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1 Introduction

One can view the Wilsonian approach to quantum field theory (QFT) as an ordered slicing

in the space of fields. Though it is the full path integral which ultimately determines the

values of physical observables, we are free to foliate this space into co-dimension one slices,
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which we incrementally integrate out to produce a renormalization group (RG) flow. For

a given foliation, we can, for instance, associate a particular length scale l with each of the

field theory modes (M), and integrate over modes that are assigned lengths l < δ to define

a reduced field space and an effective action Sδ:

ZQFT =

∫

DMl≤δDMl>δe
−S0[M<,M>] ≡

∫

DMl>δe
−Sδ [M>] . (1.1)

Formally, the bare action S0 is defined with a regulator ǫ. There are countless ways to

foliate field space, and to assign each mode a length (or energy) scale. Different foliations

define different RG flows. A sharp cutoff in Euclidean particle momenta (k2E < Λ2) is

a common renormalization scheme. However, one can in principle construct any other

arbitrarily intricate slicing.1

An intriguing new renormalization scheme arose in the context of AdS/CFT: holo-

graphic Wilsonian renormalization (HWR), defined for gauge theories having asymptoti-

cally AdS (aAdS) classical gravity duals. The new scheme was inspired by the identification

of the radial position in the bulk with energy scale in the gauge theory, z ∼ 1/Λ. Evolution

along the bulk radial direction thus provides a geometrical picture for Wilsonian RG flow

in the field theory. Initially [1–3], the holographic RG approach related the RG equations

to Hamilton-Jacobi equations in the bulk, with the radial direction playing the role of time.

This treatment was not Wilsonian in nature, as the flow depended on information at the

IR (such as bulk regularity). More recently, [4, 5] formulated a truly Wilsonian holographic

renormalization, with a partition of bulk modes according to their radial position. (See

also the earlier attempt of [6] and a recent extension of these ideas in [7].)

In the HWR formalism of [4, 5], the separation of the path integral (1.1) into modes

M> and M< is identified with a separation of the bulk path integral into integrations of

bulk fields (Φ) above and below a radial value,

Zbulk =

∫

DΦz≤lDΦz>le
−S0[Φ<,Φ>] ≡

∫

DΦz>le
−Sl[Φ>] . (1.2)

S0 includes the original bulk action (regularized at z = ǫ), and possibly also an action at

the UV boundary. Sl is the total effective action. It includes the original bulk action on

the remaining slice z > l, and an induced boundary action on the new cutoff surface at

z = l. The new UV boundary action is related to the induced Wilsonian effective action

at scale δ ∼ l.2

Despite its intuitive appeal, the HWR formalism’s most crucial ingredient remains ob-

scure: what is the precise renormalization scheme in QFT that corresponds to the radial

cutoff in the bulk?3 This question is related to a detailed understanding of the holographic

duality: the precise mapping of local bulk excitations to boundary modes and the “emer-

gence” of the radial direction. We do not address these fundamental questions here. Instead

we solve a simpler problem that we hope may eventually shed new light on the subject.

1We might require a ‘good’ slicing to lead to a local effective action along the flow.
2The precise relation between the scales is ambiguous and depends on the slicing definition.
3See [8–13] for related works.
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In this work we explain how to compute low-energy effective actions (LEEAs) for

strongly-coupled confining gauge theories with gravity duals. The framework we propose is

driven by the HWR formalism, which for this particular task can be made completely well-

defined:4 by fully integrating over the radial direction in AdS, we eliminate the question

of renormalization scheme. Our HWR-like procedure thus yields a scheme-independent,

on-shell effective action, which is computed in a more direct and efficient way as compared

to previous techniques.

We consider the large N limit of confining gauge theories in d-dimensional flat space,

which have a classical gravity dual in an asymptotically AdSd+1 space (aAdSd+1). For

the sake of simplicity we use a “hard-wall” model, in which confinement is induced by

sharply cutting off the bulk geometry at a finite radial value, z < L [14, 15]. We also

assume the gauge theory to be IR free but non-trivial, so there is some interesting weakly-

coupled description of the physics at the IR. When the (d + 1)-dimensional bulk theory

terminates on a non-degenerate d-dimensional surface at z = L, we can perform the whole

path integration along the z-direction in the spirit of HWR (from UV to IR), and reach an

effective action in d dimensions. According to the HWR prescription it is natural to identify

the resulting action as the LEEA for the lightest mode. While the effective action at finite

cutoff is scheme-dependent (and, as mentioned above, we know nothing about the scheme

in the HWR formalism), we might expect the LEEA obtained from integrating over the

whole geometry to be somewhat universal. To be more precise, the complete integration

of bulk geometry should exclude a mode that is localized on the IR boundary. This mode

is not integrated out, and the effective action we compute depicts its dynamics. Indeed,

as we explain, the choice of IR mode is to some extent arbitrary, as it affects only off-shell

data. The on-shell action, or the S-matrix, is invariant under general field redefinitions,

and as such will be insensitive to the precise choice of the mode that is left unintegrated,

as long as it has ‘anything to do’ with the true light degree of freedom we are after, in a

way that we will make more precise below.

While some of the perspective and formalism we present here is novel, as is the method-

ology, many of the ideas we describe have been floating around in the literature for some

time. For example, in the context of holographic hydrodynamics, [16] presented closely-

related work (see also the review of [17]), giving an effective description for the long wave-

length behavior of holographic fluids. Other holographic models have been used to derive

effective actions in a variety of contexts, such as [18–21], which study the low-energy dy-

namics of the Goldstone boson of broken conformal invariance (the dilaton). [22] describes

a holographic framework for spontaneous SUSY breaking, deriving the 4d effective action

for Goldstinos by integrating out bulk fields. In a more phenomenological context, a very

closely related work is that of [23] (see also the earlier papers of [24, 25]), defining a similar

effective action, though the procedure and perspective are quite different from ours. Other

related phenomenological works with a holographic bent include [26] and subsequent works.

Finally, we will illustrate the details of our methodology on a well-known AdS/QCD ex-

4Up to reparametrization of the massless fields in the effective action. This is not, however, a physical

ambiguity, and disappears in on-shell quantities. We discuss this in more detail below.
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ample, the Hirn-Sanz model [27], in which results similar to ours have been derived using

other techniques. The pion effective action at four-derivative order was computed already

in the original papers [14, 15]; the six-derivative result was recently presented in [28]. Using

our techniques, however, we will extend these results to infinite orders in derivatives for

the cases of four and six external pions (the former to be written in a closed form).

The paper is organized as follows. In section 2 we discuss low-energy effective actions

(LEEAs) of confining gauge theories with a classical gravity dual. We first review the “tra-

ditional” Kaluza-Klein method of computing the LEEA holographically, then describe in

greater detail our prescription for the holographic Wilsonian LEEA. We give arguments for

the robustness of the procedure, and make contact with the HWR formalism. In section 3

we work out an example that illustrates the simplicity of our prescription: computing the

on-shell LEEA for the pions of a simple AdS/QCD model. We compare to known results in

the leading orders of the momentum expansion, and extend them further, in some cases to

all orders. In section 4 we reformulate the procedure in terms of Feynman diagrams in the

bulk that are sourced by our pion field, defined on the IR boundary. This provides some

additional intuition for the HWR process and simplifies the computations significantly. We

conclude in section 5 with a brief summary and some interesting open questions. Technical

details are deferred to the appendices.

2 Low-energy effective actions from holography

Let us first review the standard method for deriving LEEAs from holography via KK

reduction. Throughout this paper we refer to a general d-dimensional, strongly-coupled

confining gauge theory at large N , that admits a (d + 1)-dimensional gravity dual. We

consider an aAdS bulk geometry with radial coordinate z and a general warp factor,

ds2 = w2(z)
(

ηµνdx
µdxν − dz2

)

, (2.1)

that obtains a conformal boundary, w(z) ∼ 1/z, at small z.5 We consider confinement

induced by sharply cutting off space at finite radial coordinate z < L, leaving the general-

ization to smooth confining geometries for future work.

2.1 Holographic low-energy effective action via Kaluza-Klein

Gauge-invariant excitations, such as mesons and glueballs, are encoded holographically as

normalizable modes of bulk fields. Each bulk field, upon KK reducing along the radial

direction, gives rise to an infinite tower of such excitations, all having the same quantum

numbers in the d-dimensional theory. For example, a single vector gauge field in five

dimensions produces a tower of vector mesons in four dimensions. Let’s consider, for

5We make the simplifying assumption that the extra compact manifold is in a direct product with the

AdS part, in which case it plays no special role in what follows and we can simply ignore it. We use capital

Latin letters M = (µ, z) to denote 5d coordinates, and Greek indices to denote flat space directions. We

use the mainly minus convention, and 5d (4d) indices are lowered with gMN (ηµν).
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concreteness, a bulk scalar field with action

S =

∫

dd+1x
√
G

[

1

2
∂MΦ∂MΦ− 1

2
M2Φ2 − 1

4!
λΦ4

]

, (2.2)

and equations of motion
(

∂2 − w−d+1∂zw
d−1∂z +M2w2

)

Φ = − 1

3!
λw2Φ3 . (2.3)

We can use the standard expansion,

Φ(x, z) =
∞
∑

n=1

φn(x)ψn(z) , (2.4)

with the eigenfunctions of the radial quadratic operator (and appropriate boundary condi-

tions inherited from those of Φ),
(

w−d+1∂zw
d−1∂z −M2w2

)

ψn = m2
nψn . (2.5)

Plugging the expansion back into the action and explicitly performing the z-integration,

one finds an infinite tower of interacting d-dimensional fields with masses mn,

SKK =

∫

ddx





∑

n

1

2
∂µφn∂

µφn−
1

2
m2

nφ
2
n−λ

∑

n1≤n2≤n3≤n4

vn1,n2,n3,n4

∫

ddxφn1φn2φn3φn4



 .

(2.6)

Momenta in the radial direction translate to d-dimensional masses, and the spectrum is

discrete due to the effectively-finite size of the radial direction. Relative couplings between

d-dimensional resonances are given by overlap integrals of the corresponding z-momentum

wave functions,

vn1,n2,n3,n4 =

∫ L

0
dzwd+1ψn1ψn2ψn3ψn4 . (2.7)

We now have a d-dimensional theory of an infinite tower of resonances; this is the dual

resonance model. If we are primarily interested in low-energy physics, say, in terms of the

lightest field φ1, we may proceed with the standard (d-dimensional) procedure: integrating

out all heavy resonances with masses greater than m1,

Z =

∫

DΦ eiS
(d+1)[Φ] =

(

∏

n

∫

Dφn
)

eiS
(d)[{φn}] ≡

∫

Dφ1eiS
(d)
eff [φ1] . (2.8)

Note that in the above we have completely integrated out all massive fields, and none of

the modes of the lightest one φ1, for which we obtain the exact effective action. At large

N the bulk is at tree level, so the resulting action is also a 1PI effective action. While this

is not the same as the (deep-IR) Wilsonian effective action, the two should agree when

evaluated on-shell. The effective action is expected to be local only below m2, where a

‘good’ derivative expansion applies, with higher-derivatives terms scaled with powers of

p/m2. Thus, it is mostly useful when m2 is sufficiently gapped from m1. However, when it

is possible to compute a process to all orders in derivatives and sum it up, the result will

be valid at all energies. That is indeed what we will encounter below, for the four-pion

scattering amplitude.
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2.2 A holographic wilsonian approach to IR effective actions

In the KK procedure we split up the bulk fields into modes according to their radial

momenta, integrating out all but the lightest mode to get the LEEA. In some sense, this

procedure does not take full advantage of the holographic description: the information is

translated to a d-dimensional language “too early.” In the HWR formalism one partitions

the field into modes according to their radial position. We propose that one can retrieve

the same physical information at the IR by integrating out the whole bulk geometry apart

from some modes on the IR boundary. Keeping manifest the holographic radial dimension

both simplifies the computation and adds some geometrical intuition. Concretely, one can

take the “IR limit” of the formulation in (1.2), by sliding the cutting surface at z = l all

the way down to where the bulk terminates, l → L:

Zbulk =

∫

Dϕ
∫

Φ(L)=ϕ
DΦz<Le

−S0[Φ] ≡
∫

Dϕe−SL[ϕ] . (2.9)

In this limit we are left with an effective action SL[ϕ] for the unintegrated d-dimensional

boundary field,

ϕ(x) ≡ Φ(x, L) . (2.10)

In the spirit of HWR it is natural to identify ϕ with a low-energy mode, and SL[ϕ] with

its LEEA. We now examine this idea more closely.

Which effective action? Since ϕ is not being integrated over in (2.9), one might

naively guess that SL[ϕ] is an off-shell effective action. This is not the case, however.

Even before imposing (2.10), the path integral in (2.9) already contains the original (two)

boundary conditions, and together with the additional assignment of (2.10) it is classically

over-constrained.6 It is consistent only if the assignment of ϕ sits on the classical saddle

point of the path-integral with the original boundary conditions, which then translates to

ϕ being a solution to its own equation of motion. Therefore, we identify SL[ϕ] with the

on-shell effective action of ϕ.

In Lorentzian signature, one also needs to impose initial conditions when solving the

bulk equations of motion. In the effective theory, these amount to specifying the heavy

on-shell resonances excited above the vacuum, which correspond to normalizable modes in

the bulk. Because we are interested in the ϕ effective action in the vacuum, we require that

the solutions for all fields — expressed exclusively in terms of ϕ — vanish when ϕ→ 0.

Finally, we should ask: to what extent is SL a low-energy action? It is the effective

action that has already accounted for all fluctuations of all fields apart from the ϕ mode.

It is then a low-energy action to the extent that ϕ is a low-energy mode.

Effective action of what? Although we have identified the on-shell effective action

of an IR boundary mode ϕ, eventually we are interested in the on-shell LEEA of the

lightest mode in the gauge theory, φ1, which is the only propagating mode at energies just

above m1. The two modes, ϕ and φ1, are not identical, nor are their off-shell effective

6However, we assume the assignment of (2.10) to be algebraically consistent with the IR boundary

condition, otherwise we simply change our IR-mode identification. See below for further details.
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actions. Their on-shell effective actions, however, might be the same. This is due to the

“universality of the S-matrix”, a theorem stating that the S-matrix of arbitrary scalars is

invariant under field redefinitions of the form

φ′ = c1φ+ c2φ
2 + . . . (2.11)

This holds even if φ, φ′ denote multiple fields (and the ci matrices), or if the ci’s depend

on momentum.7 A similar statement holds for the on-shell effective actions of φ and φ′, in
which the overall normalization c1 needs to be accounted for separately. For our purposes,

we simply conclude that as long as we choose the IR mode ϕ so that it overlaps with the

lightest mode φ1 in the way defined by (2.11), the off-shell effective actions of the two

modes may differ, but their on-shell actions will agree. We can then identify

e−S(on−shell)
IREA [φ1] =

∫

Φ(L)=φ1

DΦz<Le
−S0[Φ] . (2.12)

More generally, in addition to its overlap with φ1, ϕ can also mix with heavier fields. We can

still study φ1’s scattering amplitudes using those of ϕ in such cases; if we put all incoming

ϕ states on the mass-shell of φ1, we isolate the leading singularity that corresponds to the

φ1’s S-matrix. There will often be some freedom in our choice of which IR mode to leave

unintegrated. Some options may simplify computations considerably, but roughly speaking

any choice of bulk mode that has some coupling with the lightest mode of the gauge theory

will work.

In a general holographic setup, the IR mode ϕ will mix with the whole tower of KK

excitations φn, but there exists a simpler case where it can be set to mix only with the

lightest one. This happens when the lightest mode is a massless Nambu-Goldstone boson

(NGB), which arises from a spontaneously broken symmetry in the gauge theory. We will

explore this example in section 3. Equation (2.12) is our main conceptual output, and

we now explain how to use it in broad strokes. When we work out a specific example in

section 3, we will explain the technical details of the procedure.

The prescription in practice: To compute the effective action in (2.12) we need

to: (a) solve the equations of motion of Φ in terms of ϕ (with the assignment (2.10) in

addition to the original two boundary conditions), then (b) plug the solution back into

the original action and integrate over the radial coordinate. As explained earlier, requiring

the existence of a solution for Φ (in terms of ϕ), demands that ϕ satisfy a constraining

equation, which then corresponds to its equation of motion in the effective theory. Note

that this off-shell information is complementary to the obtained on-shell effective action.

From now on we concentrate on the LEEAs of massless particles, φ0, which we can

probe at arbitrarily low energies. The effective action then has a useful derivative expan-

sion, as derivatives scale with the low-energy momentum transfer p/m1, where m1 is the

lowest mass that was integrated out. We also assume the massless field itself to scale with

p/m1, so that we can also expand order by order in the IR mode itself. This generally

7The exact statement is that the scattering amplitudes of φ′ particles with Lagrangian Lφ′ equal the

corresponding scattering amplitudes of φ particles with Lagrangian Lφ′(φ). It stems directly from a simple

pole analysis (see for example [29, 30]).
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holds true, on dimensional grounds, if the theory has a single dimensionful scale and no

dimensionless parameters, as for example in the case of QCD. The prescription is simple:

• First, expand the equations of motion of the various fields order by order in ϕ. Note

that Φ(x, z), the bulk field of which ϕ is an IR value, receives a non-zero contribution

at leading order in ϕ. Other fields, denote them Ψ(x, z), are sourced by ϕ through

the equations of motion, and have their first non-zero coefficient at O(ϕ2) if their

mixed two-point function with Φ vanishes, 〈ΨΦ〉 = 0. Note that we compute ϕ’s

LEEA in the vacuum, i.e. we excite no heavy on-shell particles, and thus the solution

is required to vanish when taking ϕ → 0. (This condition is crucial to singling out

a unique solution to the equations of motion.) In particular, no field in our solution

would have a term at O(ϕ0).

• Solve the equations order by order in ϕ. At each order we will encounter free equations

of motion, with a source term obtained from lower-order solutions.

• Finally, plug the solution into the action and integrate over z to obtain the on-shell

effective action for ϕ.

Note that in (2.9) we have kept the UV and IR boundary conditions on bulk fields im-

plicit. One might also be concerned that ϕ(x) ≡ Φ(x, L) explicitly conflicts with the IR

boundary condition, e.g. if it is Dirichlet, Φ(x, L) = 0. Thanks to the universality of the

S-matrix described above, we have the freedom in such a case to make another choice for

our boundary field, e.g. ϕ(x) ≡ ∂zΦ|z=L. Whatever the IR boundary conditions, we simply

choose ϕ in a way that does not conflict with the boundary conditions on bulk fields.

In section 4 we describe an equivalent procedure in terms of bulk Feynman diagrams

which allows one to compute Son−shell[ϕ] more directly. First, however, we demonstrate a

pedestrian version of the procedure on a concrete example.

3 An example: AdS/QCD

In order to illustrate our prescription, we now work out the IR effective action for the

massless modes of a well-studied example: hard wall AdS/QCD. We emphasize that our

goal here is not to discuss the efficacy of this specific model as a dual for QCD (and thus we

exclude any motivations for it), but rather to demonstrate the details of our prescription

on a concrete example. Towards the end of the section we will reproduce known results for

this model, and then extend them to higher — in some cases, infinite — derivative order.

3.1 The model of Hirn and Sanz

We briefly review the AdS/QCD model of Hirn and Sanz [27]. The bulk geometry is simply

a slice of AdS5, in Poincaré coordinates, with an IR boundary at z = L and the usual UV

– 8 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
1

conformal boundary at z = 0.8 The metric is

ds2 =

(

R

z

)2
(

ηµνdx
µdxν − dz2

)

, (3.1)

where R is the AdS radius. We ignore metric fluctuations. The global flavor symmetry

currents of (massless) QCD are dual to bulk gauge fields of SU(Nf )L × SU(Nf )R, labeled

LM (x, z), RM (x, z), with field strengths

LMN = ∂MLN − ∂NLM − i
[

LM , LN

]

RMN = ∂MRN − ∂NRM − i
[

RM , RN

]

, (3.2)

and Yang-Mills action,9

S5d = − 1

4g25

∫

d5x
√
g Tr

{

LMNL
MN +RMNR

MN
}

. (3.3)

Under 5d gauge transformations, with gauge group elements L(x, z) and R(x, z), the gauge

fields transform as usual, LM ≡ La
M

Ta√
2
→ LLML

† + iL∂ML
†, with the generators of

SU(Nf ) normalized by Tr(T aT b) = 2δab. It is natural to work with the vector and axial

gauge fields

VM =
1

2

(

LM +RM

)

, AM =
1

2

(

LM −RM

)

, (3.4)

and with the corresponding field strengths

VMN = ∂[MVN ] − i
[

VM , VN
]

− i
[

AM , AN

]

,

AMN = ∂[MAN ] − i
[

VM , AN

]

− i
[

AM , VN
]

, (3.5)

with which the bulk action reads

S5d = − 1

2g25

∫

d5x
√
g Tr

{

VMNV
MN +AMNA

MN
}

. (3.6)

We will consider only normalizable modes (i.e. no background sources in the gauge theory),

and impose vanishing UV boundary conditions (BCs),10

V a
µ (x, 0) = Aa

µ(x, 0) = 0 . (3.7)

At the IR, (non-)gauge-invariant BCs are imposed on the (axial-)vector gauge field

V a
µz(x, L) = Aa

µ(x, L) = 0 , (3.8)

8UV divergences conventionally require one to impose a holographic UV regulator, putting the boundary

at z = ǫ, eventually taking the conformal limit at the end of the computation, ǫ → 0. Our analysis is

insensitive to those divergences and we can take the UV boundary to z = 0 immediately.
9We ignore the Chern-Simons term which would be irrelevant at our working order.

10The generalization to include external sources is straightforward.
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in order to realize chiral symmetry breaking. This is the entire field content of the model,

minimally capturing the global symmetries of (massless) QCD and their breaking pattern.

We will work in the gauge

Vz = 0 , (3.9)

which is compatible with the boundary conditions. We cannot fix a similar gauge for

the axial gauge field, due to the non-trivial gauge holonomy along the radial direction

(see (G.6)), induced by the symmetry-breaking BCs. The closest we can achieve might be

taking

Az = zf(x) , (3.10)

for some arbitrary function f(x). For the time being we will keep Az general, and later on

we will see how this gauge can be consistently fixed on-shell (i.e. under the equations of

motion).

From (3.6), the equations of motion for the gauge fields are

1√
g
∂M

√
gVMN = i

[

VM , V
MN
]

+ i
[

AM , A
MN
]

,

1√
g
∂M

√
gAMN = i

[

VM , A
MN
]

+ i
[

AM , V
MN
]

. (3.11)

In appendix B we provide them in components. Ultimately we will be interested in the

on-shell action, so it is useful to already plug (3.11) into (3.6) and get an on-shell bulk

action

S(on−shell)
5d =

−i
2g25

∫

d5x
√
gTr

{

(

[

VM , VN
]

+
[

AM , AN

]

)

VMN + 2
[

VM , AN

]

AMN

}

,

(3.12)

where the boundary terms vanish with our BCs (3.7)(3.8).

Finally, note that from here on we set L = 1 and restore it at the end of each com-

putation by dimensional analysis. Since the coupling g25 has dimensions of length, it is

convenient to define g25 ≡ Rg24. The dimensionless coupling g24 is the effective coupling in

the four-dimensional theory, which at the IR eventually relates to the pion decay constant

g24 ∼ 1/fπ, as we will see below.

3.2 Applying the prescription

Chiral symmetry is spontaneously broken in the gauge theory, and accordingly we expect

to find a weakly interacting theory of massless pions. Using the prescription outlined

above, we can compute the low-energy effective action of the pions, the (on-shell) chiral

Lagrangian. First, we need to identify a mode that has an overlap with the pion. As the

chiral symmetry breaking is embedded in the bulk axial gauge field, it is natural to identify
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the pion with the IR boundary value of the axial mode,11

π(x) ≡ Az(x, 1) . (3.13)

We dub this the holographic pion. It overlaps with the “Nambu-Goldstone pion” (NG

pion), defined via its transformation under the broken flavor symmetry as in (3.37). Our

identification of the pion is certainly not unique.12 We will see below that there is some

gauge freedom left (after the symmetry-breaking BCs and gauge fixing of Vz) that allows

us to “reshuffle” the pion between the boundary values of Az and Aµ. Thus we can prevent

the pion from overlapping with Aµ(x, 1) at leading order (so that Aµ = O(π3)), which will

prove quite useful. We will also see that the same gauge freedom can be used order by

order in π(x) to set a complete gauge fixing — on-shell, under the equations of motion —

of the form (3.10). To all orders we thus have

Az(x, z) = zπ(x) . (3.14)

In this simple model the NG pion itself is easily identified: it is the gauge holonomy

π ∼
∫ 1
0 dzAz, which agrees with our choice up to a normalization factor. We return to this

later, but for the purpose of demonstrating our formalism we feign ignorance of this point,

and go on working with π(x) as defined in (3.13). With this definition the pion serves as

an IR source for bulk fields. We now solve for these fields in terms of π(x).

Leading order solution: By parity, we see that Vµ can only contain even powers of

π, while Az, Aµ contain only odd powers. At leading order O(π), we have the free equations

of motion,

∂µ
(

∂µA
(1)
z − ∂zA

(1)
µ

)

= 0 , (3.15a)

z∂z
1

z

(

∂µA
(1)
z − ∂zA

(1)
µ

)

− ∂ν
(

∂µA
(1)
ν − ∂νA

(1)
µ

)

= 0 , (3.15b)

where the superscript denotes the order in π. At this point we need to choose the physical

state we want to perturb around. As explained in section 2, computing the pion effective

action in the vacuum means demanding that the solution vanish when taking π → 0; this

implies that all fields must be order O(π) or higher. The general solution to (3.15) is, for

generic π(x),

A(1)
z (x, z) = a′(z)π(x) ,

A(1)
µ (x, z) = a(z)∂µπ(x) . (3.16)

At this order (3.16) is pure gauge, and it can be shown that for an unconstrained π(x) the

solution remains pure gauge also at higher orders, and so is trivial. Thus, for a non-trivial

solution we are forced to consider functions π(x) that obey some constraining equation.

Allowing for

∂2π(x) = O(π3) , (3.17)

11This assignment is not gauge-invariant, even when restricting to gauge transformation that respect the

BCs (3.7)(3.8) and gauge fixing (3.9). Gauge freedom that modifies the boundary value of Az can either

be fixed, or will remain as a gauge redundancy in the effective theory of π(x).
12For example, we could have also defined π = ∂zAz|z=L, or even impose a non-linear relation.

– 11 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
1

the general solution is now of the form

A(1)
z (x, z) =

(

a′(z) + cz
)

π(x) ,

A(1)
µ (x, z) = a(z)∂µπ(x) . (3.18)

Exhausting our gauge freedom and applying the BCs, we find

A(1)
z (x, z) = zπ(x) , A(1)

µ = 0 . (3.19)

As explained earlier, (3.17) is to be identified with the pion’s leading-order equation of

motion in the effective theory. Note that (3.19) is always a solution to the Aµ equation of

motion (3.15b) at this order, and that it becomes also a solution to the Az equation (3.15a)

with the pion’s equation (3.17). This rule recurs at higher orders.

Second order solution: Now consider the equations of motion (B.1) to second order

in π(x),

∂z

(

∂ · V (2)
)

= 0 ,

z∂z
1

z
∂zV

(2)
µ − ∂ν

(

∂νV
(2)
µ − ∂µV

(2)
ν

)

= −i
[

A(1)
z , ∂µA

(1)
z

]

. (3.20)

Considering only normalizable modes and plugging in the first order solution (3.19), these

become

∂ · V (2) = 0 , (3.21a)

z∂z
1

z
∂zV

(2)
µ − ∂2V (2)

µ = −iz2
[

π, ∂µπ
]

. (3.21b)

In appendix C we solve (3.21) with separation of variables and find

V (2)
µ (x, z) =

iz2

∂2

(

1− 2

z∂

J1(z∂)

J0(∂)

)

[

π(x), ∂µπ(x)
]

= −iz2
(

1

8

(

z2 − 2
)

+
1

192

(

z2 − 3
)2
∂2 +O(∂4)

)

[

π, ∂µπ
]

, (3.22)

where the J ’s are Bessel functions and ∂ ≡
√
∂2. Note again that (3.22) is the unique

solution to (3.21b) (with BCs (3.7)–(3.8)), and it immediately becomes also a solution

of (3.21a), up to higher orders in π(x), given the pion’s equation of motion (3.17).

We can also expand the equations of motion (3.21) in flat-space derivatives:

∂ · V (2,1) = 0 , (3.23a)

z∂z
1

z
∂zV

(2,1)
µ = −iz2

[

π, ∂µπ
]

, (3.23b)

where now the superscript (m,n) identifies a term with m pions and n (flat-space) deriva-

tives. With BCs (3.7)–(3.8), (3.23b) yields

V (2,1)
µ = iv2,1

[

π, ∂µπ
]

, v2,1 = −1

8
z2(z2 − 2) , (3.24)
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which is also a solution to (3.23a) under (3.17). Iterating the procedure we can ex-

pand (3.21) to next-to-leading order in derivatives

∂ · V (2,3) = 0 , (3.25a)

z∂z
1

z

(

∂zV
(2,3)
µ

)

= ∂ν
(

∂νV
(2,1)
µ − ∂µV

(2,1)
µ

)

, (3.25b)

where again the r.h.s. is written in terms of the previous solution (3.24). From (3.25) we

instantly get

V (2,3)
µ = iv2,3

[

∂νπ, ∂ν∂µπ
]

, v2,3 = − 1

96
z2(z2 − 3)2 , (3.26)

which, together with (3.24), agrees with (3.22).

Third order solution: Expanding (B.1) naively to O(π3) we find

∂µ
(

∂µA
(3)
z − ∂zA

(3)
µ

)

= −2i∂µ
[

A(1)
z , V (2)

µ

]

, (3.27a)

z∂z
1

z

(

∂µA
(3)
z − ∂zA

(3)
µ

)

+ ∂ν
(

∂νA
(3)
µ − ∂µA

(3)
ν

)

= −2iz∂z
1

z

[

A(1)
z , V (2)

µ

]

. (3.27b)

Note that Az and Aµ only enter the l.h.s. through the combination ∂µAz − ∂zAµ. For

n ≥ 1, we can use the remaining gauge freedom to set A
(2n+1)
z = 0 at each order, and shift

the entire contribution to A
(2n+1)
µ . This amounts, as stated earlier, to setting (3.14) as an

exact gauge fixing. Expanding (3.27) in derivatives and solving the Aµ equation first, we

find at leading order

A(3,1)
µ = a3,1(z)

[

π,
[

π, ∂µπ
]

]

, a3,1(z) =
1

24
z2(z2 − 1)(z2 − 2) , (3.28)

and at next-to-leading order

A(3,3)
µ = a

(1)
3,3(z)

[

∂νπ,
[

∂νπ, ∂µπ
]

]

+ a
(2)
3,3(z)

[

π,
[

∂νπ, ∂ν∂µπ
]

]

,

a
(1)
3,3 =

1

384
z2(z2 − 1)(z4 − 5z2 + 7) , a

(2)
3,3 =

1

192
z2(z2 − 1)(z2 − 3)2 . (3.29)

Plugging the solution into the Az equation seems to lead to a contradiction! This is

because we have forgotten a term in (3.27). Indeed, when expanded to first order in π(x),

we used (3.17) to neglect the term ∂2Az = z∂2π = O(π3); at this order in pions, the O(π3)

piece becomes relevant. The expansion in the presence of π’s equation of motion should be

treated with care, since the equation itself (3.17) shuffles the various orders. Adding the

forgotten term
(

∂2A
(1)
z

)(3)
into the l.h.s. of (3.27a) we find that (3.28) and (3.29) are also

solutions of (3.27a), provided a unique correction to π’s equation of motion at O(π3),

∂2π =
1

6

[

∂µπ,
[

π, ∂µπ
]

]

+
11

192

[

∂νπ,
[

∂µπ, ∂ν∂µπ
]

]

+O(π5, ∂6π3) . (3.30)

It is straightforward to iterate this procedure and obtain the solution up to any finite

order in derivatives and in pions. At any even order in π there is a unique solution to Vµ’s

equations of motion (and BCs), which is then automatically a solution to Vz’s equation of

motion, when using π’s equation of motion at lower orders. At each odd order in π there is
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a unique solution to the Aµ equation of motion. That solution also solves the Az equation

of motion, provided a unique correction to the equation of motion of π. The role of the

Az and Vz equations of motion is thus only to enforce the pion’s equation of motion in

the effective theory. The solution can also be obtained systematically to any finite order

in π, and to all orders in derivatives at once, using Green’s functions for the operators on

the l.h.s. of the equations of motion. However, this method is slightly more technical and

we skip it here. Later on we reformulate everything in terms of Feynman diagrams, which

essentially does the same thing but in a simpler fashion.

On-shell effective action: We now plug the solutions obtained above back into

the bulk action, and explicitly perform the integration in z. This leave us with a four-

dimensional action for π(x). As explained before, this is identified with the low-energy on-

shell effective action for the pions. There is no quadratic term in the expansion of (3.12),

as expected for an on-shell action. The term giving an O(π4) contribution is

S(5d,o.s.)
π4 =

i

g24

∫ 1

0

dz

z

∫

d4xTr
{

[

V (2)
µ , A(1)

z

]

∂µA(1)
z

}

. (3.31)

Plugging in (3.19), (3.24), (3.26) and integrating over z we find

S∂2π4 = − L2

24g24

∫

d4xTr
{

[

π, ∂µπ
][

π, ∂µπ
]

}

, (3.32a)

S∂4π4 = − 11L4

768g24

∫

d4xTr
{

[

∂µπ, ∂νπ
][

∂µπ, ∂νπ
]

}

, (3.32b)

where we have reinstated the IR cutoff scale L.13 We can also insert the all-order-in-

derivatives result for Vµ (3.22) into (3.31) to find

Sπ4 = − 1

g24

∫

d4xTr

{

[

π, ∂µπ
] 1

4∂2

(

1− 8

(L∂)2
J2(L∂)

J0(L∂)

)

[

π, ∂µπ
]

}

, (3.33)

which agrees with (3.32). This is the exact on-shell effective action which controls the

dynamics of four external pions through all energies (at infinite N)! Similarly, we derive

the six-pion, two-derivative term,

S∂2π6 = − L4

360g24

∫

d4xTr

{

[

π,
[

π, ∂µπ
]

][

π,
[

π, ∂µπ
]

]

}

. (3.34)

3.3 Comparing with Hirn and Sanz

We have derived above the on-shell effective action for the pions in the Hirn-Sanz model [27].

Our results superficially differ from those of Hirn and Sanz [27] in three ways. Our effective

action is written in terms of our holographic pion, π, whereas the authors of [27] use the

NG pion, Π, defined in (3.36). That means the two effective actions should only agree

on-shell. Moreover, [27] explicitly express their result not directly in terms of Π, but rather

in terms of U = eiΠ/fπ . Finally, we have an on-shell effective action, instead of the off-shell

action of [27]. In appendix G we also compare our results at the off-shell level, from which

13Notice that this scale controls the derivative expansion.
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we derive the precise relation between the two pions. We find a very simple relation, which

could have been anticipated as explained below.

As in (2.11), our pion mode π(x), for which we compute the effective action, is related

to the NG pion Π(x) via

π = cΠ+O(Π3) , (3.35)

with some yet unknown c. The pion of Hirn and Sanz [27] is defined through its exponential,

U ≡ exp
[

iΠ/fπ
]

(3.36)

(fπ is the pion decay constant), which transforms covariantly under the spontaneously

broken flavor symmetry,

U → LUR† . (3.37)

To make the comparison, we first convert the chiral Lagrangian from the U language to the

π language, and then evaluate it on-shell by deriving its equations of motion and plugging

them back into the action.

The chiral effective Lagrangian is written at lower orders in terms of derivatives of

U .14 The unique two-derivative term is

L2 =
f2π
4
∂µU

†∂µU , (3.38)

by which the pion Π obtains a canonical kinetic term (given the trace conventions in

appendix A and the definition of (3.36)). Expanding this term up to six-pion order and

putting it on shell we find

L(o.s.)
2,4 + L(o.s.)

2,6 = Tr

{

− 1

48f2π

[

Π, ∂µΠ
][

Π, ∂µΠ
]

− 1

720f4π

[

Π,
[

Π, ∂µΠ
]

][

Π,
[

Π, ∂µΠ
]

]

}

.

(3.39)

Matching to our result at the two-derivative order (3.32), and remembering the overall

normalization between the two modes, we find

L2
1c

4

24g24
=

1

48f2π
,

L4c6

360g24
=

1

720f4π
. (3.40)

From this we find fπ and c,

fπ =

√
2

g4L
, c =

g4√
2
=

1

fπL
, (3.41)

in a perfect agreement with the pion decay constant of Hirn and Sanz. At the four-derivative

order, the chiral Lagrangian for Nf = 3 (a condition specifically used in [27]) and with no

background fields turned on consists of three independent terms [31, 32],

L4 = L1

〈

∂µU
†∂µU

〉2
+ L2

〈

∂µU
†∂νU

〉〈

∂µU †∂νU
〉

+ L3

〈

∂µU
†∂µU∂νU

†∂νU
〉

, (3.42)

14Both ∂ and π scale with E/fπ for a process at energy scale E. This is the small parameter in the

expansion.

– 15 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
1

where 〈. . .〉 stands for the flavor trace. Expanding in Π’s and evaluating on shell, at four-

pion order we find

L(o.s.)
4,4 = −L1

f4π

〈

∂µΠ∂
µΠ
〉2 − L2

f4π

〈

∂µΠ∂νΠ
〉〈

∂µΠ∂νΠ
〉

− L3

f4π

〈

∂µΠ∂
µΠ∂νΠ∂

νΠ
〉

. (3.43)

We can now rewrite our result (3.32b) in the form of (3.43). For flavor group SU(3) we

have the following identity (for example, see [29]),

〈

[

∂µπ, ∂νπ
][

∂µπ, ∂νπ
]

〉

= 2
〈

∂µπ∂νπ∂
µπ∂νπ

〉

− 2
〈

∂µπ∂
µπ∂νπ∂

νπ
〉

=
〈

∂µπ∂
µπ
〉2

+ 2
〈

∂µπ∂νπ
〉〈

∂µπ∂νπ
〉

− 6
〈

∂µπ∂
µπ∂νπ∂

νπ
〉

. (3.44)

Using (3.44) and (3.41) in (3.32b) our on-shell action reads

S(∂4π4)
4d =

11

768g24f
4
π

∫

d4xTr
{

6
〈

∂µπ∂
µπ∂νπ∂

νπ
〉

−
〈

∂µπ∂
µπ
〉2 − 2

〈

∂µπ∂νπ
〉〈

∂µπ∂νπ
〉

}

.

(3.45)

Matched with (3.43), we get

L2 = 2L1 , L3 = −6L1 , L1 =
11

768g24
, (3.46)

again in a perfect agreement with Hirn and Sanz.

We should point out one implicit (and unimportant) difference compared to the Hirn

and Sanz result. While we have defined g24 ≡ g25/R, they make a slightly different definition

g24 ≡ g25/l0, where l0 is the regularization parameter cutting off z near the UV of the bulk

geometry, with l0 eventually sent to zero. This is only a redefinition of the arbitrary scale

fπ. In other words, we could have absorbed the difference in our g4 into c, to match the

Hirn-Sanz result exactly.

In sum, we used our prescription to straightforwardly compute the chiral Lagrangian

coefficients at order ∂4 in the Hirn-Sanz AdS/QCD model, and found perfect agreement

with previous results. It is now a simple matter to extend our results to higher orders

and compare with those in the chiral Lagrangian expansion, in order to compute higher

order coefficients. (In fact, (3.33) already contains an infinite number of independent

chiral Lagrangian coefficients, equivalent to the exact four-pion scattering amplitude for

this model, which we obtain explicitly below.)

4 Diagrammatics

The procedure described above provides a straightforward method for deriving the pion

effective action: we define the pion to be the IR-boundary value of the radial component of

the axial bulk gauge field; we solve the classical equations of motion for all bulk fields order

by order in the pion’s magnitude; finally, we plug these solutions back into the action and

integrate over the radial direction. We can also derive the same on-shell effective action

(or the S-matrix) directly using tree-level Feynman diagrams with pions on the external
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legs. Since the pions are explicitly defined as the boundary values of Az, pictorially we will

have “inverted Witten diagrams”, i.e. bulk Feynman diagrams that start and end on the

IR boundary.15 This method proves more economical than the pedestrian approach of the

previous section, as it obviates the need to solve for Aµ, Vµ, and instead directly obtains

S
(on−shell)
eff .

Consider again the bulk partition function,

Zbulk =

∫

Dπ

∫

Az(x,L)=π(x)
DAzDAµDVµe

iS[Az ,Vµ,Aµ] . (4.1)

Our prescription identifies the pion effective action as

eiS
(on−shell)
eff [π] =

∫

Az(x,L)=π(x)
DAzDAµDVµe

iS[Az ,Vµ,Aµ] . (4.2)

This is the analog of (2.12) for the AdS/QCD example of section 3. The bulk fields are

also subject to the boundary conditions (3.7), (3.8). We have already imposed the gauge

condition Vz = 0 in writing (4.1). The exclusive identification of Az’s boundary value

with the pion mode is also not gauge-invariant, and we consider the particular splitting

we use to be part of the gauge choice. (Note also that because we work strictly at tree

level, we can safely neglect ghosts.) Nevertheless, some gauge freedom remains to be fixed.

Given the gauge-symmetry-breaking boundary condition for Aµ (3.8) and the boundary-

value assignment for Az (2.10), a rigorous gauge fixing procedure is somewhat tricky.

However, under the classical equations of motion we have shown that Az = zπ constitutes

a legal gauge choice. Since we eventually compute on-shell observables (such as scattering

amplitudes) at tree level, we can try using this gauge fixing inside the path integral, and

hope it gives the correct result. For now, we take this as our ansatz. We will see later that

this works modulo a subtlety which arises at O(π6); we return to this point in more detail

below. A simplified form of the partition function is then

eiS
(off−shell)
eff [π] =

∫

DAµDVµe
iS[Az=zπ(x),Vµ,Aµ] . (4.3)

Since we apply the gauge fixing Az = zπ and ignore the path integration over Az, we

are now computing an off-shell effective action for π. We can obtain the on-shell action

either by deriving the resulting EOM and plugging them back in, as shown in the previous

section, or by also including tree-level diagrams with propagating pions, governed by the

off-shell effective action we obtain (which includes a kinetic term). Alternatively, by taking

the pions to be in asymptotic states, we can directly compute their S-matrix.

First, we find the kinetic term in the off-shell effective action by evaluating Az’s kinetic

term subject to the gauge fixing,

S
(off−shell)
π2 [π] =

1

2g24

∫

d4x∂µπ
a∂µπa . (4.4)

15Note that our gauge fixing Az(x, z) → zπ(x) will qualitatively change this picture. After fixing this

gauge, the pion will have non-zero wavefunction along the whole radial direction.
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π

π

π

π

Vµ

Figure 1. The only 5d diagram contributing to the effective four-pion vertex. Modulo the men-

tioned gauge-fixing subtlety, the above process depicts external pions that live on the IR boundary,

which interact with a gauge field that lives in the bulk.

We can obtain the n-pion interaction term, meanwhile, by summing all connected tree-level

diagrams with Vµ’s and Aµ’s propagating on internal legs, and with n external π legs (see

for instance figure 1). The 5d Feynman rules and Green’s functions are straightforward

to compute, and are summarized in appendix E. Below, we show explicitly how to obtain

the four-pion and six-pion effective vertices. We compare the four-pion term to our results

from the previous section, and derive the six-pion term in the effective action to all orders

in derivatives, a novel result.

4.1 Four-pion effective action

There is only one diagram that contributes to the four-pion term, shown in figure 1. Using

the Feynman rules described in appendix E we find16

S
(off−shell)
π4 = − 1

24g24L
4

∫

d4k1d
4k2d

4k3d
4k4

(2π)16
δ(4)(k1 + k2 + k3 + k4)

4
∏

i=1

πai(ki)

[

fa1a2efa3a4eI4(k12)(k1 − k2) · (k3 − k4)

+ fa1a3efa2a4eI4(k13)(k1 − k3) · (k2 − k4)

+ fa1a4efa2a3eI4(k14)(k1 − k4) · (k2 − k3)
]

(4.5)

= − 1

g24L
2

∫

d4xTr
[

π, ∂µπ
]

I4(i∂)
[

π, ∂µπ
]

, (4.6)

where ∂ ≡
√
∂2 and we define

kij ≡
√

(ki + kj)2 . (4.7)

The vector Green’s function is defined in equation (E.4), and the integral I4 is

I4(k) ≡
∫ 1

0
dz

∫ 1

0
dz′zz′GV (k, z, z

′) =
1

4k2

[

1− 8J2(k)

k2J0(k)

]

(4.8)

= − 1

24
− 11

1536
k2 − 19

15360
k4 +O(k6) . (4.9)

16Since we work at most to sixth order in pions, we are allowed to put the external pions on-shell at

leading order in π. In other words, we can set k2
1 = k2

2 = 0, which in turn implies that the longitudinal

piece of the vector propagator does not contribute at this order. Such terms may contribute at order π8

and higher, and should be taken into account in those cases.
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The function I4 has poles at the zeroes of J0, coinciding (as they should) with the masses

of vector meson states in the Hirn-Sanz model. We thus have the off-shell action up to

fourth order in pions and to all orders in derivatives,

S(off−shell)
π4 =

1

2g24

∫

d4x
{

Tr∂µπ∂
µπ − 2Tr

[

π, ∂µπ
]

I4(i∂)
[

π, ∂µπ
]

}

(4.10)

It is straightforward to verify that this action produces the same on-shell action derived in

equation (3.33), by writing the pion’s equation of motion

∂2π = −4
[

∂µπ, I4(i∂)
[

π, ∂µπ
]

]

, (4.11)

and plugging it back into the action. By using the Feynman rules derived from (4.10) we

also find the four-pion scattering amplitude to all orders in derivatives:

Mππ→ππ =
g24
L4

[

fa1a2cfa3a4cI4(
√
s)(u− t) + fa1a3cfa2a4cI4(

√
t)(s− u)

+ fa1a4cfa2a3cI4(
√
u)(t− s)

]

, (4.12)

in terms of the standard Mandelstam variables: s = k212 , t = k213 , u = k214 .

4.2 Six-pion effective action

The power of this method becomes evident when computing higher order terms. Here we

outline the computation of the six-pion term, which we can easily compute to arbitrary

order in derivatives, though we are unable to write it in a closed analytic form. The six-pion

term in the effective action is obtained from tree-level diagrams with six external pions.

There are only three such diagrams (up to relabeling of external pion legs). These diagrams

are shown in figure 2.

Each diagram is characterized by some 4d Lorentz structure and some z-integrals. The

integrals corresponding to the diagrams in figure 2 are given by

I6,1(ka, kb, kc) =

∫

dzd
zd
dzazadzbzbdzczcGV (ka, za, zd)GV (kb, zb, zd)GV (kc, zc, zd) , (4.13)

I6,2(ka, kb, q) =

∫

dzazadzbzbdzcdzd∂zcGV (ka, za, zc)∂zdGV (kb, zb, zd)GA(q, zc, zd) ,

(4.14)

I6,3(ka, kb) =

∫

dzazadzbzbdzczcGV (ka, za, zc)GV (kb, zb, zc) . (4.15)

(The details are relegated to appendix F.) Summing the contributions from all three
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(1)

Vµ

Vµ Vµ

π

π π

π

ππ

(2)

Aµ

Vµ Vµ

π

π

π

π

π π

(3)

Vµ Vµ

ππ

π

π

π

π

Figure 2. The only three diagrams from the 5d action that contribute to the six-pion interaction

term (up to exchanges of external pion legs). Diagrams (2) and (3) contribute at O(∂2) in the

derivative expansion, while Diagram (1) only begins to contribute at O(∂4).

diagrams, we find,

S
(off−shell)
π6 =− R

g25

∫ 6
∏

i=1

dki Tr

{

[

π(k5),
[

π(k1), π(k2)
]

][

π(k6),
[

π(k3), π(k4)
]

]

}

×
{

(k1 − k2) · (k3 − k4)

[

1

4
I6,3(k12, k34) + I6,2(k12, k34, |k1 + k2 + k5|)

]

−
(

k5 · (k1−k2)
)(

k6 · (k3−k4)
)I6,2(k12, k34, |k1+k2+k5|)−I6,2(k12, k34, 0)

(k1 + k2 + k5)2

+
1

6
I6,1(k12, k34, k56)

[

(k1 + k2) · (k5 − k6)(k1 − k2) · (k3 − k4)

+ (k3 + k4) · (k1 − k2)(k3 − k4) · (k5 − k6)

+ (k5 + k6) · (k3 − k4)(k5 − k6) · (k1 − k2)
]

}

(4.16)

This result is exact to all orders in derivatives. To compare with our findings from section 3,

we can expand order by order in derivatives, and rewrite the interaction term in position

space. The leading term is

S
(off−shell)
∂2π6 =

L4

720g24

∫

d4xTr

{

[

π,
[

π, ∂µπ
]

][

π,
[

π, ∂µπ
]

]

}

, (4.17)

– 20 –



J
H
E
P
0
8
(
2
0
1
4
)
0
4
1

in full agreement with (3.34), on shell.

We should now discuss the subtlety mentioned earlier. Diagram (2) in figure 2 involves

a vertex coupling of the form
∫

d4xdz/z AzAµ∂zV
µ which turns into

∫

d4xdz πAµ∂zV
µ

after our gauge fixing. Naively, one could integrate the vertex by parts to arrive at

−
∫

d4xdz π∂zAµV
µ, which should then give the same final result. (Remember that π(x)

is strictly four-dimensional.) This does not turn out to be the case, however. The correct

result is only obtained with the first form of the vertex above. The subtlety is due to

the fact that Az = zπ is not actually a valid gauge-fixing inside the path integral. If we

first integrate by parts in the action, and then use the same (strictly illegal) gauge-fixing

procedure, we get different (and wrong) results.17 In other words, the gauge-fixing ansatz

we have considered is not fully consistent, and in particular does not commute with in-

tegration by parts. The exact form of the action needs to be unambiguously ‘chosen’ to

obtain the correct results. We leave the execution of an honest gauge fixing and the full

exploration of this subtlety to future work.

5 Summary and outlook

We have described a holographic method for deriving on-shell effective actions for large N

confining gauge theories. The effective action we compute is the one obtained by integrating

out all massive degrees of freedom in the theory, leaving only the massless modes (including

those with high energy). We identify the IR value of the appropriate bulk field with

the massless mode of the gauge theory. Then, in the spirit of holographic Wilsonian

renormalization, we integrate out all fields except for the fixed IR mode. Though the IR

mode whose effective action we compute may not be exactly the same as the massless

mode of the gauge theory, the universality of the S-matrix guarantees that their on-shell

actions are the same. The on-shell effective action does not depend on the precise mixing

between the bulk IR mode and the massless resonance, and is thus independent of the IR

mode choice. Although inspired by it, our results stand independently of the holographic

Wilsonian RG formalism.

We demonstrated the mechanics of the procedure using the well-studied case of the

Hirn-Sanz AdS/QCD model, where we can in principle generate S-matrix elements for

arbitrary numbers of pions and arbitrary orders in the momentum expansion. Concretely,

we derived exact results for the four- and six-pion scattering amplitudes in this model, to

all orders in momentum.

We have developed the technique for a very simple case: truncated AdS, with easily-

identified Nambu-Goldstone modes. Though we have focused on massless states, the for-

malism can be used to compute effective actions for massive modes as well. It would be

interesting to examine such situations, in which the bulk IR mode mixes with an infinite

tower of resonances. The success of the method should also not depend on the truncation

of spacetime, though the extension to confining geometries of infinite extent may require

some modification of the prescription. We hope to expand our techniques to spacetimes

17Equivalently, in (4.14) one cannot integrate by parts with respect to zc, zd (as can be easily verified),

since GA is not a smooth function.
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with smooth gravitational potentials, such as the soft wall model of AdS/QCD [33], or

other confining geometries, like the warped deformed conifold of [34].

Our methods would find fruitful application in a variety of areas, from more compli-

cated versions of holographic QCD or holographic technicolor, to duals of condensed matter

systems. For example, this framework renders the study of additional (e.g. (Fµν)
n) inter-

action terms quite simple, allowing one to concretely estimate the error introduced by ne-

glecting such terms in AdS/QCD frameworks. One might also use such techniques to derive

the low-energy effective action of fluctuations around holographic realizations of spatially

inhomogeneous vacua (or “striped phases”) identified in AdS/QCD and AdS/CMT [35, 36],

especially in the confining phase [37]. Another interesting application would be to follow

our procedure in a black-brane geometry, in order to learn about the effective field theory

of hydrodynamics [38] holographically [39]. One can also use the same formalism to com-

pute the effective action of other massless modes, for instance the effective action for the

Goldstino in a holographic SUSY breaking scenario.

Even more interestingly, it might be possible to use this method to engineer a holo-

graphic version of Seiberg duality. Several years ago [40] suggested relating the hidden

local (flavor) symmetry (HLS) in SQCD with its “emergent” Seiberg-dual gauge group. In

particular, the vector rho meson is thus identified with the magnetic gauge boson.18 In a

generic, non-SUSY scenario — e.g. QCD — this gauge boson is Higgsed (together with all

other vector mesons) and becomes the ordinary, massive rho meson. In the holographic

context, vector mesons are realized as KK modes of the bulk gauge field dual to the flavor

current. Indeed, the bulk gauge group, KK decomposed, can be associated with an infinite

tower of hidden local symmetries [44]. Thus, finding a background in which the lowest KK

mode of a bulk gauge field is actually massless would constitute a holographic realization

of Seiberg duality. The magnetic theory would simply be the IR limit of the bulk theory,

which is exactly dual to the electric theory. For related ideas see [43, 45]. In such a case,

we could use our methods to easily compute the effective action of the magnetic gauge

boson, the Seiberg-dual action.

Finally, it would be very interesting to use similar methods to learn more about holo-

graphic Wilsonian renormalization in general, and in particular about the precise field

theory renormalization scheme that corresponds to a radial cutoff in the bulk. For ex-

ample, starting with our procedure, one could “un-integrate” a thin bulk slice at the IR,

trying to identify the gauge theory modes (in terms of mesons) which play a role in the

HWRG action but vanish from the fully integrated result.
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A Conventions

In order to facilitate comparison to [27] we adopt their conventions,

LM = La
M

T a

√
2

and Tr(T aT b) = 2δab . (A.1)

The action

S5d = − 1

4g25

∫

d5x
√
g Tr

(

LMNL
MN +RMNR

MN
)

(A.2)

thus gives canonically normalized fields in 5d. We work with the vector and axial-vector

combinations,

VM =
1

2
(LM +RM ) and AM =

1

2
(LM −RM ) , (A.3)

and maintain the same normalization convention AM = 1√
2
Aa

MT
a , and similarly for the

pion, π = 1√
2
πaT a.

B Equations of motion

The equations of motion in component form in the model of Hirn and Sanz, under the

gauge condition Vz = 0, are:

Az : ∂µ
(

∂µAz − ∂zAµ

)

= i∂µ
[

Vµ, Az

]

+ i
[

V µ, Aµz

]

+ i
[

Aµ, Vµz

]

, (B.1a)

Aµ : z∂z
1

z

(

∂µAz − ∂zAµ

)

+ ∂ν
(

∂νAµ − ∂µAν

)

= iz∂z
1

z

[

Vµ, Az

]

+ i
[

Az, Vµz

]

+ i∂ν
(

[Aν , Vµ] + [Vν , Aµ]
)

+ i
[

Aν , Vνµ

]

+ i
[

V ν , Aνµ

]

, (B.1b)

Vz : ∂µ
(

∂zVµ

)

= i∂µ
[

Az, Aµ

]

+ i
[

Aµ, Azµ

]

+ i
[

V µ, Vzµ

]

, (B.1c)

Vµ : z∂z
1

z
∂zVµ − ∂ν

(

∂νVµ − ∂µVν

)

= iz∂z
1

z

[

Az, Aµ

]

+ i
[

Az, Azµ

]

− i∂ν
(

[Aν , Aµ] + [Vν , Vµ]
)

− i
[

Aν , Aνµ

]

− i
[

V ν , Vνµ

]

. (B.1d)

As described in subsection 3.2, we solve these equations order by order in pion fields.

C All-order solution

Expanding (B.1c), (B.1d) at O(π2) and using the O(π) solution, we have

∂µ
(

∂zV
(2)
µ

)

= 0 ,

z∂z
1

z
∂zV

(2)
µ − ∂ν

(

∂νV
(2)
µ − ∂µV

(2)
ν

)

= −i
[

A(1)
z , ∂µA

(1)
z

]

. (C.1)
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More generally, at this order

∂ · V (2) = 0 . (C.2)

The full equation at O(π2) is

z∂z
1

z
∂zV

(2)
µ − ∂2V (2)

µ = −iz2
[

π, ∂µπ
]

. (C.3)

We begin at O(π2) with the V
(2)
µ equation (C.3) and first solve for the homogenous part,

z∂z
1

z
∂zV̄µ − ∂2V̄µ = 0 . (C.4)

Using separation of variables, we find the solution in terms of Bessel functions,

Vµ(k, z) = z
(

c1J1(kz) + c2Y1(kz)
)

eik·xǫµ(k) . (C.5)

Since we work in the absence of external vector sources, we keep only the normalizable

mode J1. Fourier-transforming we find the net homogeneous solution

V̄µ(x, z) =

∫

d4k

(2π)4
zJ1(kz)ǫµ(k)e

ik·x , (C.6)

where for reality of V̄µ we have ǫµ(−k) = ǫ∗µ(k).
We now need to find a particular solution for the original equation. We again solve by

separation of variables, V̂µ = ξ(z)wµ(x) ,

ξ(z)∂2wµ(x)− z∂z
1

z
∂zξ(z)wµ(x) = iz2

[

π(x), ∂µπ(x)
]

. (C.7)

Taking ξ(z) = z2 we find

wµ(x) =
i

∂2
[

π, ∂µπ
]

, (C.8)

or, in Fourier space,

wµ(x) =

∫

d4k

(2π)4
eik·x

k2

∫

d4k′

(2π)4
k′µ
[

π(k − k′), π(k′)
]

. (C.9)

The most general solution to equation (C.3) is then V
(2)
µ = V̄µ + V̂µ,

V (2)
µ (x, z) =

∫

d4k

(2π)4
eik·x

(

zJ1(kz)ǫµ(k) +
z2

k2

∫

d4k′

(2π)4
k′µ
[

π(k − k′), π(k′)
]

)

. (C.10)

Imposing the boundary condition at z = 1 we have

∂zV
(2)
µ (x, 1) =

∫

d4k

(2π)4
eik·x

(

kJ0(k)ǫµ(k) +
2

k2

∫

d4k′

(2π)4
k′µ
[

π(k − k′), π(k′)
]

)

= 0 .

(C.11)
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(The boundary condition at z = 0 is already satisfied.) This uniquely sets the solution

ǫµ(k) =
−2

k3J0(k)

∫

d4k′

(2π)4
k′µ
[

π(k − k′), π(k′)
]

, (C.12)

where we have used the identity

∂z
(

zJ1(kz)
)

= kzJ0(kz) . (C.13)

The full solution is then,

V (2)
µ (x, z) = z2

∫

d4k

(2π)4

∫

d4k′

(2π)4
k′µ
[

π(k − k′), π(k′)
] 1

k2

(

1− 2

kz

J1(kz)

J0(k)

)

eik·x . (C.14)

Expanding the Bessel functions in k we have,

1

k2

(

1− 2

kz

J1(kz)

J0(k)

)

=

(

z2 − 2
)

8
−
(

z2 − 3
)2

192
k2 +

(

z6 − 12z4 + 54z2 − 76
)

9216
k4 +O(k6) .

(C.15)

Plugging it back into (C.14), we get

V (2)
µ (x, z) =

z2

8

∫

d4k

(2π)4

∫

d4k′

(2π)4
k′µ
[

π(k−k′), π(k′)
]

{

(z2−2)− 1

24
(z2−3)2k2+O(k4)

}

eik·x

= −iz
2

8

{

(

z2 − 2
)

− 1

24

(

z2 − 3
)2
∂2 +O(∂4)

}

[

π, ∂µπ
]

, (C.16)

which coincides with previous results. Note that for this simple case we were easily able

to guess the particular solution, while in general, one can solve the equations of motion in

terms of the Green’s functions developed in appendix E.2.

This result allows us to compute the four-pion on-shell action to all derivative orders

directly by plugging (C.14) into (3.31) and performing the z-integration without expanding

the Bessel functions,

∫ 1

0
dz
z3

k2

(

1− 2

kz

J1(kz)

J0(k)

)

=
1

4k2

(

1− 8

k2
J2(k)

J0(k)

)

. (C.17)

The formal solution is

Sπ4 = −R

g25

∫

d4xTr

{

[

π, ∂µπ
] 1

4∂2

(

1− 8

∂2
J2(∂)

J0(∂)

)

[

π, ∂µπ
]

}

=
R

g25

∫

d4xTr

{

[

π, ∂µπ
]

(

− 1

24
+

11

1536
∂2 − 19

15360
∂4 +O(∂6)

)

[

π, ∂µπ
]

}

, (C.18)

which coincides with previous results, and the result using Feynman diagrams described in

section 4. Note that when using the equations of motion for π this term will also contribute

at higher orders in π, starting with ∂4π6.
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D Two-derivative terms to all orders in pions

In the chiral Lagrangian, the spontaneously broken flavor symmetry is realized nonlinearly

on the pions. That means, at fixed order in pions, a term in the action is not invariant

under the full symmetry, but it can be made so under a unique completion to all orders in

π (separately for any derivative order). For example, whereas the kinetic term for pions in

terms of π is not invariant under the full symmetry, it can be made so by writing a kinetic

term for U ≡ exp (iπ/fπ).

For a consistency check of our procedure, we solve for the two-derivative term in the

action, to all orders in the pions, and verify that it is indeed consistent with the symmetry.

To leading order in derivatives, the equations of motion can be recast as

∂z

(

1

z
Aµz

)

= iz

[

π,

(

1

z
Vµz

)]

,

∂z

(

1

z
Vµz

)

= iz

[

π,

(

1

z
Aµz

)]

, (D.1)

so it makes sense to solve the equations in terms of Aµz, Vµz rather than Aµ, Vµ. Let us

first define

Y ±
µ ≡ e±

i
2(z

2−1)πXµe
∓ i

2(z
2−1)π , (D.2)

for an arbitrary algebra-valued, z-independent Xµ. Then it is easily seen to satisfy

∂zY
±
µ = ±iz

[

π, Y ±
µ

]

, (D.3)

and

Y ±
µ (z = 1) = Xµ . (D.4)

We immediately see that

Aµz =
z

2

(

Y +
µ + Y −

µ

)

Vµz =
z

2

(

Y +
µ − Y −

µ

)

(D.5)

solves the equations of motion (D.1), and

Vµz(z = 1) = 0 , Aµz(z = 1) = Xµ . (D.6)

More explicitly it is,

Aµz =
z

2

(

e+
i
2(z

2−1)πXµe
− i

2(z
2−1)π + e−

i
2(z

2−1)πXµe
+ i

2(z
2−1)π

)

,

Vµz =
z

2

(

e+
i
2(z

2−1)πXµe
− i

2(z
2−1)π − e−

i
2(z

2−1)πXµe
+ i

2(z
2−1)π

)

. (D.7)

The two-derivative on-shell action then becomes,

S5d =
1

g24

∫

d4x

∫ 1

0

dz

z
Tr
{

VµzV
µ
z +AµzA

µ
z

}

=
1

2g24

∫

d4xTr
{

XµX
µ
}

. (D.8)
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However, note that Xµ is arbitrary in (D.4)(D.5).19 In fact, in terms of Aµz and Vµz we are

missing one boundary condition, we simply cannot express Aµ(z = 1) = 0, so we cannot

fix Xµ either without actually going back to solving the equations of motion in terms of

Aµ and Vµ (which then goes back to what we have done so far, at finite order in pions).

Instead, we can compare with the unique results at this order, dictated by the symmetries,

Sπ,2 =
f2π
4

∫

d4x Tr
{

∂µU
†∂µU

}

= f2π

∫

d4x Tr
{

DµπDµπ
}

, (D.9)

where the pion’s covariant derivative is defined through

Dµπ =− i

2

(

ξ†∂µξ − ξ∂µξ
†
)

,

and

ξ =
√
U = eiπ/2 . (D.10)

Thus, we identify

Xµ = 2Dµπ = ∂µπ − 1

24

[

π,
[

π, ∂µπ
]

]

+O(π5) . (D.11)

Finally, we can plug (D.11) into (D.7) and expand, to get

Aµz = z∂µπ − 1

24
z
(

3z4 − 6z2 + 4
)

[

π,
[

π, ∂µπ
]

]

+O(π5, ∂3) ,

Vµz =
i

2
z(z2 − 1)

[

π, ∂µπ
]

+O(π4, ∂3) , (D.12)

consistently with our perturbative results.

E 5d Green’s functions and Feynman rules

We collect here the Green’s functions of the propagating 5d fields in the gauge (3.9)(3.13),

used throughout the paper. The vector and axial vector propagators are written as piece-

wise functions along the z direction. This form lends itself most straightforwardly to

obtaining results to arbitrary order in momentum, and it is simple to verify that the poles

of these propagators correspond to the masses of the vector and axial-vector states pre-

dicted by the Hirn-Sanz model. We begin by finding the Green’s functions of the Abelian

part of the equations of motion.

E.1 Az Wavefunction and Pion propagator

As described in the body of the text, we can choose a gauge where

Az(x, z) = zπ(x) , (E.1)

19In order to have π-even Vµz and π-odd Aµz, we need Xµ to be π-odd.
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to all orders in π. (As usual, we set L = 1 for convenience and restore it using dimensional

analysis in the final result.) Az does not propagate in 5d, and does not run on internal

legs.

The quadratic order action for pions comes from

Sπ2 = −2
R

4g25

∫

dzd4xTr
{√

gAa
MNA

aMN
}

⊃ R

2g25

∫

d4x Tr
{

∂µπ
a∂µπa

}

, (E.2)

where we used Az = zπ and integrated over z. The pion propagator in momentum space

thus takes the form,

〈

πa(k)πb(0)
〉

=

(

g25
R

)

i

k2
δab . (E.3)

E.2 Vµ Propagator

In the Vz = 0 gauge there are no ghosts in the 5d theory (and anyway we consider only

tree-level diagrams) so we need only consider the Green’s function of the fields Vµ. The

two-point function takes the form

〈

V a
µ (k, z)V

b
ν (q, z

′)
〉

=−i g
2
5

2R
(2π)4δ(k+q)δab

[

GV (k, z, z
′)

(

ηµν−
kµkν
k2

)

+GV (0, z, z
′)
kµkν
k2

]

,

(E.4)

where the k-momentum and zero-momentum Green’s functions satisfy

z∂z
1

z
∂zGV (k, z, z

′) + k2GV (k, z, z
′) =zδ(z − z′) ,

z∂z
1

z
∂zGV (0, z, z

′) =zδ(z − z′) . (E.5)

The vector mode satisfies the boundary conditions

∂zGV (1, z
′) = GV (0, z

′) = 0 . (E.6)

One can solve for the Green’s function piecewise and show that

GV (k, z, z
′) = −πzz

′

2

(

Y0(k)

J0(k)
J1(kz)J1(kz

′)− J1(kz−)Y1(kz+)

)

, (E.7)

when z+ (z−) is the larger (resp. smaller) of z, z′. In particular, we then have

GV (0, z, z
′) = −1

2
z2− , (E.8)

and there is no pole at k = 0. To second order in momentum,

GV (k, z, z
′) = −1

2
z2− + k2

1

16

(

z4− − 2z2z′2 + 4z2z′2 log(z+)
)

+O(k4) . (E.9)
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E.3 Aµ Propagator

The story is almost identical for the Aµ propagator, except that the boundary condition

at z = 1 is now Aµ(z = 1) = 0. The two-point function takes the form

〈

Aa
µ(k, z)A

b
ν(q, z

′)
〉

=−i g
2
5

2R
(2π)4δ(k+q)δab

[

GA(k, z, z
′)

(

ηµν−
kµkν
k2

)

+GA(0, z, z
′)
kµkν
k2

]

,

(E.10)

where the k-momentum and zero-momentum Green’s functions satisfy the same equations

of motion as those of the vector. (Note that there are no quadratic order cross terms

between Aµ and Az. This is a direct result of the gauge choice Az = zπ.) The Aµ Green’s

function thus takes the form

GA(k, z, z
′) = −π

2
zz′
(

Y1(k)

J1(k)
J1(kz)J1(kz

′)− J1(kz−)Y1(kz+)

)

, (E.11)

and

GA(0, z, z
′) = −1

2
z2−(1− z2+) . (E.12)

E.4 Feynman vertices in the bulk

Here we collect the Feynman vertices from the bulk action, written in momentum space

along the flat spacetime directions, and position space for the radial direction. All momenta

are assumed to be incoming. Each n-leg vertex is accompanied by the integral

R

g2s

∫

dz

z

d4k1 . . . d
4kn

(2π)4n
(2π)4δ(k1 + k2 + · · ·+ kn) . (E.13)

When we compute the 4d off-shell action, the Az lines are external only. They are only

propagating (in 4d) when we compute the S-matrix or the on-shell action. Vµ and Aµ lines

are always internal.

V c
µ , k3

πa, k1

πb, k2

√
2fabcz2πa(k1)π

b(k2)(k2 − k1)µ

V b
µ , k2

Ac
ν , k3

πa, k1 −2
√
2ifabczπa(k1)ηµν∂

(V )
z
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V c
µ , k3

V d
ν , k4πa, k1

πb, k2

i(facef bde + fadff bcf )z2πa(k1)π
b(k2)ηµν

Aa
µ(p, z)

Ab
ν(k, z)Ac

z(q, z)

Ad
z(r, z)

iR
g25
(facff bdf + fadff bcf ) z

2

L2π
c(q)πd(r)ηµν

V a
µ (p, z)

V b
ν (k, z)

V c
ρ (q, z)

√
2R
g25

fabc [(pρ − kρ)ηµν + (qν − pν)ηρµ + (kµ − qµ)ηνρ]

V a
µ (p, z)

Ab
ν(k, z)

Ac
ρ(q, z)

-
√
2R
g25

fabc [(qµ − kµ)ηρν + (pν − qν)ηρµ + (kρ − pρ)ηµν ]

V a
µ (p, z)V b

ν (k, z)

V c
ρ (q, z) V d

σ (r, z)

− iR
g25

[

fabff cdf (ηµρηνσ − ηνρηµσ)

+facff bdf (ηµνηρσ − ηνρηµσ)

+f bcffadf (ηµνηρσ − ηµρηνσ)
]
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Aa
µ(p, z)Ab

ν(k, z)

Ac
ρ(q, z) Ad

σ(r, z)

− iR
g25

[

fabff cdf (ηµρηνσ − ηνρηµσ)

+facff bdf (ηµνηρσ − ηνρηµσ)

+f bcffadf (ηµνηρσ − ηµρηνσ)
]

V a
µ (p, z)V b

ν (k, z)

Ac
ρ(q, z) Ad

σ(r, z)

− iR
g25

[

fabff cdf (ηµρηνσ − ηνρηµσ)

+facff bdf (ηµνηρσ − ηνρηµσ)

+f bcffadf (ηµνηρσ − ηµρηνσ)
]

F Six-pion interaction

We present here a more detailed derivation of the six-pion interaction term in the effective

action. The three Feynman diagrams which contribute to this interaction are shown in

figure 2, labelled (1), (2), and (3). For each diagram, we have to sum over the possible

external pion legs. Since not all of the 6! possible combinations are independent, we have

to divide the net result in each case by a symmetry factor, as indicated in each case below.

In Diagram (1), we must divide by a symmetry factor of 48. Noting that only the ηµν
pieces of the vector propagators contribute at this order in π and after some manipulations,

we find the contribution of Diagram (1):

S6,1 = − R

6g25

∫

(
∏

i d
4ki
)

δ(4)(
∑

i ki)

(2π)20
Tr

{

[

π(k5),
[

π(k1), π(k2)
]

][

π(k6),
[

π(k3), π(k4)
]

]

}

×

I6,1(k12, k34, k56)
[

(k1 + k2) · (k5 − k6)(k1 − k2) · (k3 − k4)

+ (k3 + k4) · (k1 − k2)(k3 − k4) · (k5 − k6)

+ (k5 + k6) · (k3 − k4)(k5 − k6) · (k1 − k2)
]

,

where the integral I6,1 (and I6,2, I6,3 for the other diagrams) are defined in equation (4.13).

In Diagram (2), the symmetry factor is 8. Both the ηµν and kµkν tensor structures

from the axial propagator contribute, while we can again neglect the latter in the vector

propagators. The Diagram (2) contribution thus amounts to

S6,2 =− R

g25

∫

(
∏

i d
4ki
)

δ(4)(
∑

i ki)

(2π)20
Tr

{

[

π(k5),
[

π(k1), π(k2)
]

][

π(k6),
[

π(k3), π(k4)
]

]

}

×
[

(k1 − k2) · (k3 − k4)I6,2(k12, k34, |k1 + k2 + k5|)

− k5 · (k1 − k2) k6 · (k3 − k4)
I6,2(k12, k34, |k1 + k2 + k5|)− I6,2(k12, k34, 0)

(k1 + k2 + k5)2

]

.
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Finally, Diagram (3) (with symmetry factor 16) yields,

S6,3 = − R

4g25

∫

(
∏

i d
4ki
)

δ(4)(
∑

i ki)

(2π)20
Tr

{

[

π(k5),
[

π(k1), π(k2)
]

][

π(k6),
[

π(k3), π(k4)
]

]

}

×

I6,3(k12, k34)(k1 − k2) · (k3 − k4) . (F.1)

Summing these three contributions yields the full 6-pion term in the off-shell effective

action, equation (4.16).

G Off-shell identifications

We have repeatedly emphasized that the holographic pion that we have defined is not

the same as the NG pion: the two are only expected to have some overlap. Accordingly,

the on-shell quantities need to agree. Indeed, we have successfully matched the on-shell

effective action of our pion with that of Hirn and Sanz, defined for the NG pion, finding

full agreement. On the other hand, we can also compare some off-shell quantities in order

to extract the precise relation between them (as in (2.11)). In this appendix we compare

the two pions’ off-shell effective Lagrangian, as well as their equations of motion, and find

the same relation in both cases. We also show that this is the relation that should have

been anticipated a priori, upon identifying the NG pion (that is, the pion defined in terms

of the nonlinear realization of the symmetry) in the model under consideration.

Consider first the chiral Lagrangian. From subsection 3.3 we read off (already using

the right relations between the Li’s),

LΠ =
1

4
Tr

(

∂µΠ∂
µΠ+

1

12f2Π

[

Π, ∂µΠ
][

Π, ∂µΠ
]

+
1

360f4Π

[

Π,
[

Π, ∂µΠ
]

][

Π,
[

Π, ∂µΠ
]

]

−4L1

f4Π

[

∂µΠ, ∂νΠ
][

∂µΠ, ∂νΠ
]

+ . . .

)

. (G.1)

We compare this to the off-shell Lagrangian derived holographically in section 4,

Lπ =
1

2g24
Tr

(

∂µπ∂
µπ +

L2

12

[

π, ∂µπ
][

π, ∂µπ
]

+
L4

360

[

π,
[

π, ∂µπ
]

][

π,
[

π, ∂µπ
]

]

+
11L4

384

[

∂µπ, ∂νπ
][

∂µπ, ∂νπ
]

+ . . .

)

, (G.2)

and rederive our previous results (3.41)(3.46). However, now we also find the off-shell

relation between the pions (up to the order in pions we consider),

π = cΠ+O(Π7, ∂2Π5) , (G.3)

with c = g4/
√
2 = 1/(LfΠ) as in (3.41).

The same off-shell information can be derived by comparing the pions’ equations of

motion. In (3.30) we found the equation of motion for our pion,

∂2π =
L2

6

[

∂µπ,
[

π, ∂µπ
]

]

+
11L4

192

[

∂νπ,
[

∂µπ, ∂ν∂µπ
]

]

+O(∂2π5, ∂6π3) . (G.4)
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For the NG pion, the equations of motion follow directly from (G.1),

∂2Π =
1

6f2Π

[

∂µΠ,
[

Π, ∂µΠ
]

]

+
8L1

f4Π

[

∂νΠ,
[

∂µΠ, ∂µ∂νΠ
]

]

+O(∂2Π5, ∂6Π3) , (G.5)

and a comparison with (G.4) immediately leads to the same relation (G.3). It should be

noted that, while here we have found a very simple relation between the holographic pion

and the NG pion, in the general case the relation may be much more complicated, with

infinite-order corrections. (The method described here can be used generically to derive

this relation order by order.) To understand our result, we can easily identify the NG pion

in this model as the non-trivial holonomy along the radial direction [27],20

U(x) ≡ exp

(

i
Π(x)

fΠ

)

= P

{

exp

(

2

∫ L

0
dzAz(x, z)

)}

, (G.6)

which can be shown to exhibit the right transformation law under the full flavor symmetry,

U → LUR†. After the (on-shell) gauge fixing (3.14), the identification (G.6) yields

π(x) =
Π(x)

LfΠ
, (G.7)

in agreement with the result above.
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