In

figure 16 we have presented plots of ω̃ vs m̃ − m̃cr for some small internal ∆m̃ near the

critical parameter m̃cr. The dashed curves represent const1x
1/3+const2x

2/3 fits, one can see

the excellent agreement with the numerical data, suggesting that the spectrum approaches

zero with a critical exponent 1/3:

ω ∝ |m̃− m̃cr|1/3 . (4.17)

This also suggests that the parameter ν = ∂ω/∂m diverges at the phase transition as:

ν =
∂ω

∂m
∝ ±|m̃− m̃cr|−2/3 . (4.18)

This result, together with the results of section 3.6, complete our study of the critical

exponents of the theory. It is intriguing that all diverging susceptabilities have critical

exponent −2/3.
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5 Conclusion

In this paper we analysed the properties of a 2 + 1 dimensional defect field theory on a

two sphere, subjected to an external magnetic field. We found a rich phase structure and

peculiar diamagnetic properties.

Our holographic set-up involved probe D5-branes in global AdS5×S5 space-time. The

external magnetic field was realised as a pure gauge B-field proportional to the volume

form of the two sphere of the defect. For “Ball” embeddings the norm of the B-field

diverges at the origin signalling the presence of a magnetic monopole. We showed that

charge conservation of the RR flux requires that additional set of D3-branes be attached

to the “Ball” embeddings, which is an unstable configuration. Remarkably, we found that

the stable configuration is realised by Minkowski embeddings, which mimic the “Ball”

embeddings and realise the D3-branes as a R×B3×S2 throat with small radius of the S2,

avoiding the divergence of the norm of the B-field.

Our numerical studies showed that for sufficiently small magnetic field, an analogue

of the first order confinement/deconfinement phase transition at vanishing magnetic field

is realised within the confined phase, represented by Minkowski embeddings. The phase

transition does not correspond to a topology change transition of the D5-brane embeddings,

allowing it to end on a critical point of a second order quantum phase transition, as the

magnetic field is increased. Our system also has a non-zero negative condensate at vanishing

bare mass, thus realising the effect of magnetic catalysis of chiral symmetry breaking.

We showed that our set up realises a holographic quantum critical point and we found

that all second derivatives of the free energy diverge with critical exponent of −2/3. Our

study of the meson spectrum uncovered the existence of a massless mode at the phase tran-

sition signalling a divergent correlation length of the quantum fluctuations. The derivative

of the meson mass with respect to the bare mass also diverges at the phase transition with

a critical exponent of −2/3.

Another intriguing property of our system is the existence of a persistent diamagnetic

response, in the phase corresponding to small radius of the two sphere (small m̃). This

behaviour bears resemblance to the properties of mesoscopic systems, such as nano tubes

and quantum dots, which exhibit persistent diamagnetic current.

One obvious direction for future studies is to complete the analysis of the meson

spectrum of the theory. In particular it would be interesting to study the modified counting

rule for goldstone bosons. In flat space the counting of the goldstone modes depends

crucially on their dispersion relations [28], it would be interesting to study these rules for

modes propagating on compact space. Since the flat case analogue of our system, realised

goldstone modes with even dispersion relations [24] (see also refs. [29] and [30]), it is natural

to expect that our system would describe their analogue on the two sphere.

Finally, it would be of a great interest to extend our studies to finite temperature. In

particular it would be interesting to search for signatures of a quantum critical regime in

the vicinity of the quantum critical point. The existence of such a regime is of a great

experimental interest, since it is usually accompanied by exotic physical behaviour like

novel non Fermi liquid phases. Given the full control on the system, that our holographic
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set up allows and the relative ease of introducing temperature (considering an AdS black

hole), such studies can potentially have a large impact on our understandings of the physics

of quantum critical points.
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