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ABSTRACT: We study transport properties of a parity-odd, non-relativistic charged fluid
in presence of background electric and magnetic fields. To obtain stress tensor and charged
current for the non-relativistic system we start with the most generic relativistic fluid,
living in one higher dimension and reduce the constituent equations along the light-cone
direction. We also reduce the equation satisfied by the entropy current of the relativistic
theory and obtain a consistent entropy current for the non-relativistic system (we call it
“canonical form” of the entropy current). Demanding that the non-relativistic fluid satisfies
the second law of thermodynamics we impose constraints on various first order transport
coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness
of different transport coefficients like viscosity, thermal conductivity, electric conductivity
etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the
second law of thermodynamics. Therefore, we need to add two parity-odd vectors to the
entropy current with arbitrary coeflicients. Upon demanding the validity of second law, we
see that one can fix these two coefficients exactly.
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1 Introduction and summary

Hydrodynamics is an effective description of nearly equilibrium interacting many body
system. A fluid system is considered to be continuous, i.e. when we talk about a small
volume element (or ‘fluid particle’) of the fluid, it still contains a large number of constituent
particles (atoms/molecules). More specifically, the size of the fluid particle is much much
greater than the mean free path of the system. The equations of hydrodynamics assume



that the fluid is in local thermodynamic equilibrium at each point in space and time,!

even though different thermodynamic quantities like fluid velocity ¥(Z,t), energy density
€(Z,t), pressure p(Z,t), fluid density p(Z,t), temperature 7(Z,t) etc. may vary. Fluid
mechanics applies only when the length scales of variation of thermodynamic variables are
large compared to equilibration length scale of the fluid, namely the mean free path [1].

Although hydrodynamics is an old and well-studied subject in physics, recently there
has been much interest and progress in relativistic, charged, viscous fluid in presence of some
global anomaly. The first evidence of relativistic anomalous fluids was observed in [2, 3],
in the context of the AdS/CFT correspondence. In these papers the authors found a new
term (and hence a new transport coefficient) in the charge current in presence of a Chern-
Simons term in the bulk Lagrangian. Later, in [4] it has been shown that this kind of term
in charge current is not only allowed by the symmetry but is required by triangle anomalies
and the second law of thermodynamics. Demanding the positivity of local entropy current
they showed that the coefficient of this new term is also fixed in terms of anomaly coefficient
of the theory. In general, the second law of thermodynamics (or equivalently, positivity
of local entropy current) imposes restrictions on different transport coefficients. Interested
readers can look at [5-12].

This was about relativistic fluids. Much attention has not been paid in parity-odd
charged non-relativistic fluid in presence of background electromagnetic fields. In [13] an
attempt has been made to study non-relativistic neutral fluids as a consistent light-cone
reduction of relativistic fluid systems. In [14], the idea has been extended to charged fluid
without any background field. However, main focus of these two papers was to construct
the holographic duals of long wave length fluctuations (hydrodynamic limit) of conformal
non-relativistic field theories. They also computed few transport coefficients (for example
thermal conductivity) holographically.

Recently in [15], non-relativistic, parity-odd, first order charged fluid in 2 dimensions
has been discussed. The authors started with a 2 4+ 1 dimensional relativistic, parity-odd
charged fluid in presence of background gauge fields and took suitable non-relativistic limit
of the system. They identified the parity-violating contributions to the non-relativistic
constitutive relations, which include the Hall current flowing perpendicular to the tem-
perature gradient, the Hall viscosity and the Leduc-Righi energy current.? However, in
these papers, much attention has not been paid to second law of thermodynamics. It is
well known that the local second law of thermodynamics imposes several constraints on
the flow and the transport coefficients. For example, the local second law demands that
shear, bulk viscosity coefficients and thermal conductivity have to be positive definite for
a non-relativistic fluid [1]. This particular issue, for relativistic fluid, has been discussed
vividly in various papers mentioned above. However, the constraints from second law of
thermodynamics are not yet well understood for a general class of non-relativistic fluids
(charged fluid in presence of background fields). Goal of this paper is to write down a
local entropy current, which satisfies second law of thermodynamics, for a non-relativistic

The modern understanding of hydrodynamics however, suggests that it starts to apply long before the
absolute equilibrium is reached.
2See also [16].



charged fluid in presence of arbitrary background electromagnetic field and to study the
constraints on the transport coefficients.

One way to obtain the energy momentum tensor, charge current and entropy current for
a non-relativistic theory is to reduce the constitutive equations and entropy current equa-
tion of a relativistic fluid over a light-cone direction. We start with a (3 4 1)-dimensional
relativistic charged fluid with global U(1)? anomaly and write down their non-relativistic
counterparts. We follow the light-cone reduction technique, which was introduced in [13],
and shall as well review it in our paper. Let us conclude this section with an outline and
summary of our main results.

Outline and summary.

e In section 2 we consider first order, relativistic, charged anomalous fluid in (3 + 1)
dimensions in presence of background electromagnetic fields. We briefly review the
work of [4] and show how parity-odd transport coefficients are related to the coefficient
of anomaly from the positivity of divergence of local entropy current.

e In section 3 we highlight the important equations of non-relativistic hydrodynamic
System.

e In section 4 we consistently obtain the energy current density (j°), stress tensor (¢¥)
and charge current density (j%) of non-relativistic fluid by Light Cone Reduction
(LCR). We also find different non-relativistic fluid variables (thermodynamic quan-
tities and transport coefficients) in terms of the relativistic fluid variables. Here we
mention the final expression for stress tensor, energy current and charge current:?

t9 = vl p + pg¥ — no — 2gV V0",
gt =1 <e +p+ 2pv2> — no*uy, — 20°Vo* — kViT — 707 V! (%) + or(ef — v 87),
ji = v’ = kYT — €V (&> —mV'p
T
+o15 (ei - ,8’”) + {R €IV T+ €769V (&>
J kERPJ I J IJj I\F
—mjeijVjp+5']]€ij (Q]j —’Uk/Bka) } (1.1)

All the non-relativistic transport coefficients are fixed in terms of relativistic transport
coefficients and other thermodynamic variables. Explicit relations have been provided
in the main text.

e In charge current we identify the thermal Hall contribution %7€V ;7 (where 7 is the
temperature of non-relativistic fluid). The Hall energy flow sourced by the tempera-
ture gradient is known as the Leduc-Righi effect. It has been predicted in condensed

3We started out with a relativistic fluid in Landau frame, due to which Light Cone Reduction gives
a non-relativistic fluid also in a particular frame. A trivial transformation of fluid velocity parameter
vt — vt 4 a(u, T)€i'j'Uj7 can give many other terms out of which Hall viscosity will also be one. Since we
reduce the fluid in a particular hydrodynamic frame, those terms do not appear.



matter physics, that this kind of effect can be observed in various topological insula-
tors.

e We also obtain the electromagnetic Hall energy current (parity-odd)
Gry€ed (er —vkﬁjkj), where €;; is the applied electric field and fr;; is propor-
tional to the applied magnetic field (check eq. (3.7) for exact definitions).

e We find that the non-relativistic fluid system satisfies the famous ‘Wiedemann-Franz
Law’ for single component fluid.

e Finally, we compute the entropy current jfg for the non-relativistic fluid in section 5,
and demand that the rate of entropy production of the system is always positive def-
inite. For parity-even fluid it turns out to be quite straight forward. The canonical
form of the entropy current confirms that the total entropy always increases due to
dissipation, thermal and charge conduction. However for parity-odd fluid, canoni-
cal form of the entropy current fails to confirm the second law of thermodynamics.
Therefore, we need to add two parity-odd vectors to the entropy current with arbi-
trary coefficients. Upon demanding the validity of second law, we see that one can
fix these two coefficients exactly.

e Finally we observe that, unless the fluid is incompressible, all the parity-odd transport
coefficients must vanish to satisfy the second law of thermodynamics.

2 Relativistic anomalous charged fluid

Hydrodynamic description does not follow from the action principle, rather it is generally
formulated in the language of equations of motion. The reason for this is the presence of
dissipation in thermal media. Due to internal friction called viscosity, a dissipative fluid
loses its energy over time as it propagates. The fluid without any viscous drag is called an
ideal fluid. In the simplest case, the hydrodynamic equations (for a uncharged fluid) are
the laws of conservation of energy and momentum,

V,.T" = 0. (2.1)

A relativistic fluid in (d + 1,1) dimensions (d + 1 spatial and 1 time dimensions) has total
d + 3 independent intensive fluid variables: temperature (T'), pressure (P) and velocities
ut (only d + 1 components of the velocity are independent due to normalization utu, =
—1). Densities of extensive variables: energy density (E) and entropy density (S) are not
considered to be independent as they can be determined in terms of the intensive variables,
by the first law of thermodynamics and the equation of state.
Additionally we have an Euler’s relation which follows from the extensivity of the
internal energy:
E+P=TS, (2.2)

which in conjunction with the first law relates P and T as:

dP = SdT. (2.3)



Therefore, among these thermodynamic variables, we can consider only one to be indepen-
dent, which we choose to be T'. Thus, fluid is determined in terms of d + 2 variables: u*,T.
On the other hand we have d + 2 constitutive equations (2.1), and hence fluid system is
completely determined. We can express the energy momentum tensor T#" as a function of
temperature, velocity and their derivatives.

In case of fluid with multiple conserved U(1) currents, we have more fluid variables:
charge densities (Qr). The corresponding conjugate variables are called chemical potentials
denoted by (M7j). In presence of conserved charges the first law is modified to

dE =TdS + M;dQ;. (2.4)

From this equation one can compute the chemical potentials of the fluid in terms of charges
and other variables. However, in our computation we consider chemical potentials M7 to
be our independent variables, not the charges. As a result, number of fluid variables have
been increased to d + 3. However, in this case we also have another constitutive equation
(which follows from the global U(1) symmetries),

V. Ji=0. (2.5)

Euler’s relations are also modified to:
E+P=TS+ M;Qy, (2.6)

and from the first law one can write,
dP = 5dT + QdM;. (2.7)

Therefore, for charged fluid we consider our basic thermodynamic variables to be T and
M; /T, rest are fixed in terms of these two variables. We can therefore write the last
equation in the following form:

E+P
ap=2"

dT + TQd (]\;I) (2.8)

Thus, for a charged fluid, we express energy-momentum tensor and charge current as a
function of fluid velocities, temperature, chemical potential and their derivatives.

One striking feature of a relativistic quantum field theory is triangle anomalies. The
effect of this anomaly is reflected in three point correlation function (loop level) of charge
currents. However, the anomaly does not affect the conservation of the current associated
with a global symmetry in absence of external electromagnetic fields. When we put the
theory in external background gauge fields coupled to the currents, some of the currents
will no longer be conserved.

In the next subsection we discuss about the form of the energy momentum tensor and
global U(1) current of a relativistic anomalous fluid in presence of background gauge fields.



2.1 Anomalous charged fluid: energy-momentum tensor and current

We review a generic charged relativistic fluid in (d 4 2)-dim with anomalies. The energy-
momentum tensor is given by:

™ = (E + P)u*u” + Pg"" + 11", (2.9)
where,
" = —2nrH" — (oM, (2.10)

and fluid velocities are normalized
utuy, = —1. (2.11)

Here, nn and ( are relativistic shear and bulk viscosity coefficients respectively. Up to first
order in derivatives, the respective terms are given by:

1 2
T'U’V = §P'u'apyﬂ Vau5 + Vgua - d+ 1gaﬁ9 ; (212)

orY = OPH”, 0 = V,u®, (2.13)
where we use the projection operator:
PH = " + utu”. (2.14)

Similarly charge current of a relativistic fluid in presence of multiple charges Q; (I =
1,2,3) is given by*
Ji = Qrut + 1Y, (2.15)

where,

M ~
T? = —Q[JPHVVV (TJ> + )\IJE? — ’yIPlWVVT + {U[l“ + U[JB;} , (2.16)
M= e’w‘ﬁwuavﬁuv. (2.17)

Here o7y, A1y and 77 are charge, electric and thermal® conductivities respectively. However,
demanding the positivity of local entropy current one can show show that, v; vanishes and
ory is related to Ayj.

We have kept the fluid in some background electromagnetic gauge fields given by A%:

FIY = VFAY — VY AY, (2.18)

1
Ef = F'u,, Bf= iewﬁuqu. (2.19)

The last two terms of eq. (2.16) are the most generic single-derivative parity-odd mod-
ifications to the charge current allowed in Landau frame. These terms are specific to

4See [17] for a beautiful review.

SThermal conductivity of relativistic theory is fundamentally different from the thermal conductivity of
non-relativistic theory. Entropy positivity demands relativistic thermal conductivity to vanish, however in
non-relativistic limit it origins from elsewhere.



(3 4+ 1)-dimensions. In higher dimensions, the parity odd terms appear only at higher
derivative orders. However, we would like to keep our calculations generic to (d+ 2)-dim in
parity-even sector while still keeping the parity-odd sector specific to d = 2. Therefore in
all expressions, we represent parity-odd terms in curly braces {...}, with an understanding
that these terms contribute only for d = 2.

We are working in Landau frame, which demands

u, I =0, u, Yh = 0. (2.20)
and hence:
u, " = —Eu”, u,Jt = —Qr. (2.21)
The constitutive equations for this fluid are given by:

V. T" = FPA I, (2.22)
Vi = {Crixk B} Bk} . (2.23)
Crjk is called anomaly coefficient, which is completely symmetric in all indices.

Leading order T"” and J* must obey the first order conservation equations, which can
be found trivially using eq. (2.22), (2.23):

WOV E = —(E + P, (2.24)
PFOV P — Q[E? = —(E + P)uavau”, (2.25)
UMV#Q[ + Q0= {C[JKE:L;BKM} . (2.26)

We have projected the equations along and perpendicular to the direction of velocity for
later convenience. We have also used Efu, = 0, which can be seen trivially. Using these,
TH from eq. (2.12) can be written as:

1 2

wo_ |y vp _ Wy _ g, v

T 5 Y +Y pET 0 — Zuru” |, (2.27)
where,
2 u*V,T
_ 2.28
d+1(E+P) (2:28)
T=(d+1)P - E, (2.29)
u’VHP u’EY
Y = Vi — L. 2.

Vi By 9 (2:30)

The trace of the energy-momentum tensor is given by:

T =T — ((d+ 1)6. (2.31)

For conformal fluids 7%, = 0, which can be reached by setting T = ¢ = 0.



Later, we shall use some relations involving Y#¥, which can be found trivially using
eq. (2.30):

. MuMV,P VYP QrEY
-~  E+P E+P E+P
VP Q[EY
T E+P E+P

(2.32)

(2.33)

2.2 Entropy current

In this sub-section we write down the expression for entropy current of a relativistic
charged anomalous fluid and derive constraints on various transport coefficients which
follow from second law of thermodynamics. The canonical form of relativistic entropy

current is given by
M
Jh = Sut — Tfrjf, (2.34)
Using conservation equations eq. (2.22), (2.23) and thermodynamics eq. (2.6), (2.7) we can

write:

1 E M
Vgt =~ L, + [1{“ v, (TIH T, (2.35)

Using eq. (2.10), (2.16) it can be written (up to second order in derivative) as

Vng = fm—m/T/W + fC92 + fEI;L)\IJE(l]L + [Pauvu <TI>} o1y [Powvy <TJ)]

1 My 1 My v
_TEl; (QIJ + T)\J[) VN <T> - T’Y[E’;VMT + VU (T> ’}/I.P'u VVT
MK ~ 1 M[
+{ — CKIJTEIMB{}L + (6[[’“ + U[JB?) [TEIM — V,u <T>] } (2.36)

Demanding entropy positivity, V,J g > 0 we will get

1
v=0, n>0, ¢>0, )\IJ:TQIL

ory matrix is positive definite. (2.37)

However the last two terms of eq. (2.36) cannot be made positive definite. One would then
expect that coefficients of those terms must vanish! But in [4], the authors identified that
eqn (2.35) is not the most generic expression for the entropy current. They modified the
entropy current with the most generic parity odd vectors allowed by the symmetry

T4 — g4+ { D"+ DB} (2.38)



In presence of these two terms the parity-odd part of the last equation becomes,
- M - 1 M,
{vu (v + DyBY) ~ Crcrs - Er Bl + (010 + 51 BY) [TEIH ~v, (Tfﬂ }

My -1
:{w [VMD— 2D g.p v, <T)}+1“Em[ 201 —2D1+TUI]

E+ P E+P
- Dy M;
m
e[ B tm ()
= Qr My
M _
+EY By, [DJE 7+ TUIJ Ck11—
= 0. (2.39)

Demanding the positivity of divergence of local entropy current we get,

oD 2D oD _
9P  E+ P’ oM /T) ~ "
oD; Dy oD, 5
op ~ E+P  oMyT) '
201 N 1
D —9D; = ——
E+P I UI?
= Qr Mg
D‘]E+P UIJ+C'K1J T (2.40)

One can in principle solve the above set of equation to get relations between D, Dy, U1, U1y
and Cryk.
Finally we have the desired form of entropy current

[0}

1 1., [E? M E; My
V'ujg = TTIT'LLVTMV + TCG + |: T PO‘“V ( T >:| 01J |:1_‘a — Pa,,vl/ T 5 (241)
which is entirely positive definite.

3 Non-relativistic charged fluid

In this section, we review the properties of charged non-relativistic dissipative fluid living
in (d+1)-dimensions, in presence of some background gauge fields. A non-relativistic fluid
has following constitutive equations:

Continuity equation:

dep + Oi(pv') = 0, (3.1)

where p is density of fluid particle.
Momentum conservation equation:

Or(pv?) + 8;(t9) = 0, (3.2)

where t% is the energy-momentum tensor.



Energy conservation equation:

1 .
o <e + 2pv2> + 95t =0, (3.3)
where j? is the energy current.

Conservation of charge current:
Ohqr + 9ij; = 0, (3.4)

where, ¢r’s are the U(1) charge densities and j[’s are the corresponding currents. Note
that energy current is denoted by j where as charge current is denoted by j}.

In d spatial dimensions, charged fluid has total d + 3 independent variables (pressure
p, temperature 7, chemical potentials p; and velocity ¥), while others (density p, energy
density €, charge density ¢r and entropy density s) are fixed in terms of these using thermo-
dynamic relations. Unlike the relativistic case we do not consider the Euler’s relation here.
Later we shall see that the light-cone reduction does not preserve extensivity of the fluid
system. Hence, the fluid is determined by d + 3 parameters chosen to be: 7, ur/7, p and
U (same as (d+1,1)-dim relativistic fluid). On the other hand we have d + 3 constitutive
equations.

Therefore, we can express energy-momentum tensor and charge current in terms of 7,
pr/7, p, U and their derivatives. For ideal fluid they are given by,

t = pvivj —l—pgij,
4 1 .
it = <6+p+ 2pv2> o,

Jr = qrv. (3.5)

3.1 Non-relativistic dissipative fluid in background electromagnetic field

When we put a dissipative fluid in background electromagnetic fields, the above equations
are modified. Continuity equation and charge conservation equation remain the same but
other two equations are modified to

1 . .
O (e + 2pv2) + 0i" = jren, (36)
where,
61‘] — _azd)] _ 825@1‘[’ ;J = 8lajl — 6jaij, (37)

are electric and magnetic fields respectively. ¢; and a§ are scalar and vector potentials
respectively.
For dissipative fluid the stress-energy tensor is given by,

t9 = pv'vd + pg¥ + 7, (3.8)

~10 -



where 7% is the correction to ideal fluid stress tensor due to dissipation
7 = —no'l — 259 ok, (3.9)
o = 0" + v — (Wgakvk. (3.10)

n and z are the non-relativistic shear and bulk viscosity coefficients respectively.
The energy current for dissipative fluid is given by,

. 1 . .
jt= <e+p+2pv2> v* 4+ ¢, (3.11)
where,
gi = —naij’l)j - Z@k’l)k’l)i - HaiT - f]VZ (%) + U[Gil - Oé[’l)jﬁ;i. (3.12)

Here &, &1, o7 and a are thermal, charge, electric and magnetic conductivities respectively.
Later we shall see that, for non-relativistic fluid, obtained by light cone reduction of a
relativistic fluid, £; and «aj are related to oy.

Similarly charge current for a dissipative fluid is given by,

jr = arv' + <, (3.13)
where,
i oot F o (BTN s i s
S = RiV'T — &5V . mIVp—i-aUeJ

— argupBi+ {Hlﬁmvﬂ +&17€7V; <7 — €IV p + Grr€ies; — arseivF B b

(3.14)

Rr,017, EU, mr,ary and Rr, 617,17, 1, Gy are some arbitrary parity-even and parity-odd
transport coefficients.® Again, for a non-relativistic fluid, obtained by light-cone reduction
these transport coefficients are fixed in terms of relativistic transport coefficients. Also,
they are constrained when we demand positivity of local entropy current.

4 Light-cone reduction

Discrete light cone quantization of a (d+ 1, 1)-dim relativistic quantum field theory (QFT)
boils down to a non-relativistic quantum field theory in one lower dimension. Let us
consider a QFT in flat spacetime with metric,

d
ds? = —(da®)? + (dx®t1)? + Z(dfni)Q. (4.1)
i=1

We introduce the light-cone coordinates,

ot = = ( 0 j:xd+1) . (4.2)

V2

5The sign of these coefficients are completely arbitrary for now, and are chosen keeping in mind later

convenience.

- 11 -



In the light-cone frame the metric can be written as,

d
ds® = —2dxTdr™ + ) (da'), (4.3)

i=1
Suppose we view the QFT in this light-cone frame and evolve it in light-cone time z7T.
Then, for fixed light-cone momentum P_, we obtain a system in d + 1 dimensions with
non-relativistic invariance. This is because the symmetry algebra of the relativistic theory
reduces to corresponding non-relativistic symmetry algebra upon light-cone reduction. For
example, if the relativistic theory is invariant under Poincaré transformation, then the cor-
responding algebra (SO(d + 1, 1)) reduces to d dimensional Galilean algebra. On the other
hand if we consider a QFT with conformal invariance in (d+ 1) 4+ 1 dimensions, then upon
light cone reduction the corresponding algebra (SO(d + 2,2)) reduces to Schrodinger alge-
bra in d spatial dimensions. This is known as discrete light-cone quantization of quantum

field theories.

Since hydrodynamics is low energy fluctuation of equilibrium quantum field theory,
light-cone reduction of relativistic constitutive equations boil down to the non-relativistic
constitutive equations for a fluid in one lower dimension. Relativistic charged fluid in
(d+ 1,1)-dim, as we have already discussed, has d + 3 degrees of freedom: temperature,
chemical potential and normalized velocities. On the other had, a non-relativistic fluid in d
spatial dimensions also has total d + 3 degrees of freedom: temperature, pressure, chemical
potential and velocities. Our goal is to consider the most generic relativistic anomalous fluid
system in presence of background electromagnetic fields in (3 4+ 1) dimensions and reduce
the constitutive equation (also equation for entropy current) over light-cone coordinates
and obtain the corresponding non-relativistic equations for a fluid in one lower dimensions.
We also find a mapping between the degrees of freedom of the (d + 2)-dimensional fluid to
the degrees of freedom of the (d 4 1)-dimensional fluid.

We denote the d spatial coordinates with z?. Metric components in light-cone coordi-

nates are given by
g9 =69 and ¢t = -1, (4.4)

rest are zero. Gradient operator is given by,

V,={04+,0-,0;} and V¥ ={-0_,-04,0;}. (4.5)
As we have seen that not all components of u/, J}" and T"” are independent, from eq. (2.21)
we get,
T=—(1+u’ 4,
utJT = Qr +uiJ —u Jf (4.7)

utTh = But + w, T — w~ THF.

We shall reduce the theory along the x~ direction, and consider 2+ to be the non-relativistic
time. We will consider only solutions to the relativistic equations that do not depend on
2~ ; that is, all derivatives 0_ vanish.

- 12 —



4.1 Reduction of background fields

We reduce the Maxwell’s equations for the background fields of relativistic fluid to get con-
sistent background for non-relativistic theory. Maxwell’s equations for relativistic system
are given by (we shall assume that the sources for these background fields are far away
from the fluid),

V. FIY =0, (4.9)

Under light-cone reduction the above equations take the following form:

V2Af =0,
Vi (V'A; + V4 A}) = —V31AT,
Vi (viAﬂ,’ - viAg) = VIV, AT (4.10)

These equations can be identified with source free static Maxwell’s equations of a non-
relativistic system if we map:”

A, = ¢; (scalar potential),

t = a% (vector potential), (4.11)
and
V'V;Af =0, ViV AT =0, V'V AT =0. (4.12)
Which would inturn tell us
ViA},V;Af = constant. (4.13)

We would however like A? to have some finite value at infinity, which will enforce:
A} = constant. (4.14)

With this identification, from eq. (2.19) one can show that

Ef =0, E; = ue}, By =ute, — u]ﬂji, (4.15)
and

B}" = —u+6ijﬁ§j, By = ufei]ﬂ}'j — 26ij’u,i6]1',

Bt = —2u+eije§, (4.16)
where, €} = —9'¢; — Oya’; and B}j = 8’@31' — dat.

"In appendix A we have discussed how to expand Maxwell’s equations in powers of 1/c to get the
non-relativistic limit.

~13 -



Finally let us check what happens to the gauge freedom in relativistic side. The gauge
transformation is give by,

AP s AF 4 TFA, (4.17)

In the light-cone coordinates it becomes

At — AT,
A” = AT — VA,
A" — A"+ VA, (4.18)

Thus we see that the gauge freedom of relativistic theory reduces to the gauge freedom of
the non-relativistic theory. Additionally A", which we have fixed to be a constant, under a
gauge choice does not change. Otherwise, one could perform a local gauge transformation
to modify AT to a non constant value, which would then break our identification.

4.2 Reduction of energy-momentum tensor and charge current
The reduction of relativistic equations of energy-momentum and charge conservation after
using eq. (4.14) are given by:
Vi T+ Vv,T =0,
ViTT™ + VT = —J; (VA7 + Vi An),
VAT 4 VT = —JF (VA + VAT ) =} (Vid] = V7 Ap)
ViJi +ViJ; ={CrxkE"Bg,} = 0.

R.H.S. of eq. (4.22) can be shown to vanish explicitly after reduction in four dimensions.

These equations reduce to non-relativistic equations under following identifications

TH = P T = pvia
1 . . . .
Tt =e+ 5pvz, T~ = j°, T4 = ¢
Jf =, Jb=jt. (4.23)

The identification also tells that the non-relativistic charge current is conserved, while the
relativistic charge current was not. We shall now attempt to use this mapping to establish
relations between relativistic and non-relativistic parameters.

A point worth noting is that identifications eq. (4.23) are not unique, to give the NR
constitutive equations. NR fluid has only one vector constitutive equation, and LCR also
gives just one vector equation, which will set sum of the identifications unique. However
scalar equations from LCR can be mixed in any linear combination to give the scalar
constitutive equations, to do which however one must introduce certain dimension-full
constants to the theory. To avoid these constants we have avoided linear combinations and
hence reached eq. (4.23).
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4.2.1 T+ calculation

Using eq. (2.27) and (2.13) we can show:

and thus:
T = (E+ P)(u™)’ + (u")* (nZ — ().

Identifying 7T+ = p

p=(E+P)(u")?+ (u")? (nZ —¢0).
4.2.2 T'" calculation
Using eq. (2.27) and (2.13) we can show:

1.
—Zu'uT,

Ti-i- — lYl o
2 2

0t = wiuTo,

where,

YH = YHT = Bt —
<v“ E+pP " E+P

Using eq. (4.26), we will find,

Identifying Tt = pv’

4.2.3 T calculation

Using eq. (2.27) we will find:

1 y g 2 o
1] — _ Yl] le _ 2]9 _ Z v,,]
T 5 + d+1 1g U W
It’s easy to check that:
u*V FE u*V P
- — = VR,
(E+P) (E+P) K

and thus introducing Z from eq. (2.28),

2 1 2
——f0=ZZ—uT= R
(d+1)0 4 U dvkv

Using the above relations and the identity:

YH =yt VR 4 0 YH,

~15 —
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(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)

(4.34)



we find that: N
. iy L L L .
T = <u+a” +0'Y + Y+ %Z — (u*)?0'? Z) ;
where 0% is given by eq. (3.10). Similarly using eq. (2.13) we can reach to:

. L u*Vo P i i g
9l — _gmﬁ +gZ]U+VkUk + (u+)2UZUJ‘9,

and thus:

g o - ay p 3 3
TY = v p+ g¥ [P— <nZ—Cu Va )] —nuto — Cutgiv .

d E+ P

Identifying T% = t%

n u*Vo P
=P—|-Z—-
P (d CE+P>’
n=nut,
z=Cut.

4.2.4 T* calculation
Using eq. (4.8), (4.25) and (4.29) we can find:

_ 1

T+
2

(E—P) (nZ—CG)—i—%pvz.

1
2
1
Identifying 77~ = e + ipv2
1 1
=—(EF—-P)—=-(nZ—-_0).
e= (B~ P)~ L (nZ —C6)

4.2.5 T~ calculation
Using eq. (4.8), (4.29) and (4.37) we can find:

' ' 1 ) ‘ 1 ;
T = (6 +p+ 2pv2) — nJZk’Uk — Z’Ule’Uk + 77(u+)2Yl.

The last term can be written as:

- loi (T QiT ,; (M Qr
Y ==V |— ) —nut==V" "= R )
UOBE T <u+> "y (T)*”“ p
We identify (leading order):
T My
T = UT’ 2 F? qI:QIqua
and N
k=1 —op" p, or = ndL
Tut TP p
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(4.36)

(4.37)

(4.38)

(4.39)
(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)



With this identification we get,

1

WWY = —kV'T — 10;V" ( ) +or(€} UJB”) (4.47)

Identifying 7%~ = j° we have:
=" (E +p+ 2pv2> — nofuy, — 20"V ok — kViT — 70,V <%) + o€y —v;B7"). (4.48)

Comparing it with (3.12), we find that we have the expected form. Also we have estabilished
relations between charge, electric and magnetic conductivities:

&

=07 = aj. 4.49
- oy ar ( )
4.2.6 J' calculation
Using eq. (2.16) we can find
+ M,y v + +
Tf =~ 'V, (5 ) — ety T+ {0t + 0B} | (4.50)
M= e (uh)2V0; = =¥ (uh)? Vi, (4.51)

Using eq. (4.16) we can write
Tt =—ut |:Q[JUVV,, (?) + 'V, T + {U[GijU+Vin + 6]J€ij,3f]j} ] . (4.52)
Identifying JIJr =qr,
g =u"Qr+utwy, (4.53)
where,
wy = — [guu”vy (%}) + UV, T + {UIeiju-FVivj + Sjjﬁijﬁy} } . (4.54)
This tells us the sub-leading correction to non-relativistic charges.

4.2.7 J' calculation

Using eq. (2.16) we can find
i iv M, i iv i 7 i
Ty = —ors PV, (5 ) + Ay By = PV, + {o+0,87}. (4.55)
One can find using eq. (4.44) that:

{I'} = {o"I" + (uh)*E"}, (4.56)
where

{2} = {eij ( (u1+) VT + ij (lj_l) - Zvjp-i- :)QJEJj> } (4.57)
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Certain velocity dependent terms appear in the above expression, which can be shown to
sum to zero in 2 spatial dimensions.

Using thermodynamic relations eq. (2.6), (2.7), (4.44), along with all light cone iden-
tifications, we will find

+ 2
; ; VIUTT Kqr ; q; T°qs i (g
LY e L v/ v (. — stV (—)

0Jq1 . ki 2 i U; i
! <z<+p> * A) (e —ws’) - {wwpa} Vip+ {} v,r

+ {U[(u+)2(yp7-€ij} Vj (%) + {U[(u+)2q’j€ij — 8[JU+2€ij} (EJj — ’Uk,Bka) .

(4.58)
We identify
mr = i’ &y = |ors + _Snar mrqyT
2(e+p)’ 2(e +p) ’
- Kqr ~ ~ + 0JqI1
K , ory=ar;= |Apjut + ——|,
"7 e +p) e [ " 2(e +p)]
_ 2wy - w
mp = —, €1y =€,
p n
Ri = kot o1y =ar; = [O’Jﬂ - 20314 ; (4.59)
n n
where,
wr = U;uh)?, Opp=0put. (4.60)
Finally we have the desired form of charge current
it = qro' + <, (4.61)

f = =RV =&V <%) — i V'p+ 61 (63 - Ukﬁ?)
—i—{/%]eijVjT + &€V <ﬂ> — €IV p+ G169 (EJ]‘ - vkﬁjkj) }, (4.62)
T

Note that all transport coefficients are not independent. The only independent coefficients
are: mr, £1, 01, wr and @Wry.

Wiedemann-Franz law. This famous law predicts that the ratio of charge conduc-
tivity (which appears in charge current)® to thermal conductivity (which appears in en-
ergy current) in metals as: 6/k = 1/L7, where L is the Lorenz number predicted to be
~ 2.45 x 1078 WQK 2. The law is found to be in good agreement with experiments. We
attempt to check the same in our setup:’

= 2
G po q
i 4 , 4.63
K 2n(e+p)  4(e+p)? (4.63)

8Lets consider only one U(1) charge here.
9We have used here the fact that non-relativistic system respects the constraint 7675 = &1, which has
been showed in next section.
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We model the electrons in metals as free classical gas with no external pressure: fluid
with homogeneous particles each of charge e (electronic charge), mass m,. and average
energy 3/2kpT. One can check that under mentioned assumptions, our system follows
Wiedemann-Franz Law with Lorenz number given as:

2 —1
0 Me e
L=(= i 4.64
(n 3kp * gk?g) ’ (4.64)

As we shall see later, for the case with only single kind of particles (p o ¢), all the

coefficients in our theory vanish except n. In this very particular case however, we can
check that Lorenz number is given approximately by: 6.68 x 1078 WQK 2, given our
assumptions, which is in fair agreement with the experimental value.

4.3 Thermodynamics of the reduced system

We start with a relativistic system with variables satisfying the eq. (2.4) and (2.6). The
first equation is the first law of thermodynamics and the second equation is called the
Euler’s equation. The Euler equation follows from the additive property of internal energy
which is a homogeneous function of degree one. After light-cone reduction when we map
non-relativistic variables in terms of relativistic ones, we see that at the leading order (ideal
fluid), non-relativistic variables satisfy the following two equations,

de = 7ds + pydgr + (e +p — 87— QJMI)dpp>

2(e+p) = ST+ prqr- (4.65)

Here we have identified the non-relativistic entropy density s = Su™*. The first equation,
which follows from eq. (2.4), is the first law of thermodynamics satisfied by the non-
relativistic variables. The second, coming from eq. (2.6), is not exactly the Euler’s equation
for non-relativistic variables. We comment on this equation at the end of this sub-section.

As we consider the first derivative corrections to non-relativistic variables (evaluated
in the previous sub-section), the first law of thermodynamics changes. However, that can
not be the case. If we demand that our non-relativistic system is a physical one, then the
first law should be satisfied by the non-relativistic variables at every order in derivative
expansion. This demand forces us to add some higher derivative corrections to entropy
density which we could not determine in section 4.23. Let’s assume the following corrected
forms:

s=Sut(1+x), (4.66)

X is corresponding corrections.
Demanding first law of thermodynamics to be satisfied at first order in derivative

we get:
TSdX—i—M[de—M]wI E — xM; dQr — @1 dFE
E+P E+P
g AT . dB uO‘VaE_I_Cd(E—P)uO‘Va(E—P)
-4 "E+P “EXPE+P E+P E+P

d+2 ay, P AP dut
+XST+M1m+n;z<<9+2“V ”( “

(A
E+P E—I—P+u+> (4.67)
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Note that, thermodynamic relations (2.6)—(2.7), conservation equations (2.24)—(2.26) u
to first order and all the identifications between non-relativistic and relativistic variables
(obtained by LCR) have been extensively used to carry out the above computation. Now,

using (2.24)—(2.26), we can write the above equation in the following form!°

d+1

TSu'V ,x + MtV wr + Mrwr = —n—— 5

— 0% 4 C(ut)? (vkka . (4.68)
This equation fixes the correction to the entropy density.

The last equation in (4.65), which follows from Euler’s equation (for the relativis-
tic variables) does not imply that the non-relativistic energy density € is a homogeneous
function of degree one. In fact, this equation gets modified with the corrected values of
non-relativistic entropy density.'’ Therefore, we conclude that the non-relativistic system
we obtain after light-cone reduction of a homogeneous relativistic fluid system, is not homo-
geneous any more (even at the leading order) i.e. the internal energy is not a homogeneous
function of degree one.

5 Non-relativistic entropy current

The goal of this section is to write down an entropy current for a non-relativistic fluid
system, and find constraints on various transport coefficients from the positivity of local
entropy production. Using eq. (4.68) and properties of Y#¥ | one can reduce the eq. (2.36)
and after a lengthy algebra, we get the following equation,

Vs + Vijh + Vi (”)2Y>

T(ut
L e O e )
[t () gt [ )
O] {w a7
I () s [0 v () [z oo}

(5.1)

where jfg is the non-relativistic canonical entropy current defined as (similar to relativistic

canonical entropy current given by eq. (2.34)),

jé = s — %g} (5.2)

9There will be two terms proportional to {Crsx EY Br,} which we have checked will vanish after reduc-
tion.

11 Although the form of this equation can be maintained by adding some one derivative correction to
temperature or chemical potential.
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Non-rel. variables Rel. variables
Velocit v — Y
elocity v o T WETD)
Mass Density p WhHX(E + P) + (u™)2 (nZ — ¢H)
1 1
Energy Density € i(E —P)— 5 (nZ — ¢0)
« aP
Pressure P P— (ZZ — CuEZ iz )
Charge qr u+Q1 — u+Ujeiju+Vivj
Entropy s Sut(1+x)
Scalar Potential or A7
Vector Potential a§ A§

® Z is given by eq. (2.28), Y' is given by eq. (4.28) and x is given by eq. (4.68).
Table 1. Relations between relativistic parameters and non-relativistic parameters (parity-even
fluid)
We can rewrite eq. (5.1) in more conventional form as
i In 1 K2, Lo i (M1 i ki
Vis+Vijg = == + —2(Vyv")  + =V {HViT +7101V (—) —or(e; — vkBr )}
T2 T T T
k
€1 — U . ,
G|, (’“)] o, (5.3)
T T
The first three terms on the right hand side survive for uncharged dissipative fluid [1].
Here we compute the other terms which are responsible for local entropy production for
parity-odd charged fluid in presence of background fields. Since we demand that the fluid

satisfies the second law of thermodynamics, the right hand side of eqn. (5.1) should be
positive definite. This implies following constraints on the transport coefficients

1-
Th[:O, nZO, ZZO, 5[(]2751(],
-
[EIJ - gqu} matrix is positive definite. (5.4)
2(e+p)

These constraints are compatible with what we get from relativistic entropy production
condition. However the last term in eq. (5.1) is a parity odd term and can not be written
as a perfect square. Therefore, it seems that the presence of this term breaks the second
law of thermodynamics. However, similar to the relativistic fluid dynamics, we can add
extra parity-odd terms (allowed by symmetry) to entropy current to make right hand side
a perfect square.

Note that the last term in eq. (5.1) appears only in 2 + 1 dimensions. Since the first
order parity-odd terms in eq. (5.1) do not appear in the non-relativistic fluid theories in
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Non-rel. variables Rel. variables
Bulk Vi -
! u iscos » cut
ity
Shear Vis- "
. n nu
coslity
Electrical
Conductiv- orJg Arjut +nutQrQr/(E + P)2
ity
Thermal
Conductiv- K 2n(e+p)/Tp
ity
R[ qul/2(6 + p)
Charge Con- /
o n
ductivity ! urp
Momentum t” ’Uinp —|—ng‘7 _ naij _ Zgijvkvk
Current.
i L 5
v|le+p+ i,ov
Energy Cur- | A . A
rent J —no*u, — 20V ok — kViT
—TU[Vi (ﬂ> + og <e} — Wﬂf)
T
i~ i ~ i (HJ
Charge Cur- | Qv — RIV'T =701V (7)
J1 ‘ ,
rent +51, (ef] _ "Ukﬁﬁl)
L)y gup— ~ i (T
Entropy i sv' + Tl(mV’t —|— To1V' (7)
Current —51J <E(Z] — Ukﬁﬁl) )

Table 2. Relations between relativistic and non-relativistic transport coefficients, energy momen-
tum tensors and currents (parity-even fluid)

more than two spatial dimensions, we have a complete and consistent description'? for
these theories. We summarize the results for them in tables 1, 2.

5.1 Parity-odd corrections to NR entropy current

For fluids in two spatial dimensions however, we must add some parity-odd terms to the
entropy current with some arbitrary transport coefficients and determine them from the
condition that there is no local entropy loss during the flow of the system. We make the
most generic parity-odd modification to the entropy current in two spatial dimensions as
follows

jfg — ij + {aeijVjT + bjeijvj (%) + ceijvjp + D]Eijfjj + fjeijvkﬂlkj}. (5.5)

12This is the description of a non-relativistic fluid obtained from the most generic relativistic fluid.
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a, by, ¢, 07 and f; are arbitrary transport coefficients. After adding these extra terms the
right hand side of eq. (5.1) can be written as (parity-odd part only)

{V (aeJV T—FbIe”V ( >+ce”V D+ 7€ 61J+f16 0 ﬁjk>}

1 .2
+ |:TE} — VZ (lj_l):| {wI:i — wIJ+Ef]6ij}

= {e¥v,7} Via—k{ €IV ( )}V br + {€’V;p} Vic

3 1
+ {e”qj}vmf + {2U 6J6hg} Vifr

{2} (7 () - 20,
2wy

1 wr T - ny
+ {G’JTE } <7WV]-T + ; (wrqs + wyqr — 2p@y1) V; (7) — ijp>
1 wr - 2 1 iy & g
+ { TEIz} (pQJEJj — wIJwEJj> t3 {fﬁ”ﬁujvkv — DIGZJV+BIij}
0 (5.6)

To obey the second law of thermodynamics we claim that the coefficients of all the inde-
pendent terms must vanish. This is possible except for the last two terms, for which we
get the following sets of constraints:

da  Oc

op or
O b _ctp2u
our/T) O T op’
db; Oc 2wy

- === 5.7
dp  Our/T)  p (5.7)
O _ v _etpa
or  or 12 p’
% 33[ 2&)[
op Op  Tp’
ofr ooy 1
- = wrqy +wyqr — 2p01 5.8
0us/m) ~ Ba/n) 5! ) 8
additionally, the following matrices must be symmetric:
2p0ry — wrqs,
£_0b, (5.9)

T

It should be noted that the new coefficients introduced in ij need not be most generic,
and their only significance is to make the parity-odd terms in entropy current vanish.
Hence, a minimal choice is as follows:

a=rc=0, fr = -0y, (5.10)
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which solves the respective constraints, and leaves us only two independent coefficients in
entropy current: by and 0j.

Now we turn attention towards the last two terms of eq. (5.6). They vanish if we
consider the fluid is incompressible and placed in a time independent background. For
compressible fluid the second last term is non-zero and can be negative. Hence the second
law implies that the f; = 9; = 0. As a result all the parity-odd terms vanish for compress-
ible fluid. The resultant fluid is completely parity-even and we summarize the results in
tables 1, 2. On the other hand if we consider the background field is time dependent, then
the last term can violate the second law. However, in that case, one has to be careful about
the change of entropy of the background also. The second law should hold for the fluid
and the background system together. The last term produces some vortex kind of motion
in the fluid. In that case the velocity of fluid particles around those vortexes becomes very
large and our analysis (derivative expansion) may break down.

It should be noted that we demand our non-relativistic system to obey the second law
of thermodynamics. We start with a relativistic fluid but never impose any physicality
constraint (except the fluid satisfies first law of thermodynamics) on the relativistic side.
Relativistic system, in our case, can be considered as a mathematical model (where we allow
all possible terms allowed by the symmetry). After reduction we see that at least for the
parity-even sector constraint from the second law turns out to be same (compatible) both
in relativistic and non-relativistic case (eq. (2.37) and (5.4)). But for parity-odd sectors
they are completely different. For example, Crjx do not even appear in non-relativistic
relations eq. (5.7)-(5.9), though for relativistic fluid the second law relates U; and Uz to
Crii (eq. (2.40)). Whereas for non-relativistic fluid one can consider w; and @r; to be
independent and f; and 9; are fixed in terms of them. However, one can also start with a
relativistic fluid satisfying second law of thermodynamics (as an additional condition). In
that case for an incompressible fluid it is possible to express the non-relativistic transport
coefficients (7,07, wr,@y) in terms of anomaly coefficients of the relativistic system. But
for compressible fluid it is not possible as these coefficients turn out to be zero.

5.2 Incompressible fluid in constant magnetic background in (241)-dim

Equation of state of an incompressible fluid is given by:
p = constant, (5.11)

which implies that Vzo* = 0, or in other words, there is no compression or expansion of
the fluid during the flow.
Using the non-relativistic constitutive equations one can easily show that:
de k ij i

% + (e +p)Vpo" =v,; Vi — V¢, (5.12)
which means that for incompressible fluids, de/d¢ is atmost two derivative in order, and is
zero for ideal fluids. Considering this result at first derivative order we can infer that:
u'v, P
E+P

in first derivative order. Same can be inferred directly from eq. (4.32).

UV (E—P)=0= -9, (5.13)
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Maxwell’s equation in the magnetic limit appendix A are given by:

Vieh =0, (5.14)
ViBi =0, (5.15)
2€ijV161j + Eijv+ﬁ]ij =0. (5.16)

Second equation implies that magnetic field is constant in space. Also, if magnetic field
12 is time independent (as we demand), electric field is curl free. But first equation
already tells us that electric field should be divergence-free. Hence electric field is constant
over the 2 dimensional space. However, electric field can still be time dependent, as the
corresponding term does not appear in the magnetic limit of Maxwell’s equations. Finally
in our case we have, a constant electric field (may depend on time) and a constant magnetic
field.
For this system, the form of jfg is given by
jb = svt — %U} +b7e9V; (%) + 07 <€[j — Ukﬂfkj) . (5.17)
where by and 05 are determined by equations (5.7)—(5.9). Hence we will get the positivity
of entropy in the form of eq. (5.3), along with constraints eq. (5.4). However w; and @&y
remain unconstrained by entropy positivity. Results of this case have been summarized in
tables 3.

6 Discussion

We started with a generic (d + 2)-dim non-conformal relativistic fluid (d > 2) with anoma-
lies specific to d = 2 in presence of background electromagnetic fields on flat space. Light
cone reduction of this system gives a (d + 1)-dim non-relativistic fluid. We demand that
our non-relativistic fluid satisfies the second law of thermodynamics which imposes certain
constraints on the system. For example we find that the parity odd terms in non-relativistic
theory can only sustain for incompressible fluid in electromagnetic background with con-
stant magnetic field in (2 4 1)-dim.

Our non-relativistic fluid (obtained by LCR) has generic? dissipative terms, which
are allowed by the symmetry and the condition that local entropy production is always
positive definite. LCR does not constraint the size of these coefficients. They all are fixed
in terms of the transport coefficients of the ‘mother’ relativistic theory. On the contrary,
when one performs a 1/c expansion the relativistic constitutive equations to get a non-
relativistic fluid system, as done in [15], many of these terms are suppressed depending
on the physical considerations and the type of system under view. We discuss the basic
aspects of 1/c expansion in appendix B.

Apart from the dissipative terms, our system and the system obtained by 1/c expansion
in [15] have certain fundamental differences. Firstly, their system is ‘extensive’ as the

13Word generic here just means all possible terms obtained by LCR, and not all possible terms allowed by
symmetry. We might have more or less terms, depending on the type of relativistic theory we are starting
with and the identification.

— 95—



Non-rel. variables Rel. variables

Parity-odd | wy Or(ut)?
coefficients | @y Oryut
Mom. Curr. | t¥ vl p + pg — not
. 1 ;
Energy i v <e +p+ 2pv2> — no'*uy,
Current —kV'r — 70V (%) tog (5ZI - Ujﬁ?)
qvi — /?d[viT — T&[JVi (£>
-
Charge 7 +01g (ffj - Ukﬁﬁ'i)
| 2
Current 4wre’ (EVjT + —UJTVj (ﬂ) — fvjp>
n n T p
+ars€” (€Jj - Uk,Bka)
sot + 2L (”]Vif + 7615V <&>
T ' ' T
Entropy y —0rJ (63 — By )
Current ——wre” (—Vﬂ - ijp>
T n p
+ (b, — L) iy (&)
-

;N
+ (UJ - %‘UJ) e (éJj - U%ka)

Table 3. Relativistic and non-relativistic transport coefficients for parity-odd fluid

thermodynamic variables follow Euler’s relation; however since LCR, breaks the Euler’s
relation, our system is no longer extensive. Secondly, in our system p is not necessarily
proportional to g7, while in [15] it is true at least at the leading 1/c order. This is why our
non-relativistic system has one more independent parameter as opposed to the 1/c case.
We can however enforce p x ¢y in our system as well, but it turns out that demanding so
switches off all the dissipative terms from the theory except for the bulk viscosity.

In [15] authors do not present an entropy current calculation for non-relativistic fluid
obtained by 1/c expansion. In fact, as we will review in appendix B, the entropy positivity
turns out to be trivial, and is just followed from the leading order entropy current of
the relativistic theory. The constraints on the transport coefficients (which survives at
the leading order) also turns out to be the same. However in our case, we have slightly
different constraints, because of the above mentioned fundamental differences between the
two cases.
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A Magnetic limit of electrodynamics

Maxwell’s Electrodynamics is a relativistic theory. In fact it was a precursor to Einstein’s
Special Theory of Relativity. Having a consistent relativistic description of electrodynam-
ics, eradicated any need for a ‘non-relativistic’ theory of electrodynamics. However as
in current context, one needs a Galilean description of electrodynamics, just to keep it
consistent with other non-relativistic theories.

Recently in [18], authors discussed the non-relativistic limit of electrodynamics in
two distinct ways. Depending on the strength of fields,'* we can have two discrete non-
relativistic limits: |E| > ¢|B| electric limit and |E| < ¢/B| magnetic limit. We find
that the light-cone reduction of relativistic sourceless Maxwell’s equations, under certain
identifications, gives magnetic limit of Maxwell’s equations, which will be our interest of
discussion here. A more thorough discussion of non-relativistic electrodynamics can be
found in [18].

In arbitrary dimensions, inhomogeneous Maxwell’s equations are given by:

ViF? = —pgep, VoF + Viji = —poJ?, (A.1)
while the homogeneous ones (Bianchi identities) are:
ey Fy =0, (A.2)

where €% ig the full-rank Levi-Cevita tensor. The last identity follows directly from the
gauge invariant form of F* = V*AY — V¥ A or the constituent fields:!® E? = —Vigp—VyA®
and FY = V'AJ — V/A*. As LCR gives a non-relativistic theory with gauge invariance,
we are interested in a non-relativistic limit which preserves eq. (A.2). We will see that the
magnetic limit essentially does the same. However there exists a consistent electric limit
as well, where Bianchi identities are broken, but inhomogeneous Maxwell’s equations are
preserved.

In terms of dimensionless fields and sources one can write the inhomogeneous Maxwell’s
equations as:

. o . 3 .
aV;E' = p, BEEZ + V,;F7" = —gJ’, (A.3)
and the Bianchi identities as:
o 1 o ..
elm-nijle] = —Biﬁlm...ijaF”, (A4)
em M = 0, (A.5)

1411 this section we use the conventional notation for electrodynamics: F for electric field, B for magnetic
field, p for charge density, J for charge current etc.

5Instead of the conventional magnetic field, we use its 2nd rank dual in our work, as in arbitrary
dimensions we do not have electromagnetic duality and magnetic field does not have any fixed rank, while
its dual has.
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where « and 8 are some dimensionless constants given by:

C[Be . 0
S T me (4.6)

From here we can easily read out, that in non-relativistic limit § < 0. To preserve the

Bianchi identities therefore, E? should be one order smaller than F%; which is why this
limit is called ‘magnetic limit’. If we measure smallness in terms of a parameter € ~ 1/c,
we will have E* ~ ¢! and F% ~ €. Therefore from eq. (A.3), first nontrivial order of
p ~ ae"l and J' ~ ae" !, and inhomogeneous Maxwell’s Equations (in conventional
units) reduce to:
V.E = Eﬁ, Vi = (A7)
o

Essentially we have just dropped the displacement current term from the Ampere’s Law.
To explicitly see if this limit is Galilean invariant, one can lookup [18]. These are the very
equations that have been used in section 4.1 and 5.2.

One can now push the expansion of eq. (A.3) to €"*2 order and derive the continuity
equation:

0 .
a0+ ViJ =0, (A.8)

It should be remembered however that there are mixed orders in this equation and to
the highest order it just states: V;J* = 0, which also follows from eq. (A.7). Continuity
equation takes its usual form only when first two leading orders of J? vanish and p ~ J, but
in which case one of the Maxwell’s equations modifies to: V;F 7" = 0. This in conjugation
with the Bianchi identity would mean that the magnetic field is constant over space.

n

Finally in conventional units this limit can be summarized as: F%7 ~ E' ~ ¢, and to

the maximum order p ~ ¢ "¢,, J* ~ c "2,

B 1/c expansion of relativistic fluid dynamics

In this section we discuss briefly the 1/c¢ expansion limit of relativistic fluid dynamics to get
a non-relativistic theory, using the prescription of [15]. We consider here just a parity-even
fluid for comparison with our work. Parity-odd sector in our case and in [15] are in different
hydrodynamic frames and thus are incomparable.

The constitutive equations of a relativistic fluid (with appropriate factors of ¢) are:

V. TH = cF{*Jia, VHJ}”‘ =0, (B.1)
where

™ = (E + P)u*u” + Pg"" + 11", (B.2)
J}w = Q[u# + U?. (B.3)

Respective dissipative terms are given as:
" = —2prH" — (O PH", (B.4)

1 M 1

TI; = _ETA]JPMVVV (;) + EA]JE? <B5)
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We can separate out rest contributions from E and Mj:
1
E =R +E, M; = Em;c2+,u1. (B.6)
Here my is the mass is to ‘I’'th charge ratio of constituent particles in their local rest frame,
which is assumed to be constant. K is the total number of U(1) charges. Non-relativistic
mass and energy density are related to their relativistic counterparts as:

p=RIL, e=~£&T, (B.7)

where I' = (1 —v2/c?)~!. Since the fluid under consideration is single component, R/Q; =
my is a constant. Non-relativistic charge density is defined as:

qr = Jj. (B.8)

Pressure and Temperature are however kept same, which to be consistent with the main
text notation we will denote as: 7 =T and p = P.

Before continuing with expansion we need to fix the order of various quantities. p,e,p, 7,0’
can be thought of finite order without much ambiguity. m; on the other hand is quite sen-
sitive to the kind of system under consideration. Let us consider a charged fluid made of
‘ions’ where my ~ ¢?; my cannot be too low, or else the fluid would start coupling to the
background fields. Correspondingly the charge density ¢; would be of order ¢~2. Further,
to keep the thermodynamics intact, one has to assume p; to be of order of ¢?. Finally, for
external fields to have finite effect (e.g. force) on the fluid, €} ~ ﬁ}j ~

Using this information we can reduce the energy-momentum tensor to:

1
T% = pc? + ~pv? + e+ O(1/c),

2
T = pvlc+ (;pv2 +e —i—p) %Z + %Wijvj +0(1/c%),
TV =9 + O(1/c), t9 = pv'v? + pg + 7, (B.9)
where we have used:
ne  L_S (B.10)
c c
= —n <Vivj + Vgt — gijzvigvk> — 297 V0", (B.11)
Energy-momentum conservation equations, at highest order, will then reduce to:
Owp + 0;(pv') = 0, (B.12)
0 (pv') + 05t = ébqr + B4y, (B.13)

It will be worth to mention here the underlying assumption: n,z ~ 1 which is just an
empirical fact. This is precisely the reason why no dissipative corrections appear to the
continuity equation. We can now expand the charge current:

JIOZQD q]:QIF+O(1/CG)7
Jr = i +0(1/c"), Jr = qmv + ¢y, (B.14)
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where we have used:

. A .
o1y = %, Y1J = 7%, (B.15)

C} = 6251J@Vi7'. (B.16)
Kt

Here again we have used a physical input to fix the order of ;5. We would demand that
in the non-relativistic theory, charge to mass ratio should be a constant. Therefore charge
continuity and mass continuity equations should be the same upto leading order in 1/c,
and hence g} should at maximum be of the order of ¢~%. It further implies that 677 ~ ¢~ 8.
As a consequence, effects like electric conductivity are suppressed in whole theory.

Finally we use: V, (T Ho _ %m 12T 3 ) = 0 to get the energy conservation:

1 el .
Ot [2pv2 + e] + 0; |:UZ (va2 +e+ P> + gl] =0, (B.17)
s = 1v; — KV'T, (B.18)
where we have identified the thermal conductivity:

4 Ay @
cC-mrmy

K2 -

KR=071]J

(B.19)

which is of finite order.

The non-relativistic theory has essentially turned out to be identical to the chargeless
fluid discussed in [1], because for uni-component fluids, charge density serves just as number
density upto a factor. For multi-particle fluids however this might become more interesting,
as then one does not have to expect charge is to mass ratio to be constant. In fact one can
have some chargeless particles also in the system.

B.1 1/c expansion of thermodynamics

First law of thermodynamics and the Euler’s relation in the relativistic theory are given by:
dE =TdS + M;dQy, (B.20)
E+P=TS+ MQy. (B.21)

Under 1/c expansion they reduce to:
de = eds + pydgy, (B.22)

€+p=7s+ uqr, (B.23)
which are just the non-relativistic analogues of the same equations. We therefore conclude
that the non-relativistic system gained by 1/c¢ expansion follows extensivity.

Now lets have a look at the second law of thermodynamics in the relativistic side,
which mentions: V,J§ > 0. From eq. (2.35) we know the positive definite form of entropy
current:

1 v ]. Ea 1 Yo MI EJOl 1 v MJ
VuJE = TnT“ T + T492+ ﬁ — EP v <T>} orJ [CQT - EPaz/v (T .
(B.24)
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In highest order this equation for non-relativistic systems says that:
Vis + Vijs = g-no'loy + ~z (Veh) + 5 (Vir)* (B.25)
2T T T

But if we look at the respective coefficients from the relativistic side:

n=Ts0  :=S>0 (B.26)
C C
3 mym$
R = Q[J@ T2 2 0. (B27)

We hence see that the relativistic entropy positivity implies non-relativistic entropy posi-
tivity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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