
J
H
E
P
0
8
(
2
0
1
4
)
0
4
8

Published for SISSA by Springer

Received: July 16, 2014

Accepted: July 20, 2014

Published: August 7, 2014

On Lagrangian approach to self-dual gauge fields in

spacetime of nontrivial topology

Igor Bandos

UPV/EHU,

P.O. Box 644, 48080 Bilbao, Spain

IKERBASQUE, Basque Foundation for Science,

48011, Bilbao, Spain

E-mail: igor.bandos@ehu.es

Abstract: We study the Lagrangian description of chiral bosons, p-form gauge fields

with (anti–)self-dual gauge field strengths, in D = 2p + 2 dimensional spacetime of non-

trivial topology. We show that the manifestly Lorentz and diffeomorphism invariant Pasti-

Sorokin-Tonin (PST) approach is consistent and produces the (anti-)self-duality equation

also in topologically nontrivial spacetime. We discuss in what circumstances the nontrivial

topology makes difference between two disconnected, da-timelike and da-spacelike branches

of the PST system, the gauge fixed version of which are described by not manifestly in-

variant Henneaux-Teitelboim (HT) and Perry-Schwarz (PS) actions, respectively.

Keywords: Gauge Symmetry, Field Theories in Higher Dimensions, Field Theories in

Lower Dimensions, Global Symmetries

ArXiv ePrint: 1406.5185

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP08(2014)048

mailto:igor.bandos@ehu.es
http://arxiv.org/abs/1406.5185
http://dx.doi.org/10.1007/JHEP08(2014)048


J
H
E
P
0
8
(
2
0
1
4
)
0
4
8

Contents

1 Introduction 1

2 PST Lagrangian for 6D selfdual gauge fields 4

2.1 2-form gauge field in D=6 4

2.1.1 Free action for 2-form gauge potential in M1+5 4

2.1.2 (Anti-)self duality equation 5

2.2 Duality invariant action for the 2-form gauge field. PST, HT and PS actions;

da-timelike and da-spacelike branches of PST system 6

2.2.1 PST action 6

2.2.2 Lagrangian equations from PST action 7

2.2.3 Gauge symmetries and branches of the PST system 7

2.2.4 Gauge fixed form of the PST action: HT and PS actions 8

2.2.5 Anti-self-duality from Lagrangian equations of motion 9

3 PST action and equations of motion in topologically nontrivial M1+5 10

3.1 First order form of the PST Lagrangian equations in a topologically non-

trivial spacetime 10

3.2 ‘Semilocal symmetry’ of the PST action in topologically nontrivial M6 12

3.3 On Noether current for semilocal symmetry 14

3.3.1 A speculation on possible alternative 16

3.4 (Anti-)self-duality equation from PST action in topologically nontrivial M6 17

3.5 Summarizing the case of chiral 2-form gauge potential in 6 dimensions 19

4 Prototype of the topological gauge symmetry in 2D PST action for chiral

bosons 20

4.1 Semi-local symmetry as gauge symmetry of FJ and da-timelike PST actions 22

4.2 Chirality equation as gauge fixed form of the Lagrangian equations of the

FJ action and of the da-timelike branch of the PST action 23

4.3 Issues of anti-FJ action and da-spacelike branch of the 2d PST system 23

4.4 A speculation on alternative canonical formalism in 2d 24

4.5 Chiral bosons on a Riemann surface 25

5 Twisted anti-self-duality of p-form gauge fields from the PST action in a

D=2p+2 dimensional spacetime of nontrivial topology 26

5.1 Twisted anti-self-duality in D = 2p+ 2 26

5.2 PST action for chiral bosons in M2p+2 27

5.3 Twisted anti-self-duality from PST action in topologically nontrivial M2p+2 28

6 Conclusions 30

– i –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
8

A On first order form of the Lagrangian equations of the PST system in

flat spacetime 32

B Noether currents and Noether charges in a 6d theory of 2-form gauge

potential 33

1 Introduction

The PST (Pasti-Sorokin-Tonin) approach [1, 2] provides a manifestly Lorentz invariant

Lagrangian description of the self-dual gauge fields as well as of more general duality-

invariant theories. One of the simplest examples is provided by D=6 theory of chiral

2-form potential B2, where the PST action allows to reproduce the self-duality or anti-

self duality condition H3 = ± ∗ H3 for the field strength H3 = dB2. It is also known

the Dirac-Born-Infeld type version of this model producing the nonlinear generalization of

the self-duality conditions and describing the M-theory 5-brane (M5-brane) in its bosonic

limit [3] and in a complete form [4, 5].

The PST action involves an auxiliary scalar field a(x) which enters the Lagrangian only

through its derivatives ∂µa(x). Hence its shift by constant parameter is a (Pecci-Queen)

symmetry. But moreover, the PST scalar a(x) is a Stückelberg field as far as the PST

action possesses a gauge symmetry (so-called second PST or PST2 symmetry) which can

be ‘parametrized’ by (almost) arbitrary variations δa(x) of a(x). The square of derivatives

of this PST scalar enters the denominator of the Lagrangian so that it is not allowed to

be zero or constant, but it can be gauged to coincide with e.g. one of the space or time

coordinates (but not with their light-like combinations x± = t± x). Fixing da = dt in the

PST Lagrangian for 6D chiral bosons we arrive at the non-manifestly Lorentz invariant

Henneaux-Teitelboim (HT) action [6]; while fixing, say, da = dx1, we arrive at the Perry-

Schwarz-type (PS) action [7].

As we will discuss in the main text, the gauges da = dt and, say, da = dx1 cannot be

connected by a nonsingular PST2 gauge transformations. Thus the PST action actually

describes a dynamical system with two branches, where, respectively, the gauge da = dt and

the gauge da = dx1 can be fixed; let us call these da-timelike and da-spacelike branches of

the PST-system. In topologically trivial situation these branches are classically equivalent

in the sense that both can be used to produce the (anti–)self-duality as a gauge fixed version

of the equations of motion.

In this paper we study the PST system in spacetime of nontrivial topology. The

standard PST action is well defined if the spacetime admits a nowhere vanishing vector

field. This is always the case in the spacetime with metric of Lorentzian signature. To

be more explicit, generically the nowhere vanishing timelike vector field exists in it; this

can be related with the exterior derivative of the PST scalar da thus allowing for a da-

timelike branch of the PST system (and for its gauge fixed version, the HT action), while
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to have also da-spacelike branch (and its gauge fixed version, the PS action), we need the

Lorentzian spacetime to admit the second, spacelike nowhere vanishing vector field.

In a topologically nontrivial spacetime with Euclidean metric which does not admit

nowhere vanishing vector field, the standard PST construction is not well defined. However,

if it allows for existence of a nowhere vanishing ’q-plane field’ with q > 1, then a modified

version of the PST action with several (q) PST scalars [8, 9] can be constructed. These

cases (which are associated with different D = q+ (D− q) splittings of spacetime [10–12])

are beyond the scope of this paper.

The standard PST action possesses one more gauge symmetry, the so-called PST1

symmetry, which leaves inert the PST scalar a(x) but plays a very important role in

derivation of the self-duality (or duality) equation. The point is that the variation of the

PST action produces (a special type of the) second order equation, and the self-duality

equation can be deduced from it by using the gauge fixing of the PST1 symmetry. In the

original discussion of [1, 2], as well as in all presently known applications of PST technique

(see e.g. [13–17]), this procedure included the stage of solving the condition for some p-form

to be closed, dGp = 0, by writing it as an exact form, Gp = dPp−1. Then one can show that

Pp−1 can be gauged away by the PST1 symmetry and that the remaining equation Gp = 0

is equivalent to the self-duality equation for the field strength of the gauge potential.

The procedure described above is literally applicable to the case of flat or topologically

trivial spacetime. To be more precise, it is valid when the p-th Betti number of the

spacetime manifold M vanishes, bp = dim(Hp(M,R) = 0. However, if bp 6= 0, there exists

a (set of) closed but not exact p-form(s) ωΛ
p , Λ = 1, . . . , bp so that the general solution of

dGp = 0 reads Gp =
bp
∑

1
cΛω

Λ
p +dPp−1 with constant cΛ. (This is the place to stress that our

discussion here is schematic, and actually in some cases we will arrive at the expressions

with functions lΛ(a(x)) of the PST scalar a(x) instead of constants cΛ). At the first glance,

this seems to spoil the derivation of the self-duality equation from the PST Lagrangian.

The main aim of the present paper is to show that this is not the case: the PST

approach is pretty consistent and is able to produce the wanted (anti–)self-duality equations

also in the case of topologically nontrivial spacetime.

To see this one has to notice the presence of an unusual type of symmetry parametrized

by function(s) of the PST scalar, f(a(t, ~x)), which we call “semi-local symmetry”.1 In the

da-timelike branch, where the PST scalar can be gauge fixed to coincide with the time

coordinate, this semi-local symmetry is a gauge symmetry which can be used in the above

mentioned derivation of the self-duality equation. In contrast, in the da-spacelike branch,

where a(x) can be gauge fixed to coincide with one of the special coordinate, the semi-

local symmetry is an infinite dimensional local symmetry, similar to the two dimensional

conformal symmetry. This cannot be used to fix any gauge and, as a result, in some

topologically nontrivial situations the self-duality equation cannot be produced in this

branch.

1When this paper was finished the author have become aware that for the noncovariant HT action in

R ⊗ M5 spacetime with b2(M
5) 6= 0 such a symmetry had been found in [18]. The author thanks Marc

Henneaux for having brought this paper to his attention.
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Thus, interestingly enough, the nontrivial spacetime topology singles out the da-

timelike branch of the PST system.

The rest of this paper is organized as follows. In section 2 we review the PST approach

to Lagrangian description of the chiral bosons in flat six dimensional spacetime. We obtain

Lagrangian equations of motion form the PST action for two-form gauge potential B2,

describe the gauge symmetries of this action, the set of which includes the so-called PST1

and PST2 gauge symmetries, and show that these allow to fix a gauge where the Lagrangian

equations of motion reduce to the anti-self-duality equation.

In section 3 we elaborate this formalism in topologically nontrivial spacetime M6 =

M1+5 and prove its consistency. In section 3.1. we obtain the first order form of the PST

Lagrangian equations and find that in certainly topologically nontrivial spacetimes, includ-

ing M1+5 with b2 6= 0, this contain additional topological contribution defined by a number

of functions of one variables. In section 3.2. we show that in such spacetimes, in addition

to the PST1 and PST2 gauge symmetries, the PST action also possesses an additional

semi-local symmetry and that the additional topological contributions to the first order

form of the Lagrangian equations can be compensated or generated by transformations of

this semi-local symmetry. In section 3.3. we show that in the da-timelike branch of the

PST system, as well as in its gauge fixed version described by HT action, the semi-local

symmetry is a gauge symmetry, while in the da-spacelike branch of the PST system and

in its gauge fixed version described by the PS action, this is an infinite dimensional rigid

symmetry (similar to 2d conformal symmetry). This allows us to derive (in section 3.4.)

the anti-self-duality equations as gauge fixed version of the Lagrangian equations of motion

which follows from the da-timelike PST action and HT action.

In section 4 we discuss the two dimensional PST action for the chiral bosons, where

the counterpart of semi-local symmetry is present also in the case of topologically trivial

2d spacetime. The case of chiral bosons in a topologically nontrivial spacetime of arbitrary

even dimensionD = 2p+2 is addressed in section 5. A strong similarity with 6D case allows

us to be short and to restrict ourselves by presenting the basic equations and formulating

the results for this general case. We conclude in section 6.

In appendix A we give additional technical details on derivation of the first order

form of the PST Lagrangian equations in flat spacetime. In appendix B we discuss the

properties of Noether currents for gauge symmetries on a specific example of 2-form gauge

fields theories in D=6.

For the reader convenience we have make the presentation of D=6, of D=2 and of

the general D=2p+2 cases self-sufficient, so that each of these three can be read sepa-

rately; the price to pay was repetition of the basic statements, although with some specific

modifications.

Abbreviations:

• PST is used for Pasti-Sorokin-Tonin approach [1–3]. The PST action for 2-form gauge

field in D=6 can be found in eq. (2.11); see (5.8) for the case of p-form gauge fields

in M2p+2. The PST action for 2d chiral bosons [19] is presented in (4.4).

• HT is used for Henneaux-Teitelboim action (2.25) [6].

– 3 –
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• PS is used for Perry-Schwarz action (2.26) [7].

• FJ is used for Floreanini-Jackiw action [20] which can be found in eq. (4.13).

2 PST Lagrangian for 6D selfdual gauge fields

2.1 2-form gauge field in D=6

2.1.1 Free action for 2-form gauge potential in M1+5

We begin by discussing the theory of free non-chiral 2-form gauge potential

B2 =
1

2
dxν ∧ dxµBµν(x) (2.1)

in six dimensional spacetime. In eq. (2.1) xµ are local coordinates of M6, µ, ν = 0, 1, . . . , 5,

and ∧ denotes the exterior product of differential forms, dxµ ∧ dxν = −dxν ∧ dxµ, so that

the second rank tensor Bµν(x) contributing to (2.1) is antisymmetric, Bµν(x) = −Bνµ(x).

The standard field strength of the 2-form gauge potential is

H3 =
1

3!
dxρ ∧ dxν ∧ dxµHµνρ(x) := dB2 (2.2)

where d = dxµ∂µ is the exterior derivative which in our notation acts from the right, e.g.

dB2 =
1

2
dxµ ∧ dxν ∧ dxρ∂ρBνµ(x)

≡ 1

3!
dxµ ∧ dxν ∧ dxρ (∂ρBνµ(x) + ∂µBρν(x) + ∂νBµρ(x)) , (2.3)

so that (2.2) implies Hµνρ = 3∂[µBνρ] := ∂µBνρ + ∂νBρµ + ∂ρBµν .

The free field action for the 2-form gauge potential reads

S0 =

∫

M6

L0 , L0 =
1

2
H3 ∧ ∗H3 , (2.4)

where the Lagrangian 6-form L0 is written using the Hodge star symbol,

∗H3 :=
1

3!
dxρ ∧ dxµ ∧ dxν(∗H)µνρ , (∗H)µνρ :=

1

3!
√

|g|
εµνρµ

′ν′ρ′Hµ′ν′ρ′ , (2.5)

εµνρµ
′ν′ρ′ = ε[µνρµ

′ν′ρ′] is the Levi-Civita antisymmetric tensor density normalized so that

ε012345 = 1 and g = det(gµν) is the determinant of the spacetime metric which in our

conventions is of mostly minus signature.

Varying the action (2.4) with respect to the gauge potential, one finds the standard

free ’Maxwell-like’ equations for the 3-form field strength

d ∗H3 = 0 . (2.6)

By construction, the field strength also obeys the Bianchi identities,

dH3 = 0 . (2.7)
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In spacetime of nontrivial topology, (2.2) generically gives only a particular solution

of (2.7). The general solution

H3 = dB2 + kLΩ
L
3 , dΩL

3 = 0 , ΩL
3 6= dΞL

2 , L = 1, . . . , b3 , (2.8)

contains a topological contribution kLΩ
L
3 determining the cohomological class [H3] of H3 as

[H3] = kL[Ω
L]. Here ΩL

3 is the basis of the 3rd cohomology group H
3(M6) of the spacetime

M6, b3 = dimH3(M6), and kL are constant coefficients (see e.g. [21]).

Despite the presence of topological contributions, the variational problem is usually

defined within a fixed cohomology class (see [22, 23] and e.g. [10]), this is to say

δH3 = dδB2 (2.9)

with an arbitrary δB2.

2.1.2 (Anti-)self duality equation

A particular solution of the second order equation (2.6) is provided by 3-form field strength

obeying the anti-self-duality condition

H3 + ∗H3 = 0 ⇔ Hµνρ +

√

|g|
3!

εµνρµ′ν′ρ′H
µ′ν′ρ′ = 0 . (2.10)

Clearly, this first order equation is not satisfied by the most general solution of (2.6).

Furthermore, the action (2.4) vanishes on this solution. (The above statements are also

valid for the self-duality condition H3 − ∗H3 = 0).

It was natural to wander whether it is possible to construct the action which produces

just the (anti-)self duality equation, or dualities between the field strengths of different

ranks, as equations of motion. The action principle of such a type was of great interest

for the development of supersymmetry and string theory as far as many important super-

multiplets, such as the ones of 10D type IIB supergravity and of the M-theory 5-brane,

included self-dual and/or anti-self-dual tensor fields. Such duality invariant actions with

broken Lorentz symmetry (better to say, which are not-manifestly Lorentz invariant [19])

were proposed in [29] and in [6, 7]. The covariant action principle was developed in [1, 2].2

The properties of this PST action in spacetime of nontrivial topology is our main interest

in this paper.

2Notice also the existence of a covariant action principle with infinitely many auxiliary fields [24, 25]

which describes just the gauge fields obeying (anti-)self duality equations if the additional restrictions to the

configurations containing only finite number of fields is imposed. A quite curious nonlocal approach to chiral

bosons was proposed in [26]; it implies 1+5 splitting of 6d coordinates and the canonical brackets for 6d

2-form potentials is the same as in HT approach, but its relation with HT action [6] is not clear for us. There

exists also a pragmatic approach in the frame of which the (anti-)self-duality or/and duality equations do

not follow from the action but are imposed by hand afterwards. In such a way the ’democratic’ formulation

of 10D type IIA and IIB supergravities [27] and the alternative 5-brane action of [28] were constructed.

However, for instance, switching on interactions in a covariant approach of this type does not look so

straightforward as when having the action principle of canonical type, like [4, 5, 13, 14, 16].

– 5 –
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2.2 Duality invariant action for the 2-form gauge field. PST, HT and PS

actions; da-timelike and da-spacelike branches of PST system

2.2.1 PST action

The standard PST Lagrangian 6-form

LPST
6 = −(iv ∗H3 + ivH3) ∧H3 ∧ v =

=
1

2
d6x

√

|g|vρ (∗Hµνρ +Hµνρ) ∗Hµνλ vλ , (2.11)

is defined on any 6-dimensional manifold M6 which allows for the existence of nowhere

vanishing vector field; it is real when spacetime has a metric of Lorentz signature, M6 =

M1+5.

In (2.11) xµ are local coordinates on M6, |g| = |detgµν |,

v = dxµvµ =
da

√

|∂a∂a|
, ∂a∂a := ∂µa g

µν(x) ∂νa , (2.12)

where a(x) is a(n auxiliary) scalar field, called PST scalar, ∗H3 is defined in (2.5), and

ivH3 =
1

2
dxρ ∧ dxνvµHµνρ(x) , (2.13)

is the contraction of the three form (2.2) with the vector field vµ = gµνvν dual to the one

form v in (2.12). Notice that, by definition,

v2 = vµvµ = ±1 . (2.14)

As we discuss below (and as we have already mentioned in the Introduction) the sign plus

corresponds to the da-timelike branch and the sign minus to the da-spacelike branch of the

PST system.

In the spacetime of nontrivial topology it may be convenient to consider da(x) as closed

but not exact 1-form, this is to say to consider a as an angle variable (which implies an

equivalence relation of the type a ∼ a + 2π). This is consistent as a(x) enters the action

under derivative so that the constant shift of its value, a(x) 7→ a(x) + const is a symmetry

of the action.

When working with the differential form representation, it is convenient to use the

identities

Fp ≡ ivFp ∧ v/v2 + ∗(iv ∗ Fp ∧ v)/v2 , F6 = ivF6 ∧ v/v2 , (2.15)

iv ∗ H3 ≡ ∗(H3 ∧ v) , (2.16)

3 and Fp ∧ ∗Gp = Gp ∧ ∗Fp. We can also write the first equation in (2.15) as

Fp ≡ ivFp ∧
v

v2
+ F (−)

p , ivF
(−) = 0 , F (−)

p =
∗(iv ∗ Fp ∧ v)

v2
. (2.17)

In the case of da = dt, F
(−)
p is a p-form on the spacial slice M5

t of the spacetime M1+5.

3To have ∗∗ = 1 we define ∗B2 = − 1
4!
dxρ

4 ∧ . . .∧ dxρ
1

√
|g|

2
ǫρ1...ρ4µνB

µν while keeping the plus sign in the

definition ∗G4 = 1
2
dxν ∧ dxµ

√
|g|

4!
ǫµνρ1...ρ4G

ρ1...ρ4 . This provides the plus sign in (2.16).

– 6 –
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2.2.2 Lagrangian equations from PST action

We begin by reviewing the properties of the PST action ∝
∫

M6 LPST
6 in the case of topo-

logically trivial spacetime.

The variation of LPST
6 reads

δLPST
6 = ±2G2 ∧ da ∧

(

δH3 −
1

2
d(δa) ∧ G2

)

∓H3 ∧ δH3 (2.18)

where the sign ∓ in the last term corresponds to ±1 = v2 and

G2 :=
iv(∗H3 +H3)√

∂a∂a
. (2.19)

As we are interested in H3 = dB2, or (2.8) but with the variation within a fixed topological

class (2.9),

δLPST
6 = 2G2 ∧ da ∧

(

dδB2 −
1

2
d(δa) ∧ G2

)

∓ d(H3 ∧ δB2) . (2.20)

For the case of spacetime without boundary, ∂M6 = 0, the last term does not contribute

into the variation of the action SPST ∝
∫

M6 LPST
6 .

Now it is easy to see that the Lagrangian equation of motion for the 2-form potential,

which follows from the PST action, reads

d(G2 ∧ da) = 0 . (2.21)

The equation of motion for the PST scalar have the form

G2 ∧ d(G2 ∧ da) = 0 . (2.22)

Clearly this is satisfied identically due to (2.21). This dependence of the δa equation makes

transparent the pure gauge (Stückelberg) nature of the PST scalar; in other words, it is the

Noether identity which manifests the presence of the gauge symmetry (called PST2 gauge

symmetry) with respect to arbitrary variations δa(x) of the PST scalar supplemented by

a suitable variation of B2 (the second term in (2.24) below).

But this is not the end of story. Eqs. (2.21) can be solved formally with respect to G2.

In the case of topologically trivial spacetime M6 (with b2 = 0 and b3 = 0) the solution is

G2 ∧ da = −d(φ1 ∧ da) , (2.23)

where φ1 = dxµφµ(x) is an arbitrary 1-form.

2.2.3 Gauge symmetries and branches of the PST system

Now we come back to eq. (2.20) and observe that it also makes manifest the gauge sym-

metries which act on the 2-form potential by

δB2 = ϕ1 ∧ da+ δa G2 . (2.24)

– 7 –
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Here ϕ1 = dxµϕµ(x) and ϕµ(x) is an arbitrary x-dependent vector function parametrizing

the PST1 gauge symmetry and δa = δa(x) is an arbitrary x-dependent variation of the

PST scalar a(x) (parametrizing the PST2 gauge symmetry).

Roughly speaking, the PST2 gauge symmetry can be used to gauge a(x) away. How-

ever, not all the gauges are admissible as far as the presence of
√
∂a∂a in the denominator

of the Lagrangian, and of the equations of motion as they obtained from the variation of the

action (Lagrangian equations), put some topological restrictions on the PST scalar. Nei-

ther a(x) = const (which implies ∂µa = 0) nor identification of a(x) with the combination

of coordinate parametrizing a light-like direction (for which
√

|∂a∂a| = 0) is allowed. How-

ever, the configurations where a(x) is identified with coordinate in timelike or a spacelike

direction are not forbidden.

In the case when ∂µa is a timelike vector, ∂a∂a := ∂µag
µν∂νa > 0, the PST2 gauge

symmetry of the PST action can be used to fix the gauge a(x) = x0 = t (or better

da(x) = dt). In the case of the PST action with spacelike ∂µa, ∂a∂a < 0, we can use the

PST2 gauge symmetry to fix the gauge a(x) = x5 (better da(x) = dx5). We will call these

da-timelike and da-spacelike branches of the PST system, respectively. These branches are

disconnected as far as the configurations a(x) = t and, say, a(x) = x5 cannot be related by

a smooth PST2 transformation.4

2.2.4 Gauge fixed form of the PST action: HT and PS actions

Fixing the gauge da = dt in da-timelike branch of the PST system we arrive at

non-manifestly Lorentz- invariant (non-manifestly diffeomorphism invariant) Henneaux-

Teitelboim action [6, 31]

SHT ∝
∫

M6

LHT
6 , LHT

6 = −GHT
2 ∧H3 ∧ dt , GHT

2 = i0(H3 + ∗H3) . (2.25)

On the other hand, fixing the gauge (say) da = dx5 in da-spacelike branch results in the

Perry-Schwarz action [7]

SPS ∝
∫

M6

LPS
6 , LPS

6 = −GPS
2 ∧H3 ∧ dx5 , GPS

2 = i5(H3 + ∗H3) . (2.26)

It is easy to write the (counterparts of the) PST1 gauge symmetry leaving invari-

ant (2.25) and (2.26):

δB2 = ϕ1 ∧ dt ⇒ δSHT = 0 , (2.27)

δB2 = ϕ1 ∧ dx5 ⇒ δSPS = 0 . (2.28)

4Indeed, let us define one-parametric family of the configurations a(x) = (1−α)t+αx1, which coincides

with a(x) = t and a(x) = x1 for α = 0 and α = 1, respectively. The fact that α = 1/2 representative

of this family corresponds the prohibited configuration a(x) = 1/2(t + x1), for which ∂a∂a = 0 and the

action and the Lagrangian equations become singular, indicates that the PST2 transformation relating the

a(x) = t and a(x) = x1 configurations is inevitably singular. This shows that, even in a topologically trivial

situation, the dynamical system described by the PST action has two disconnected branches, which we call

da-timelike and da-spacelike branches of the PST system.
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2.2.5 Anti-self-duality from Lagrangian equations of motion

Under the PST1 gauge symmetry δH3 = d(ϕ1 ∧ da) and δG2 ∧ da = −d(ϕ1) ∧ da so that,

making this transformation in (2.23) and choosing ϕ1 = φ1 we arrive at G2 = 0 which is

equivalent to the anti-self-duality condition (2.10),

G2 = 0 ⇔ H3 + ∗H3 = 0 . (2.29)

In the same manner one can proceed in the case of HT and PS actions (2.25) and (2.26).

Notice that there exists another, although equivalent, way of reasonings, which is often

used in discussion of not manifestly invariant HT and PS actions. First one observes that

the symmetry (2.27) of the HT action (2.25) actually implies that B0i component is absent

in it. In other words, LHT
6 contains Bij = −Bji fields only,

LHT
6 = −i0(dB

(−)
2 + ∗(dB(−)

2 )) ∧ dB
(−)
2 ∧ dt , B

(−)
2 =

1

2
dxi ∧ dxjBji(x) . (2.30)

Varying with respect to these fields we find

d(G(−)
2 ∧ dt) = 0 , G(−)

2 = i0(dB
(−)
2 + ∗dB(−)

2 ) . (2.31)

Notice that (dB−
2 )ijk = Hijk := (dB2)ijk does not feel presence or absence ofB0j component

so that i0(∗dB−
2 ) = i0(∗dB2) and we can write the Lagrangian equations of motion (2.31)

in the following first order form (cf. (2.23))

G(−)
2 ∧ dt = dφ1 ∧ dt ⇔ (dB

(−)
2 )0ij + (∗dB2)0ij = ∂iφj − ∂jφi . (2.32)

This includes (dB−
2 )0ij = ∂0Bij while the complete (dB2)0ij = ∂0Bij − 2∂[i|B0|j] would in-

volve B0j absent in (2.30). The next, final observation is that we can identify the component

B0i, absent in the HT action (2.25), with the arbitrary φi appeared in the solution (2.32),

B0i = φi , (2.33)

after which (2.32) acquires the form (dB2)0ij + (∗dB2)0ij = 0 and implies the anti-self

duality equation for the standard field strength

(dB2)0ij |B0i=φi
+

1

3!
ǫijklm(dB2)

klm = 0 , ⇒ H3 + ∗H3 = 0 , H3 = dB2|B0i=φi
. (2.34)

It is useful to keep in mind this alternative way of thinking on the derivation of anti-self-

duality relation from the HT action, and similar approach to the PS formulation. However,

let us stress that the two forms of HT action, (2.25) and (2.30), and two forms of equations

of motion, (2.32) and (2.10) ((2.34)), are equivalent because the arbitrary variation of B0i

‘parametrizes’ a gauge symmetry of (2.25).

Summarizing, as we have reviewed above, in topologically trivial spacetime M6 =

M1+5, the anti-self-duality equation (2.10) can be obtained as a gauge fixed version of the

Lagrangian equation of motion (2.21) which follows from the PST action (2.11). The main

question we address here is whether this is also the case when the spacetime topology is

nontrivial.
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3 PST action and equations of motion in topologically nontrivial M1+5

A topologically nontrivial spacetime manifold M6 may have some number b2 of closed but

not exact 2 forms ωΛ
2 ,

dωΛ
2 = 0 , ωΛ

2 6= dχΛ
1 , Λ = 1, . . . , b2 , (3.1)

and also some number b3 of closed but not exact 3-forms ΩL
3

dΩL
3 = 0 , ΩL

3 6= dΞL
2 , L = 1, . . . , b3 (3.2)

(see (2.8)). The number of these closed forms, b2 and b3, determining the dimensions of

the second and the third de Rahm cohomology groups of the spacetime manifold M6, are

called the second and third Betti numbers of M6,

b2 = dimH
2(M6) , b3 = dimH

3(M6) . (3.3)

The PST action is well defined if M6 admits a nowhere vanishing vector field. As

the existence of at least one such field is necessary condition for a manifold to admit

Lorentz-type metric, the PST action always makes sense in M1+5 with nonsingular metric

of Lorentzian signature. However, if onM1+5 under consideration such a nowhere vanishing

vector field is unique, then both dt and the derivative of PST scalar da(x) should be

identified with a dual of that; as a result, da(x) = dt and the PST action coincides with

the HT one on such a manifold. The difference between PST and HT action occurs when

several (more than one) nowhere vanishing vector fields can exist on M6 = M1+5. Simplest

examples of such spaces are given by direct products of flat spacetime with an arbitrary

internal manifold, R1+n ⊗M5−n with 5 ≥ n ≥ 1.

3.1 First order form of the PST Lagrangian equations in a topologically non-

trivial spacetime

In a topologically nontrivial M6, as far as the Bianchi identities (2.7) are still valid and

we use the variation within fixed topological class δH3 = dδB2, eq. (2.9), the variation of

the Lagrangian form is given by (2.20), and the Lagrangian equations of motion keep the

same form (2.21),

d(G2 ∧ da) = 0 . (3.4)

However, when resolving them with respect to G2 (defined in (2.19)), we first find

G2 ∧ da = dφ2 + k̃LΩ
L
3 . (3.5)

with constant k̃L and arbitrary 2-form φ2. To proceed, we need to project this differential

form equation into the part which contains da and its complementary, which does not

contain da. Although this can be done with generic da, the discussion becomes much more

transparent if we consider the case da = dt, in which eq. (3.5) acquires the form

G2 ∧ dt = dφ2 + k̃LΩ
L
3 , G2 = i0(H3 + ∗H3) . (3.6)
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Let us decompose the forms and differential on the pure spacial and dt dependent parts,

d = d(−) + dt∂t , d(−) = d~x ~∂ , (3.7)

φ2 = φ
(−)
2 + i0φ2 ∧ dt = φ

(−)
2 + φ1 ∧ dt , (3.8)

ωΛ
2 = ω

Λ (−)
2 + i0ω

Λ
2 ∧ dt , (3.9)

ΩL
3 = Ω

L (−)
3 + i0Ω

L
3 ∧ dt . (3.10)

With splitting (3.9) and (3.10), the closure of basic 2-forms and 3-forms, eqs. (3.1) and (3.2),

imply that the pure spacial part ((−) part) of the closed forms should be ‘spatially closed’,

or d(−)-closed forms, and ∂t derivatives of the spacial ((−)) part of the closed forms should

be d(−)-exact,

d(−)ω
Λ (−)
2 = 0 , ∂tω

Λ (−)
2 = d(−)i0ω

Λ
2 , (3.11)

d(−)Ω
L (−)
3 = 0 , ∂tΩ

L (−)
3 = d(−)i0Ω

L
3 . (3.12)

Decomposing in the same manner eq. (3.6) we find

G2 ∧ dt = d(−)φ1 ∧ dt+ (∂tφ
(−)
2 + k̃Li0Ω

L
3 ) ∧ dt , (3.13)

d(−)φ
(−)
2 + k̃LΩ

L (−)
3 = 0 . (3.14)

Taking into account eqs. (3.12), we see that (3.14) implies that 2-form ∂tφ
(−)
2 + k̃Li0Ω

L
3

is d(−) closed, d(−)(∂tφ
(−)
2 + k̃Li0Ω

L
3 ) = 0 so that it can be decomposed into a sum of a

d(−)-exact form and a d(−)-closed but not d(−) exact 2-form:

(∂tφ
(−)
2 + k̃Li0Ω

L
3 ) = d(−)φ̌

(−)
1 + ω̌

(−)
2 (t, ~x) ,

{

d(−)ω̌
(−)
2 (t, ~x) = 0 ,

ω̌
(−)
2 (t, ~x) 6= d(−)χ

(−)
1 (t, ~x) .

(3.15)

When substituting this into (3.13), the exact form can be absorbed into the first term, in

which d(−) can be equivalently substituted by d, so that the result reads

G2 ∧ dt = −dφ1 ∧ dt+ ω̌
(−)
2 (t, ~x) ∧ dt ,

{

d(−)ω̌
(−)
2 (t, ~x) = 0 ,

ω̌
(−)
2 (t, ~x) 6= d(−)χ

(−)
1 (t, ~x) .

(3.16)

A nontrivail topology of M6 may manifest itself in the second term in right hand side

(r.h.s.) of this equation.

As one can see from (3.11), a particular case of d(−) closed but not d(−) exact ω̌
(−)
2 (t, ~x)

is provided by pure spacial components of closed but not exact forms ωΛ
2 , possibly multiplied

by an arbitrary function of t. In general

ω̌
(−)
2 (t, ~x) = lΛ(t)ω

Λ(−)
2 + ω̃

(−)
2 (t, ~x) , d(−)ω̃

(−)
2 (t, ~x) = 0 , ∂tω̃

(−)
2 (t, ~x) 6= d(−)χ

(−)
1 (3.17)

with b2 arbitrary functions lΛ(t) of time coordinate only and spatially closed ω̃
(−)
2 (t, ~x) the

time derivative of which is not d(−)-exact (so that, in distinction with ω
Λ(−)
2 , this is not a

spacial part of a closed form in M1+5).
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In the case of M1+6 = R
1 ⊗ M5 all the nontrivial forms have only spacial parts, in

particular ωΛ
2 = ω

Λ(−)
2 (~x), so that all the ω̌

(−)
2 = ω̌

(−)
2 (~x) is decomposed on these, the last

term is absent, ω̃
(−)
2 = 0, and eq. (3.16) reads

G2 ∧ dt = dφ1 ∧ dt+ lΛ(t)ω
Λ
2 ∧ dt . (3.18)

In this suggestive case, which we will widely use in our discussion below, it becomes

especially transparent that the presence or absence of nontrivial 3-forms ΩL
3 (b3 6= 0 versus

b3 = 0) is not important when studying the consequence of the Lagrangian PST equation.

What does matter is the possible presence of closed but not exact 2 forms in the spacetime

(b2 6= 0 versus b2 = 0) and on its 5 dimensional slices (spacial slices M5
t in the case under

consideration).

When da is not identified with dt, one can also arrive at the counterpart of eq. (3.16)

G2 ∧ da = −dφ1 ∧ da+ ω̌2 ∧ da , dω̌2 = ω̌
(1)
2 ∧ da . (3.19)

Here ω̌
(1)
2 can be considered as an arbitrary 2-form which can be identified with d

da
ω̌2.

However, the consistency conditions of the second equation in (3.19) require it to obey

the equation of the same structure dω̌
(1)
2 = ω̌

(2)
2 ∧ da. This chain is continued up to

infinity (dω̌
(2)
2 = ω̌

(3)
2 ∧ da, . . ., dω̌

(n)
2 = ω̌

(n+1)
2 ∧ da, . . .) and represents a counterpart of

d(−)ω̌2 = 0 condition in (3.16) (actually it can be equivalently written in this form provided

d(−)ω̌2 = dω̌2 ∓ ivdω̌2 ∧ v with v ∝ da (2.12)).

In some cases (for some M6) we can write eq. (3.19) in the form similar to (3.18),

G2 ∧ da = dφ1 ∧ da+ lΛ(a(x))ω
Λ
2 ∧ da(x) , Λ = 1, . . . , b2 , (3.20)

In addition to the arbitrary 1-form φ1, the r.h.s. of this equation contains a topological

contributions determined by b2 arbitrary functions of the PST scalar, lΛ(a) = lΛ(a(x)). As

in the case of topologically trivial M6, the first term can be gauged away using the PST1

gauge symmetry, but the fate of the second term, containing topological contribution, have

to be studied.

3.2 ‘Semilocal symmetry’ of the PST action in topologically nontrivial M6

Coming back to the variation of the Lagrangian form, eq. (2.20), we find that in a topolog-

ically nontrivial spacetime M6 = M1+5 it vanishes under the transformations of the PST2

gauge symmetry δB2 = δa(x)G2 (which are the same as in the topologically trivial case)

and also under the variations δH3 = dδB2 which obey

da ∧ dδB2 ≡ d(δB2 ∧ da) = 0 . (3.21)

Actually this equation for δB
(−)
2 := δB2 ∓ ivδB2 ∧ v (with v ∝ da, eq. (2.12)) have the

same structure as eq. (3.4) for G2 ∝ iv(H3 + ∗H3). Hence, using the results of previous

subsection, we can immediately write its general solution for δB2. Combining it with the

above mentioned PST2 transformations (and ignoring the conventional gauge symmetry

δB2 = dα1), we find

δB2 = ϕ1 ∧ da+ δa G2 + ϕ̌2 , dϕ̌2 = ϕ̌
(1)
2 ∧ da , (3.22)
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which, at least in some particular cases (see above) can be written as

δB2 = ϕ1 ∧ da+ δa G2 + ωΛ
2 fΛ(a(x)) (3.23)

(see (3.1) for properties of ωΛ
2 ).

In addition to an arbitrary x-dependent one form variation ϕ1 = dxµϕµ(x), and an

arbitrary variation of the PST scalar δa(x) (parametrizing the PST1 and PST2 gauge

symmetries, respectively), this contains b2 arbitrary functions of the PST scalar field a =

a(x) , fΛ(a) = fΛ(a(x)). These parametrize transformations of semilocal symmetry.

In general case the semi-local symmetry is described by two-form ϕ̌2 in (3.22) which

obeys dϕ̌2 = ϕ̌
(1)
2 ∧ da; as such a description seems to be less transparent, it is very useful

to keep in mind the particular case described above.

To gain more comprehension of the properties of our system, let us discuss the con-

figurations with da = dt of the da-timelike branch of the PST system, or the case of HT

action. Then (3.22) acquires the form

δB2 = ϕ1 ∧ dt+ ϕ̌
(−)
2 , d(−)ϕ̌

(−)
2 = 0 , (3.24)

and (3.23), valid in particular cases (including M6 = R
1 ⊗M5,5), reads

δB2 = ϕ1 ∧ dt+ ωΛ
2 fΛ(t) . (3.25)

We see that in these cases the semilocal symmetry transformations are parametrized by b2
functions of time variables only, fΛ(t). In general case of topologically nontrivial spacetime

M1+5, the parameters of the semi-local symmetry of HT action are hidden inside a t-

dependent d(−)-closed but not d(−)-exact 2-form, ϕ̌
(−)
2 (t, ~x) in (3.24).

The symmetry transformations of the field strength H3 = dB2 read

δH3 = d(ϕ1 ∧ dt)− ∂tϕ̌
(−)
2 ∧ dt , d(−)ϕ̌

(−)
2 (t, ~x) = 0 , (3.26)

and, in the particular case,

δH3 = d(ϕ1 ∧ dt) + ḟΛ(t) ω
Λ
2 ∧ dt , (3.27)

where ḟΛ(t) :=
dfΛ(t)
dt

. As it is easily to see, i0 ∗ δH3 = i0δ ∗H3 = 0, so that

δG2 ∧ dt = −d(ϕ1) ∧ dt+ ∂tϕ̌
(−)
2 ∧ dt , d(−)ϕ̌

(−)
2 (t, ~x) = 0 . (3.28)

Eq. (3.28) implies that, as in the topologically trivial case, we can gauge away φ1 in (3.16)

using the second PST symmetry with the one-form parameter ϕ1. Furthermore, the second

term in (3.16) can be also removed by the ’semi-local symmetry’ if we choose ϕ̌
(−)
2 (t, ~x) to

be a solution of ∂tϕ̌
(−)
2 = −ω̌

(−)
2 (t, ~x).

In particular cases when ϕ̌
(−)
2 (t, ~x) and ω̌

(−)
2 (t, ~x) can be expressed as a linear combina-

tion of ω
(−)Λ
2 (t, ~x), the above arguments can be formulated in a more transparent manner:

5The semi-local symmetry of the HT action in such spacetime was observed in [18].
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the r.h.s. (3.18) can be removed by a semi-local symmetry provided the b2 functions in (3.25)

(and (3.27)) are chosen such that ḟΛ(t) = −lΛ(t) holds.

Similar statement is true in the generic case of (both branches of) the PST action

with an arbitrary (nowhere vanishing) da. Let us begin from the PST system in particular

type of spacetime where the general solution of the Lagrangian PST equation (3.4) can be

written in the form of (3.20). The r.h.s. of this equation can be removed by the standard

PST gauge symmetries and the semi-local symmetry δB2 = ωΛ
2 fΛ(a, δ), eq. (3.23), with

a-dependent variation fΛ(a) obeying f ′
Λ(a) :=

d
da
fΛ(a) = −lΛ(a).

In general case the r.h.s. of the first order form of the PST Lagrangian equation,

eq. (3.19), contains 2-form ω̌2 obeying dω̌2 = ω̌
(1)
2 ∧ da, the r.h.s. of (3.19) can be also

removed by the standard PST gauge symmetries and the semi-local symmetry, δB2 = ϕ̌2

with dϕ̌2 = ϕ̌
(1)
2 ∧ da in (3.22), provided we choose ϕ̌

(1)
2 = −ω̌2.

Then, if the semilocal symmetry is a gauge symmetry, the above statements imply that

eq. (3.19) (eq. (3.20)) is gauge equivalent to G2 = 0 which, in its turn, is equivalent to the

usual anti-self-duality equation H3 + ∗H3 = 0, eq. (2.29).

As we will show in section 3.3 this is the case in the da-timelike branch of the PST

system, while in the da-spacelike branch the above semilocal symmetry is an infinitely

dimensional global symmetry, similar to d=2 conformal symmetry.

To make the above statement intuitively clear, we just mention that the gauge nature

of semilocal symmetry in the da-timelike PST system is suggested by observation that in

it, after gauge fixing the PST2 symmetry by da = dt, the parameters of the semilocal

symmetry (3.22) (or (3.23)) can be collected in functions of time variables; in a particular

case these are b2 functions fΛ(t) (see (3.25)). Indeed, the t-dependence is characteristic

for parametric functions of gauge symmetries of one-dimensional systems, and, in a d ≥ 2

field theory, the dependence on spacial coordinates can be considered as a kind of index,

although continuous. In contrast, in the da-spacelike branch the parameters of semilocal

symmetry can be collected (after gauge fixing the PST2 symmetry by, say, da = dx5) in

functions of one of the spacial coordinates, which suggests an infinite dimensional global

symmetry nature of semilocal symmetry in this case.

3.3 On Noether current for semilocal symmetry

A formal way to distinguish a gauge symmetry from an infinite dimensional rigid symmetry,

a typical example of which is provided by the 2d conformal symmetry, is to calculate the

Noether current Jµ and Noether charge Q =
∫

dD−1xJ0. For the gauge symmetry this

latter is identically equal to zero, Q =
∫

dD−1xJ0 = 0, while for the rigid symmetry this is

not the case (see [30] and refs. therein).

In this section we address the question of whether the semilocal symmetry of the PST

action in a topologically nontrivial spacetime, which in some particular cases of M6 with

b2 6= 0 have the form of δB2 = ωΛ
2 fΛ(a, δ) in (3.23), is the gauge symmetry.

To streamline the discussion, we can consider the non-manifestly Lorentz invariant

Henneaux-Teitelboim (HT) and Perry-Schwarz (PS) actions, eqs. (2.25) and (2.26), which

can be obtained by gauge fixing from the PST action in its da-timelike and da-specelike

branches, respectively.

– 14 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
8

Furthermore, we will begin by discussing these actions in particular classes of topolog-

ically nontrivial spacetimes, including R
1 ⊗M5 and M1+4 ⊗ R

1, for which the semi-local

symmetry of these actions can be expressed in terms of b2 functions of only time coordinate

and of only one spacial coordinate respectively, so that

δSHT = 0 ⇐ δB2 = dα1 + ϕ1 ∧ dt+ fΛ(t)ω
Λ
2 . (3.29)

δSPS = 0 ⇐ δB2 = dα1 + ϕ1 ∧ dx5 + fΛ(x
5)ωΛ

2 . (3.30)

Let us recall that ωΛ, Λ = 1, . . . , b2 are closed but not exact 2-forms (3.1) which provide

a basis of H
2(M6) which, in these particular cases, is equal to H

2(M5) and H
2(M1+4),

respectively.

In the case of HT action for chiral bosons in R
1 ⊗ M5, we can write the semi-local

symmetry transformations of (3.29) in the form

δB2 =

(

fΛ(0) + tf ′
Λ(0) + . . .+ tn

f
(n)
Λ (0)

n!
+ . . .

)

ωΛ
2 (3.31)

and identify (the infinite set of) their parameters with
f
(n)
Λ (0)
n! for n = 0, 1, . . . . Then the

5-forms dual to the Noether currents for these symmetries,

∗J (n)Λ
1 =

1

5!
dxµ5 ∧ . . . ∧ dxµ1ǫµ1...µ5µJ

µ(n)Λ . (3.32)

read (see appendix B for the proof of the First Noether Theorem in our notation)

∗J (n)Λ
1 = tndt ∧ G2 ∧ ωΛ

2 . (3.33)

This form is closed on the mass shell, d ∗ J
(n)Λ
1 = 0, which is tantamount to state the

current conservation ∂µJ
µ(n)Λ = 0. Moreover, one can observe that the time component

of the Noether current dual to the 5-form (3.33) vanishes, J0(n)Λ = 0 (Jµ(n)Λ = δµi J
i(n)Λ).

Then, as far as the Noether charge is defined as an integral over the space of the timelike

component of the Noether current, it also vanishes,

Q(n)Λ :=

∫

d5xJ0(n)Λ = 0 , (3.34)

as it should be for the case of gauge symmetry.

This allows us to conclude that the semi-local symmetry (3.29) is the gauge symmetry

of the HT action (2.25) in a spacetime M6 of nontrivial topology with b2 6= 0.

Such a conclusion does not follow in the case of semi-local symmetry (3.30) of the

Perry-Schwarz action (2.26) on M1+4 ⊗ R
1,

δB2 =

(

fΛ(0) + (x5)f ′
Λ(0) + . . .+ (x5)n

f
(n)
Λ (0)

n!
+ . . .

)

ωΛ
2 . (3.35)

Its Noether current reads

∗J (n)Λ
1 = (x5)ndx5 ∧ G2 ∧ ωΛ

2 , (3.36)

– 15 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
8

so that in this case J5(n)Λ = 0, but J0(n)Λ is generically nonvanishing. Thus the standard

Noether charge is generically nonzero, Q(n)Λ :=
∫

d5xJ0(n)Λ 6= 0, which indicates that the

semi-local symmetry (3.30) of (2.26) is infinite dimensional rigid symmetry.

The above statement is true also in the case of HT, PS and PST actions in generic

M6 (allowing for the existence of nowhere vanishing vector field(s)), when the semi-local

symmetry is described by eq. (3.22) rather than (3.23). To make this transparent let us first

return to the above particular case and introduce generated functionals for the Noether

currents and Noether charges,

∗JΛ
1 [f(t)] =

∞
∑

n=0

f (n)(0)

n!
∗ J (n)Λ

1 = f(t)dt ∧ G2 ∧ ωΛ
2 ,

QΛ[f(t)] =

∫

d5xJ0Λ[f(t)] ≡
∫

M5

∗JΛ
1 [f(t)] = 0,

Q[fΛ(t)ω
Λ
2 ] =

∑

Λ

QΛ[fΛ(t)] = 0, (3.37)

∗JΛ
1 [f(x

5)] =
∞
∑

n=0

f (n)(0)

n!
∗ J (n)Λ

1 = f(x5)dx5 ∧ G2 ∧ ωΛ
2 ,

QΛ[f(t)] =

∫

d5xJ0Λ[f(t)] ≡
∫

M5

∗JΛ
1 [f(t)] 6= 0,

Q[fΛ(x
5)ωΛ

2 ] =
∑

Λ

QΛ[fΛ(x
5)] 6= 0. (3.38)

In general the generating function for the Noether changes of semi-local symme-

try (3.22) can be written as

Q[ϕ̌2] =
∫

M5 da(x) ∧ G2 ∧ ϕ̌2 , dϕ̌2 = ϕ̌
(1)
2 ∧ da, (3.39)

where M5 can be defined as a constant t slice of M1+5. In the da-timelike branch of the

dynamical system described by the PST action we can use the PST2 symmetry to fix the

gauge da = dt in which it is immediate to see that Q[ϕ̌2] = 0. This is not the case for

the da-spacelike branches of PST system, where we can rather fix the gauge da = dx5 in

which, generically, Q[ϕ̌2] 6= 0.

Hence the semi-local symmetry is a gauge symmetry in the da-timelike branch of the

dynamical system described by the PST action and an infinite dimensional rigid symmetry

in the da-spacelike branch of the PST system.

3.3.1 A speculation on possible alternative

It is tempting, following the spirit of recent [33] (devoted to the Euclidean 5d SYM de-

scription of the mysterious non-Abelian 6d (2, 0) superconformal theory), to speculate on

possible alternative canonical formalism allowing to treat the semilocal symmetry of PS

action as a gauge symmetry.

Indeed, the above observation that the Noether current of semi-local symmetry of the

PS action obeys J5(n)Λ = 0 (in particular cases, and i5 ∗ J1[[ϕ̌2]] = 0 in the general case)
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implies vanishing of ’pseudo-charge’ constructed in the same way as Noether charge but

with interchanging the role of time x0 = t and the special space direction x5,

Q̃(n)Λ :=

∫

dtdx1dx2dx3dx4J5(n)Λ = 0 . (3.40)

Then, following [33], one can build formally the canonical formalism based on using x5

instead of time direction x0 = t. In its frame the semilocal symmetry of the PS action

can be treated as a gauge symmetry and used to obtain the (anti-)self-duality equation. A

necessary condition for the above treatment of PS action and of the da-spacelike branch of

the PST system in a topologically nontrivial spacetime with b2 6= 0 is that this M6 allows

for the existence of a nowhere vanishing spacelike vector field, which can be associated with

x5 direction (besides the timelike nowhere vanishing vector field which is strictly necessary

to have the metric of Lorentz signature). If so, one could state that also da-spacelike

branch of the covariant PST action, like da-timelike one, can be used to obtain the anti-

self duality equation, provided certain alternative canonical formalism is used. The authors

of [33] noticed that different choices of the basic variables of canonical formalism should

correspond to restriction to a special field configurations for which the physically relevant

integrals of the field variables (including the ones defining charges) do not diverge.

In this paper we will not elaborate the idea of alternative canonical formalism and

keep the conservative point of view according to which the semilocal symmetry of the PS

action and of the da-spacelike branch of the PST system is an infinite dimensional rigid

symmetry.

3.4 (Anti-)self-duality equation from PST action in topologically nontrivial

M6

Thus, as we have shown above, in the topologically nontrivial space-time M1+5 the PST

action produces the dynamical equations of motion (2.21), which are equivalent to (3.19). In

particular cases of topologically nontrivial spacetimes this first order form of the Lagrangian

equations can be written in a more transparent manner (3.20),

G2 ∧ da := iv(H3 + ∗H3) ∧ v = lΛ(a)ω
Λ ∧ da , (3.41)

in which the r.h.s. is expressed in terms of b2 arbitrary functions of the PST scalar lΛ =

lΛ(a(x)). Below we will carry the discussion in terms of this particular case and give the

generic form of the equations in parenthesis. (See (3.19) for the first order form of the PST

Lagrangian equations in a generic spacetime).

On the other hand the PST action possesses, in addition to the PST1 and PST2

gauge symmetries, also the semi-local symmetry which in these particular spacetimes, is

parametrized by b2 arbitrary functions of the PST scalar fΛ(a(x)) in (3.23),

δB2 = ϕ1 ∧ da+ δa G2 + ωΛ
2 fΛ(a(x)) (3.42)

((3.22) in the generic case).
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3.4.1. da-timelike branch

In the da-timelike branch of the PST system, described by the PST action with timelike ∂µa,

all these are gauge symmetries and one can use them to gauge away the r.h.s. of (3.41), thus

arriving at G2∧da := iv(H3+∗H3)∧v = 0 which is equivalent to the anti-self-duality (2.29),

H3 + ∗H3 = 0 (3.43)

for the ’original’ field strength (2.8) entering the action (2.11).

3.4.2. da-spacelike branch

As we have already discussed in section 3.3.1, to treat similarly the da-spacelike branch of

the PST system, as well as the PS system appearing as the gauge fixed, da = dx5 version

of this branch, one might try, following the spirit of [33] to develop an alternative canonical

formalism using x5 variable instead of time.

In this paper we will follow a more conservative approach keeping the standard re-

lation of canonical formalism with the timelike direction of M1+5. Then, the semi-local

symmetry of the da-spacelike branch of the PST system is an infinite dimensional global

symmetry, which cannot be used to fix a gauge, and the Lagrangian equation (2.21) is

gauge equivalent to

G2 ∧ da := iv(H3 + ∗H3) ∧ v = lΛ(a)ω
Λ ∧ da (3.44)

with arbitrary functions of the PST scalar lΛ(a) (to (3.19) with φ1 = 0 in the general case).

Thus the standard anti-self-duality equation (3.43) for the field strength H3 entering

the action cannot be reproduced in the da-spacelike branch. However, let us observe that

we can remove the additional topological contributions by redefining the field strength as

H̃3 = H3 − lΛ(a(x))ω
Λ ∧ da(x) (3.45)

(or, in the general case,

H̃3 = H3 − ω̌2 ∧ da(x) , dω̌2 = ω̌
(1)
2 ∧ da(x) , (3.46)

with ω̌2 being arbitrary in all other respects). Indeed, due to (3.44) (or (3.19)), such H̃3

obeys, besides the standard Bianchi identities dH̃3 = 0, also iv(H̃3 + ∗H̃3) = 0 and hence

H̃3 + ∗H̃3 = 0 . (3.47)

Actually, when we can consider da(x) (and hence da(x)lΛ(a) in (3.45)) as an exact

form, we can write the redefinition of the field strength as a redefinition of the potential,

H3 = dB2 , H̃3 = dB̃2 , B̃2 = B2 + ωΛ
2 f̃Λ(a) + dα1 ,

d
da
f̃Λ(a) = lΛ(a) (3.48)

(B̃2 = B2 + β2 with dβ2 = ω̌2 ∧ da in general case).

This allows us to state that, in a topologically nontrivial spacetime with b2 6= 0, and

more generally in the spacetime which allows for an existence of a nontrivial solution
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(ω̌2 6= dχ1 + ivdχ1 ∧ v) of the equation dω̌2 = ω̌
(1)
2 ∧ da, the da-spacelike branch of the

PST system, as well as the non-manifestly covariant PS action, can be used to produce

the (anti-)self-duality equation only for the redefined field strength H̃3 (3.47) or redefined

potential B̃2 (3.48). In particular cases where the redefinition has an especially transparent

form, it involves b2 arbitrary functions of the PST scalar (of a special spacial coordinate x5

in the case of PS action) which can be associated with the set of parameters of semilocal

symmetry. However, as far as this symmetry is an infinite dimensional global symmetry

rather than a gauge symmetry, the original and redefined potentials, B2 and B̃2, cannot

be considered as equivalent in this case.

Thus the topology makes difference between da-timelike and da-spacelike branches of

the PST system as well as between non-manifestly invariant HT and PS actions. The

timelike branch of the PST system and its gauge fixed version described by HT action,

become preferable as they produce the (anti-)self-duality equation for the original field

strength (field strength of the original potential), which enters the action, also in spacetime

with b2 6= 0 and more generally in spacetime allowing for existence of a nontrivial solution

(ω̌2 6= dχ1 − ivdχ1 ∧ v) of the equation dω̌2 = ω̌
(1)
2 ∧ da.

3.4.3. On spacetime of Euclidean signature M6 = M6+0

In the case of topologically nontrivial spacetime of Euclidean signature, M6 = M6+0, the

main problem is that, to obey ∗2 = 1, the Hodge duality operation is to be imaginary,

(∗H3)
∗ = −∗ (H3)

∗ so that the (anti-)self-dual gauge field should be complex, (H3)
∗ 6= H3.

However, if we allow for complex fields and non-Hermitian actions (this is widely used

e.g. in pure spinor approach to quantum superstring [34, 35]; see also [10]), then the only

requirement for the spacetime M6 = M6+0 to define (a complex) PST action is to allow

for a nowhere vanishing vector fields. Then if such field is unique, the only possibility is to

identify da and dt with it(s dual) and the PST action automatically reduces to HT one.

In M6 = M6+0 of Euclidean signature with several nowhere vanishing vector fields all

the allowed choices of da can be related by a nonsingular PST2 gauge transformations so

that no separations on the branches in (complex) PST action occurs and the (complex)

HT and PS actions are gauge equivalent. In some particular cases, including M6 with

b2(M
6) 6= 0, the additional contributions to the r.h.s. of the first order form of the La-

grangian equation which follows from the PST action do appear; however the PST action

possesses the semi-local symmetry, and this can be treated as gauge symmetry. Hence the

(complex) PST action in such an M6 = M6+0 produces the Lagrangian equations which

are gauge equivalent to the anti-self-duality conditions (2.29) for the original (complex)

gauge field strength which enters the action.

3.5 Summarizing the case of chiral 2-form gauge potential in 6 dimensions

Thus we have shown that the PST action for the 6D 2-form potential can be used to obtain

the self-duality equations also in the topologically nontrivial spacetime.

Interestingly enough, the da-timelike and da-spacelike branches of the PST system

become nonequivalent in the spacetime M1+5 with b2 = dimH
2(M1+5) 6= 0 or, more

generally if M1+5 allows for a nontrivial solution (ω̌2 6= dχ1 ∓ ivdχ1 ∧ v) of the equation
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dω̌2 = ω̌
(1)
2 ∧ da with some closed 1-form da = da(x) (v ∝ da). Also the non-manifestly

invariant HT and PS actions, which can be obtained from these branches of PST system by

gauge fixing of PST2 symmetry, are non-equivalent in such spacetimes. In both cases the

Lagrangian equations are equivalent to the (anti-)self-duality conditions for redefined field

strength and the redefinition can be identified with some semi-local symmetry of the PST

action. However, the da-timelike PST system is preferable as in it the semi-local symmetry

is a gauge symmetry so that the redefined field strength is gauge equivalent to the original

one which enters the action. Thus, in this da-timelike branch of PST system (and in the

HT action) the Lagrangian equations are equivalent to the anti-self-duality equation for

the original field strength entering the PST action.

Similar situation occurs for the chiral 2l-form gauge field in topologically nontrivial

spacetime of D = 4l+2 dimensions and, with a minimal modification, also for any even D.

But before describing this general case, we turn to the simplest D=2 chiral boson system,

in which a semi-local symmetry occurs also in PST action in the topologically trivial D=2

spacetime.

4 Prototype of the topological gauge symmetry in 2D PST action for

chiral bosons

The simplest, but also special case of theories of self-dual and anti-self-dual tensor fields is

the theory of chiral boson in two dimensional spacetime. In a topologically trivial spacetime

one can fix the conformal gauge, where the chiral (anti-chiral) bosons are represented by

functions of only t−x (only t+x).6 In terms of differential forms, one defines the 2d Hodge

star operation by

∗ dφ = ∗(dxm∂mΦ) = dxm
√

|g|ǫmng
nk∂kφ ,

∗ 1 = d2x
√

|g| := 1

2
dxm ∧ dxnǫnm

√

|g|, ∗ ∗ = I , (4.1)

with ǫmn = −ǫnm, ǫ01 = −ǫ01 = 1, and writes the chirality condition

(∂t + ∂x)φ = 0 (4.2)

as 2d anti-self-duality equation,

dφ+ ∗dφ = 0 . (4.3)

The Lagrangian 2-form of 2D PST action can be written as

L2 = iv(dφ+ ∗dφ) dφ ∧ v =
1

2v2
dφ ∧ ∗dφ− 1

2
iv(dφ+ ∗dφ) ∗ iv(dφ+ ∗dφ) . (4.4)

For completeness of this section let us recall that v = dxmvm is defined in (2.12), v2 = ±1,

and iv — by ivdφ = vm∂mφ and by the 2-form counterpart of (2.13). Denoting F = dφ,

we can write the variation of the Lagrangian form (4.4) as

δL2 = δF ∧ v iv(F + ∗F )− δv ∧ v (iv(F + ∗F ))2 +
1

2v2
F ∧ δF (4.5)

6In this section we use the notation xm = (x0, x1) = (t, x), so that f(x) denotes the function of one

rather than of two coordinates.
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and, ignoring the total derivatives, as

δL2 = da ∧ dG0 (δφ− 2δa G0) . (4.6)

Here

G0 =
iv(F + ∗F )√

∂a∂a
=

iv(dφ+ ∗dφ)√
∂a∂a

. (4.7)

From (4.6) one can clearly read the second PST symmetry with δφ = 2δa G0 and arbitrary

function δa(t, x). But, as far as our basic field is now scalar, the straightforward counterpart

of the first PST symmetry (δBp = φp−1∧da, see the first term in (3.23)) is actually absent.

A more careful analysis shows that δφ = f(a(t, x)) gives only a total derivative contri-

bution to (4.6) so that the complete symmetry variation leaving invariant the PST action

for the chiral bosons reads

δφ = 2δa G0 + f(a(t, x)) . (4.8)

On one hand, as the function f(a(t, x)) depends on the 2d spacetime coordinates through

its dependence on the PST scalar only, the second term is the clear counterpart of the

semi-local symmetry of the above section 3.2. On the other hand this symmetry is present

in the action for chiral bosons in a topologically trivial spacetime as well, and, as we

will see below, plays the role of PST1 symmetry. This is why we would like to call it

semi-local PST1 symmetry. Let us study how it works in the derivation of the chirality

(anti-self-duality) equation (4.3) in topologically trivial spacetime M1+1.

Eq. (4.6) makes transparent that the equation of motion which follow from PST action

with (4.4) reads

da ∧ dG0 ≡ d(daG0) = 0 . (4.9)

In the topologically trivial situation (b1 = dimH
1(M1+1) = 0) it is solved by

G0 = f̃(a(t, x)) , (4.10)

where f̃(a(t, x)) is an arbitrary function of the PST scalar a(t, x).

Now we observe that under the semilocal PST1 symmetry (4.8)

δG0 = f ′(a(t, x)) , (4.11)

so that r.h.s. of (4.10) can be removed or generated by the transformation with f ′(a) :=
d
da
f = ∓f̃(a). Then, if the semilocal PST1 symmetry is a gauge symmetry, eq. (4.10) is

gauge equivalent to G0 = 0 which in its turn is tantamount to the chirality equation (4.3),

G0 = 0 ⇔ dφ+ ∗dφ = 0 . (4.12)

As we will see, this is the case for da-timelike branch of the dynamical system described

by the PST action (4.4) (da-timelike PST ) which is gauge equivalent to the not manifestly

Lorentz invariant Floreanini-Jackiw (FJ) action [20],

SFJ = −
∫

dtdx(∂tφ∂xφ+ ∂xφ∂xφ) . (4.13)
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In contrast, for the da-spacelike branch of the 2d PST system (da-spacelike PST ), which

is gauge equivalent to non-manifestly Lorentz invariant ’anti-FJ’ or PS-like action,

SaFJ =

∫

dtdx(∂tφ∂tφ+ ∂tφ∂xφ) , (4.14)

the semi-local PST1 is an infinite dimensional global symmetry.

4.1 Semi-local symmetry as gauge symmetry of FJ and da-timelike PST ac-

tions

Using the PST2 symmetry of the da-timelike PST system to fix the gauge a(t, x) = t,

where the PST action is reduced to the FJ action (4.13), we notice that the 2d counterpart

of the PST1 symmetry, the semi-local PST1 symmetry, is parametrized by a function of

time coordinate x0 = t only,

δφ(t, x) = f(t) . (4.15)

Notice that, if the spacial coordinate takes values in a final interval, x ∈ (xf , xi), (4.15)

is also the symmetry of the action provided the scalar field φ(t, x) obeys the following

boundary conditions

φ(t, xf ) = φ(t, xi) . (4.16)

The fact that (4.15) is a gauge symmetry is intuitively clear. However, it is instructive

to prove this formally.

As it was stressed in recent [30] (see also [31, 32]) the difference between gauge sym-

metry and infinite dimensional global symmetry, the characteristic example of which is

given by the 2d conformal symmetry, is that for the former the Noether charges vanish

identically, while for the latter this is not the case.

Decomposing the parametric function on (4.15) in series, f(t) = f(0) + tf ′(0) + . . .+
tn

n!f
(n)(0) + . . ., and considering ǫ(n) = f (n)(0)

n! as the symmetry parameters, we find the

corresponding Noether currents Jµ(n) = (J0(n), J1(n)),

J0(n) = −tn∂xφ ≡ −∂x(t
nφ) ,

J1(n) = −tn(∂t + 2∂x)φ+ ntn−1φ ≡ ∂t(t
nφ)− 2tn(∂t + ∂x)φ . (4.17)

It is not difficult to see that these currents are conserved on the mass shell, ∂µJ
µ(n) =

∂tJ
0(n) + ∂xJ

1(n) = −2tn∂x(∂t + ∂x)φ, and that the corresponding Noether charges

Q(n) =

∫

dxJ0(n) =

∫

dx∂x(t
nφ) = −tn(φ(t, xf )− φ(t, xi)) = 0 (4.18)

vanish identically with the boundary conditions (4.16).

Hence, the semilocal PST1 symmetry of the FJ action (4.13) is gauge symmetry. The

same conclusion holds for the semi-local PST1 symmetry of the da-timelike branch of the

dynamical system described by the manifestly Lorentz invariant 2d PST action (4.4).
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4.2 Chirality equation as gauge fixed form of the Lagrangian equations of the

FJ action and of the da-timelike branch of the PST action

The Lagrangian equation of motion which follows from the FJ action (4.13), ∂x(∂t+∂x)φ =

0, can be written in the first order form as

(∂t + ∂x)φ = ϕ(t) . (4.19)

However, the action (4.13) and the second order form of the equations are invariant under

the semi-local PST1 symmetry (4.15) which, as we have shown above, is a gauge symmetry.

Choosing f(t) in (4.15) to be a solution of ḟ(t) := ∂tf(t) = ϕ(t) we can gauge away the

r.h.s. of (4.19) and write this equation in a gauge fixed form

(∂t + ∂x)φ = 0 . (4.20)

Hence the FJ action (4.13) can be used to obtain the chirality condition (4.20) as equation

of motion.

This is also the case for the da-timelike branch of the PST system. The Lagrangian

equations (4.9) which follow from the PST action (4.4) are gauge equivalent to the chirality

conditions (4.12), dφ+ ∗dφ = 0, as the semi-local PST1 symmetry is a gauge symmetry in

this branch.

4.3 Issues of anti-FJ action and da-spacelike branch of the 2d PST system

In the case of anti-FJ action (4.14) which can be obtained from da-spacelike branch of

the PST system by gauge fixing of the PST2 symmetry, the semi-local PST1 symmetry

transformation are characterized by a function of spacial variable x,

δφ(t, x) = f(x) . (4.21)

A more careful look shows that this symmetry requires the ’initial’ conditions

φ(ti, x) = φ(tf , x) (4.22)

(in contrast with the boundary conditions (4.16) required for the semi-local symmetry of

the FJ action). The components of Noether currents Jµ(n) = (J0(n), J1(n)) corresponding

to (infinitely many constant parameters of) this symmetry are

J0(n) = 2xn(∂t + ∂x)φ− ∂x(x
nφ) , J1(n) = ∂t(x

nφ) . (4.23)

These currents are conserved on the mass shell and have the Noether charges

Q(n) =

∫

dxJ0(n) = −
∫

dx∂x(x
nφ) = xni φ(t, xi)− xnfφ(t, xf ) 6= 0 . (4.24)

Generically, these do not vanish. Hence we conclude that the semi-local PST1 sym-

metry of the anti-FJ action (4.14) and of the da-spacelike branch of the 2d PST system is

not a gauge symmetry but an infinite dimensional rigid symmetry, similar to the famous

2d conformal symmetry.
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That infinite dimensional rigid symmetry cannot be used to gauge away the r.h.s. of

the first order form of the anti-FJ Lagrangian equation which, thus, contains an arbitrary

function of the spacial coordinate x in r.h.s.,

(∂t + ∂x)φ = ϕ(x) . (4.25)

Of course, this can be written as a chirality equation for the redefined field φ̃ = φ(t, x) −
ϕ(x),

(∂t + ∂x)φ̃ = 0 , φ̃ = φ(t, x)− ϕ(x) . (4.26)

However, this does not help much as far as the redefinition is done with an arbitrary

function and it does not change the conclusion that the general solution of the equations

of motion which follow from the anti-FJ action,

φ(t, x) = h(t− x)− ϕ(x) , (4.27)

contains, besides the arbitrary chiral function h(t−x), also arbitrary function of the spacial

variable ϕ(x).

Thus in the case of 2d chiral bosons, even when 2d spacetime is topologically trivial,

the da-timelike branch of the 2d PST system and a non-manifestly Lorentz invariant FJ

action, which can be obtained from that by gauge fixing, are preferable over the da-spacelike

branch of the 2d PST system and anti-FJ action. Only formers can be used to obtain the

anti-self duality equations, (4.12) and (4.20), the general solution of which are given by

one arbitrary function h(t − x). In contrast, for da-spacelike PST and anti-FJ action the

general solution of the equations of motion, eq. (4.27), contains also an arbitrary function

of the spacial coordinate, ϕ(x), and in this sense is rather similar to the solution of the

equations of motion of ‘usual’, non-chiral massless boson.

4.4 A speculation on alternative canonical formalism in 2d

In search for possibility to rehabilitate the da-spacelike branch of the PST system and the

anti-FJ action one may turn to the idea of [33] to develop the canonical formalism using x

instead of t variable.

Indeed, the pseudo-Noether-charge assiciated to this formalism,

Q̃(n) =

∫

dtJ1(n) =

∫

dt∂t(x
nφ) = xn(φ(tf , x)− φ(ti, x)) = 0 (4.28)

vanishes identically as a result of ‘initial’ conditions (4.22). As it was noticed in [33], differ-

ent choices of the basic variable of the canonical formalism should correspond to restrictions

to different field configurations, for which the different physically relevant integrals con-

verge. In the two-dimensional case spacial and temporal slices are one-dimensional so that

the exchange of the roles of space and time variables, and the convergence conditions for

spacial and temporal integrals, does not look unnatural.

However, after fixing once the basic variable (time) of canonical formalism, one sees

that the dynamical system described by the PST action splits on two branches, da-timelike
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and da-spacelike, and that the semi-local PST symmetry is the gauge symmetry in one,

usually chosen to be the first, while it is the infinite dimensional rigid symmetry in the

other. Then the da-timelike branch, the gauge fixed version of which are given by non-

manifestly Lorentz invariant FJ action, is preferable as it allows to obtain the chiral boson

equation as a gauge fixed version of the Lagrangian equation of motion.

4.5 Chiral bosons on a Riemann surface

On Riemann surface Σg with nonvanishing genus g 6= 0 the first cohomology group H
1(Σg)

is 2g dimensional, b1 = 2g 6= 0, so that there exists a basis {ΩL
1 } of 2g closed but not

exact forms on Σg. If Σg allows for the existence of a nowhere vanishing vector field, the

PST action (4.4) is well defined and produces the Lagrangian equation (4.9).7 On Σg the

general solution of (4.9) reads

daG0 = da f̃(a) + kLΩ
L
1 , dΩL

1 = 0 , ΩL
1 6= dχ(x) , L = 1, . . . , 2g . (4.29)

It includes 2g constants kL.

Contracting this equation with v = da/
√

|∂a∂a|, we find

G0 = f̃(a)± kL ivΩ
L
1 /
√

|∂a∂a| , (4.30)

while contracting the Hodge dual of eq. (4.29) gives the following equation for the coeffi-

cients kL:

kL iv ∗ ΩL
1 = 0 . (4.31)

Similar equations can be derived from non-manifestly diffeomorphism invariant FJ-

type action obtained from the da-timelike branch of PST action by setting da = dt. These

read

G0 := i0(dφ+ ∗dφ) = f̃(t) + kL i0Ω
L
1 , (4.32)

kL i0 ∗ ΩL
1 = 0 ⇔ kL i1Ω

L
1 = 0 . (4.33)

The last equation restricts the set of constants kL to be such that kLΩ
L
1 = dtkLi0Ω

L
1 . Then

the closure of ΩL
1 forms implies d(kLΩ

L
1 ) = dt ∧ d(kLi0Ω

L
1 ) = 0 and hence that kLi0Ω

L
1 is

x-independent, kL i0Ω
L
1 =

˜̃
f(t).8 As a result, eq. (4.32) can be written in the form

G0 := i0(dφ+ ∗dφ) = f̃(t) +
˜̃
f(t) . (4.34)

7It is known that if the Riemann surface is compact, connected and admits a nowhere vanishing holo-

morphic one-form ((1,0)-form), then it is a torus (quotient of C by a lattice) which implies g = 1. An

exhaustive study of the canonical and BRST quantization of the FJ model on the torus and comparison of

the particion function for chiral bosons obtained on this way with the results of holomorphic factorization

approach [36] can be found in recent [37].
8Then the form kLΩ

L
1 = dt

˜̃
f(t) is not exact iff dt is not exact, i.e. iff our time is an angular variable. If

not, then the condition that ΩL
1 forms are not exact would require to set

˜̃
f(t) = 0 and we can proceed as

in the topologically trivial case.
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Then the second term together with the first one can be gauged away using the semilocal

PST1 symmetry (4.15) with f(t) obeying f ′(t) = −f̃(t)− ˜̃
f(t). After this stage we arrive

at the chirality equation (4.3).

In the same manner we can reproduce the chirality equation (4.3) as a gauge fixed

version of the Lagrangian equations of motion which follow from the PST action (4.4)

written on a Riemann surface Σg, but only in its da-timelike branch in which the semi-

local PST1 symmetry in (4.8) is a gauge symmetry (see however the speculations in the

previous subsection).9

5 Twisted anti-self-duality of p-form gauge fields from the PST action

in a D=2p+2 dimensional spacetime of nontrivial topology

The generalization of the analysis of section 3 to chiral bosons in spacetime of an arbitrary

even dimension is quite straightforward. In this section we will present the basic equations

and formulate the conclusions for the Lagrangian description of chiral p-form gauge fields

in topologically nontrivial spacetime of D = 2p+ 2 dimensions.

5.1 Twisted anti-self-duality in D = 2p+ 2

Let us define the measure of D = 2p + 2 dimensional spacetime by dxν1 ∧ . . . ∧ dxνD =

dDxǫν1...νD = −(−)pdDxǫνD...ν1 with ǫ01...(2p+1) = −ǫ01...(2p+1) = 1, and consider the set of

n p-form gauge fields BI
p , I = 1, . . . , n, with the field strength (see also (5.19) below)

HI
p+1 = dBI

p =
1

(p+ 1)!
dxνp+1 ∧ . . . ∧ dxν1HI

ν1...νp+1
(x) , (5.1)

ν = 0, 1, . . . , (2p+ 1) .

If we define the dual of an arbitrary q-form Fq =
1
q!dx

νq ∧ . . . ∧ dxν1Fν1...νq(x) by

∗Fq =
1

(D − q)!
dxνD−q ∧ . . . ∧ dxν1

√

|g|
q!

ǫν1...νD−1µ1...µqF
µ1...µq(x) , (5.2)

then ∗ ∗ HI
p+1 = (−)pHI

p+1 so that for odd p (in particular for p = 1 corresponding to

D = 4) to be consistent one has to consider a twisted (anti-)self-duality condition imposed

on the even number of gauge field strengths (n = 2m for p = 2q + 1), rather than just

(anti-)self-duality condition. The twisted anti-self-duality equation has the form

HI
p+1 = 0 (5.3)

where

HI
p+1 = HI

p+1 +ΩIJ ∗HJ
p+1 . (5.4)

9If Σg has the metric of Euclidean signature, then there is no separation of PST system on two branches,

all the possible values of da are related by nonsingular PST2 symmetry transformations, but the chiral boson

and the PST Lagrangian become complex. See section 3.5.3 for more discussion in the D = 6 model.
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This contains an invertible n× n matrix ΩIJ with the properties

ΩIJ = (−)pΩJI , ΩIKΩKJ = (−)pδIJ , I, J = 1, . . . , n . (5.5)

As a result,

HI
p+1 ≡ ΩIJ ∗ HJ

p+1 (5.6)

and

ΩIJH
I
p+1 ∧HJ

p+1 = 0 (5.7)

hold.

5.2 PST action for chiral bosons in M2p+2

When spacetime MD = M1+(2p+1) is topologically trivial, it is known that the twisted

anti-self duality equation (5.3) can be obtained from the PST action SPST ∝
∫

LPST
D with

LPST
D = −ΩIJ ivHI

p+1 ∧HJ
p+1 ∧ v =

1

p!
dDx

√

|g|vρHI
ρµ1...µp

vλ ∗Hλµ1...µp , (5.8)

v = dxνvν = da/
√

|∂a∂a| , ∂a∂a := gµν∂µa∂νa . (5.9)

Indeed, modulo exact forms, the variation of LPST
D can be written as10

δLPST
D = 2(−)pΩIJd(da ∧ GI

p) ∧
(

δBJ
p − δaGJ

p

)

, (5.10)

where

GI
p :=

ivHI
p+1

√

|∂a∂a|
=

ivH
I
p+1 +ΩIJ iv ∗HJ

p+1
√

|∂a∂a|
. (5.11)

Eq. (5.10) makes manifest the PST gauge symmetries

δBI
p = ϕI

p−1 ∧ da+ δa GI
p (5.12)

with an arbitrary δa(x) and ϕI
µ1...µp−1

(x) = ϕI
[µ1...µp−1]

(x) in ϕI
p−1 = 1

(p−1)!dx
µp−1 ∧

. . . dxµ1ϕI
µ1...µp−1

(x). The presence of the former shows the pure gauge (Stückelberg) na-

ture of the PST scalar, while the arbitrary ϕI
µ1...µp−1

(x) allows to gauge away the general

solution da ∧ Gp = da ∧ dφp−1 of the Lagrangian equations of motion

d(da ∧ GI
p) = 0 , (5.13)

10 In terms of the variation of the field strength

δLPST
D = 2ΩIJda ∧ GI

p ∧
(

δHJ
p+1 −

1

2
GJ
p ∧ d(δa)

)

∓ (−)pΩIJH
I
p+1 ∧ δHJ

p+1 ,

where the sign of the last term is related to ±1 = vµv
µ. The property (5.7) is essential to derive this result.

The other useful identities are ±Fq = ivFq ∧ v+ ∗(iv ∗Fq ∧ v) and iv ∗Fq = −(−)q ∗ (Fq ∧ v), in particular,

iv ∗Hp+1 = (−)p ∗ (Hp+1 ∧ v).
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thus arriving at GI
p = 0 which implies the twisted anti-self-duality equation (5.3)

GI
p = 0 ⇒ HI

p = 0 . (5.14)

Like in D = 6, for our discussion below we need to define da-timelike and da-spacelike

branches, in which the partial derivative of the PST scalar is spacelike and timelike vector

respectively:

da− timelike branch : ∂a∂a := gµν∂µa∂νa > 0 , (5.15)

da− spacelike branch : ∂a∂a := gµν∂µa∂νa < 0 . (5.16)

In the da-timelike branch, the PST scalar a(x) can be equated to the time coordinate

by using the smooth local PST2 transformation, while in the da-spacelike branch this is

impossible but it is possible to equate a(x) with one of the space coordinates, say da(x) =

dx1. Indeed, these two choices, da(x) = dx0 and da(x) = dx1, clearly corresponding

to (5.15) and (5.16), cannot be related by smooth local PST2 transformations (see section

2.2.3 for more details).

5.3 Twisted anti-self-duality from PST action in topologically nontrivial M2p+2

In the topologically nontrivial spacetime M2p+2 = M1+(2p+1) with nonvanishing Bette

numbers bp = dimH
p(M2p+2) 6= 0 and bp+1 = dimH

p+1(M2p+2) 6= 0 there exist bp closed

but not exact p-forms ωΛ
p which provide the basis of Hp(M2p+2),

dωΛ
p = 0 , ωΛ

p 6= dχΛ
p−1 , Λ = 1, . . . , bp , (5.17)

and bp+1 closed but not exact (p+ 1)-forms which provide the basis of Hp+1(M2p+2),

dΩL
p+1 = 0 , ΩL

p+1(x) 6= dχL
p , L = 1, . . . , bp+1 . (5.18)

These latter enter the general solution of the Bianchi identities dHI
p+1 = 0,

HI
p+1 = dBI

p + kILΩ
L
p+1 (5.19)

with constant kIL’s.

The PST action (5.8) makes sense in a topologically nontrivial spacetime allowing for

the existence of a nowhere vanishing vector field; it can be written for the generalized field

strength (5.19). Varying this action within a fixed topological class, δHp+1 = dδBp, one

finds the same equations (5.13) (see section 3 for more discussion). However, an equivalent

first order representation of these equations, which can be obtained as the general solution

of (5.13) with respect to GI
p ∧ da, now contains additional topological contributions.

A straightforward generalization of our approach of section 3 allows to show the fol-

lowing facts.

• The first order form of the PST Lagrangian equations (5.13) can be written in the

form

GI
p ∧ da = −dφI

p−1 ∧ da+ ω̌I
p ∧ da , (5.20)
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where ω̌I
p are nontrivial solutions of

dω̌I
p = ω̌(1)I

p ∧ da , dω̌(1)I
p = ω̌(2)I

p ∧ da , . . . , dω̌(n)I
p = ω̌(n+1)I

p ∧ da , . . .(5.21)

In the configuration with da = dt the above conditions imply that the forms ω̌I
p are

‘spatially closed’ but not ‘spatially exact’, i.e. obey d(−)ω̌I
p = 0 and ω̌I

p 6= d(−)χI
p−1

where d(−) = d~x ~∂ and ~x are coordinate on the slice M2p+1
t of M2p+2.

• In a spacetime with bp 6= 0 a solution of (5.21) is given by ω̌I
p = lIΛ(a(x))ω

Λ
p were ωΛ

p

are bp p-forms forming the basis of Hp(M2p+2), (5.17), and lIΛ are arbitrary functions

of one variables. In the above solution this is taken to be the PST scalar.

• At least for particular cases of M2p+2 the above solution is general (a particular

example is R⊗M2p+1 with da co-tangent to R) so that

GI
p ∧ da = −dφI

p−1 ∧ da+ lIΛ(a(x))ω
Λ
p ∧ da(x) . (5.22)

with arbitrary lIΛ(a(x)). In this case it becomes especially transparent that the value

of bp (rather than of bp+1) is relevant when considering the PST action for Bp in

M2p+2.

• The complete set of symmetries of the PST action is described by (to simplify equa-

tions in this item we omit the superindex I)

δBp = dαp−1 + ϕp−1 ∧ da+ δa Gp + ϕ̌p , dϕ̌p = ϕ̌(1)
p ∧ da , (5.23)

with

dϕ̌p = ϕ̌(1)
p ∧ da , dϕ̌(1)

p = ϕ̌(2)
p ∧ da , . . . , dϕ̌(n)

p = ϕ̌(n+1)
p ∧ da , . . . . (5.24)

At least in the particular cases (see above) this can be written as

δBp = dαp−1 + ϕp−1 ∧ da+ δa Gp + ωΛ
p fΛ(a(x)) (5.25)

with bp arbitrary functions of one variable fΛ(a). These parametrize the semi-local

symmetry. In generic case the parameters of this semi-local symmetry of the PST ac-

tion are hidden inside of p-form ϕ̌p which obey the (infinite chain of) equations (5.24).

• The r.h.s. of the first order form of the Lagrangian PST equations, eqs. (5.20)

or (5.22), can be removed by the standard PST gauge symmetries, described by

the second and the third terms in (5.23) or (5.25), and by the semi-local symmetry.

• Thus if the semi-local symmetry is gauge symmetry, the first order form of the PST

Lagrangian equation, (5.20) or (5.22), is gauge equivalent to GI
p = 0, eq. (5.14), which

in its turn is equivalent to the twisted anti-self-duality equation

HI
p+1 := HI

p+1 +ΩIJ ∗HJ
p+1 = 0 (5.26)

for the (field strengths of the) potentials which enter the action.
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• This is the case for the da-timelike branch of the PST system, and for the HT action

which is obtained from this by fixing the gauge da = dt.

• For the other, da–spacelike branch of the PST system, and for the PS action which is

obtained from this by fixing the gauge (say) da = dx5, the best what one can obtain

is the twisted anti-self-duality equation H̃I
p+1 := H̃I

p+1+ΩIJ ∗H̃I
p+1 = 0 for redefined

field strength, H̃I
p+1 = HI

p+1 − lIΛ(a(x))ω
Λ
p ∧ da in the particular cases (see (5.22))

and H̃I
p+1 = HI

p+1− ω̌I
p ∧da in generic spacetime (see (5.21) and (5.20)). As far as da

can be considered as exact form, this can be interpreted as field strength of redefined

p-form potential, B̃I
p = BI

p − f̃ I
Λ(a(x))ω

Λ
p in the particular cases and B̃I

p = BI
p − β̌p

with β̌p = ω̌p ∧ da in general. Although this redefinition is given by the semi-local

symmetry transformation, this is not a gauge symmetry of the da–spacelike branch

of the PST system, nor of the PS action, so that its parameters should be considered

as additional degrees of freedom of the dynamical system.

To resume, the PST formalism is consistent and can be used to obtain the (twisted

anti-)self-duality equations for p-form gauge potentials also in spacetime M2p+2 of non-

trivial topology (admitting a nowhere vanishing vector field). To be more precise, in

the spacetime with bp 6= 0 and, more generally, in M2p+2 admitting a nontrivial p-forms

obeying (5.21) this conclusion holds for the da-timelike branch of the dynamical system

described by the PST action, as well as for the non-manifestly invariant HT action which

can be obtained from that by gauge fixing.

6 Conclusions

In this paper we have shown that the Pasti-Sorokin-Tonin (PST) approach [2, 3] is consis-

tent and produces the (twisted anti-)self-duality equation as a gauge fixed version of the

equations of motion also in spacetime of nontrivial topology.

We have began by the basic example of chiral 2-form gauge field in D=6 spacetime

M6, which has been elaborated in detail in sections 2 and 3. This allowed to shorten the

presentation of the generic case of chiral p-form gauge fields BI
p in D=2p+2 dimensional

spacetimeM2p+2 = M1+(2p+1) of nontrivial topology in section 5. The intermediate section

4 is devoted to the special case of D = 2 chiral bosons.

The PST action contains an auxiliary scalar field a(x) which is pure gauge ( Stückelberg

field) with respect to a specific gauge symmetry (PST2 gauge symmetry). However, as far

as 1√
|∂a(x)∂a(x)|

enters the action and the Lagrangian equations, not all the configurations

of a(x) are allowed. We stress that this topological restriction implies the existence of two

branches of the dynamical system described by the PST action (PST system): da-timelike

branch in which the PST scalar can be gauged to coincide with time coordinate, or better

to say da = dt, and da-spacelike branch in which the gauge da = dx1 is accessible.

In the gauge da = dt the (da-timelike branch of the) PST action reduces to the

(non-manifestly Lorentz invariant) Henneaux-Teitelboim (HT) action [6, 32]. In D=2 such

an action was discussed in [20] by Floreanini and Jackiw so that we call this FJ action.

In the gauge da = dx1 the (da-spacelike branch of the) PST action reduces to another
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non-manifestly Lorentz invariant functional which in D=6 was considered by Perry and

Schwarz [7]; we call this PS action while for its D=2 counterpart we also use the name

anti-FJ action.

The PST action can be written in any curved spacetime M2p+2 = M1+(2p+1) provided

it allows for the existence of a nowhere vanishing vector field. However, in some case the

topology intervenes the process of derivation of (twisted anti)-self duality equations from

the Lagrangian equations of the PST action. Namely, this happens if M2p+2 = M1+(2p+1)

allows for the existence of nontrivial p-forms ω̌p which obey dω̌p = ω̌
(1)
p ∧da(x), where da(x)

is an arbitrary nowhere vanishing closed 1-form (which could be exact and identified with

the derivative of the PST scalar field) and ω̌
(1)
p is implicitly defined by the same equation.

If M2p+2 allows for the existence of bp linearly independent closed but not exact p-forms

ωΛ
p (Λ = 1, . . . , bp) at least a particular class of such ω̌p is provided by

bp
∑

Λ=1

fΛ(a(x))ω
Λ
p ,

where fΛ(a) are arbitrary functions of one variable.

In this case the first order form of the PST Lagrangian equation acquires an additional

contribution to its r.h.s. and, on the first glance, are not gauge equivalent to the (twisted

anti–)self duality equation. However, a more careful study shows that in such spacetimes

the PST action also possesses an additional semi-local symmetry and that the additional

terms in the r.h.s. of the first order form of the Lagrangian PST equations can be removed

or generated by the transformations of this semi-local symmetry. Furthermore, we have

shown that for the da-timelike branch of the PST system this semi-local symmetry is a

gauge symmetry and, hence the additional terms in right hand side can be gauged away

reducing the Lagrangian equations to the (twisted-anti-)self duality equations.

In the other da-spacelike branch of the PST system the semi-local symmetry is an in-

finite dimensional rigid symmetry, similar to the conformal symmetry in 2d, which cannot

be used to remove degrees of freedom. As a result, although the Lagrangian PST equa-

tions in this branch can be written as (twisted-anti-)self duality equations for a redefined

potential, and the redefinition can be identified with semi-local symmetry transformations,

the parameters of these should be considered as parameters of the general solution of the

equations of motion and thus as additional degrees of freedom making the content of the

model different from just chiral boson(s).

As we have commented in the main text, it is tempting, following [33], to speculate

on a hypothetical possibility to improve the situation with da-spacelike branch of the PST

system by developing an alternative canonical formalism which uses one of the spacial

coordinate instead of time. However, if one would like to deal with two branches of the

PST system simultaneously, one should use the same formalism for both, so that our

problem remains for one of two branches. This provided us with an additional reason

to keep in this paper a more conservative point of view and to stay within the standard

canonical formalism.

Thus, curiously enough, the topology makes difference between da-timelike and da-

spacelike branches of the PST system making the first preferable as its equations of motion

are gauge equivalent to the (twisted-anti-)self duality equations and, hence, the field content

in this branch is given by one (or several) chiral boson(s).
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An important problem is to understand the implications of our results for quantum

theory of D-dimensional chiral bosons.

Another interesting issue is the influence of the spacetime topology on the generalized

PST approach of [8, 9] with several PST scalars: ar = (a1, . . . , aq) with q > 1 (q = 3

in [8, 9]). Instead of 1√
|∂a(x)∂a(x)|

the generalized PST action and equations of motion would

include the inverse Y −1
rs of the matrix Y rs = gµν(x)∂µa(x)

r∂νa
s(x). Hence the requirement

for spacetime manifold to have a nowhere vanishing vector field will be replaced in this case

by the requirement of a nowhere singular q×q matrix Y rs = gµν(x)∂µa(x)
r∂νa(x), detY

rs 6=
0, or, equivalently, of the nowhere singular rank q projector Pµ

ν = ∂µa(x)
rY −1

rs ∂νas(x).

(This can be formulated as requirement of the existence of nowhere singular q-plane field).

We hope to address this problem in near future.
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A On first order form of the Lagrangian equations of the PST system in

flat spacetime

Here we present some details on the derivation of the first order form (2.23) of the La-

grangian equations (2.21) which follow from the PST action (2.11) in topologically trivial

6D spacetime.

At first glance, it seems that one can solve (2.21) by a more general expression

G2 ∧ da = φ2 ∧ da , dφ2 = φ
(1)
2 ∧ da , (A.1)

where dφ
(1)
2 = φ

(2)
2 ∧ da etc. However, we will see that in the case of topologically trivial

spacetime this does not go beyond the solution (2.23).

For simplicity, let us discuss the case da = dt, when the PST action reduces to the

HT action. Let us define the splitting φ2 = φ
(−)
2 + i0φ2 ∧ dt, d = d(−) + dt∂t etc.. Then

eq. (A.1) can be written in the form

G2 ∧ dt = φ
(−)
2 ∧ dt , (A.2)

where dφ
(−)
2 = φ

(1)(−)
2 ∧ dt. This last equation can be equivalently written as d(−)φ

(−)
2 = 0.

As far as we are in topologically trivial spacetime, its spacial part is also topologically

trivial so that d(−)φ
(−)
2 = 0 is solved by φ

(−)
2 = d(−)φ

(−)
1 . This can be equivalently written

as φ
(−)
2 = dφ1 − (∂tφ

(−)
1 − d(−)i0φ1) ∧ dt. Clearly, only the first term contributes to the

r.h.s. of (A.2) which, hence, can be equivalently written in the form of eq. (2.23),

G2 ∧ dt = dφ1 ∧ dt = −d(φ1 ∧ dt) . (A.3)
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B Noether currents and Noether charges in a 6d theory of 2-form gauge

potential

The variation of the 6d action
∫

L6 for the 2-form potential B2 can be written as

∫

M6 δL6 =
∫

M6

(

δL6
δB2

∧ δB2 +
δL6
δH3

∧ dδB2

)

=
∫

M6 E4 ∧ δB2 +
∫

M6 d
(

δL6
δH3

∧ δB2

)

,

(B.1)

where

E4 =
δL6

δB2
− d

δL6

δH3
(B.2)

is the l.h.s. of the Lagrangian equations of motion. A transformations of the 2-form poten-

tial

δϕB2 = R2Aϕ
A (B.3)

with constant parameters ϕA and field dependent 2-forms R2A = R2A(B2) is a symmetry

if δϕL6 = ϕAdK5A. As, on the other hand, eq. (B.1) implies δϕL6 = E4 ∧ R2Aϕ
A +

d
(

δL6
δH3

∧R2A

)

, we see that the 5-form

∗J1A =
δL6

δH3
∧R2A −K5A (B.4)

is closed on the mass shell,

d ∗ J1A = 0 when E4 = 0 . (B.5)

The Noether current Jµ
A can be defined by

∗J1A =:
1

5!
dxµ5 ∧ . . . ∧ dxµ1ǫµ1...µ5µJ

µ
A (B.6)

and eq. (B.4) is equivalent to its conservation,

∂µJ
µ
A = 0 when E4 = 0 . (B.7)

For a gauge symmetry the 5-form ((D − 1)-form) dual to the Noether current is not

only closed, but exact on the mass shell so that the corresponding Noether charge vanishes

identically.

As an example let us consider the standard 2-form gauge symmetry δB2 = dα1 of the

action with Lagrangian form dependent on B2 through H3 = dB2 only. In this case the

equations of motion read d
(

δL6
δH3

)

= 0. Rewriting the gauge transformations in the form of

δB2 = dxµ ∧ dxν
∞
∑

n=0

1
n!x

ρn . . . xρ1∂ρ1 . . . ∂ρ1∂[ναµ] and identifying the constant parameters

as {ϕA} = { 1
n!∂ρ1 . . . ∂ρ1∂[ναµ]}, we find the 5-forms dual to Noether currents

∗Jν1ν2 ρ1...ρn
1 =

δL6

δH3
∧ (dxν1 ∧ dxν2 xρ1 . . . xρn)��......�

�

. (B.8)
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The graphical subscript ��......�
�

in this expression indicates that one should take only one

irreducible part of the tensorial 2-form in the brackets, that corresponding to the Young

diagram represented by the subscript.11 This extraction of one irreducible part allows to

conclude that (dxν1 ∧ dxν2 xρ1 . . . xρn)��......�
�

=∝ d
(

dx[ν1xν2] xρ1 . . . xρn
)

��......�
�

and, thus,

that, on the mass shell, the 5-form dual to Noether current is exact

∗Jν1ν2 ρ1...ρn
1 =∝ d

(

δL6

δH3
∧
(

dx[ν1xν2] xρ1 . . . xρn
)

��......�
�

)

. (B.9)

This is tantamount to saying that the Noether current is given by the divergence of an

antisymmetric tensor, Jµ ν1ν2 ρ1...ρn = ∂µ′(. . .)µ
′µ ν1ν2 ρ1...ρn

1 , so that the Noether charge

vanishes, Qµ ν1ν2 ρ1...ρn =
∫

d5xJ0 ν1ν2 ρ1...ρn =
∫

d5x∂i(. . .)
i0 ν1ν2 ρ1...ρn
1 = 0 (we do not

consider here the possible boundary contributions).

As a second example, we can consider the PST1 gauge symmetry, or better its coun-

terpart for the Henneaux-Teitelboim action δB2 = φ1∧dt = −dt∧dxiφi(t, ~x), for which the

constant parameters are − 1
n!∂µ1 . . . ∂µnφi(0,~0) and the formal expression for the 5-forms

dual to the Noether currents read

∗J i µ1...µn

1 =
δL6

δH3
∧ dt ∧ dxi xµ1 . . . xµn . (B.10)

However, for the Henneaux-Teitelboim action which have the above described symmetry,
δL6
δH3

= G2 ∧ dt so that the Noether current vanishes identically, ∗J i µ1...µn

1 ≡ 0.

The same conclusion follows for the δB2 = φ1 ∧ dx5 of the Perry-Schwarz action,

confirming that this is also a gauge symmetry characterized by vanishing Noether current.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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