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1 Introduction

Recent progress in the studies of extremal black holes in Anti de-Sitter space have witnessed

the beginning of a dialogue between gravity and condensed matter physics. In gauge-gravity

duality [1], extremal solutions provide the dual gravity description of zero temperature

ground states of strongly coupled field theories. Many condensed matter theories exhibit a

wide variety of phases. In particular, systems at quantum criticality can be strongly coupled

and display novel phase transitions due to quantum fluctuations at zero temperature [2].

The subject is an active area of research and we refer the reader to some of the review

articles for references [3–5].

Given such a large number of phases in condensed matter systems, it is reasonable to

expect that there is also a similar zoo of extremal solutions in the dual gravity side. Ear-

lier studies focused on extremal systems with translational and rotational symmetry that

exhibit Lifshitz scaling and hyperscaling violations [6–12]. In some cases, such solutions

have been embedded in string theory [13–20]. Extremal black branes dual to field theories

with reduced symmetries are also equally interesting and have been studied [21–29].
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Recently, new classes of extremal solutions exhibiting reduced symmetries have been

found [24, 25]. These metrics are homogeneous but anisotropic extremal black brane hori-

zons in five dimensions. They have been classified using the Bianchi classification [30, 31],

which is well known in cosmological context and are now known as the “Bianchi attrac-

tors”. These geometries arise as exact solutions to gravity coupled to simple matter in the

presence of a cosmological constant. Recently, Bianchi type metrics satisfying reasonable

energy conditions have been shown to numerically interpolate to Lifshitz or AdS2 × S3

from which they can be connected to AdS5 [32]. This provides some evidence towards the

expectation that they are attractor geometries.

The attractor mechanism has been thoroughly studied for extremal black holes in su-

pergravity theories [33, 34].1 Originally studied for supersymmetric black holes, it was

understood later that the attractor mechanism is a consequence of extremality rather than

supersymmetry [37], and has been shown to work for extremal non-supersymmetric black

holes [38, 39]. Recently much progress has been made towards the generalization of at-

tractor mechanism for gauged supergravity theories [40–50]. The simplest Bianchi type I

geometries such as Lifshitz geometries have already been embedded in gauged supergrav-

ity [51, 52].

A prescription fairly general enough to capture the essential features of homogeneous

geometries as generalised attractor solutions of gauged supergravity was given in [44]. The

generalised attractors are defined as solutions to equation of motion when all the fields

and curvature tensors are constants in tangent space. These solutions are characterised

by constant anholonomy coefficients and are regular by construction. Following this pre-

scription some of the Bianchi type geometries were embedded in five dimensional gauged

supergravity [50].

The generalised attractor solutions existed at critical points rather than an absolute

minimum of the attractor potential. The stability of such solutions for small perturbations

of the scalar fields about the attractor value were studied [49]. By stability, we mean

an investigation on the response of a system subject to linearized perturbations of the

fields about their fixed point values. If the perturbations are regular as opposed to being

divergent when one approaches the fixed point, then it is a stable attractor. There is also

the notion of stability as described by the B.F. bound [53, 54]. However, we do not discuss

this here.

It was found in [49], that the stress energy tensor in gauged supergravity depends on

linearized scalar fluctuations due to the interaction terms. Therefore, for back-reaction to

be small as one approaches the attractor geometry, the scalar fluctuations are required to

be regular near the horizon. For the solutions constructed in [49, 50], the scalar fluctuations

about the critical values were regular near the horizon only when the Bianchi geometries

factorized as AdS2 ×M , where M is a homogeneous space of dimension three. The fac-

torized geometries have the unphysical property that the entropy does not vanish as the

temperature goes to zero.

In this work, we seek to study an interesting class of Bianchi type solutions which do

1See [35, 36] for recent reviews on the subject.
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not factorize and are stable under linearized scalar fluctuations. Our strategy is to rely on

the conventional wisdom of the physics of stable attractor points for extremal black holes.

Namely, there are two sufficient conditions for the attractor mechanism [39]. First, there

must exist a critical point of the effective potential. Second, the Hessian of the effective

potential evaluated at the solution must have positive eigenvalues. These two conditions

are always met by supersymmetric solutions. For non-supersymmetric extremal black hole

solutions the above two conditions are sufficient to guarantee a stable attractor.

Keeping the above strategy in mind, we study the AdS3×H2 solution which is a special

case of Bianchi type III in gauged supergravity. Supersymmetric AdS3×H2 solutions have

been studied earlier in U(1)3 gauged supergravity [58]. In the context of wrapped branes,

AdS3×H2 solutions have been constructed in type IIB supergravity compactified on S5 [66].

We consider the U(1)R gauged supergravity [63, 64] for our study. We find that there are

a large class of type III solutions that exist at a critical point corresponding to a minimum

of the attractor potential. We do a linearized fluctuation analysis of the scalar field about

its attractor value. For the scalar fluctuations sufficient conditions for a stable attractor

guarantees the existence of a solution which dies out at the horizon. We then determine

the gauge field and metric fluctuations that are sourced by scalar fluctuations. We find

that the simplicity of the solution causes the source term in the gauge field fluctuations to

vanish. Hence there are no gauge field fluctuations sourced by the scalar fluctuations in

this case. As a result the metric fluctuations are sourced purely by scalar fluctuations. We

solve the equations for the metric fluctuations with the source terms and show that they

vanish as one approaches the horizon.

The results of the stability analysis are as follows. The Bianchi type III metric

ds2 = −r̂2βtdt̂2 +
dr̂2

r̂2
+ dx̂2 + e−2x̂dŷ2 + r̂2βtdẑ2 (1.1)

which has the scaling symmetries

t̂→ t̂

αβt
, r̂ → αr̂ , x̂→ x̂ , ŷ → ŷ , ẑ → ẑ

αβt
, (1.2)

is a generalised attractor solution in gauged supergravity. The solution exists at a critical

point φc such that
∂Vattr
∂φ

∣∣∣∣
φc

= 0 ,
∂2Vattr
∂φ2

∣∣∣∣
φc

> 0 , (1.3)

where Vattr is the attractor potential. The above conditions are expressed in terms of some

free parameters in gauged supergravity that are not fixed by any symmetries and are met

for a wide range of values. Thus a class of solutions exists at a minimum of the attractor

potential and the Hessian has a positive eigenvalue. The scalar field fluctuations δφ about

the attractor values are of the form

δφ ∼ r̂∆ , ∆ > 0 . (1.4)

The scalar fluctuations are regular near the horizon r̂ → 0. All the metric fluctuations γµν
are of the form

γµν ∼ gµν r̂∆ (1.5)
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and are regular near the horizon. Thus, we have a class of Bianchi III solutions which are

stable with respect to linearized fluctuations of scalar, gauge field and metric fluctuations

about the attractor value. The solution is an example of a stable Bianchi attractor in

gauged supergravity.

Given that the solution is a stable Bianchi attractor, we also investigate its supersym-

metry properties. The study of supersymmetry of Bianchi attractors is very interesting

since it can lead to solutions such as domain walls interpolating between Bianchi attrac-

tors and AdS. Besides, supersymmetry equations are first order differential equations and

are often easier to solve. Earlier studies on supersymmetry of Bianchi type metrics have

focused on the Bianchi I class. The simplest of which is AdS space. In this case, there

are two types of Killing spinors, one which is purely radial and the other which depends

on all coordinates [55, 56]. The radial spinor generates the Poincaré supersymmetries

while the other spinor generates the conformal supersymmetries. The earliest works were

on supersymmetric black string solutions whose near horizon geometries take the form

AdS3 × H2 [57, 58]. The Supersymmetry of the Bianchi I metrics such as Lifshitz, have

also been studied in four dimensional gauged supergravity [51, 52]. In five dimensional

U(1)3 gauged supergravity Bianchi I types such as AdS2×R3, AdS3×R2 have been found

to be supersymmetric [59]. In the above cases the geometries preserve 1/4 of the super-

symmetry and the Killing spinor equations were solved for a spinor which depended only

on the radial direction.

In this spirit, we study the Killing spinor equations of N = 2,U(1)R gauged super-

gravity in the background of the Bianchi type III metric. We choose the radial ansatz

for the Killing spinor, since it preserves the time translation symmetries and homogeneous

symmetries of the type III metric. However, we find that the radial ansatz breaks all the

supersymmetries. This suggests that the stable type III solution that we have constructed

may be a non-supersymmetric attractor.

The paper is organised as follows. In section 2 we construct a magnetic Bianchi type III

solution in Einstein-Maxwell theory with massless gauge fields. Following that, we provide

some background in U(1)R gauged supergravity and generalised attractors in section 3.1

and section 3.2. In the next subsection section 3.3 we embed the Bianchi type III solution

in the U(1)R gauged supergravity. We discuss the linearized fluctuation analysis of the

gauge field, scalar field and metric in section 4. We analyze the Killing spinor equation

in gauged supergravity with the background Bianchi type III metric in section 5. We

conclude and summarize our results in section 6. We summarize some of the notations

and conventions in section A. We provide some details regarding the linearized Einstein

equations in section B and list the coefficients that appear in the metric fluctuations in

section C.

2 Bianchi III solution in Einstein-Maxwell theory

We begin with a quick review of some elements of the Bianchi III symmetry. The Bianchi

classification of real Lie algebras in three dimensions is well known in the literature [30, 31].

There are nine types of such algebras. In three dimensional Euclidean space, Killing vectors
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that generate homogeneous symmetries close to form Lie algebras that are isomorphic to

the Bianchi classification.

The Bianchi III algebra is generated by the Killing vectors Xi

X1 = ∂ŷ , X2 = ∂ẑ , X3 = ∂x̂ + ŷ∂ŷ , (2.1)

[X1, X3] = X1 . (2.2)

The only non trivial Killing vector is the translation in the x̂ direction that is accompanied

by a unit weight scaling in the ŷ direction. To write a metric which is manifestly invariant

under this symmetry, one identifies the vector fields ẽi that commute with the Killing

vectors

[ẽi, Xj ] = 0 . (2.3)

The invariant vector fields for the type III case are

ẽ1 = ex̂∂ŷ , ẽ2 = ∂ẑ , ẽ3 = ∂x̂ , (2.4)

[ẽ1, ẽ3] = −ẽ1 , [ẽ1, ẽ2] = 0 , [ẽ2, ẽ3] = 0 . (2.5)

Note that ẽ1 and ẽ3 form a sub-algebra. This sub-algebra is generated by the Killing

vectors of the hyperbolic space H2 in two dimensions. The two dimensional analogue of

the Bianchi classification consists of two distinct algebras. One is a trivial algebra with

commuting generators corresponding to R2 and the other is the algebra that corresponds

to H2 [30].

The duals of the ẽi are one forms ωi

ω1 = e−x̂dŷ , ω2 = dẑ , ω3 = dx̂ , (2.6)

that are invariant under the type III homogeneous symmetry. The invariant one forms

satisfy the relation

dω1 = ω1 ∧ ω3 . (2.7)

The metric written in terms of the invariant one forms

ds2
3 = (ω1)2 + (ω2)2 + (ω3)2 (2.8)

is manifestly invariant under the homogeneous type III symmetries.

We are interested in five dimensional black brane horizons with homogeneous sym-

metries in the spatial directions. These geometries are obtained from gravity coupled to

simple matter in the presence of a cosmological constant and are known as the Bianchi

attractors [24, 25]. For the purposes of this article, we construct a simple type III solution

in Einstein-Maxwell theory sourced by a single massless gauge field and a cosmological

constant. We take the type III metric to be of the form

ds2 = −r̂2βtdt̂2 +
dr̂2

r̂2
+ (ω3)2 + (ω1)2 + r̂2β2(ω2)2 , (2.9)
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where βt, β2 are positive exponents. For the case βt = β2, the metric becomes AdS3 ×
EAdS2. To see this we substitute for the invariant one forms from (2.6) and make the

coordinate transformation x̂ = ln ρ̂ to get,

ds2 =
(
−r̂2βtdt̂2 +

dr̂2

r̂2
+ r̂2βtdẑ2

)
+

(
dŷ2 + dρ̂2

ρ̂2

)
. (2.10)

When one performs a Kaluza-Klein reduction of the above solution one gets the AdS2 ×
EAdS2 solution in four dimensions with hyper scale violation [25].

We now construct the Type III solution (2.9) in Einstein-Maxwell theory. The action

is of the form

S =

∫
d5x
√
−g(R− 1

4
FµνFµν + Λ) , (2.11)

where Λ > 0 corresponds to Anti de-Sitter space in our conventions. We are interested in a

magnetic solution and we choose the gauge field to have components along the ω1 direction

A = A3ω
1, (2.12)

where A3 is a constant.2 The gauge field equations are automatically satisfied with this

ansatz and the independent trace reversed Einstein equations are

A2
3 − 6βt(β2 + βt) + 2Λ = 0 ,

A2
3 − 6(β2

2 + β2
t ) + 2Λ = 0 ,

−A2
3 − 3 + Λ = 0 ,

A2
3 − 6β2(β2 + βt) + 2Λ = 0 . (2.13)

The t̂t̂ and ẑẑ equations imply

β2 = βt (2.14)

and the rest of the equations give the solution

Λ = 1 + 4β2
t , A3 =

√
−2 + 4β2

t . (2.15)

Thus we have a magnetic type III solution sourced by a massless gauge field and

parametrized by βt, which satisfies the condition

β2
t >

1

2
, (2.16)

such that A3 is real. In the following section, we construct a similar solution in U(1)R
gauged supergravity.

2The notation A3 is just chosen for convenience.

– 6 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
5

3 Gauged supergravity and generalised attractors

3.1 Gauged supergravity

In this section, we review essential material in N = 2, d = 5 gauged supergravity relevant

for our purpose. The general supergravity coupled to vector, tensor, hyper multiplets with

a gauging of the symmetries of the scalar manifold and R symmetry is discussed in [60].

We work with the N = 2, d = 5 gauged supergravity coupled to a single vector multiplet

and a gauging of the U(1)R symmetry [61–64].

The gravity multiplet consists of two gravitinos ψiµ, i = 1, 2, and a graviphoton. The

vector multiplet consists of a vector Aµ, a real scalar φ and the gaugini λi. The vector in

the vector multiplet and the graviphoton are collectively represented by AIµ, I = 0, 1.

The scalars in the theory parametrize a very special manifold described by the cubic

surface (see for eg [65])

N ≡ CIJKhIhJhk = 1 , hI ≡ hI(φ) . (3.1)

The constants CIJK are real and symmetric. The condition (3.1) is solved by going to a

basis [61, 62], with hI =
√

2
3ξ
I |N=1 such that,

N(ξ) =
√

2ξ0(ξ1)2 = 1 , (3.2)

where,

ξ0 =
1√
2φ2

, ξ1 = φ . (3.3)

From the definition of the basis, we find that the hI are related to the scalars φ in the

Lagrangian through

h0 =
1√
3φ2

, h1 =

√
2

3
φ . (3.4)

It is clear from the scalar parametrization that the only non-zero coefficients for CIJK are

C011 =
√

3/2 and its permutations.

The ambient metric used to raise and lower the index I is defined through

aIJ = −1

2

∂

∂hI
∂

∂hJ
lnN |N=1 , (3.5)

and takes the form

aIJ =

[
φ4 0

0 1
φ2

]
. (3.6)

The metric on the scalar manifold is obtained from the ambient metric (3.5) through

gxy = hIxh
J
yaIJ , hIx = −

√
3

2

∂hI

∂φx
. (3.7)

Since we only have a single scalar field, using the equations (3.4) and (3.5) we obtain

g(φ) =
3

φ2
. (3.8)
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The field content and the various definitions above are identical to the ungauged theory.

The difference in the gauged theory is the presence of a scalar potential. The process of

gauging converts some of the global symmetries of the Lagrangian into local symmetries.

One of the global symmetries enjoyed by the fermions in a N = 2 theory is the SU(2)R
symmetry. For the case of interest, we consider the gauging of the abelian U(1)R ⊂ SU(2)R.

The R symmetry is gauged by replacing the usual Lorentz covariant derivative acting on

the fermions with U(1)R gauge covariant derivative as follows

∇µλi → ∇µλi + gRAµ(U(1)R)δijλj ,

∇µψiν → ∇µψiν + gRAµ(U(1)R)δijψνj . (3.9)

We refer the reader to section A for conventions on raising and lowering of the SU(2)

indices. The δij in the covariant derivatives are the usual Kronecker delta symbols and gR
is the U(1)R gauge coupling constant. The U(1)R gauge field is a linear combination of the

gauge fields in the theory

Aµ(U(1)R) = VIA
I
µ , (3.10)

where the parameters VI ∈ R are free.3

The U(1)R covariantization breaks the supersymmetry and therefore compensating

terms are added to the Lagrangian for supersymmetric closure [64]. These terms result in

the form of a potential for the scalar fields,

V(φ) = −2g2
RV1

[
2
√

2V0

φ
+ φ2V1

]
. (3.11)

The potential has a critical point at

φ∗ =

(√
2
V0

V1

)1/3

. (3.12)

The vacuum solution at this critical point is a supersymmetric Anti de-Sitter space with a

cosmological constant V(φ∗) = −6g2
RV

2
1 φ

2
∗.

The bosonic part of the Lagrangian is

ê−1L =− 1

2
R− 1

4
aIJF

I
µνF

Jµν − 1

2
g(φ)∂µφ∂

µφ

− V(φ) +
ê−1

6
√

6
CIJKε

µνρστF IµνF
J
ρσA

K
τ , (3.13)

where ê =
√
−detgµν and CIJK are the constant symmetric coefficients that appeared in

the definition of the scalar manifold (3.1).

We also list the various field equations for reference. The gauge field equations are

∂µ(êaIJF
Jµν) = − 1

2
√

6
ενλρστF JλρF

K
στ . (3.14)

3When the gauging of R symmetry is accompanied by gauging of a non-abelian symmetry group K of

the scalar manifold, the VI are constrained by fIJKVI = 0, where fIJK are structure constants of K.
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The scalar field equations are

1

ê
∂µ(êg(φ)∂µφ)− 1

2

∂g(φ)

∂φ
∂µφ∂

µφ− ∂

∂φ

[
1

4
aIJF

I
µνF

Jµν + V(φ)

]
= 0 (3.15)

and the Einstein equations are

Rµν −
1

2
Rgµν = Tµν , (3.16)

where the stress energy tensor is

Tµν = gµν

[
1

4
aIJF

I
µνF

Jµν + V(φ) +
1

2
g(φ)∂µφ∂

µφ

]
−
[
aIJF

I
µλF

J λ
ν + g(φ)∂µφ∂νφ

]
. (3.17)

3.2 Generalised attractors

We now outline a brief discussion on a class of solutions to the field equations known as

generalised attractors [44]. For a N = 2, d = 5 gauged supergravity with generic gauging of

scalar manifolds and in the presence of hyper/tensor multiplets, the generalised attractor

equations were shown to be algebraic in [50]. The U(1)R gauged supergravity discussed

in section 3.1 is a special case of the general gauged theory. The relevant field equations

which follow from (3.13) can be simply obtained by setting the tensors, hyperscalars and

the coupling constant associated with gauging of the scalar manifold to zero in the field

equations derived in [50].

Generalised attractors are defined as solutions to equations of motion that reduce to

algebraic equations when all the fields and Riemann tensor components are constants in

tangent space

φ = const , AIa = const , c c
ab = const , (3.18)

where a = 0, 1, . . . , 4, are tangent space indices. The c c
ab , referred to as anholonomy

coefficients are structure constants that appear in the Lie bracket of the vielbeins

[ea, eb] = c c
ab ec , ea ≡ eµa∂µ . (3.19)

In the absence of torsion, the spin connections are expressed in terms of the anholonomy

coefficients

ωabc =
1

2
(cabc − cacb − cbca) , (3.20)

which are constants.4 Thus the curvature tensor components expressed in terms of the

spin connections as

R d
abc = −ω e

ac ω
d

be + ω e
bc ω

d
ae − c e

ab ω
d

ec (3.21)

are constants in tangent space. Hence, the generalised attractor solutions characterised by

constant anholonomy coefficients and are regular.

At the attractor points defined by (3.18) the scalar field equation (3.15) reduces to the

condition
∂Vattr(φ,A)

∂φ
= 0 (3.22)

4The antisymmetry properties of the spin connection and anholonomy coefficients are ω bc
a = −ω cb

a and

c c
ab = −c c

ba respectively.
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on an attractor potential

Vattr(φ,A) =
1

4
aIJF

I
µνF

Jµν + V(φ) . (3.23)

Solving (3.22) gives the critical value of the scalar φc in terms of the charges A. The critical

point is a minimum when the Hessian has positive eigenvalues, which is also the condition

for a stable attractor solution [39].

We also list the tangent space generalised attractor equations for the gauge and Einstein

equations for reference. The gauge field equations are

aIJ(ω a
a cF

Jbc + ω b
a cF

Jac) = 0 , (3.24)

where the the field strength is

F Iab ≡ e
µ
b e
ν
a(∂µe

c
ν − ∂νecµ)AIc = ccabA

I
c , (3.25)

and the Chern-Simons term vanishes for the Bianchi attractors [50]. The Einstein equations

are

Rab −
1

2
Rηab = T attrab , (3.26)

where

T attrab = Vattr(φ,A)ηab − aIJF IacF Jcb . (3.27)

In the following section we solve the algebraic attractor equations and find a Bianchi type

III solution.

3.3 Bianchi III solution in U(1)R gauged supergravity

We choose the Bianchi type III ansatz as before in eq.(2.9). The gauge field ansatz is also

same as before,

AIŷ = e−xAI3 , A0
3 ≡ A3 , (3.28)

where we have turned on only the graviphoton I = 0 for simplicity. Similar to the Einstein-

Maxwell case studied in section 2 earlier, the gauge field equations (3.24) are trivially

satisfied in the U(1)R gauged supergravity as expected.

At the attractor point the scalars are constant. Hence the scalar equations reduce to

extremization of the attractor potential (3.22). The attractor potential has the form

Vattr(φ,A) =
1

2φ

(
A2

3φ
5 − 4g2

RV1(2
√

2V0 + V1φ
3)
)
. (3.29)

The second term is the contribution of the potential (3.11). We would like to briefly

contrast the nature of the possible critical points possible from (3.29) as compared to some

of the earlier works [49, 50]. The Bianchi attractors constructed in gauged supergravity

were attractor solutions such that the critical points of the attractor potential coincided

with the critical points of the scalar potential (3.11). This was a simplification which was

possible because the attractor potential had additional terms due to gauging of the scalar

manifold or with multiple field strengths in the absence of such gauging. For the U(1)R

– 10 –
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case with just one gauge field considered here, the attractor potential (3.29) does not allow

such critical points for non-trivial gauge fields. It is also important to note that in [50],

the Bianchi III solution could not be obtained from the Bianchi VIh solution by taking the

limit h→ 0 since it resulted in a singular gauge field.5

The scalar field equation then reduces to,

∂Vattr(φ,A)

∂φ
=

2

φ2

(
A2

3φ
5 + 4g2

RV1(
√

2V0 − V1φ
3)
)

= 0 . (3.30)

In principle, one can solve for φ from the above equation. In practice, it is much easier to

solve the scalar equation simultaneously with the Einstein equation to get nice compact

expressions.

The independent Einstein equations (3.16) are

2(1 + β2
2)φ+A2

3φ
5 − 4g2

RV1(2
√

2V0 + V1φ
3) = 0 ,

2(1 + β2βt)φ+A2
3φ

5 − 4g2
RV1(2

√
2V0 + V1φ

3) = 0 ,

2(β2
2 + β2βt + β2

t )φ−A2
3φ

5 − 4g2
RV1(2

√
2V0 + V1φ

3) = 0 ,

2(1 + β2
t )φ+A2

3φ
5 − 4g2

RV1(2
√

2V0 + V1φ
3) = 0 . (3.31)

From the t̂t̂ and the ẑẑ equations we get

β2 = βt . (3.32)

The equations now simplify to

2(1 + β2
t )φ+A2

3φ
5 − 4g2

RV1(2
√

2V0 + V1φ
3) = 0 ,

6β2
t φ−A2

3φ
5 − 4g2

RV1(2
√

2V0 + V1φ
3) = 0 . (3.33)

We solve for A3 from the above equations to obtain

A3 =

√
−1 + 2β2

t

φ2
, (3.34)

and

(1 + 4β2
2)φ− 4g2

RV1(2
√

2V0 + V1φ
3) = 0 . (3.35)

This equation can be solved together with the scalar equation (3.30) to determine the

critical point

φc = 4
√

2g2
RV0V1 , βt =

1

2

√
1 + 128g6

RV
2

0 V
4

1 (3.36)

For the gauge field to be real we require

β2
t >

1

2
. (3.37)

5The Bianchi VIh algebra has a free parameter h. The Bianchi V algebra is obtained in the limit h→ 1,

while the Bianchi III algebra is obtained in the limit h→ 0 [30, 31].
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We note that the same condition was obtained for the Type III solution in Einstein-Maxwell

theory (2.16). It is also clear from (3.36) that the condition is satisfied for arbitrary values

of the gauged supergravity parameters gR, V0, V1.

We now examine the nature of the critical point given by eqs.(3.36) and (3.34). The

Hessian evaluated at the critical point

∂2Vattr(φ,A)

∂φ2

∣∣∣∣
φc

=
−7 + 8β2

t

φ2
c

(3.38)

is positive provided we choose

β2
t >

7

8
. (3.39)

We choose this condition for β2
t , since above this bound we also satisfy the general con-

dition for a stable attractor solution. In terms of the gauged supergravity parameters the

condition on β2
t translates to

g6
RV

2
0 V

4
1 >

5

256
, (3.40)

which can be satisfied for a wide range of values for the parameters gR, V0, V1, since none of

them are constrained in anyway. Thus, for various values of gR, V0, V1 satisfying (3.40) we

find a class of type III Bianchi metrics as generalised attractor solutions in U(1)R gauged

supergravity.

The attractor potential evaluated at the critical point given by (3.34) and (3.36) takes

a remarkably simple form

Vattr|φc = −(1 + β2
t ) , (3.41)

which will be useful later. To summarize, the type III solution is

ds2 = −r̂2βtdt̂2 +
dr̂2

r̂2
+ (ω3)2 + (ω1)2 + r̂2β2(ω2)2 ,

A3 =

√
−1 + 2β2

t

φ2
c

, φc = 4
√

2g2
RV0V1,

β2 = βt, βt =
1

2

√
1 + 128g6

RV
2

0 V
4

1 , β2
t >

7

8
. (3.42)

We have seen that the Hessian of the effective potential evaluated on this solution has

a positive eigenvalue suggesting that it is a stable attractor. In the following section we

provide more evidence by considering linearized fluctuations of the scalar, gauge and metric

fields about their attractor values and showing that they are well behaved near the horizon.

4 Linearized fluctuations about attractor value

In this section, we study the linearized fluctuations of the gauge field, scalar field and metric

about their attractor values. For N = 2, d = 5 gauged supergravity coupled to vector

multiplets with a generic gauging of the scalar manifold and gauging of R symmetry the

linearized equations were derived in [49]. The corresponding equations for the U(1)R case

that follow from (3.13) can be simply obtained by setting the coupling constant associated

with gauging of the scalar manifold to zero.
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The linearized fluctuations about the attractor values are of the following form,

φc + εδφ(r̂) ,

Aµ + εδAµ(r̂) ,

gµν + εγµν(r̂) , (4.1)

where ε < 1. The attractor values of the scalar field and gauge field are φc, Aµ, respectively.

We take the near horizon metric gµν as the type III Bianchi metric (3.42). We have chosen

all the fluctuations to depend purely on the radial direction r̂, since it is this behavior that

is most interesting from the point of view of an RG flow. Also, this is the first thing to

attempt before going to much complicated cases. The magnetic type III solution (3.42)

offers lot of simplifications. In particular, we will see that the source term in the gauge field

fluctuations vanishes and this simplifies the procedure of solving for the metric fluctuations

later on.

4.1 Gauge field fluctuations

The equation satisfied by the linearized gauge field fluctuations is

aIJ |φc∇µF
µνJ
δ = −∂aIJ

∂φ

∣∣∣∣
φc

∇µ(FµνJδφ) , (4.2)

where

FµνJδ = ∂µδAν − ∂νδAµ , (4.3)

and FµνJ is the field strength corresponding to the attractor solution. We can simplify (4.2)

using the attractor equation for the gauge field (3.14), where the Chern-Simons term van-

ishes and the scalars are independent of spacetime coordinates at the attractor point. Thus

we have

aIJ |φc∇µF
µνJ
δ = −∂aIJ

∂φ

∣∣∣∣
φc

FµνJ∂µδφ . (4.4)

For the gauge field ansatz (3.28), the non-trivial field strength component is only along

the F x̂ŷ direction. Since the scalar field fluctuation in (4.1) depends only on the radial

direction, the right hand side of (4.4) vanishes. Hence, there are no gauge field fluctuations

that are sourced by the scalar fluctuations in this case. Thus the linearized fluctuations of

the gauge field about the attractor value satisfy the attractor equation

aIJ |φc∇µF
µνJ
δ = 0 . (4.5)

From the point of view of the attractor mechanism in supergravity [33, 34], it is the behavior

of the scalar fields that is most relevant for our case. Hence, we do not consider any

independent gauge field fluctuations here. Thus, we can drop the gauge field fluctuations

for the rest of the analysis in the following sections.

In a general situation as opposed to the simple example considered here, the source

term in (4.4) need not vanish. In such a case, however one may still be able to solve

the problem in certain situations where the scalar fluctuation equations decouple from
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gauge field fluctuations at linearized level [49]. So solving the linearized equation for scalar

fluctuations determines the source term in the gauge field fluctuation, which can then

in principle be solved. However, the situation becomes more complicated for the metric

fluctuations since both the gauge field and scalar fluctuations will enter through the stress

tensor.

Another notable simplification is that currently we are working with the U(1)R gauged

supergravity. When the gauging of the symmetries of scalar manifold is also considered

there are additional terms in (4.2) and solving for the gauge field fluctuations is much

harder in the presence of additional scalar source terms.6

4.2 Scalar fluctuations

We will now solve the linearized equations for the scalar fluctuations about the attrac-

tor value φc. The linearized equation for the scalar field obtained from (3.13) takes a

remarkably simple form,

g(φc)∇µ∇µδφ−
∂2Vattr
∂φ2

∣∣∣∣
φc

δφ = 0, (4.6)

where g(φ) and the attractor potential are defined in (3.8) and (3.29) respectively. Us-

ing (3.38), we define

λ =
1

g(φc)

∂2Vattr
∂φ2

∣∣∣∣
φc

=
−7 + 8β2

t

3
(4.7)

which is positive for the solution of interest, since β2
t >

7
8 . Using the expression for the

metric (3.3), equation (4.6) can be simplified as[
r̂2∂2

r̂ + (1 + 2βt)r̂∂r̂ − λ
]
δφ = 0 . (4.8)

The general solution for this equation is of the form

δφ = C1r̂
√
λ+β2

t−βt + C2r̂
−
√
λ+β2

t−βt . (4.9)

The type III metric (2.9) is written in a coordinate system such that the horizon is located

at r̂ = 0. We require the scalar fluctuations (4.1) to vanish as r̂∆ for ∆ > 0 such that the

scalar field approaches its attractor value as r̂ → 0. Therefore, we choose C2 = 0. The

other constant C1 cannot be fixed at this stage as the equation (4.6) is valid only near the

horizon. However, we can choose C1 = Cs ∈ R since the scalar fields in five dimensional

gauged supergravity are real. In addition, for non-trivial fluctuations Cs 6= 0. Thus the

scalar fluctuations which are well behaved near the horizon are of the form

δφ = Csr̂
∆ , ∆ =

√
λ+ β2

t − βt . (4.10)

Note that, the condition obtained from (3.38) indeed ensures that the scalar fluctuations

are well behaved as r̂ → 0 near the horizon.

6See for example, eq. (3.5) of [49].
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To fix the constants in the solution completely, one has to solve the scalar equation in

the background of a solution which interpolates from Bianchi III to AdS with appropriate

boundary conditions. Such interpolating metrics obeying reasonable energy conditions

that interpolate to Lifshitz or AdS2 × S3 which can then be connected to AdS have been

constructed numerically in [32]. However, they are not yet known to arise as solutions to

Einstein gravity coupled to some simple matter theory.

4.3 Metric fluctuations

In this section, we solve the linearized metric fluctuations about the type III metric, that

are sourced by scalar fluctuations (4.10). The linearized fluctuation equations of the metric

have the form [49],

∇α∇αγ̄µν + 2R α β
(µ ν) γ̄βα − 2R β

(µ γ̄ν)β + gµν

(
Rαβ γ̄

αβ − 2

3
Rγ̄

)
+Rγ̄µν

+2(Ṫ attrµν (gαβ + εγαβ)|ε=0 + Ṫ attrµν (φc + εδφ)|ε=0) = 0, (4.11)

where

γ̄µν = γµν −
1

2
γgµν , γ = gµνγµν , γ̄ = −3

2
γ . (4.12)

The dots indicate derivatives with respect to ε. The covariant derivatives, raising and

lowering are with respect to the near horizon metric gµν . The Riemann tensor, Ricci

tensor and curvature that appear in (4.11) are also with respect to gµν .

The contribution of the linearized metric fluctuations from the stress energy tensor are

Ṫ attrµν (gαβ + εγαβ)|ε=0 =Vattr|φc
(
γ̄µν −

2γ̄

3
gµν

)
− (γ̄λσ −

γ̄

3
gλσ)

(
1

2
T λσattr|φcgµν + aIJ |φcF I λµ F J σ

ν

)
. (4.13)

where

T attrµν = Vattr|φcgµν − aIJ |φcF IµλF λJ
ν (4.14)

and Vattr|φc is defined by (3.41). The contribution of the linearized scalar fluctuations from

the stress energy tensor are

Ṫ attrµν (φc + εδφ)|ε=0 =
∂Vattr
∂φ

∣∣∣∣
φc

gµνδφ−
∂aIJ
∂φ

∣∣∣∣
φc

F IµλF
λJ
ν δφ , (4.15)

which can be further simplified using the attractor equation (3.22) to get

Ṫ attrµν (φc + εδφ)|ε=0 = −∂aIJ
∂φ

∣∣∣∣
φc

F IµλF
λJ
ν δφ . (4.16)

We can now solve for the metric fluctuations by plugging in the scalar fluctua-

tions (4.10). First, let us simplify the form of (4.11) by making a few observations. We

note that the type III metric in its explicit form

ds2 = −r̂2βtdt̂2 +
dr̂2

r̂2
+ dx̂2 + e−2x̂dŷ2 + r̂2βtdẑ2 (4.17)
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is diagonal. Therefore, It is reasonable to expect fluctuations only along the diagonal

directions. Hence we can choose the fluctuations γµν to be symmetric. As a result the

antisymmetrized terms in (4.11) vanish, as can be checked explicitly. Thus we have

∇α∇αγ̄µν + gµν

(
Rαβ γ̄

αβ − 2

3
Rγ̄

)
+Rγ̄µν+2(Ṫ attrµν (gαβ + εγαβ)|ε=0

+ Ṫ attrµν (φc + εδφ)|ε=0) = 0, (4.18)

with the contributions from the stress energy tensor corresponding to metric and scalar

fluctuations as given by (4.13) and (4.16) respectively.

We choose the fluctuation terms of the metric in gµν + εγµν(r̂) to be of the form

γt̂t̂ = Ct̂r̂
2βt γ̃t̂t̂(r̂) ,

γr̂r̂ = Cr̂
1

r̂2
γ̃r̂r̂(r̂) ,

γx̂x̂ = Cx̂γ̃x̂x̂(r̂) ,

γŷŷ = Cŷe
−2x̂γ̃ŷŷ(r̂) ,

γẑẑ = Cẑ r̂
2βt γ̃ẑẑ(r̂) , (4.19)

where Ct̂, Cr̂, Cx̂, Cŷ, Cẑ are constants which are to be determined in terms of the gauged

supergravity parameters gR, V0, V1, and the coefficient Cs in the scalar fluctuation (4.10).

Because of the way the perturbations have been chosen in (4.19), one can contract

the Einstein equations with the vielbeins and write the final expressions in terms of the

γ̃µν(r̂). We also observe that the source term from the scalar fluctuation (4.16) appears

only in the x̂x̂ and ŷŷ directions. While the source goes like r̂∆, the Einstein equations

will contain terms like r̂2∂2
r̂ γ̃µν , r̂∂r̂γ̃µν , γ̃µν . Hence one expects the fluctuations γ̃µν to

also go like r̂∆. This can be checked by observing the explicit equations, which are rather

messy. We refer the reader to the appendix section B for more details. Thus all the metric

fluctuations should have the behavior

γ̃t̂t̂ = γ̃r̂r̂ = γ̃x̂x̂ = γ̃ŷŷ = γ̃ẑẑ = r̂∆ . (4.20)

We now substitute (4.20) in eqs. (4.18) and reduce them to an algebraic system,

4(βt
2(3Cr̂ + 3Ct̂ + Cx̂ + Cŷ + 3Cẑ) + 2Ct̂ + Cx̂ + Cŷ)

+ 6βt∆(Cr̂ − Ct̂ + Cx̂ + Cŷ + Cẑ) + ∆2(Cr̂ − Ct̂ + Cx̂ + Cŷ + Cẑ) = 0 ,

Cr̂(−4(5βt
2 + βt+1) + 2(βt − 2)∆ + ∆2)− 2(βt − 2)∆(Ct̂ + Cx̂ + Cŷ + Cẑ)

+ 4βt(βt(−Ct̂ + Cx̂ + Cŷ − Cẑ) + Ct̂ + Cx̂ + Cŷ + Cẑ)

+ ∆2(−(Ct̂ + Cx̂ + Cŷ + Cẑ))− 4(Ct̂ + 2(Cx̂ + Cŷ) + Cẑ) = 0 ,

(16− 32βt
2)Cs − φc((4βt2 + 2βt∆ + ∆2)(Cr̂ + Ct̂ + Cŷ + Cẑ)

+ Cx̂(12βt
2 − 2βt∆−∆2 + 12)) = 0 ,
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(16− 32βt
2)Cs − φc

(
4βt

2(Cr̂ + Ct̂ + Cx̂ + 3Cŷ + Cẑ) + 2βt∆(Cr̂ + Ct̂ + Cx̂ − Cŷ + Cẑ)

+ ∆2(Cr̂ + Ct̂ + Cx̂ − Cŷ + Cẑ) + 6(Cr̂ + Ct̂ + Cx̂ + Cŷ + Cẑ)
)

= 0 ,

−4βt
2(3Cr̂ + 3Ct̂ + Cx̂+Cŷ + 3Cẑ)− 6βt∆(Cr̂ + Ct̂ + Cx̂ + Cŷ − Cẑ)

−∆2(Cr̂ + Ct̂ + Cx̂ + Cŷ − Cẑ)− 4(Cx̂ + Cŷ + 2Cẑ) = 0 , (4.21)

which can be solved to determine the coefficients. Note that the other parameters φc,∆, βt
that enter the equations are all expressible in terms of the gauged supergravity parameters

gR, V0, V1 from eqs (3.36) and (4.10). However, we will express everything in terms of βt
for convenience. Thus the solution for the coefficients are,

Ct̂ =
Cs
φc
F0(βt) ,

Cr̂ =
Cs
φc
F1(βt) ,

Cx̂ =
Cs
φc
F2(βt) ,

Cŷ =
Cs
φc
F3(βt) ,

Cẑ =
Cs
φc
F4(βt) . (4.22)

where Fi(βt), i = 0, . . . 4 are complicated functions of βt which are given in section C.

Note that all the coefficients are proportional to the coefficient Cs. This is a consistency

check that the metric fluctuations considered in the analysis are sourced by the scalar

fluctuations.

Thus the full metric along with the fluctuations is

ds2 = −
(

1 + Ct̂r̂
∆

)
r̂2βtdt̂2 +

(
1 + Cr̂r̂

∆

)
dr̂2

r̂2
+

(
1 + Cx̂r̂

∆

)
dx̂2

+

(
1 + Cŷ r̂

∆

)
e−2x̂dŷ2 +

(
1 + Cr̂r̂

∆

)
r̂2βtdẑ2 . (4.23)

From eq (4.7) and eq (4.10), we see that positivity of λ implies ∆ is positive for the solu-

tion (3.42). Hence, all the metric fluctuations are well behaved and the metric approaches

the type III attractor metric as one approaches the horizon r̂ → 0. The reader may worry

that the perturbation in r̂r̂ is well behaved only if ∆ > 2. However there is no need to put

any additional condition, since the behavior at r̂ → 0 is dictated by the 1
r̂2

term owing to ∆

being positive. Thus we have constructed a stable Bianchi III attractor solution in gauged

supergravity. In the following section, we investigate the supersymmetry of this solution.

5 Supersymmetry analysis

In this section, we analyze the Killing spinor equations for the U(1)R gauged supergravity

with the Bianchi type III solution (3.42) as the background. The Killing spinor equation
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is obtained by setting the supersymmetric variation of the gravitino to zero. For the

N = 2,U(1)R gauged supergravity the gravitino variation is [63],

δψµi = ∇µ(ω)εi +
i

4
√

6
hI(γµνρ − 4gµνγρ)F

Iνρεi + δ′ψµi . (5.1)

Our notations and conventions are summarized in section A. The indices I label the

number of vectors and the scalars hI are as defined in section 3.1. Although we have only

one gauge field for the solution (3.42), we will keep the I indices for the gauge fields to avoid

introducing the explicit form of hI in the equations. The term δ′ψµi is the modification in

the supersymmetry variations as a result of the U(1)R gauging. Explicitly it takes the form,

δ′ψµi = − i√
6
gRh

IVIγµδijε
j , (5.2)

where VI are the parameters that appear in the U(1)R gauging. Note that the δij is not

used to raise or lower the SU(2) index.

We now proceed to analyze the Killing spinor equations. The vielbeins and spin con-

nections of the metric (3.42) are

e0
t̂

= rβt , e1
r̂ =

1

r̂
, e2

x̂ = 1 , e3
ŷ = e−x̂ , e4

ẑ = r̂βt ,

ω01
t̂

= βtr̂
βt , ω32

ŷ = −e−x̂ , ω41
ẑ = βtr̂

βt . (5.3)

Substituting the above in (5.1), the Killing spinor equations can be written as

γ0r̂
−βt∂t̂εi −

βt
2
γ1εi +

i

2
√

6
AI3hIγ23εi +

i√
6
gRh

IVIδijε
j = 0 ,

γ1r̂∂r̂εi −
i

2
√

6
AI3hIγ23εi −

i√
6
gRh

IVIδijε
j = 0 ,

γ2∂x̂εi +
i√
6
AI3hIγ23εi −

i√
6
gRh

IVIδijε
j = 0 ,

γ3e
x̂∂ŷεi −

1

2
γ2εi +

i√
6
AI3hIγ23εi −

i√
6
gRh

IVIδijε
j = 0 ,

γ4r̂
−βt∂ẑεi +

βt
2
γ1εi −

i

2
√

6
AI3hIγ23εi −

i√
6
gRh

IVIδijε
j = 0 . (5.4)

The γa matrices that appear in the above set of equations are in tangent space.

We choose a radial profile for the Killing spinor. This is motivated by the fact that

the radial spinor preserves the time translation and homogeneous symmetries of the type

III metric (2.9). Moreover, it is well known that the radially dependent spinor generates

the Poincaré supersymmetries in AdS [55, 56]. Furthermore, some of the Bianchi type I

solutions such as the Lifshitz and AdS3×R2 solutions in gauged supergravity preserve 1/4

of the supersymmetries for the radial spinor [51, 52, 59].

We choose the spinor ansatz

εi = f(r̂)χi , (5.5)
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where χi is a constant symplectic majorana spinor. Substituting (5.5) in the Killing spinor

equation (5.4), we see that t̂, ẑ equations become identical. Adding the t̂ equation and the

radial equation we get

r̂∂r̂f(r̂)− βt
2
f(r̂) = 0 , (5.6)

which is solved by

f(r̂) = r̂
βt
2 . (5.7)

Using the above in (5.5) and substituting it in the Killing spinor equation (5.4) we get,

βt
2
γ1χi −

i

2
√

6
AI3hIγ23χi −

i√
6
gRh

IVIδijχ
j = 0 ,

i√
6
AI3hIγ23χi −

i√
6
gRh

IVIδijχ
j = 0 ,

1

2
γ2χi −

i√
6
AI3hIγ23χi +

i√
6
gRh

IVIδijχ
j = 0 . (5.8)

From the last two of the above equations, it follows that

γ2χi = 0 . (5.9)

This condition breaks all of the supersymmetry. The origin of the γ2 term is the spin

connection term due to the EAdS2 (2.10) part of the type III metric. Thus, a naive radial

spinor does not preserve supersymmetry in this case. This suggests that the stable Bianchi

III metric we have constructed may be a non-supersymmetric attractor. However, it is

possible that there may be a more general ansatz similar to the one studied in [58] for a

black string solution that interpolates between AdS3 × H2 and AdS5 in a U(1)3 gauged

supergravity. We hope to explore this in detail in future works.

6 Summary and conclusions

We studied the AdS3 ×H2 solution which is a special case of the Bianchi type III class in

U(1)R gauged supergravity. We found that there exist a class of such solutions parametrized

by gR, V0, V1 that satisfied the two sufficient requirements for the attractor mechanism,

namely the existence of a critical point of the attractor potential and that the Hessian of

the attractor potential should have a positive eigenvalue.

We investigated the stability of the solution in gauged supergravity by studying the

linearized fluctuations of the gauge field, scalar field, metric about their attractor values.

The stress energy tensor in gauged supergravity depends on linearized fluctuations of scalars

and gauge fields [49]. In order to avoid backreaction and deviation from the attractor

geometry, all the fluctuations have to be well behaved as one approaches the horizon.

For the solution (3.42), we showed that the source term in the gauge field fluctuations

vanishes. Thus there are no gauge field fluctuations sourced by scalar fluctuations. The

metric fluctuation equations are sourced completely by the scalar perturbations. We showed

that for the solution satisfying the sufficient conditions for the attractor mechanism, the

scalar fluctuations are well behaved near the horizon. We also solved the metric fluctuations
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and showed that all the fluctuations are regular. Since all the linearized fluctuations are well

behaved near the horizon, we infer that the type III Bianchi solution is a stable attractor

solution at the linearized level.

One of the simplifications that aided us in the stability analysis was that there were

no gauge field fluctuations which are sourced by scalar fluctuations. As we commented

before in section 4.1, this need not happen in general. For more complicated situations

we expect that as long as the solution satisfies the sufficient conditions for the attractor

mechanism [39], the Bianchi type geometries might be stable with respect to linearized

fluctuations about the attractor values. We hope to explore these aspects and look for

more interesting solutions in future.

In the long run, we hope our stability analysis will provide motivation to explore the

possibility of construction of analytic black brane solutions which interpolate between IR

and UV attractor geometries. In particular, it will be very interesting to construct solutions

that are asymptotically AdS. Such interpolating solutions will be helpful to explore the

holographic duals of Bianchi attractors. Recent progress in this direction include numerical

solutions which interpolate between Bianchi types and Lifshitz or AdS2 × S3 from where

they can be connected to anti de-Sitter space [32]. It will be valuable to construct analytic

interpolating solutions in a simple theory of gravity coupled to suitable matter.

In this paper, we also investigated the supersymmetry of the Bianchi type III solution.

We studied the Killing spinor equations of N = 2,U(1)R gauged supergravity with the

background metric (3.42). We chose a radial profile for the Killing spinor since it preserves

the time translations and homogeneous symmetries of the metric. However, we found that

the naive radial spinor which gives supersymmetric Bianchi I spaces such as AdS and Lif-

shitz fails for this case. This suggests that the stable type III solution we obtained may

be a non-supersymmetric attractor. It would be interesting to construct supersymmet-

ric Bianchi attractors in gauged supergravity along the lines of the AdS3 × H2 solution

in [58]. In a related exploration, it would be worthwhile to construct Bianchi attractors

from wrapped branes [66] in supergravity. We hope to report these in future works.
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A Notations and conventions

In this section, we summarize our notations and conventions on tangent space and spinors.

We use greek indices for spacetime and roman for tangent space. Our conventions for the
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flat tangent space metric is ηab = (−,+,+,+,+). The tangent space indices are denoted

by a, b = 0, 1, 2, 3, 4.

The tangent space matrices satisfy the usual Clifford algebra

{γa, γb} = 2ηab . (A.1)

Antisymmetrization is done with the following convention,

γa1a2...an = γ[a1a2...an] =
1

n!

∑
σ∈Pn

Sign(σ)γaσ(1)γaσ(2) . . . γaσ(n) . (A.2)

In d = 5 only I, γa, γab form an independent set, other matrices are related by the general

identity for d = 2k + 3,

γµ1µ2...µs =
−i−k+s(s−1)

(d− s)!
εµ1µ2...µsγµs+1...µd . (A.3)

We also recollect that the spinors in five dimensions satisfy the symplectic majorana con-

dition

ε̄i ≡ (ε∗i )
tγ0 = (εi)tC , (A.4)

where C is the charge conjugation matrix which obeys Ct = C−1 = −C.

Unlike the case in four dimensions, the SU(2) indices are not raised and lowered by

complex conjugation. Instead they are raised and lowered by the SU(2) covariant tensor

with the conventions ε12 = ε12 = 1. Note that the SU(2) indices are always raised or

lowered in the NW-SE direction

εi = εijεj , εi = εjεji . (A.5)

The covariant derivative acting on εi is with respect to the Lorentz covariant spin

connection ωabµ defined as

∇µ(ω)εi = ∂µεi +
1

4
ωabµ γab (A.6)

B Linearized Einstein equations

In this section, we provide the explicit form of the linearized equations that follow

from (4.18). We substitute the expressions for the attractor potential (3.41), the scalar

fluctuations (4.10), the terms from the stress energy tensor (4.13), (4.16) and the metric

fluctuations (4.19) into the linearized Einstein equation (4.18). We then contract it with

the vielbeins eµa to obtain the following equations. The t̂t̂ equation is

r̂2γ̃′′r̂r̂−r̂2γ̃′′
t̂t̂

+r̂2γ̃′′x̂x̂+r̂2γ̃′′ŷŷ+r̂2γ̃′′ẑẑ + 12βt
2γ̃r̂r̂ + 4(3βt

2 + 2)γ̃t̂t̂ + 4βt
2γ̃x̂x̂ + 4βt

2γ̃ŷŷ

+12βt
2γ̃ẑẑ + 6βtr̂γ̃

′
r̂r̂ − 6βtr̂γ̃

′
t̂t̂

+ 6βtr̂γ̃
′
x̂x̂ + 6βtr̂γ̃

′
ŷŷ + 6βtr̂γ̃

′
ẑẑ

+r̂γ̃′r̂r̂ − r̂γ̃′t̂t̂ + r̂γ̃′x̂x̂ + 4(γ̃x̂x̂ + γ̃ŷŷ) + r̂γ̃′ŷŷ + r̂γ̃′ẑẑ = 0 .

(B.1)
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The r̂r̂ equation is

r̂2γ̃′′r̂r̂ − r̂2γ̃′′
t̂t̂
− r̂2γ̃′′x̂x̂ − r̂2γ̃′′ŷŷ − r̂2γ̃′′ẑẑ − 4(5βt

2 + βt + 1)γ̃r̂r̂ + 4βt
2γ̃x̂x̂ + 4βt

2γ̃ŷŷ

− 4βt
2γ̃ẑẑ + 2βtr̂γ̃

′
r̂r̂ − 2βtr̂γ̃

′
t̂t̂
− 4(βt − 1)βtγ̃t̂t̂ − 2βtr̂γ̃

′
x̂x̂ + 4βtγ̃x̂x̂

− 2βtr̂γ̃
′
ŷŷ + 4βtγ̃ŷŷ − 2βtr̂γ̃

′
ẑẑ + 4βtγ̃ẑẑ − 3r̂γ̃′r̂r̂ + 3r̂γ̃′

t̂t̂

− 4(γ̃t̂t̂ + 2(γ̃x̂x̂ + γ̃ŷŷ) + γ̃ẑẑ) + 3r̂γ̃′x̂x̂ + 3r̂γ̃′ŷŷ + 3r̂γ̃′ẑẑ = 0 . (B.2)

The x̂x̂ equation is

−
(2βt

2 − 1)(8Csr̂
∆ + φcγ̃ŷŷ)

φc
− 2βt

2(γ̃r̂r̂ + γ̃t̂t̂ + 3γ̃x̂x̂ + γ̃ẑẑ)−
1

2
r̂
(
(2βt + 1)γ̃′r̂r̂

+ 2βt(γ̃
′
t̂t̂
− γ̃′x̂x̂ + γ̃′ŷŷ + γ̃′ẑẑ) + r̂(γ̃′′r̂r̂ + γ̃′′

t̂t̂
− γ̃′′x̂x̂ + γ̃′′ŷŷ + γ̃′′ẑẑ)

+ γ̃′
t̂t̂
− γ̃′x̂x̂ + γ̃′ŷŷ + γ̃′ẑẑ

)
− 6γ̃x̂x̂ − γ̃ŷŷ = 0 . (B.3)

The ŷŷ equation is

−16(2βt
2−1)Csr̂

∆

φc
+ 2(−2βt

2(γ̃r̂r̂+γ̃t̂t̂+3γ̃ŷŷ+γ̃ẑẑ)−γ̃x̂x̂ − 3γ̃ŷŷ) + 2(1− 2βt
2)γ̃x̂x̂

− r̂
(
(2βt + 1)γ̃′r̂r̂ + 2βt(γ̃

′
t̂t̂

+ γ̃′x̂x̂ − γ̃′ŷŷ + γ̃′ẑẑ) + r̂(γ̃′′r̂r̂ + γ̃′′
t̂t̂

+ γ̃′′x̂x̂

− γ̃′′ŷŷ + γ̃′′ẑẑ) + γ̃′
t̂t̂

+ γ̃′x̂x̂ − γ̃′ŷŷ + γ̃′ẑẑ
)
− 6γ̃r̂r̂ − 6γ̃t̂t̂ − 6γ̃x̂x̂ − 6γ̃ẑẑ = 0 .

(B.4)

The ẑẑ equation is

r̂2(−γ̃′′r̂r̂)− r̂2γ̃′′
t̂t̂
− r̂2γ̃′′x̂x̂ − r̂2γ̃′′ŷŷ + r̂2γ̃′′ẑẑ − 12βt

2γ̃r̂r̂ − 12βt
2γ̃t̂t̂ − 4βt

2γ̃x̂x̂ − 4βt
2γ̃ŷŷ

− 12βt
2γ̃ẑẑ − 6βtr̂γ̃

′
r̂r̂ − 6βtr̂γ̃

′
t̂t̂
− 6βtr̂γ̃

′
x̂x̂ − 6βtr̂γ̃

′
ŷŷ + 6βtr̂γ̃

′
ẑẑ − r̂γ̃′r̂r̂

− r̂γ̃′
t̂t̂
− r̂γ̃′x̂x̂ − 4(γ̃x̂x̂ + γ̃ŷŷ + 2γ̃ẑẑ)− r̂γ̃′ŷŷ + r̂γ̃′ẑẑ = 0 . (B.5)

In the above equations, the prime indicates derivative with respect to r̂. We see that all

the double derivatives are multiplied by r̂2, while the single derivatives are multiplied by

r̂. Now, the x̂x̂ and ŷŷ equations contain the source term which goes like r̂∆. It is then

clear that the metric fluctuations γ̃µν all go like r̂∆.

C Coefficients of the linearized fluctuations

The various functions that appear in the coefficients (4.22) are

F0(βt) = −64(βt
2 + 4)(2βt

2 − 1)
N1
t̂
(βt) +N2

t̂
(βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (C.1)

F1(βt) = 64(βt
2 + 4)(2βt

2 − 1)
N1
r̂ (βt) +N2

r̂ (βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (C.2)

F2(βt) = 8(2βt
2 − 1)

N1
x̂(βt) +N2

x̂(βt) +N3
x̂(βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (C.3)

F3(βt) = 8(2βt
2 − 1)

N1
ŷ (βt) +N2

ŷ (βt) +N3
ŷ (βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (C.4)

F4(βt) = −64(βt
2 + 4)(2βt

2 − 1)
N1
ẑ (βt) +N1

ẑ (βt)

D1(βt) +D2(βt) +D3(βt) +D4(βt)
, (C.5)
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where,

N1
t̂
(βt) = 272βt

4 + 80(f(βt)− 1)βt
2 + 4(f(βt)− 84)βt ,

N2
t̂
(βt) = −4f(βt) + 16(7f(βt) + 33)βt

3 + 107 ,

N1
r̂ (βt) = 304βt

4 + 8(14f(βt)− 53)βt
2 + 4(5f(βt) + 84)βt ,

N2
r̂ (βt) = 28f(βt) + 16(5f(βt)− 33)βt

3 − 179 ,

N1
x̂(βt) = 4928βt

6 + 4(1000f(βt) + 4821)βt
2 − 4(53f(βt)− 924)βt ,

N2
x̂(βt) = 644f(βt)− 64(5f(βt)− 33)βt

5 + 16(68f(βt) + 1419)βt
4 ,

N3
x̂(βt) = −16(166f(βt) + 447)βt

3 + 671 ,

N1
ŷ (βt) = 4928βt

6 + 4(1216f(βt) + 6009)βt
2 − 4(107f(βt) + 3612)βt ,

N2
ŷ (βt) = −4f(βt)− 64(5f(βt)− 33)βt

5 + 16(68f(βt) + 1689)βt
4 ,

N3
ŷ (βt) = (21360− 64f(βt))βt

3 + 7745 ,

N1
ẑ (βt) = (272βt

4 + 80(f(βt)− 1)βt
2 + 4(f(βt)− 84)βt ,

N2
ẑ (βt) = −4f(βt) + 16(7f(βt) + 33)βt

3 + 107) ,

D1(βt) = −33024βt
8 − 8(3910f(βt) + 13839)βt

2 + 4(367f(βt)− 1428)βt ,

D2(βt) = −3276f(βt) + 256(25f(βt) + 99)βt
7 − 128(58f(βt) + 1525)βt

6 ,

D3(βt) = 192(147f(βt) + 400)βt
5 − 32(1178f(βt) + 8565)βt

4 ,

D4(βt) = 48(309f(βt)− 1045)βt
3 − 10445 ,

f(βt) =
√
−21 + 33β2

t . (C.6)
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