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1 Introduction

One fundamental problem in quantum cosmology is the issue on the observable set and the

quantum state of the space-time. The purpose of this paper is to construct an appropriate

set of observables in the mini-superspace model of quantum cosmology and quantum states

of the universe with clear classical-quantum correspondence.

While the perturbative quantization of the general relativity confronts the difficulty

due to the non-renormalizability of the theory, alternative approaches such as string theory,

loop gravity, etc. have been widely discussed for a long time. Needless to say, an important

application of the quantum gravity would be in the quantum cosmology, which would give

quantum descriptions of the expanding universe at early times and the big-bang singularity.

Although we don’t have a fully reliable theory of quantum gravity, it will be worthwhile to

discuss a quantum theory of the expanding universe, such as the mini-superspace model,

defined only on the finite dimensional reduced phase space of the gravitational field.

In the Hamiltonian formulation of the general relativity, we are led, according to the

Dirac’s prescription [1] for singular Lagrangian systems, to the constrained Hamiltonian

system, in which the total Hamiltonian of the gravitational field

HT =

∫

Σt

d3x

(
NΦ0 +

3∑

i=1

N iΦi

)

consists of a linear combination of first-class constraint functions Φµ≈ 0 (µ=0, 1, 2, 3) [2, 3].

The configuration space of the gravitational field is parametrized by the Riemannian

3-metric hij on the Cauchy surface Σt, and the canonical momentum is given by

πij = (16πG)−1
√
h(Kij −Khij),
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where Kij = (1/2)£nhij (n is the future pointing unit normal vector field on Σt) is the ex-

trinsic curvature of Σt. In terms of these canonical variables, the constraints are written as

Φ0 = Gij,klπ
ijπkl −

√
hR

16πG
≈ 0,

Φi = −2Dkπ
k
i ≈ 0,

where R and Dk are the scalar curvature and the covariant derivative (for tensor densities)

on (Σt, hij), respectively, and

Gij,kl :=
8πG√
h

(hikhjl + hilhjk − hijhkl)

determines the semi-Riemannian structure of the configuration space of the 3-metrics.

According to the Dirac’s algorithm of quantization, each first-class constraint function

Φµ is replaced with a corresponding linear operator Φ̂µ in a Hilbert space H . Then, the ob-

served physical state is required to be a ray in the subspace Hphys = {|ψ〉 ∈ H ; Φ̂µ|ψ〉 = 0}
determined by these constraint operators. These requirements: Φ̂µ|ψ〉 = 0, for the physical

state, which become functional differential equations in the Schrödinger representation, are

well known as the Wheeler-DeWitt equations [4, 5].

This formulation of quantum gravity is purely kinematical, in that the Wheeler-DeWitt

equations only make a restriction on the physical Hilbert space, but does not define the

dynamics of the wave function, since the Hamiltonian itself becomes a constraint operator:

ĤT |ψ〉 = 0, which is called the problem of time in the literature [6–8]. Furthermore, we

don’t have a fully satisfactory interpretation of the quantum state subject to the Wheeler-

DeWitt equations.

In order to approach such conceptual issues, it will be worthwhile, as a first step, to

discuss the mini-superspace model of the quantum cosmology. According to the concept

of the geometrodynamics by Wheeler [5], the solution to the Einstein equation can be

viewed as the motion of a test particle in the superspace [9, 10], which is the space of

the 3-geometries on the Cauchy surface Σt, more precisely, it is the configuration space of

3-metrics above modulo the proper subgroup of the self-diffeomorphism group of Σt. Since

this viewpoint is very useful in our formulation of the quantum theory of cosmology, let us

respect it in the mini-superspace model in what follows.

The organization of the paper is as follows. In section 2, we briefly review the Hamil-

tonian formulation of the classical Einstein gravity applied to the Friedmann-Robertson-

Walker (FRW) space-time, where we introduce the semi-Riemannian metric gC on the

mini-superspace. In section 3, we consider the quantum Klein-Gordon field in the mini-

superspace with respect to the semi-Riemannian structure given by gC , where we are faced

with the issue regarding the inseparability of the Hilbert space in the cases of the spatially

non-flat universe. In section 3.2 and 3.3, we introduce the vector bundle structure in the

inseparable Hilbert space to define the consistent quantum theory with the unitary time

evolution described by the global section of the vector bundle, where we obtain the first-

quantized theory of the expanding universe on the space of 1-particle states of the quantum
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Klein-Gordon field. In section 4, we show that our quantum theory correctly reproduces

the classical solution to the Einstein equation. In section 5, we give concluding remarks.

2 Preliminaries: mini-superspace model

In the mini-superspace model of the isotropic and homogeneous universe, we consider the

class of space-times represented by the FRW metric

g = −N(t)2dt2 + a(t)2γK ,

where γK (K = 0,±1) denotes the Riemannian metric of the 3-space of the constant

sectional curvature K. Let us consider the neutral massless scalar field minimally coupled

with the Einstein-Hilbert action, which is provided by the classical action

S[g,X] =
1

16πG

∫
d4x

√−g
(
R− 1

2
X,µX

,µ

)
.

In the standard procedure, we are led to the total Hamiltonian

HT = NΦ0, (2.1)

Φ0 =
8πG

v

(
− p2a
12a

+
p2X
a3

)
− 3Kva

8πG
,

where we consider the fixed spatial coordinate volume and set v =
∫
d3x

√
γK . The con-

figuration space M , which is called the mini-superspace, is parametrized by qm = (a,X),

and their conjugate momenta are denoted as pm = (pa, pX). The momentum constraints

Φi ≈ 0 are automatically satisfied in this parametrization. As the Hamiltonian can be

written in the form:

HT = N [(gS)
mnpmpn + u] ,

gS =
v

8πG
(−12ada2 + a3dX2),

u = −3Kva

8πG
,

the dynamics of the universe is equivalent to that of a point particle in the curved space-

time with the metric gS and the potential function u. In fact, the equation of motion is

given by

d2qk

dt2
+ Γ[gS ]

k
mn

dqm

dt

dqn

dt
≈ N−1dN

dt

dqk

dt
− 2N2(gS)

kl du

dql
,

Φ0 =
1

4N2
(gS)mn

dqm

dt

dqn

dt
+ u ≈ 0.

The present system has an invariance under the coupled conformal transformation of

the Lorentzian metric gS and the pointwise scaling of the potential: (gS , u) 7→ (fgS , f
−1u)

for f(qm) 6= 0. Using this invariance, the system can always be reduced to that of the

geodesic particle in M but with a conformally related metric [9, 10].
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In fact, assuming u 6= 0, under the conformal transformation

(gS)mn =
C2

u
(gC)mn (2.2)

and the reparametrization of the time function

t(s) =

∫ s

ds
C

2Nu
,

the equations of motion become

d2qk

ds2
+ Γ[gC ]

k
mn

dqm

ds

dqn

ds
≈ 0, (2.3)

Φ0 = u

(
(gC)mn

dqm

ds

dqn

ds
+ 1

)
≈ 0, (2.4)

where C is a constant with the mass dimension 1. The eq. (2.3) is the geodesic equation with

respect to the semi-Riemannian metric gC , and the Hamiltonian constraint (2.4) requires

that the new parameter s is the proper time. Hence, the equivalent system is given by the

Hamiltonian of the geodesic particle in (M , gC),

H ′
T = λ ((gC)

mnpmpn + 1) ,

where λ is the Lagrange multiplier.

On the other hand, when u = 0, we set gC = gS . Then, the Hamiltonian is simply

given by

H ′
T = N(gC)

mnpmpn.

This describes the null geodesic particle in (M , gC).

As a quantized system corresponds to the classical system defined by eq. (2.1), we con-

sider the quantum fields in the mini-superspace (M , gC) as a semi-Riemannian manifold.

3 Quantum Klein-Gordon field in mini-superspace

Here, we consider the Klein-Gordon field in (M , gC) and give a consistent quantized theory.

Let us see K = 0,±1 cases separately, since they are technically different.

3.1 Case of flat universe (K = 0)

The spatially flat case turns out to be the most simple, so that it is appropriate to explain

this case first. In this case, the dynamics of the universe is equivalent to that of a null

geodesic particle in (M , gC), where the metric is given by

gC =
v

8πGC
(−12ada2 + a3dX2).

We construct the localized 1-particle states of the massless quantum Klein-Gordon field to

describe a quantum mechanical counterpart of this classical light-like particle.

– 4 –
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Firstly, we introduce the new time function T by a = a0e
βT . Then, the metric on M

becomes the conformally flat form

gC = A2e3βT (−dT 2 + dX2),

where we set

β = (12)−1/2, A2 =
va30

8πGC
.

The classical action of the massless Klein-Gordon field in (M , gC) becomes that in the

flat space:

S[φ] =
1

2

∫
dTdX

[
(∂Tφ)

2 − (∂Xφ)
2
]
.

A solution to the Klein-Gordon equation can be decomposed into a linear combination of

the mode functions {f(p;T,X), f∗(p;T,X)} (p ∈ R), where

f(p;T,X) = (4π|p|)−1/2e−i|p|T eipX .

The quantum Klein-Gordon field is expanded into the form

φ(T,X) =

∫ ∞

−∞
dp [a(p)f(p;T,X) + a∗(p)f∗(p;T,X)],

and the conjugate momentum operator is written as π(T,X) = ∂Tφ(T,X). The canonical

commutation relations (CCRs)

[φ(T,X), π(T,X ′)]− = iδ(X −X ′)1,

[φ(T,X), φ(T,X ′)]− = 0, [π(T,X), π(T,X ′)]− = 0,

are equivalent to

[a(p), a∗(p′)]− = δ(p− p′)1, [a(p), a(p′)]− = 0, [a∗(p), a∗(p′)]− = 0.

In terms of these, the quantum Hamiltonian operator is given by

H =

∫ ∞

−∞
dp |p|a∗(p)a(p).

As usual, the vacuum state |Ω〉 is defined by the requirement:

a(p)|Ω〉 = 0, for all p ∈ R,

and the Fock space is constructed in the standard procedure. Let F
(1)
Ω denote the Hilbert

space of 1-particle states, which we are mainly concerned with.

Define, for each p ∈ R, the momentum operator

P :=

∫ ∞

−∞
dp pa∗(p)a(p),
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which is a Hermitian operator on F
(1)
Ω . The eigenvectors of P are given by

|p〉 := a∗(p)|Ω〉, for p ∈ R,

which satisfy

P |p〉 = p|p〉.

These satisfy the orthogonality condition

〈p|p′〉 = δ(p− p′)

and the completeness condition
∫ ∞

−∞
dp |p〉〈p| = 1,

where 1 denotes the identity operator on F
(1)
Ω .

The position operator is defined by

Q := i

∫ ∞

−∞
dp a∗(p)∂pa(p),

which is a Hermitian operator on F
(1)
Ω . The eigenvector of Q is formally written as a state

|X〉Q :=

∫ ∞

−∞
dp e−ipX |p〉, for X ∈ R,

and it satisfies

Q|X〉Q = X|X〉Q.

The vector |X〉Q is the localized state considered by Newton and Wigner [11] long time ago.

The operators P and Q constitute the CCR-algebra

[Q,P ]− = i1.

Thus, we obtain the canonical observable set (P,Q) and its Schrödinger representation

on F
(1)
Ω .

We regard the quantum state of the universe as being described by a 1-particle state

of the Fock space. Since the Hamiltonian of the Klein-Gordon field acts on F
(1)
Ω , any

1-particle state remains in F
(1)
Ω in the course of the unitary time evolution. In fact, the

Hamiltonian restricted on F
(1)
Ω can be written as

H(1) = |P |.

The expansion of the 1-particle state at the time T

|ψ(T )〉 =
∫ ∞

−∞
dp ψ(p, T )|p〉

– 6 –
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defines the wave function ψ(p, T ) of the universe in the momentum representation. Then,

the time evolution of the 1-particle state is determined by the Schrödinger equation

i∂Tψ(p,X) = 〈p|H(1)|ψ(T )〉 = |p|ψ(p, T ),

according to the unitary time evolution of the quantum Klein-Gordon field. In this way,

we obtain a quantum Hamiltonian for the wave function of the universe without operator

ordering ambiguity [12], which clearly describes the massless particles in (M , gC), besides

the well-defined canonical observable set (P,Q).

3.2 Case of hyperbolic universe (K = −1)

In this case, we are led to the massive field in the expanding chart of the Milne space.

Then, according to the standard approach, the quantum field theory in this background

geometry describes the continuous pair creations of scalar particles, which is hard to in-

terpret in the context of the quantum cosmology. This occurs due to the inseparability of

the Hilbert space involved. Nevertheless, we show that it is possible to construct a con-

sistent quantum theory which describes the dynamics of a 1-particle state with a correct

classical interpretation.

The semi-Riemannian metric on M in this case is given by [See eq. (2.2)]

gC =
3v2

(8πG)2C2
(−12a2da2 + a4dX2).

Introducing the new time function T by a = a0e
βT , the metric is written as

gC = A2e4βT (−dT 2 + dX2),

where we set

β = (12)−1/2, A =

∣∣∣∣
√
3va20

8πGC

∣∣∣∣.

Now, we start with the action of the massive Klein-Gordon field

S[φ] =
1

2

∫
dTdX[(∂Tφ)

2 − (∂Xφ)
2 −A2m2e4βTφ2],

of the mass m. The complete set of the solutions to the Klein-Gordon equation is given by

{f(p;T,X), f∗(p;T,X)} (p ∈ R), where

f(p;T,X) := (4π|p|)−1/2F (|p|;T )eipX ,

F (|p|;T ) := Γ(1− i(2β)−1|p|)
(
Am

4β

)i(2β)−1|p|

J−i(2β)−1|p|

(
Ame2βT

2β

)
,

and Γ(x) and Jα(x) denote the Gamma and Bessel functions, respectively. The mode

functions have been normalized in terms of the Klein-Gordon product:

(f, g)KG := i

∫ ∞

−∞
dX[f∗∂T g − (∂T f

∗)g],

– 7 –
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such that

(f(p;T,X), f(p′;T,X))KG = −(f∗(p;T,X), f∗(p′;T,X))KG = δ(p− p′),

(f(p;T,X), f∗(p′;T,X))KG = 0

hold. Since the mode function f(p;T,X) approximates the plane wave in the Minkowski

space-time in the limit T → −∞:

f(p;T,X) = (4π|p|)−1/2e−i|p|T eipX +O(e4βT ),

we take {f(p;T,X)} as the positive frequency solutions and expand the quantum Klein-

Gordon field in the form

φ =

∫ ∞

−∞
dp [a(p)f(p;T,X) + a∗(p)f∗(p;T,X)].

The Fock space FΩ is constructed from the vacuum state |Ω〉 defined by the requirement:

a(p)|Ω〉 = 0, (for all p ∈ R),

according to the standard procedure.

The computation of the quantum Hamiltonian operator for the Klein-Gordon field in

this case leads to

H(T ) =

∫
dp

[
σ(|p|;T )a∗(p)a(p) + τ(|p|;T )

2
a(p)a(−p) + τ∗(|p|;T )

2
a∗(p)a∗(−p)

]
,

where

σ(|p|;T ) := |Γ(1− i(2β)−1|p|)|2

×
[
A2m2e4βT

8|p|

∣∣∣∣Ji(2β)−1|p|−1

(
Ame2βT

2β

)
− Ji(2β)−1|p|+1

(
Ame2βT

2β

)∣∣∣∣
2

+
1

2

(
|p|+ A2m2e4βT

|p|

) ∣∣∣∣Ji(2β)−1|p|

(
Ame2βT

2β

)∣∣∣∣
2]
,

τ(|p|;T ) := Γ(1− i(2β)−1|p|)2
(
Am

4β

)iβ−1|p|

×
{
A2m2e4βT

8|p|

[
J−i(2β)−1|p|−1

(
Ame2βT

2β

)
− J−i(2β)−1|p|+1

(
Ame2βT

2β

)]2

+
1

2

(
|p|+ A2m2e4βT

|p|

)[
J−i(2β)−1|p|

(
Ame2βT

2β

)]2}
.

The Hamiltonian can be put into the diagonal form by the transformation [13, 14]

a(p;T ) = a(p) cosh θ(|p|;T ) + a∗(−p)eiγ(|p|;T ) sinh θ(|p|;T ), (3.1)

where the real functions θ(|p|;T ) and γ(|p|;T ) are determined by

e2θ(|p|;T ) =

√
σ(|p|;T ) + |τ(|p|;T )|
σ(|p|;T )− |τ(|p|;T )| ,

e−iγ(|p|;T ) =
τ(|p|;T )
|τ(|p|;T )| .

– 8 –
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Then, the Hamiltonian becomes

H =

∫
dp ω(|p|;T )a∗(p;T )a(p;T ),

where

ω(|p|;T ) :=
√
σ(|p|;T )2 − |τ(|p|;T )|2.

Taking the number operators N(p;T ) := a∗(p;T )a(p;T ) as the observables at the

time T , the evaluation of 〈Ω|N(p;T )|Ω〉 gives a non-zero value. Then, it is argued that it

describes the creation of scalar particles in the expanding universe, which is the approach

frequently taken in the context of the quantum field theory in the FRW universe. Here,

we seek for an appropriate formulation of the quantum cosmology assuming that we can

observe only a 1-particle state of the universe as a guiding principle.

Since the defining equation (3.1) of a(p;T ) has the form of the Bogoliubov transfor-

mation, it can be also written as

a(p;T ) = U(T )a(p)U∗(T ),

U(T ) := exp

{
1

2

∫
dp θ(|p|;T )[e−iγ(|p|;T )a(p)a(−p)− eiγ(|p|;T )a∗(p)a∗(−p)]

}
.

The unitary operator U(T ) is improper ([15], section 3) in the sense that it is not a unitary

operator on the Fock space FΩ. The Fock space FT (T ∈ R) can be built from the

“T -vacuum”

|Ω;T 〉 := U(T )|Ω〉,

subject to a(p;T )|Ω;T 〉 = 0 (p ∈ R), by applying all polynomials of a∗(p;T ) according to

the standard procedure for the Fock representation. In this way, the T -vacuum |Ω;T 〉 is

regarded as the instantaneous vacuum of the Klein-Gordon field at the finite time T , and

we have a continuum of mutually improperly equivalent Fock spaces parametrized by T .

Since the HamiltonianH(T ) is a Hermitian operator in FT , a finite particle state in FT

remains in a finite particle state under the action of the unitary operator exp(−iH(T )dT )

in FT . This is of course not the state in FT+dT . Instead, it is physically interpreted as the

infinite particle state in FT+dT . This implies that the Klein-Gordon Hamiltonian H(T )

does not define a unitary time evolution in a separable Hilbert space. In this sense, this

theory deviates from the framework of the standard quantum theory.

This leads to a paradoxical conclusion that an infinitely many universes are continu-

ously created. While in the context of the quantum field theory in the FRW background,

such divergence of the particle number might not be regarded as so problematic, since its

physical meaning is clearly interpretable. In fact, this kind of divergence comes from the

infinite spatial volume of the background geometry, and the expectation value of the ap-

propriate number density operator remains finite. Nevertheless, in the present context of

the quantum cosmology, it is hard to see the correspondence to the classical solution to the

– 9 –
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Figure 1. Schematic picture of the vector bundle structure in the continuum of Fock spaces.

The dynamics of the quantum state is given by the unitary transformation exp[−iH(T )dt] in FT

followed by the parallel transport defined by U(T + dT )U∗(T ).

Einstein equation with such an interpretation, because we always observe only a single-

universe state in any case. Hence, an alternative framework for the quantum dynamics

is required.

In order to provide a natural notion of the unitary time evolution, we need to define

a time derivative between states belonging to mutually different Fock spaces. A natural

way to realize this would be provided by considering the fibre bundle structure [16] in the

continuum of the Fock spaces by

π :
⋃

T∈R

FT =: F → R; |ψ;T 〉 7→ T,

and the local trivialization of this vector bundle is supposed to be given by

ϕ : R× FΩ → F ; (T, |ψ; Ω〉) 7→ |ψ;T 〉 := U(T )|ψ; Ω〉.

In this setting, the dynamics of the quantum state can be described by a global section

ψ : R → F ;T 7→ |ψ(T );T 〉

of F (see figure 1).

In order to formulate the quantum dynamics, we have to define the time derivative

of the motion |ψ(T );T 〉, where a problem is that d/dT is not an anti-Hermitian operator

on the Fock space FT . To make the time derivative of the quantum state a meaningful

operation, we need to introduce the notion of parallel transport of the quantum state from

FT to FT+dT . Then, our vector bundle structure provides a natural framework to define

the parallel transport in terms of the connection of the vector bundle. The most natural

choice of the parallel transport would be given by

u(T ′, T ) := U(T ′)U∗(T ) : FT → FT ′ .

– 10 –
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Now, we define the covariant time derivative of the quantum state with respect to this

parallel transport by

DT :=
d

dT
+ U(T )(∂TU

∗(T )),

which is an anti-Hermitian operator on FT . The second term appeared in DT is, in a

sense, the gauge field, which belongs to the Lie algebra of the structure group: the group

of all unitary operators on the Fock space FΩ. In terms of this covariant time derivative

operator, we postulate that the unitary time evolution of the quantum state is determined

by the covariant Schrödinger equation1

iDT |ψ(T );T 〉 = H(T )|ψ(T );T 〉.

In terms of the local coordinates in F , this is equivalent to the Schrödinger equation

i∂T |ψ(T ); Ω〉 = HΩ(T )|ψ(T ); Ω〉,

HΩ(T ) : =

∫
dp ω(|p|;T )a∗(p)a(p),

in FΩ. Thus, in this formulation, everything is described in the language of a single

separable Hilbert space FΩ.

Our quantum dynamics has an advantage that any 1-particle state remains in a 1-

particle state, which would be particularly suitable for the quantum cosmology. So, let us

introduce the canonical observable set on the 1-particle Fock spaces F
(1)
T , along the line of

the case of the flat universe.

Firstly, define the Hermitian operators

P (T ) :=

∫ ∞

−∞
dp pa∗(p;T )a(p;T ),

Q(T ) := i

∫ ∞

−∞
dp a∗(p;T )∂pa(p;T ),

on F
(1)
T are regarded as the momentum and position operators, respectively. In fact, these

realize the representation of the CCR-algebra

[Q(T ), P (T )]− = i1,

on the 1-particle Fock space F
(1)
T .

The eigenvector of P (T ) is written as

|p;T 〉 := a∗(p;T )|Ω;T 〉,

corresponding to the eigenvalue p ∈ R, and the eigenvector of Q(T ) is formally written as

|X;T 〉Q := (2π)−1/2

∫ ∞

−∞
dp e−ipX |p;T 〉,

1The general form of the covariant Schrödinger equation is possibly given by (iDT + A(T ))|ψ(T );T 〉 =

H(T )|ψ(T );T 〉 in terms of a gauge field A(T ). Here we simply consider the case: A(T ) = 0, because an

additional structure to determine A(T ) 6= 0 is not equipped with the present settings.
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which corresponds to the eigenvalue X ∈ R. Hence, |X;T 〉Q can be regarded as the

1-particle state localized at the position X at time T .

Since |X;T ′〉Q = u(T ′, T )|X;T 〉Q holds, the localized 1-particle state |X;T ′〉Q ∈ F
(1)
T ′

is the parallel transport of |X;T 〉Q ∈ F
(1)
T with the same position. It gives justification

for our choice of the connection of the vector bundle.

From the completeness of the 1-particle states

∫ ∞

−∞
dp |p;T 〉〈p;T | = 1,

in F
(1)
T , we can expand the 1-particle state |ψ(T );T 〉 as

|ψ(T );T 〉 =
∫ ∞

−∞
dp ψ(p, T )|p;T 〉,

and the coefficient ψ(p, T ) is the wave function in the momentum representation. The

Hamiltonian operator H(T ) restricted on the 1-particle Fock space F
(1)
T can be written as

H(1)(T ) =

∫ ∞

−∞
dp ω(|p|, T )a∗(p;T )a(p;T ).

By calculating its matrix element, we obtain the Schrödinger equation

i∂Tψ(p, T ) =

∫ ∞

−∞
dp′ 〈p;T |H(1)(T )|p′;T 〉ψ(p′, T )

= ω(|p|, T )ψ(p, T ). (3.2)

in the momentum representation on F
(1)
T . We show in section 4 that this reproduces a

correct classical dynamics.

3.3 Case of elliptic universe (K = 1)

The semi-Riemannian metric on M in this case is given by [See eq. (2.2)]

gC =
3v2

(8πG)2C2
(12a2da2 − a4dX2).

Introducing T by a = a0e
βT , this becomes

gC = A2e4βT (dT 2 − dX2),

where

β = (12)−1/2, A =

∣∣∣∣
√
3va20

8πGC

∣∣∣∣.

Since the classical Hamiltonian is given by

H ′
T = λ((gC)

mnpmpn + 1),

– 12 –



J
H
E
P
0
8
(
2
0
1
4
)
0
8
2

a classical motion corresponds to a space-like geodesic in M , if we take T as the

time function.

As a quantum version of this classical system, we take the tachyonic quantum Klein-

Gordon field [17] described by the action

S[φ] =
1

2

∫
dTdX[(∂Tφ)

2 − (∂Xφ)
2 +A2m2e4βTφ2].

The mode functions {f(p;T,X), f∗(p;T,X)} for the Klein-Gordon equation in this

case can be written as

f(p;T,X) := (4π|p|)−1/2F (|p|;T )eipX ,

F (|p|;T ) := Γ(1− i(2β)−1|p|)
(
Am

4β

)i(2β)−1|p|

I−i(2β)−1|p|

(
Ame2βT

2β

)
,

where Iα(x) denotes the modified Bessel function of the first kind. Since the mode function

f(p;T,X) becomes the plane wave

f(p;T,X) = (4π|p|)−1/2e−i|p|T eipX +O(e4βT ),

as T → −∞, we regard {f(p;T,X); p ∈ R} as the positive frequency solutions.

The subsequent procedure to obtain the first-quantized theory is parallel to theK = −1

case. However, we need to specify the functional space of the wave functions to define the

unitary dynamics of the 1-particle quantum state of the tachyonic field.

Firstly, quantize the Klein-Gordon field

φ(T,X) =

∫
dp [a(p)f(p;T,X) + a∗(p)f∗(p;T,X)],

with the operators {a(p), a∗(p); p ∈ R}. In the case of the tachyonic scalar field in the

Minkowski background, it is known that the CCRs for the scalar field is not compati-

ble with the harmonic-oscillator commutation relations for the creation and annihilation

operators [18]. It however turns out that we don’t encounter this kind of difficulties in

the present background geometry. Here, the CCRs for {φ(T,X), ∂Tφ(T,X);X ∈ R} are

equivalent to the harmonic-oscillator commutation relations

[a(p), a∗(p′)]− = δ(p− p′)1, [a(p), a(p′)]− = 0, [a∗(p), a∗(p′)]− = 0,

for the operators {a(p), a∗(p); p ∈ R}. The vacuum state is defined by a(p)|Ω〉 = 0 (p ∈ R)

and we obtain the Fock representation on FΩ in the standard procedure.

Then, the Hamiltonian operator becomes

H(T ) =

∫
dp h(p;T ),

– 13 –
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where

h(p;T ) := σ(|p|;T )a∗(p)a(p) + τ(|p|;T )
2

a(p)a(−p) + τ∗(|p|;T )
2

a∗(p)a∗(−p),

σ(|p|;T ) := |Γ(1− i(2β)−1|p|)|2

×
[
A2m2e4βT

8|p|

∣∣∣∣Ii(2β)−1|p|−1

(
Ame2βT

2β

)
+ Ii(2β)−1|p|+1

(
Ame2βT

2β

)∣∣∣∣
2

+
1

2

(
|p| − A2m2e4βT

|p|

) ∣∣∣∣Ii(2β)−1|p|

(
Ame2βT

2β

)∣∣∣∣
2]
,

τ(|p|;T ) := Γ(1− i(2β)−1|p|)2
(
Am

4β

)iβ−1|p|

×
{
A2m2e4βT

8|p|

[
I−i(2β)−1|p|−1

(
Ame2βT

2β

)
+ I−i(2β)−1|p|+1

(
Ame2βT

2β

)]2

+
1

2

(
|p| − A2m2e4βT

|p|

)[
I−i(2β)−1|p|

(
Ame2βT

2β

)]2}
.

The Hamiltonian at the time T can be made in a diagonalized form in the integration range

|p| > p0(T ), where the function p0(T ) is the smallest positive solution of the equation

σ(p0(T );T ) = |τ(p0(T );T )|,

that is given by

p0(T ) = Ame2βT .

Keeping this in mind, we separate the Hamiltonian into two parts as

H(T ) =

(∫

|p|>ξ
+

∫

|p|≤ξ

)
dp h(p;T ),

in terms of an arbitrarily fixed positive parameter ξ. The first part of the Hamiltonian can

be diagonalized via the Bogoliubov transformation

a(p;T ) = U(T )a(p)U∗(T ),

U(T ) := exp

{
1

2

∫

|p|>ξ
dp θ(|p|;T )[e−iγ(|p|;T )a(p)a(−p)− eiγ(|p|;T )a∗(p)a∗(−p)]

}
,

e2θ(|p|;T ) :=

√
σ(|p|;T ) + |τ(|p|;T )|
σ(|p|;T )− |τ(|p|;T )| ,

e−iγ(|p|;T ) :=
τ(|p|;T )
|τ(|p|;T )| .

The above expressions are valid for the range T ∈ (−∞, T1), where T1 is determined by

ξ = p0(T1), i.e. T1 = (2β)−1 log(ξ/Am).

In this way, we have a partly diagonalized form of the Hamiltonian

H(T ) =

∫

|p|>ξ
dp ω(|p|;T )a∗(p;T )a(p;T ) +

∫

|p|≤ξ
dp h(p;T ),

ω(|p|;T ) :=
√
σ(|p|;T )2 − |τ(|p|;T )|2.

– 14 –
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where ω(|p|;T ) is a real function, hence the first diagonal part is a Hermitian operator on

FT for T < T1.

Accordingly, as shown in the following, we can at best obtain the unitary theory of the

1-particle states within the time duration T ∈ (−∞, T1) for K = 1 universe. This would

correspond to the fact that each classical solution describes a recollapsing universe, and

hence the scale factor a = a0e
βT always has an upper bound.

To describe this system, we regard the Fock space FΩ as the tensor product space

A ⊗B of the subsystems A and B, where A (resp. B) is the Fock space with respect to

the creation and annihilation operators {a(p), a∗(p); |p| > ξ} (resp. {a(q), a∗(q); |q| ≤ ξ}).
The T -vacuum is defined by

a(p;T )|Ω;T 〉 = 0, for |p| > ξ

a(q)|Ω;T 〉 = 0, for |q| ≤ ξ

and the Fock space FT is constructed with respect to this vacuum by applying polynomials

of {a∗(p;T ), a∗(q); |p| > ξ, |q| ≤ ξ}. The Fock space FT can be regarded as the tensor

product of a pair of Fock spaces AT and B, AT (resp. B) being the Fock representation

space of the algebra generated by {a(p;T ), a∗(p;T ); |p| > ξ} (resp. {a(q), a∗(q); |q| ≤ ξ}).
In other words, FT is spanned by the vectors in the form

|np1 , np2 , · · · , npr ;T 〉 ⊗ |nq1 , nq2 , · · · , nqs〉,

where |np1 , np2 , · · · , npr ;T 〉 ∈ AT (resp. |nq1 , nq2 , · · · , nqs〉 ∈ B) denotes the simultaneous

eigenvector of the number operators a∗(p;T )a(p;T ) (|p| > ξ) [resp. a∗(q)a(q) (|q| ≤ ξ)].

Accordingly, the Hamiltonian H(T ) is regarded as the sum

H(T ) = Hξ(T )⊗ 1+ 1⊗
∫

|p|≤ξ
dp h(p;T ),

Hξ(T ) :=

∫

|p|>ξ
dp ω(|p|;T )a∗(p;T )a(p;T ),

of the operator on AT and the operator on B. Hence, for a vector state |ψ〉⊗|ψ′〉 ∈ AT⊗B,

each vector |ψ〉 (resp. |ψ′〉) independently undergoes the unitary time evolution in the

inseparable Fock space Fξ :=
⋃

T<T1
AT (resp. B). Hence, we can consistently assume

that our observable set consists only of the Hermitian operators of the form O(T )⊗ 1, In

other words, we can restrict ourselves to the dynamics of the subsystem Fξ.

As in the case of K = −1, the Hilbert spaces AT and AT ′ are improperly unitary

equivalent, when T 6= T ′. In a similar procedure to the K = −1 case, we introduce the

vector bundle structure by the projection

π :
⋃

T<T1

AT =: Fξ → (−∞, T1); |ψ;T 〉 7→ T,

and the local trivialization

ϕ : (−∞, T1)× AΩ → F ; (T, |ψ; Ω〉) 7→ |ψ;T 〉 := U(T )|ψ; Ω〉.
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Our Hilbert space describing the 1-particle state of the universe at the time T is

assumed to be the subspace A
(1)
T ⊗ B, where A

(1)
T denotes the space of 1-particle states

in AT . Each such state is projected onto the space of quantum state on AT via the partial

trace over the subsystem B, which may produce a mixed state on AT . Since the structure

of the Hamiltonian ensures that the operation of the partial trace and the unitary time

evolution by the Hamiltonian commute, the quantum dynamics is reduced to that of a

separable state, which can be represented as a vector state consisting of a single term

|ψ;T 〉 ⊗ |ψ′〉. Such a separable state simply corresponds to the vector state |ψ;T 〉 ∈ AT ,

and its time evolution is assumed to described by the Schrödinger equation

iDT |ψ(T );T 〉 = Hξ(T )|ψ(T );T 〉,

DT :=
d

dT
+ U(T )(∂TU(T )∗),

for T ∈ (−∞, T1).

The canonical observable set {Q(T ), P (T )} on A
(1)
T are also constructed in a similar

manner. Firstly, we define the momentum operator by

P (T ) :=

∫

|p|>ξ
dp p a∗(p;T )a(p;T ),

which is a Hermitian operator on A
(1)
T . The eigenstate of P (T ) is given by

|p;T 〉 := a∗(p;T )|ΩA ;T 〉,

which satisfies

P (T )|p;T 〉 = p|p;T 〉,

where |ΩA ;T 〉 denotes the vacuum state in AT . Next, the position operator is defined by

Q(T ) := i

∫

|p|>ξ
dp a∗(p;T )∂pa(p;T ),

which is a Hermitian operator on A
(1)
T . These constitute the CCR-algebra

[Q(T ), P (T )]− = i1,

where we abbreviate the identity operator on A
(1)
T as

1 :=

∫

|p|>ξ
dp a∗(p;T )a(p;T ).

The eigenvector of Q(T ) can be written as

|X;T 〉Q := (2π)−1/2

∫

|p|>ξ
dp e−ipX |p;T 〉,
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for X ∈ R, and it satisfies

Q(T )|X;T 〉Q = X|X;T 〉Q.

Unlike the K = −1 case, {|X;T 〉Q;X ∈ R} does not satisfy the orthogonality condition,

i.e. it holds

Q〈X;T |X ′;T 〉Q 6= δ(X −X ′),

in the present case. However, since for the operator FX(T ) := |X;T 〉QQ〈X;T |, it hold

〈ψ;T |FX(T )|ψ;T 〉 > 0, for all |ψ;T 〉 ∈ A
(1)
T∫ ∞

−∞
dXFX(T ) = 1,

the measurement of the position operator

Q(T ) =

∫
dX XFX(T )

can be regarded as a POVM measurement, though not a von Neumann measurement.

In the momentum representation on the 1-particle Fock space A
(1)
T , the 1-particle

state is described by the wave function ψ(p, T ) := 〈p;T |ψ(T );T 〉, and it is subject to the

Schrödinger equation

i∂Tψ(p, T ) = ω(|p|, T )ψ(p, T ).

We see in the next section that the quantum system described here reproduces the correct

classical theory.

4 Classical-quantum correspondence in the first-quantized theory

Here, we show that the first-quantized theory obtained in the previous section correctly

reproduces the classical Einstein gravity.

In the previous section, we have obtained a quantum theory of the expanding universe

described by the wave function ψ(p, T ) of the universe subject to the Schrödinger equation

The expression of ω(|p|;T ) includes the Bessel functions when K = ±1, which makes it dif-

ficult to solve the Schrödinger equation strictly. Nevertheless we can solve it approximately

in terms of asymptotic forms of the Bessel functions. The Bessel function and the modified

Bessel function in the mode functions are expanded around their argument Ame2βT = 0 as

J−i(2β)−1|p|

(
Ame2βT

2β

)
=

∞∑

n=0

(−1)n

n!Γ(n− i(2β)−1|p|+ 1)

(
Ame2βT

4β

)2n−i(2β)−1|p|

,

I−i(2β)−1|p|

(
Ame2βT

2β

)
=

∞∑

n=0

1

n!Γ(n− i(2β)−1|p|+ 1)

(
Ame2βT

4β

)2n−i(2β)−1|p|

.
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From these, it can be seen that the series expansion of ω(|p|;T ) becomes

ω(|p|;T ) =
√
p2 −KA2m2e4βT +K

3(16 + 19p2 − 45p4 + 18p6)

32|p|5(1 + 3p2)3(4 + 3p2)
A6m6e12βT

+O(e16βT ).

For K = −1, this expression is valid for p 6= 0, and for K = 1, it is valid for |p| > Ame2βT .

Thus, our Hamiltonian operator ω(|p|, T ) well approximates the naive Hamiltonian

Hc :=
√
p2 −KA2m2e4βT ,

for e2βT ≪ (Am)−1. The classical counterpart of this naive Hamiltonian exactly gives the

equation of motion for the classical trajectory.

This correspondence between our Hamiltonian ω(|p|, T ) and the naive Hamiltonian Hc

holds wider range of T . To see this, we next consider the late time behavior of ω(|p|;T ).
For e2βT ≫ (Am)−1 and p 6= 0, the Bessel function in the mode function behaves as

J−i(2β)−1|p|

(
Ame2βT

2β

)
=

√
4β

πAm
e−βT

[{
1− 3(1 + 12p2)(3 + 4p2)

128A2m2
e−4βT

}

× cos

(
Am

2β
e2βT − π

4
+
iπ|p|
4β

)

+
β(1 + 12p2)

4Am
e−2βT sin

(
Am

2β
e2βT − π

4
+
iπ|p|
4β

)]
+O(e−7βT ),

which yields the behavior of ω(|p|;T ) for K = −1,

ω(|p|;T ) = Ame2βT +
1

2

e−2βT

Am sinh2(π|p|/(2β))

[
(1− 12p2)

12

+
5 + 48p4

32

{
cos

(
Am

β
e2βT − π

2

)
cosh

π|p|
2β

− 1

}

+ 2p2 cos

(
Am

β
e2βT − π

2

)
cosh

π|p|
2β

]
+O(e−4βT ).

On the other hand, the naive Hamiltonian Hc for K = −1 is expanded for e2βT ≫ (Am)−1

as

Hc =
√
p2 +A2m2e4βT

= Ame2βT +
p2

2A2m2
e−2βT +O(e−6βT ).

This shows ω(|p|;T ) approximates Hc in the limit T → ∞,

ω(|p|;T )−Hc

Hc
= O

(
e−2βT

)
,

for p 6= 0.
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For the intermediate range of T , i.e. for Ame2βT = O(1), we can see the good numerical

coincidence between ω(|p|, T ) and Hc. A similar argument also holds for the closeness

between ∂pω(|p|, T ) and ∂pHc. Thus, we conclude that

ω(|p|;T ) ≈
√
p2 −KA2m2e4βT ,

∂pω(|p|;T ) ≈
p√

p2 −KA2m2e4βT
,

holds for K = 0,±1, and for all ranges of T in consideration.

Next, we show that the approximate Schrödinger equation

i∂Tψ(p;T ) =
√
p2 −KA2m2e4βTψ(p;T ) (4.1)

applied to the wave packet state, reproduces the geodesic motion in the mini-superspace,

which corresponds to the classical solution to the Einstein equation.

Firstly, we note that the Ehlenfest-type theorem can be applied in the present case.

The expectation values of the momentum and position operators for the normalized state

ψ(p, T ) are given by

〈P 〉 =
∫
dp pψ∗(p, T )ψ(p, T ),

〈Q〉 = i

∫
dp ψ∗(p, T )∂pψ(p, T ),

where the range of integration is p ∈ R for K = 0,−1, and |p| > ξ for K = 1. The time

derivative of these expectation values are readily obtained as

d

dT
〈P 〉 = 0,

d

dT
〈Q〉 =

〈
∂Hc

∂p

〉
:=

∫
dp

∂Hc

∂p
ψ∗(p, T )ψ(p, T ).

This shows formal, though not strict, correspondence between quantum and

classical dynamics.

Next, we consider the dynamics of the wave packet state. The solution of eq. (4.1) can

be written as

ψk(p, T ) = exp

(
−i
∫ T

ds
√
k2 −KA2m2e2βs

)
δ(p− k),

where the solutions are labeled by the simultaneous eigenvalue k of the momentum operator

subject to k ∈ R for K = 0,−1, and |k| > ξ for K = 1. The general solution is written as

ψ(p, T ) =

∫
dk c(k)ψk(p, T ),

in terms of a coefficient c(k) subject to the normalization condition
∫
dk |c(k)|2 = 1.
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Now, we consider the position representation of the wave function. This is given by

ψ̃(X,T ) := Q〈X;T |ψ(T );T 〉

= (2π)−1/2

∫
dp eipXψ(p, T ),

so that it is generally written as

ψ̃(X,T ) = (2π)−1/2

∫
dk c(k) exp

(
−i
∫ T

ds
√
k2 −KA2m2e4βs

)
eikX . (4.2)

The Born rule here could be stated as that |ψ̃(X,T )|2 gives the probability distribution

that a measurement of the position operator at time T yields the value X ∈ R.

A wave packet state corresponding to a geodesic particle in mini-superspace is obtained

if we take c(k) as a bell curve, say a Gaussian-like function, centered at k = k0 6= 0, with the

appropriately broad width σ−1. Then, ψ̃(X,T ) describes a wave packet with the width σ.

From eq. (4.2), we can read off the time dependence of the dispersion relation

ω′(k, T ) =
√
k2 −KA2m2e4βT ,

between the wave-number k and the instantaneous angular frequency ω′. Then, we readily

find that the group velocity vq(k0, T ) of a wave packet with the central wave-number k0 6= 0

is given by

vq(k0, T ) =
∂ω′(k, T )

∂k

∣∣∣∣
k=k0

=
k0√

k20 −KA2m2e4βT
.

The corresponding quantity can be obtained from the classical theory. From the Hamil-

tonian constraint

p2T − p2X +KA2e4βT ≈ 0,

we get the coordinate velocity of the geodesic particle as

vc =
dX/ds

dT/ds
= −pX

pT
≈ pX√

p2X −KA2e4βT
.

This shows good agreement between the classical and quantum predictions if we identify

the dimensionless momentum mpX of the geodesic motion with the central wave-number

k0 of the wave packet state.

5 Concluding remarks

The quantum mechanical model of the cosmology studied here is conceptually similar to

the third-quantization model, but technically different in that we respect the specific semi-

Riemannian structure (M , gC) on the mini-superspace M , where the classical solution to
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the Einstein equation is given by the geodesic motion. In the case of the Einstein gravity

coupled with a massless scalar field in the FRW background, the mini-superspace as a semi-

Riemannian manifold becomes a two-dimensional expanding universe. Then, the classical

solution to the Einstein equation is given by a null (resp. time-like, space-like) geodesic

in the mini-superspace for the flat (resp. hyperbolic, elliptic) FRW space-time. Hence, we

consider the quantum Klein-Gordon field in the mini-superspace, which becomes massless

(resp. massive, tachyonic) for the flat (resp. hyperbolic, elliptic) universe, as a quantized

model of the geodesic motion.

In the case of the massive or tachyonic field, we are faced with a known problem in

the quantum field theory in a dynamical space-time that an inseparable Hilbert space is

required to describe the quantum states of the field, where the Klein-Gordon Hamiltonian

at different time belongs to a different Fock space. This continuum of the Fock spaces

FT parametrized by T ∈ R constitutes the inseparable Hilbert space, which is too big.

By introducing the vector bundle structure in the continuum of the Fock space and the

connection of the vector bundle, we define the covariant time derivative for the quantum

states, in which the Klein-Gordon Hamiltonian can be regarded as a Hermitian operator

in a separable Hilbert space. Furthermore, this framework gives a unitary time evolution

of 1-particle states, which would be preferable in the context of the quantum cosmology.

However, in the case of elliptic universe, the momentum space for the Hilbert space of

1-particle states has to be restricted. Then, we obtain the unitary theory for a restricted

range of the time parameter T ∈ (−∞, T1). This time parameter corresponds to the scale

factor of the elliptic universe, which represents the recollapsing universe in the classical

theory, so that this limitation of the time parameter would correspond to the existence of

the upper bound for the scale factor. It would not imply that the closed universe does not

recollapse, but rather it should be taken as an indication of the limit of applicability of our

model. This might be a common issue of the quantum cosmological model based on the

minisuperspace, where the time function is given by the scale factor of the universe.

We construct the Hilbert space for the 1-particle states and the canonical observable

set constituting the CCR-algebra on the space of 1-particle states. Accordingly, we obtain

the Schrödinger equation for the wave function, which is the Schrödinger representation

of a 1-particle state. The present quantization scheme is free from the operator ordering

ambiguities and the problem of time unlike the Wheeler-DeWitt quantization scheme. We

find that the Hamiltonian is close to the naive Hamiltonian predicted from the Klein-

Gordon equation but with a small correction in the non-flat background cases. We see that

this ensures that our quantum theory correctly reproduces the Einstein equation.

A possible advantage of the present formalism over other third-quantized models is that

it is applicable to the fermionic field by considering the quantum Dirac field on (M , gC).

Another good point is that we can treat the dynamics of the single-universe state, while in

typical third-quantization models [19–24], we always suffer from creation of infinite number

of universes [25–27]. However, we have to introduce a mass scale of the quantum field, which

is a disadvantage of the theory. In fact, we have left an unknown dimensionless parameter

Am in our formulation, which should be determined by a more fundamental theory.
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