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1 Introduction and summary

Hydrodynamics is an effective description of nearly equilibrium interacting many body

system. A fluid system is considered to be continuous, i.e. when we talk about a small

volume element (or ‘fluid particle’) of the fluid, it still contains a large number of constituent

particles (atoms/molecules). More specifically, the size of the fluid particle is much much

greater than the mean free path of the system. The equations of hydrodynamics assume
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that the fluid is in local thermodynamic equilibrium at each point in space and time,1

even though different thermodynamic quantities like fluid velocity ~v(~x, t), energy density

ε(~x, t), pressure p(~x, t), fluid density ρ(~x, t), temperature τ(~x, t) etc. may vary. Fluid

mechanics applies only when the length scales of variation of thermodynamic variables are

large compared to equilibration length scale of the fluid, namely the mean free path [1].

Although hydrodynamics is an old and well-studied subject in physics, recently there

has been much interest and progress in relativistic, charged, viscous fluid in presence of some

global anomaly. The first evidence of relativistic anomalous fluids was observed in [2, 3],

in the context of the AdS/CFT correspondence. In these papers the authors found a new

term (and hence a new transport coefficient) in the charge current in presence of a Chern-

Simons term in the bulk Lagrangian. Later, in [4] it has been shown that this kind of term

in charge current is not only allowed by the symmetry but is required by triangle anomalies

and the second law of thermodynamics. Demanding the positivity of local entropy current

they showed that the coefficient of this new term is also fixed in terms of anomaly coefficient

of the theory. In general, the second law of thermodynamics (or equivalently, positivity

of local entropy current) imposes restrictions on different transport coefficients. Interested

readers can look at [5–12].

This was about relativistic fluids. Much attention has not been paid in parity-odd

charged non-relativistic fluid in presence of background electromagnetic fields. In [13] an

attempt has been made to study non-relativistic neutral fluids as a consistent light-cone

reduction of relativistic fluid systems. In [14], the idea has been extended to charged fluid

without any background field. However, main focus of these two papers was to construct

the holographic duals of long wave length fluctuations (hydrodynamic limit) of conformal

non-relativistic field theories. They also computed few transport coefficients (for example

thermal conductivity) holographically.

Recently in [15], non-relativistic, parity-odd, first order charged fluid in 2 dimensions

has been discussed. The authors started with a 2 + 1 dimensional relativistic, parity-odd

charged fluid in presence of background gauge fields and took suitable non-relativistic limit

of the system. They identified the parity-violating contributions to the non-relativistic

constitutive relations, which include the Hall current flowing perpendicular to the tem-

perature gradient, the Hall viscosity and the Leduc-Righi energy current.2 However, in

these papers, much attention has not been paid to second law of thermodynamics. It is

well known that the local second law of thermodynamics imposes several constraints on

the flow and the transport coefficients. For example, the local second law demands that

shear, bulk viscosity coefficients and thermal conductivity have to be positive definite for

a non-relativistic fluid [1]. This particular issue, for relativistic fluid, has been discussed

vividly in various papers mentioned above. However, the constraints from second law of

thermodynamics are not yet well understood for a general class of non-relativistic fluids

(charged fluid in presence of background fields). Goal of this paper is to write down a

local entropy current, which satisfies second law of thermodynamics, for a non-relativistic

1The modern understanding of hydrodynamics however, suggests that it starts to apply long before the

absolute equilibrium is reached.
2See also [16].
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charged fluid in presence of arbitrary background electromagnetic field and to study the

constraints on the transport coefficients.

One way to obtain the energy momentum tensor, charge current and entropy current for

a non-relativistic theory is to reduce the constitutive equations and entropy current equa-

tion of a relativistic fluid over a light-cone direction. We start with a (3 + 1)-dimensional

relativistic charged fluid with global U(1)3 anomaly and write down their non-relativistic

counterparts. We follow the light-cone reduction technique, which was introduced in [13],

and shall as well review it in our paper. Let us conclude this section with an outline and

summary of our main results.

Outline and summary.

• In section 2 we consider first order, relativistic, charged anomalous fluid in (3 + 1)

dimensions in presence of background electromagnetic fields. We briefly review the

work of [4] and show how parity-odd transport coefficients are related to the coefficient

of anomaly from the positivity of divergence of local entropy current.

• In section 3 we highlight the important equations of non-relativistic hydrodynamic

system.

• In section 4 we consistently obtain the energy current density (ji), stress tensor (tij)

and charge current density (jiI) of non-relativistic fluid by Light Cone Reduction

(LCR). We also find different non-relativistic fluid variables (thermodynamic quan-

tities and transport coefficients) in terms of the relativistic fluid variables. Here we

mention the final expression for stress tensor, energy current and charge current:3

tij = vivjρ+ pgij − nσij − zgij∇kvk,

ji = vi
(
ε+ p+

1

2
ρv2

)
− nσikvk − zvi∇kvk − κ∇iτ − τσI∇i

(µI
τ

)
+ σI(ε

i
I − vjβ

ji
I ),

jiI = qIv
i − κ̃I∇iτ − ξ̃IJ∇i

(µJ
τ

)
− m̃I∇ip

+ σ̃IJ

(
εiJ − vkβkiJ

)
+
{
κ̄Iε

ij∇jτ + ξ̄IJε
ij∇j

(µJ
τ

)
− m̄Iε

ij∇jp+ σ̄IJε
ij
(
εJj − vkβJkj

)}
. (1.1)

All the non-relativistic transport coefficients are fixed in terms of relativistic transport

coefficients and other thermodynamic variables. Explicit relations have been provided

in the main text.

• In charge current we identify the thermal Hall contribution κ̄Iε
ij∇jτ (where τ is the

temperature of non-relativistic fluid). The Hall energy flow sourced by the tempera-

ture gradient is known as the Leduc-Righi effect. It has been predicted in condensed

3We started out with a relativistic fluid in Landau frame, due to which Light Cone Reduction gives

a non-relativistic fluid also in a particular frame. A trivial transformation of fluid velocity parameter

vi → vi + α(µ, T )εijvj , can give many other terms out of which Hall viscosity will also be one. Since we

reduce the fluid in a particular hydrodynamic frame, those terms do not appear.
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matter physics, that this kind of effect can be observed in various topological insula-

tors.

• We also obtain the electromagnetic Hall energy current (parity-odd)

σ̄IJε
ij
(
εJj − vkβJkj

)
, where εJj is the applied electric field and βIij is propor-

tional to the applied magnetic field (check eq. (3.7) for exact definitions).

• We find that the non-relativistic fluid system satisfies the famous ‘Wiedemann-Franz

Law’ for single component fluid.

• Finally, we compute the entropy current jiS for the non-relativistic fluid in section 5,

and demand that the rate of entropy production of the system is always positive def-

inite. For parity-even fluid it turns out to be quite straight forward. The canonical

form of the entropy current confirms that the total entropy always increases due to

dissipation, thermal and charge conduction. However for parity-odd fluid, canoni-

cal form of the entropy current fails to confirm the second law of thermodynamics.

Therefore, we need to add two parity-odd vectors to the entropy current with arbi-

trary coefficients. Upon demanding the validity of second law, we see that one can

fix these two coefficients exactly.

• Finally we observe that, unless the fluid is incompressible, all the parity-odd transport

coefficients must vanish to satisfy the second law of thermodynamics.

2 Relativistic anomalous charged fluid

Hydrodynamic description does not follow from the action principle, rather it is generally

formulated in the language of equations of motion. The reason for this is the presence of

dissipation in thermal media. Due to internal friction called viscosity, a dissipative fluid

loses its energy over time as it propagates. The fluid without any viscous drag is called an

ideal fluid. In the simplest case, the hydrodynamic equations (for a uncharged fluid) are

the laws of conservation of energy and momentum,

∇µTµν = 0. (2.1)

A relativistic fluid in (d+ 1, 1) dimensions (d+ 1 spatial and 1 time dimensions) has total

d + 3 independent intensive fluid variables: temperature (T ), pressure (P ) and velocities

uµ (only d + 1 components of the velocity are independent due to normalization uµuµ =

−1). Densities of extensive variables: energy density (E) and entropy density (S) are not

considered to be independent as they can be determined in terms of the intensive variables,

by the first law of thermodynamics and the equation of state.

Additionally we have an Euler’s relation which follows from the extensivity of the

internal energy:

E + P = TS, (2.2)

which in conjunction with the first law relates P and T as:

dP = SdT. (2.3)
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Therefore, among these thermodynamic variables, we can consider only one to be indepen-

dent, which we choose to be T . Thus, fluid is determined in terms of d+2 variables: uµ, T .

On the other hand we have d + 2 constitutive equations (2.1), and hence fluid system is

completely determined. We can express the energy momentum tensor Tµν as a function of

temperature, velocity and their derivatives.

In case of fluid with multiple conserved U(1) currents, we have more fluid variables:

charge densities (QI). The corresponding conjugate variables are called chemical potentials

denoted by (MI). In presence of conserved charges the first law is modified to

dE = TdS +MIdQI . (2.4)

From this equation one can compute the chemical potentials of the fluid in terms of charges

and other variables. However, in our computation we consider chemical potentials MI to

be our independent variables, not the charges. As a result, number of fluid variables have

been increased to d+ 3. However, in this case we also have another constitutive equation

(which follows from the global U(1) symmetries),

∇µJµI = 0. (2.5)

Euler’s relations are also modified to:

E + P = TS +MIQI , (2.6)

and from the first law one can write,

dP = SdT +QIdMI . (2.7)

Therefore, for charged fluid we consider our basic thermodynamic variables to be T and

MI/T , rest are fixed in terms of these two variables. We can therefore write the last

equation in the following form:

dP =
E + P

T
dT + TQId

(
MI

T

)
. (2.8)

Thus, for a charged fluid, we express energy-momentum tensor and charge current as a

function of fluid velocities, temperature, chemical potential and their derivatives.

One striking feature of a relativistic quantum field theory is triangle anomalies. The

effect of this anomaly is reflected in three point correlation function (loop level) of charge

currents. However, the anomaly does not affect the conservation of the current associated

with a global symmetry in absence of external electromagnetic fields. When we put the

theory in external background gauge fields coupled to the currents, some of the currents

will no longer be conserved.

In the next subsection we discuss about the form of the energy momentum tensor and

global U(1) current of a relativistic anomalous fluid in presence of background gauge fields.

– 5 –
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2.1 Anomalous charged fluid: energy-momentum tensor and current

We review a generic charged relativistic fluid in (d + 2)-dim with anomalies. The energy-

momentum tensor is given by:

Tµν = (E + P )uµuν + Pgµν + Πµν , (2.9)

where,

Πµν = −2ητµν − ζθµν , (2.10)

and fluid velocities are normalized

uµuµ = −1. (2.11)

Here, η and ζ are relativistic shear and bulk viscosity coefficients respectively. Up to first

order in derivatives, the respective terms are given by:

τµν =
1

2
PµαP νβ

[
∇αuβ +∇βuα −

2

d+ 1
gαβθ

]
, (2.12)

θµν = θPµν , θ = ∇αuα, (2.13)

where we use the projection operator:

Pµν = gµν + uµuν . (2.14)

Similarly charge current of a relativistic fluid in presence of multiple charges QI (I =

1, 2, 3) is given by4

JµI = QIu
µ + Υµ

I , (2.15)

where,

Υµ
I = −%IJPµν∇ν

(
MJ

T

)
+ λIJE

µ
J − γIP

µν∇νT +
{
fI lµ + f̃IJBµ

J

}
, (2.16)

lµ = εµαβγuα∇βuγ . (2.17)

Here %IJ , λIJ and γI are charge, electric and thermal5 conductivities respectively. However,

demanding the positivity of local entropy current one can show show that, γI vanishes and

%IJ is related to λIJ .

We have kept the fluid in some background electromagnetic gauge fields given by AµI :

FµνI = ∇µAνI −∇νA
µ
I , (2.18)

EµI = FµνI uν , Bµ
I =

1

2
εµναβuνFIαβ. (2.19)

The last two terms of eq. (2.16) are the most generic single-derivative parity-odd mod-

ifications to the charge current allowed in Landau frame. These terms are specific to

4See [17] for a beautiful review.
5Thermal conductivity of relativistic theory is fundamentally different from the thermal conductivity of

non-relativistic theory. Entropy positivity demands relativistic thermal conductivity to vanish, however in

non-relativistic limit it origins from elsewhere.
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(3 + 1)-dimensions. In higher dimensions, the parity odd terms appear only at higher

derivative orders. However, we would like to keep our calculations generic to (d+2)-dim in

parity-even sector while still keeping the parity-odd sector specific to d = 2. Therefore in

all expressions, we represent parity-odd terms in curly braces {. . .}, with an understanding

that these terms contribute only for d = 2.

We are working in Landau frame, which demands

uµΠµν = 0, uµΥµ
I = 0. (2.20)

and hence:

uµT
µν = −Euν , uµJ

µ
I = −QI . (2.21)

The constitutive equations for this fluid are given by:

∇µTµν = F νλI JIλ, (2.22)

∇µJµI =
{
CIJKE

µ
JBKµ

}
. (2.23)

CIJK is called anomaly coefficient, which is completely symmetric in all indices.

Leading order Tµν and Jµ must obey the first order conservation equations, which can

be found trivially using eq. (2.22), (2.23):

uα∇αE = −(E + P )θ, (2.24)

Pµα∇αP −QIEµI = −(E + P )uα∇αuµ, (2.25)

uµ∇µQI +QIθ =
{
CIJKE

µ
JBKµ

}
. (2.26)

We have projected the equations along and perpendicular to the direction of velocity for

later convenience. We have also used EµI uµ = 0, which can be seen trivially. Using these,

τµν from eq. (2.12) can be written as:

τµν =
1

2

[
Yµν + Yνµ − 2

d+ 1
gµνθ − Zuµuν

]
, (2.27)

where,

Z =
2

d+ 1

uα∇αT

(E + P )
, (2.28)

T = (d+ 1)P − E, (2.29)

Yµν = ∇µuν − uν∇µP
E + P

+QI
uνEµI
E + P

. (2.30)

The trace of the energy-momentum tensor is given by:

Tµµ = T− ζ(d+ 1)θ. (2.31)

For conformal fluids Tµµ = 0, which can be reached by setting T = ζ = 0.

– 7 –
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Later, we shall use some relations involving Yµν , which can be found trivially using

eq. (2.30):

uµY
µν = −2uνuµ∇µP

E + P
− ∇

νP

E + P
+
QIE

ν
I

E + P
, (2.32)

uνY
µν =

∇µP
E + P

−
QIE

µ
I

E + P
. (2.33)

2.2 Entropy current

In this sub-section we write down the expression for entropy current of a relativistic

charged anomalous fluid and derive constraints on various transport coefficients which

follow from second law of thermodynamics. The canonical form of relativistic entropy

current is given by

JµS = Suµ − MI

T
Υµ
I , (2.34)

Using conservation equations eq. (2.22), (2.23) and thermodynamics eq. (2.6), (2.7) we can

write:

∇µJµS = − 1

T
Πµν∇µuν +

[
EIµ
T
−∇µ

(
MI

T

)]
Υµ
I . (2.35)

Using eq. (2.10), (2.16) it can be written (up to second order in derivative) as

∇µJµS =
1

T
ητµντµν +

1

T
ζθ2 +

1

T
EIµλIJE

µ
J +

[
Pαµ∇µ

(
MI

T

)]
%IJ

[
Pαν∇ν

(
MJ

T

)]
− 1

T
EµI (%IJ + TλJI)∇µ

(
MJ

T

)
− 1

T
γIE

µ
I∇µT +∇µ

(
MI

T

)
γIP

µν∇νT

+

{
− CKIJ

MK

T
EIµB

µ
J +

(
fI lµ + f̃IJBµ

J

)[ 1

T
EIµ −∇µ

(
MI

T

)]}
. (2.36)

Demanding entropy positivity, ∇µJµS ≥ 0 we will get

γI = 0, η ≥ 0, ζ ≥ 0, λIJ =
1

T
%IJ ,

%IJ matrix is positive definite. (2.37)

However the last two terms of eq. (2.36) cannot be made positive definite. One would then

expect that coefficients of those terms must vanish! But in [4], the authors identified that

eqn (2.35) is not the most generic expression for the entropy current. They modified the

entropy current with the most generic parity odd vectors allowed by the symmetry

JµS → JµS +
{
Dlµ + D̃IB

µ
I

}
. (2.38)

– 8 –
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In presence of these two terms the parity-odd part of the last equation becomes,{
∇µ
(
Dlµ + D̃IB

µ
I

)
− CKIJ

MK

T
EIµB

µ
J +

(
fI lµ + f̃IJBµ

J

)[ 1

T
EIµ −∇µ

(
MI

T

)]}
=

{
lµ
[
∇µD −

2D

E + P
∇µP − fI∇µ

(
MI

T

)]
+ lµEIµ

[
D

2QI
E + P

− 2D̃I +
1

T
fI
]

+Bµ
J

[
∇µD̃J −

D̃J

E + P
∇µP − f̃IJ∇µ

(
MI

T

)]

+EµI BJµ

[
D̃J

QI
E + P

+
1

T
f̃IJ − CKIJ

MK

T

]}
= 0. (2.39)

Demanding the positivity of divergence of local entropy current we get,

∂D

∂P
=

2D

E + P
,

∂D

∂(MI/T )
= fI ,

∂D̃J

∂P
=

D̃J

E + P
,

∂D̃J

∂(MI/T )
= f̃IJ ,

D
2QI
E + P

− 2D̃I = − 1

T
fI ,

D̃J
QI

E + P
= − 1

T
f̃IJ + CKIJ

MK

T
. (2.40)

One can in principle solve the above set of equation to get relations between D, D̃I ,fI , f̃IJ
and CIJK .

Finally we have the desired form of entropy current

∇µJµS =
1

T
ητµντµν +

1

T
ζθ2 +

[
EαI
T
− Pαµ∇µ

(
MI

T

)]
%IJ

[
EJα
T
− Pαν∇ν

(
MJ

T

)]
, (2.41)

which is entirely positive definite.

3 Non-relativistic charged fluid

In this section, we review the properties of charged non-relativistic dissipative fluid living

in (d+1)-dimensions, in presence of some background gauge fields. A non-relativistic fluid

has following constitutive equations:

Continuity equation:

∂tρ+ ∂i(ρv
i) = 0, (3.1)

where ρ is density of fluid particle.

Momentum conservation equation:

∂t(ρv
j) + ∂i(t

ij) = 0, (3.2)

where tij is the energy-momentum tensor.

– 9 –
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Energy conservation equation:

∂t

(
ε+

1

2
ρv2

)
+ ∂ij

i = 0, (3.3)

where ji is the energy current.

Conservation of charge current :

∂tqI + ∂ij
i
I = 0, (3.4)

where, qI ’s are the U(1) charge densities and ~jI ’s are the corresponding currents. Note

that energy current is denoted by ~j where as charge current is denoted by ~jI .

In d spatial dimensions, charged fluid has total d + 3 independent variables (pressure

p, temperature τ , chemical potentials µI and velocity ~v), while others (density ρ, energy

density ε, charge density qI and entropy density s) are fixed in terms of these using thermo-

dynamic relations. Unlike the relativistic case we do not consider the Euler’s relation here.

Later we shall see that the light-cone reduction does not preserve extensivity of the fluid

system. Hence, the fluid is determined by d + 3 parameters chosen to be: τ , µI/τ , p and

~v (same as (d+1,1)-dim relativistic fluid). On the other hand we have d + 3 constitutive

equations.

Therefore, we can express energy-momentum tensor and charge current in terms of τ ,

µI/τ , p, ~v and their derivatives. For ideal fluid they are given by,

tij = ρvivj + pgij ,

ji =

(
ε+ p+

1

2
ρv2

)
vi,

jiI = qIv
i. (3.5)

3.1 Non-relativistic dissipative fluid in background electromagnetic field

When we put a dissipative fluid in background electromagnetic fields, the above equations

are modified. Continuity equation and charge conservation equation remain the same but

other two equations are modified to

∂t(ρv
j) + ∂i(t

ij) = qIε
j
I − jIiβ

ij
I ,

∂t

(
ε+

1

2
ρv2

)
+ ∂ij

i = jiIεIi, (3.6)

where,

εiI = −∂iφI − ∂taiI , βijI = ∂iajI − ∂
jaiI , (3.7)

are electric and magnetic fields respectively. φI and aiI are scalar and vector potentials

respectively.

For dissipative fluid the stress-energy tensor is given by,

tij = ρvivj + pgij + πij , (3.8)

– 10 –
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where πij is the correction to ideal fluid stress tensor due to dissipation

πij = −nσij − zδij∂kvk, (3.9)

σij = ∂ivj + ∂jvi − δij 2

d
∂kv

k. (3.10)

n and z are the non-relativistic shear and bulk viscosity coefficients respectively.

The energy current for dissipative fluid is given by,

ji =

(
ε+ p+

1

2
ρv2

)
vi + ς i, (3.11)

where,

ς i = −nσijvj − z∂kvkvi − κ∂iτ − ξI∇i
(µI
τ

)
+ σIε

i
I − αIvjβ

ji
I . (3.12)

Here κ, ξI , σI and αI are thermal, charge, electric and magnetic conductivities respectively.

Later we shall see that, for non-relativistic fluid, obtained by light cone reduction of a

relativistic fluid, ξI and αI are related to σI .

Similarly charge current for a dissipative fluid is given by,

jiI = qIv
i + ς iI , (3.13)

where,

ς iI = −κ̃I∇iτ − ξ̃IJ∇i
(µJ
τ

)
− m̃I∇ip+ σ̃IJε

i
J

− α̃IJvkβkiJ +
{
κ̄Iε

ij∇jτ + ξ̄IJε
ij∇j

(µJ
τ

)
− m̄Iε

ij∇jp+ σ̄IJε
ijεJj − ᾱIJεijvkβJkj

}
.

(3.14)

κ̃I , σ̃IJ , ξ̃IJ , m̃I , α̃IJ and κ̄I , σ̄IJ , ξ̄IJ , m̄I , ᾱIJ are some arbitrary parity-even and parity-odd

transport coefficients.6 Again, for a non-relativistic fluid, obtained by light-cone reduction

these transport coefficients are fixed in terms of relativistic transport coefficients. Also,

they are constrained when we demand positivity of local entropy current.

4 Light-cone reduction

Discrete light cone quantization of a (d+ 1, 1)-dim relativistic quantum field theory (QFT)

boils down to a non-relativistic quantum field theory in one lower dimension. Let us

consider a QFT in flat spacetime with metric,

ds2 = −(dx0)2 + (dxd+1)2 +

d∑
i=1

(dxi)2. (4.1)

We introduce the light-cone coordinates,

x± =
1√
2

(
x0 ± xd+1

)
. (4.2)

6The sign of these coefficients are completely arbitrary for now, and are chosen keeping in mind later

convenience.
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In the light-cone frame the metric can be written as,

ds2 = −2dx+dx− +
d∑
i=1

(dxi)2. (4.3)

Suppose we view the QFT in this light-cone frame and evolve it in light-cone time x+.

Then, for fixed light-cone momentum P−, we obtain a system in d + 1 dimensions with

non-relativistic invariance. This is because the symmetry algebra of the relativistic theory

reduces to corresponding non-relativistic symmetry algebra upon light-cone reduction. For

example, if the relativistic theory is invariant under Poincaré transformation, then the cor-

responding algebra (SO(d + 1, 1)) reduces to d dimensional Galilean algebra. On the other

hand if we consider a QFT with conformal invariance in (d+ 1) + 1 dimensions, then upon

light cone reduction the corresponding algebra (SO(d + 2, 2)) reduces to Schrödinger alge-

bra in d spatial dimensions. This is known as discrete light-cone quantization of quantum

field theories.

Since hydrodynamics is low energy fluctuation of equilibrium quantum field theory,

light-cone reduction of relativistic constitutive equations boil down to the non-relativistic

constitutive equations for a fluid in one lower dimension. Relativistic charged fluid in

(d + 1, 1)-dim, as we have already discussed, has d + 3 degrees of freedom: temperature,

chemical potential and normalized velocities. On the other had, a non-relativistic fluid in d

spatial dimensions also has total d+ 3 degrees of freedom: temperature, pressure, chemical

potential and velocities. Our goal is to consider the most generic relativistic anomalous fluid

system in presence of background electromagnetic fields in (3 + 1) dimensions and reduce

the constitutive equation (also equation for entropy current) over light-cone coordinates

and obtain the corresponding non-relativistic equations for a fluid in one lower dimensions.

We also find a mapping between the degrees of freedom of the (d+ 2)-dimensional fluid to

the degrees of freedom of the (d+ 1)-dimensional fluid.

We denote the d spatial coordinates with xi. Metric components in light-cone coordi-

nates are given by

gij = δij and g+− = −1, (4.4)

rest are zero. Gradient operator is given by,

∇µ = {∂+, ∂−, ∂i} and ∇µ = {−∂−,−∂+, ∂i}. (4.5)

As we have seen that not all components of uµ, JµI and Tµν are independent, from eq. (2.21)

we get,

u− =
1

2u+
(1 + u2), (4.6)

u+J−I = QI + uiJ
i
I − u−J+

I , (4.7)

u+Tµ− = Euµ + uiT
µi − u−Tµ+. (4.8)

We shall reduce the theory along the x− direction, and consider x+ to be the non-relativistic

time. We will consider only solutions to the relativistic equations that do not depend on

x−; that is, all derivatives ∂− vanish.
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4.1 Reduction of background fields

We reduce the Maxwell’s equations for the background fields of relativistic fluid to get con-

sistent background for non-relativistic theory. Maxwell’s equations for relativistic system

are given by (we shall assume that the sources for these background fields are far away

from the fluid),

∇µFµνI = 0, (4.9)

Under light-cone reduction the above equations take the following form:

~∇2A+
I = 0,

∇i
(
∇iA−I +∇+A

i
I

)
= −∇2

+A
+
I ,

∇i
(
∇iAjI −∇

jAiI

)
= ∇j∇+A

+
I . (4.10)

These equations can be identified with source free static Maxwell’s equations of a non-

relativistic system if we map:7

A−I = φI (scalar potential),

AiI = aiI (vector potential), (4.11)

and

∇i∇iA+
I = 0, ∇+∇+A

+
I = 0, ∇i∇+A

+
I = 0. (4.12)

Which would inturn tell us

∇+A
+
I ,∇iA

+
I = constant. (4.13)

We would however like A+
I to have some finite value at infinity, which will enforce:

A+
I = constant. (4.14)

With this identification, from eq. (2.19) one can show that

E+
I = 0, E−I = uiε

i
I , EiI = u+εiI − ujβ

ji
I , (4.15)

and

B+
I = −u+εijβijI , B−I = u−εijβ

ij
I − 2εiju

iεjI ,

Bi
I = −2u+εijε

j
I , (4.16)

where, εiI = −∂iφI − ∂taiI and βijI = ∂iajI − ∂jaiI .

7In appendix A we have discussed how to expand Maxwell’s equations in powers of 1/c to get the

non-relativistic limit.
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Finally let us check what happens to the gauge freedom in relativistic side. The gauge

transformation is give by,

Aµ → Aµ +∇µΛ. (4.17)

In the light-cone coordinates it becomes

A+ → A+,

A− → A− −∇+Λ,

Ai → Ai +∇iΛ. (4.18)

Thus we see that the gauge freedom of relativistic theory reduces to the gauge freedom of

the non-relativistic theory. Additionally A+, which we have fixed to be a constant, under a

gauge choice does not change. Otherwise, one could perform a local gauge transformation

to modify A+ to a non constant value, which would then break our identification.

4.2 Reduction of energy-momentum tensor and charge current

The reduction of relativistic equations of energy-momentum and charge conservation after

using eq. (4.14) are given by:

∇+T
++ +∇iT i+ = 0, (4.19)

∇+T
+− +∇iT i− = −J iI

(
∇iA−I +∇+AIi

)
, (4.20)

∇+T
+j +∇iT ij = −J+

I

(
∇+A

j
I +∇jA−I

)
− J iI

(
∇iAjI −∇

jAIi

)
, (4.21)

∇+J
+
I +∇iJ iI =

{
CIJKE

µ
JBKµ

}
= 0. (4.22)

R.H.S. of eq. (4.22) can be shown to vanish explicitly after reduction in four dimensions.

These equations reduce to non-relativistic equations under following identifications

T++ = ρ, T i+ = ρvi,

T+− = ε+
1

2
ρv2, T i− = ji, T ij = tij ,

J+
I = qI , J iI = jiI . (4.23)

The identification also tells that the non-relativistic charge current is conserved, while the

relativistic charge current was not. We shall now attempt to use this mapping to establish

relations between relativistic and non-relativistic parameters.

A point worth noting is that identifications eq. (4.23) are not unique, to give the NR

constitutive equations. NR fluid has only one vector constitutive equation, and LCR also

gives just one vector equation, which will set sum of the identifications unique. However

scalar equations from LCR can be mixed in any linear combination to give the scalar

constitutive equations, to do which however one must introduce certain dimension-full

constants to the theory. To avoid these constants we have avoided linear combinations and

hence reached eq. (4.23).
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4.2.1 T++ calculation

Using eq. (2.27) and (2.13) we can show:

τ++ = −1

2
(u+)2Z,

θ++ = (u+)2θ, (4.24)

and thus:

T++ = (E + P )(u+)2 + (u+)2 (ηZ− ζθ) . (4.25)

Identifying T++ = ρ

ρ = (E + P )(u+)2 + (u+)2 (ηZ− ζθ) . (4.26)

4.2.2 T i+ calculation

Using eq. (2.27) and (2.13) we can show:

τ i+ =
1

2
Yi − 1

2
Zuiu+,

θi+ = uiu+θ, (4.27)

where,

Yµ = Yµ+ =

(
∇µu+ − u+∇µP

E + P
+ u+

QIE
µ
I

E + P

)
. (4.28)

Using eq. (4.26), we will find,

T i+ =
ui

u+
ρ− ηYi. (4.29)

Identifying T i+ = ρvi

vi =
ui

u+
− η

ρ
Yi. (4.30)

4.2.3 T ij calculation

Using eq. (2.27) we will find:

τ ij =
1

2

[
Yij + Yji − 2

d+ 1
gijθ − Zuiuj

]
. (4.31)

It’s easy to check that:

− uα∇αE
(E + P )

= θ = − u
α∇αP

(E + P )
+ u+∇kvk, (4.32)

and thus introducing Z from eq. (2.28),

− 2

(d+ 1)
θ =

1

d
Z− u+ 2

d
∇kvk. (4.33)

Using the above relations and the identity:

Yµi = u+∇µvi + viYµ, (4.34)
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we find that:

τ ij =
1

2

(
u+σij + viYj + vjYi +

gij

d
Z− (u+)2vivjZ

)
, (4.35)

where σij is given by eq. (3.10). Similarly using eq. (2.13) we can reach to:

θij = −gij u
α∇αP

(E + P )
+ giju+∇kvk + (u+)2vivjθ, (4.36)

and thus:

T ij = vivjρ+ gij
[
P −

(
η

d
Z− ζ u

α∇αP
E + P

)]
− ηu+σij − ζu+gij∇kvk. (4.37)

Identifying T ij = tij

p = P −
(
η

d
Z− ζ u

α∇αP
E + P

)
, (4.38)

n = ηu+, (4.39)

z = ζu+. (4.40)

4.2.4 T+− calculation

Using eq. (4.8), (4.25) and (4.29) we can find:

T+− =
1

2
(E − P )− 1

2
(ηZ− ζθ) +

1

2
ρv2. (4.41)

Identifying T+− = ε+
1

2
ρv2

ε =
1

2
(E − P )− 1

2
(ηZ− ζθ) . (4.42)

4.2.5 T i− calculation

Using eq. (4.8), (4.29) and (4.37) we can find:

T i− = vi
(
ε+ p+

1

2
ρv2

)
− nσikvk − zvi∇kvk + η

1

(u+)2
Yi. (4.43)

The last term can be written as:

η
1

(u+)2
Yi = −η 1

T
∇i
(
T

u+

)
− ηu+QIT

ρ
∇i
(
MI

T

)
+ ηu+

QI
ρ
EiI . (4.44)

We identify (leading order):

τ =
T

u+
, µI =

MI

u+
, qI = QIu

+, (4.45)

and

κ =
η

τu+
= 2n

ε+ p

τρ
, σI = n

qI
ρ
. (4.46)
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With this identification we get,

η
1

(u+)2
Yi = −κ∇iτ − τσI∇i

(µI
τ

)
+ σI(ε

i
I − vjβ

ji
I ). (4.47)

Identifying T i− = ji we have:

ji=vi
(
ε+ p+

1

2
ρv2

)
− nσikvk − zvi∇kvk − κ∇iτ − τσI∇i

(µI
τ

)
+ σI(ε

i
I − vjβ

ji
I ). (4.48)

Comparing it with (3.12), we find that we have the expected form. Also we have estabilished

relations between charge, electric and magnetic conductivities:

ξI
τ

= σI = αI . (4.49)

4.2.6 J+ calculation

Using eq. (2.16) we can find

Υ+
I = −%IJu+uν∇ν

(
MJ

T

)
− γIu+uν∇νT +

{
fI l+ + f̃IJB+

J

}
, (4.50)

l+ = −ε+−ij(u+)2∇ivj = −εij(u+)2∇ivj . (4.51)

Using eq. (4.16) we can write

Υ+ = −u+
[
%IJu

ν∇ν
(
MJ

T

)
+ γIu

ν∇νT +
{
fIεiju+∇ivj + f̃IJεijβijJ

}]
. (4.52)

Identifying J+
I = qI ,

qI = u+QI + u+$I , (4.53)

where,

$I = −
[
%IJu

ν∇ν
(
MJ

T

)
+ γIu

ν∇νT +
{
fIεiju+∇ivj + f̃IJεijβijJ

}]
. (4.54)

This tells us the sub-leading correction to non-relativistic charges.

4.2.7 J i calculation

Using eq. (2.16) we can find

Υi
I = −%IJP iν∇ν

(
MJ

T

)
+ λIJE

i
J − γIP iν∇νT +

{
fI li + f̃IJBi

J

}
. (4.55)

One can find using eq. (4.44) that:{
li
}

=
{
vil+ + (u+)2Ξi

}
, (4.56)

where {
Ξi
}

=

{
εij
(

1

τ(u+)2
∇jτ +

qIt

ρ
∇j
(µI
τ

)
− 2

ρ
∇jp+

1

ρ
QJEJj

)}
. (4.57)
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Certain velocity dependent terms appear in the above expression, which can be shown to

sum to zero in 2 spatial dimensions.

Using thermodynamic relations eq. (2.6), (2.7), (4.44), along with all light cone iden-

tifications, we will find

J iI = viJ+
I −

γIu
+τ

2(ε+ p)
∇ip− κqI

2(ε+ p)
∇iτ −

(
%IJ + ξI

qJ
2(ε+ p)

− γIu+
τ2qJ

2(ε+ p)

)
∇i
(µJ
τ

)
+

(
σJqI

2(ε+ p)
+ λIJu

+

)(
εjJ − vkβ

kj
J

)
−
{
fI(u+)2

2

ρ
εij
}
∇jp+

{
fI
τ
εij
}
∇jτ

+

{
fI(u+)2

qJτ

ρ
εij
}
∇j
(µJ
τ

)
+

{
fI(u+)2

qJ
ρ
εij − f̃IJu+2εij

}(
εJj − vkβJkj

)
.

(4.58)

We identify

m̃I =
γIτu

+

2(ε+ p)
, ξ̃IJ =

[
%IJ +

ξJqI
2(ε+ p)

−mIqJτ

]
,

κ̃I =
κqI

2(ε+ p)
, σ̃IJ = α̃IJ =

[
λIJu

+ +
σJqI

2(ε+ p)

]
,

m̄I =
2ωI
ρ
, ξ̄IJ = ξJ

ωI
n
,

κ̄I = κ
ωI
n
, σ̄IJ = ᾱIJ =

[
σJ
ωI
n
− 2ω̃IJ

]
, (4.59)

where,

ωI = fI(u+)2, ω̃IJ = f̃IJu+. (4.60)

Finally we have the desired form of charge current

jiI = qIv
i + ς iI , (4.61)

ς iI = −κ̃I∇iτ − ξ̃IJ∇i
(µJ
τ

)
− m̃I∇ip+ σ̃IJ

(
εiJ − vkβkiJ

)
+
{
κ̄Iε

ij∇jτ + ξ̄IJε
ij∇j

(µJ
τ

)
− m̄Iε

ij∇jp+ σ̄IJε
ij
(
εJj − vkβJkj

)}
, (4.62)

Note that all transport coefficients are not independent. The only independent coefficients

are: m̃I , ξ̃IJ , σ̃IJ , ωI and ω̃IJ .

Wiedemann-Franz law. This famous law predicts that the ratio of charge conduc-

tivity (which appears in charge current)8 to thermal conductivity (which appears in en-

ergy current) in metals as: σ̃/κ = 1/Lτ , where L is the Lorenz number predicted to be

∼ 2.45× 10−8 WΩK−2. The law is found to be in good agreement with experiments. We

attempt to check the same in our setup:9

σ̃

κ
=

ρ%

2n(ε+ p)
+

τq2

4(ε+ p)2
, (4.63)

8Lets consider only one U(1) charge here.
9We have used here the fact that non-relativistic system respects the constraint τ σ̃IJ = ξ̃IJ , which has

been showed in next section.
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We model the electrons in metals as free classical gas with no external pressure: fluid

with homogeneous particles each of charge e (electronic charge), mass me and average

energy 3/2kBτ . One can check that under mentioned assumptions, our system follows

Wiedemann-Franz Law with Lorenz number given as:

L =

(
%

n

me

3kB
+

e2

9k2B

)−1
, (4.64)

As we shall see later, for the case with only single kind of particles (ρ ∝ q), all the

coefficients in our theory vanish except n. In this very particular case however, we can

check that Lorenz number is given approximately by: 6.68 × 10−8 WΩK−2, given our

assumptions, which is in fair agreement with the experimental value.

4.3 Thermodynamics of the reduced system

We start with a relativistic system with variables satisfying the eq. (2.4) and (2.6). The

first equation is the first law of thermodynamics and the second equation is called the

Euler’s equation. The Euler equation follows from the additive property of internal energy

which is a homogeneous function of degree one. After light-cone reduction when we map

non-relativistic variables in terms of relativistic ones, we see that at the leading order (ideal

fluid), non-relativistic variables satisfy the following two equations,

dε = τds+ µIdqI + (ε+ p− sτ − qIµI)
dρ

ρ
,

2(ε+ p) = sτ + µIqI . (4.65)

Here we have identified the non-relativistic entropy density s = Su+. The first equation,

which follows from eq. (2.4), is the first law of thermodynamics satisfied by the non-

relativistic variables. The second, coming from eq. (2.6), is not exactly the Euler’s equation

for non-relativistic variables. We comment on this equation at the end of this sub-section.

As we consider the first derivative corrections to non-relativistic variables (evaluated

in the previous sub-section), the first law of thermodynamics changes. However, that can

not be the case. If we demand that our non-relativistic system is a physical one, then the

first law should be satisfied by the non-relativistic variables at every order in derivative

expansion. This demand forces us to add some higher derivative corrections to entropy

density which we could not determine in section 4.23. Let’s assume the following corrected

forms:

s = Su+(1 + χ), (4.66)

χ is corresponding corrections.

Demanding first law of thermodynamics to be satisfied at first order in derivative

we get:

TSdχ+MId$I −MI$I
dE

E + P
− χMI

(
dQI −

QI
E + P

dE

)
= −η 1

d
Z

dT

E + P
− ζ dE

E + P

uα∇αE
E + P

+ ζ
d(E − P )

E + P

uα∇α(E − P )

E + P

+

[
χST +MI$I + η

d+ 2

d
Z− ζ

(
θ + 2

uα∇αP
E + P

)](
dP

E + P
+

du+

u+

)
. (4.67)
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Note that, thermodynamic relations (2.6)–(2.7), conservation equations (2.24)–(2.26) up

to first order and all the identifications between non-relativistic and relativistic variables

(obtained by LCR) have been extensively used to carry out the above computation. Now,

using (2.24)–(2.26), we can write the above equation in the following form10

TSuµ∇µχ+MIu
µ∇µ$I +MI$Iθ = −ηd+ 1

2d
Z2 − ζθ2 + ζ(u+)2

(
∇kvk

)2
. (4.68)

This equation fixes the correction to the entropy density.

The last equation in (4.65), which follows from Euler’s equation (for the relativis-

tic variables) does not imply that the non-relativistic energy density ε is a homogeneous

function of degree one. In fact, this equation gets modified with the corrected values of

non-relativistic entropy density.11 Therefore, we conclude that the non-relativistic system

we obtain after light-cone reduction of a homogeneous relativistic fluid system, is not homo-

geneous any more (even at the leading order) i.e. the internal energy is not a homogeneous

function of degree one.

5 Non-relativistic entropy current

The goal of this section is to write down an entropy current for a non-relativistic fluid

system, and find constraints on various transport coefficients from the positivity of local

entropy production. Using eq. (4.68) and properties of Yµν , one can reduce the eq. (2.36)

and after a lengthy algebra, we get the following equation,

∇+s+∇ijiS +∇i
(

η

τ(u+)2
Yi

)
=

1

τ

n

2
σijσij +

1

τ
z(∇kvk)2 + κ

[
1

τ
∇iτ +

qIτ

2(ε+ p)
∇i
(µI
τ

)
−
qI(ε

i
I − vkβkiI )

2(ε+ p)

]2
−
[
εiI − vkβkiI

τ
−∇i

(µI
τ

)] ξJqI
2(ε+ p)

[
εJi − vkβJki

τ
−∇i

(µJ
τ

)]
+

[
εiI − vkβkiI

τ
−∇i

(µI
τ

)] [
σ̃IJτ

εJi − vkβJki
τ

− ξ̃IJ∇i
(µJ
τ

)]
−
[
εiI − vkβkiI

τ
−∇i

(µI
τ

)]
m̃I∇ip+

[
εiI − vkβkiI

τ
−∇i

(µI
τ

)]{
ωIΞi − ω̃IJ

2

u+
EjJεij

}
,

(5.1)

where jiS is the non-relativistic canonical entropy current defined as (similar to relativistic

canonical entropy current given by eq. (2.34)),

jiS = svi − µI
τ
ς iI . (5.2)

10There will be two terms proportional to {CIJKEµJBKµ} which we have checked will vanish after reduc-

tion.
11Although the form of this equation can be maintained by adding some one derivative correction to

temperature or chemical potential.
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Non-rel. variables Rel. variables

Velocity vi
ui

u+
− η

(u+)2(E + P )
Yi

Mass Density ρ (u+)2(E + P ) + (u+)2 (ηZ− ζθ)

Energy Density ε
1

2
(E − P )− 1

2
(ηZ− ζθ)

Pressure p P −
(
η

d
Z− ζ u

α∇αP
E + P

)
Charge qI u+QI − u+fIεiju+∇ivj

Entropy s Su+(1 + χ)

Scalar Potential φI A−I

Vector Potential aiI AiI

a Z is given by eq. (2.28), Yi is given by eq. (4.28) and χ is given by eq. (4.68).

Table 1. Relations between relativistic parameters and non-relativistic parameters (parity-even

fluid)

We can rewrite eq. (5.1) in more conventional form as

∇+s+∇ijiS =
1

τ

n

2
σijσij +

1

τ
z(∇kvk)2 +

1

τ
∇i
[
κ∇iτ + τσI∇i

(µI
τ

)
− σI(εiI − vkβkiI )

]
+

[
εJi − vkβJki

τ
−∇i

(µJ
τ

)]
ς iI . (5.3)

The first three terms on the right hand side survive for uncharged dissipative fluid [1].

Here we compute the other terms which are responsible for local entropy production for

parity-odd charged fluid in presence of background fields. Since we demand that the fluid

satisfies the second law of thermodynamics, the right hand side of eqn. (5.1) should be

positive definite. This implies following constraints on the transport coefficients

m̃I = 0, n ≥ 0, z ≥ 0, σ̃IJ =
1

τ
ξ̃IJ ,[

ξ̃IJ −
ξJqI

2(ε+ p)

]
matrix is positive definite. (5.4)

These constraints are compatible with what we get from relativistic entropy production

condition. However the last term in eq. (5.1) is a parity odd term and can not be written

as a perfect square. Therefore, it seems that the presence of this term breaks the second

law of thermodynamics. However, similar to the relativistic fluid dynamics, we can add

extra parity-odd terms (allowed by symmetry) to entropy current to make right hand side

a perfect square.

Note that the last term in eq. (5.1) appears only in 2 + 1 dimensions. Since the first

order parity-odd terms in eq. (5.1) do not appear in the non-relativistic fluid theories in
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Non-rel. variables Rel. variables

Bulk Viscos-

ity
z ζu+

Shear Vis-

cosity
n ηu+

Electrical

Conductiv-

ity

σ̃IJ λIJu
+ + ηu+QIQJ/(E + P )2

Thermal

Conductiv-

ity

κ 2n(ε+ p)/τρ

κ̃I κqI/2(ε+ p)

Charge Con-

ductivity
σI nqI/ρ

Momentum

Current
tij vivjρ+ pgij − nσij − zgij∇kvk

Energy Cur-

rent
ji

vi
(
ε+ p+

1

2
ρv2

)
−nσikvk − zvi∇kvk − κ∇iτ

−τσI∇i
(µI
τ

)
+ σI

(
εiI − vjβ

ji
I

)
Charge Cur-

rent
jiI

qIv
i − κ̃I∇iτ − τ σ̃IJ∇i

(µJ
τ

)
+σ̃IJ

(
εiJ − vkβkiJ

)
Entropy

Current
jiS

svi+
µI
τ

(
κ̃I∇it+ τ σ̃IJ∇i

(µJ
τ

)
−σ̃IJ

(
εiJ − vkβkiJ

))
Table 2. Relations between relativistic and non-relativistic transport coefficients, energy momen-

tum tensors and currents (parity-even fluid)

more than two spatial dimensions, we have a complete and consistent description12 for

these theories. We summarize the results for them in tables 1, 2.

5.1 Parity-odd corrections to NR entropy current

For fluids in two spatial dimensions however, we must add some parity-odd terms to the

entropy current with some arbitrary transport coefficients and determine them from the

condition that there is no local entropy loss during the flow of the system. We make the

most generic parity-odd modification to the entropy current in two spatial dimensions as

follows

jiS → jiS +
{
aεij∇jτ + bIε

ij∇j
(µI
τ

)
+ cεij∇jp+ dIε

ijεIj + fIε
ijvkβIkj

}
. (5.5)

12This is the description of a non-relativistic fluid obtained from the most generic relativistic fluid.

– 22 –



J
H
E
P
0
8
(
2
0
1
4
)
0
3
7

a, bI , c, dI and fI are arbitrary transport coefficients. After adding these extra terms the

right hand side of eq. (5.1) can be written as (parity-odd part only){
∇i
(
aεij∇jτ + bIε

ij∇j
(µI
τ

)
+ cεij∇jp+ dIε

ijεIj + fIε
ijvkβIkj

)}
+

[
1

T
EiI −∇i

(µI
τ

)]{
ωIΞi − ω̃IJ

2

u+
EjJεij

}
=
{
εij∇jτ

}
∇ia +

{
εij∇j

(µI
τ

)}
∇ibI +

{
εij∇jp

}
∇ic

+
{
εijεIj

}
∇idI +

{
1

2
vkεijβIij

}
∇kfI

−
{
εij∇i

(µI
τ

)}( ωI
τ(u+)2

∇jτ + ωI
qIτ

ρ
∇j
(µI
τ

)
− 2ωI

ρ
∇jp

)
+

{
εij

1

T
EIi

}(
ωI

τ(u+)2
∇jτ +

τ

ρ
(ωIqJ + ωJqI − 2ρω̃JI)∇j

(µJ
τ

)
− 2ωI

ρ
∇jp

)
+

{
εij

1

T
EIi

}(
ωI
ρ
QJEJj − ω̃IJ

2

u+
EJj

)
+

1

2

{
fIε

ijβIij∇kvk − dIε
ij∇+βIij

}
= 0. (5.6)

To obey the second law of thermodynamics we claim that the coefficients of all the inde-

pendent terms must vanish. This is possible except for the last two terms, for which we

get the following sets of constraints:

∂a

∂p
− ∂c

∂τ
= 0,

∂a

∂(µI/τ)
− ∂bI

∂τ
=
ε+ p

τ

2ωI
ρ
,

∂bI
∂p
− ∂c

∂(µI/τ)
=

2ωI
ρ
, (5.7)

−∂fI
∂τ

=
∂dI
∂τ

=
ε+ p

τ2
2ωI
ρ
,

∂fI
∂p

= −∂dI
∂p

=
2ωI
τρ

,

− ∂fI
∂(µJ/τ)

=
∂dI

∂(µJ/τ)
=

1

ρ
(ωIqJ + ωJqI − 2ρω̃JI) , (5.8)

additionally, the following matrices must be symmetric:

2ρω̃IJ − ωIqJ ,
ρ

t

∂bJ
∂(µI/t)

− ωIqJ . (5.9)

It should be noted that the new coefficients introduced in jiS need not be most generic,

and their only significance is to make the parity-odd terms in entropy current vanish.

Hence, a minimal choice is as follows:

a = c = 0, fI = −dI , (5.10)
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which solves the respective constraints, and leaves us only two independent coefficients in

entropy current: bI and dI .

Now we turn attention towards the last two terms of eq. (5.6). They vanish if we

consider the fluid is incompressible and placed in a time independent background. For

compressible fluid the second last term is non-zero and can be negative. Hence the second

law implies that the fI = dI = 0. As a result all the parity-odd terms vanish for compress-

ible fluid. The resultant fluid is completely parity-even and we summarize the results in

tables 1, 2. On the other hand if we consider the background field is time dependent, then

the last term can violate the second law. However, in that case, one has to be careful about

the change of entropy of the background also. The second law should hold for the fluid

and the background system together. The last term produces some vortex kind of motion

in the fluid. In that case the velocity of fluid particles around those vortexes becomes very

large and our analysis (derivative expansion) may break down.

It should be noted that we demand our non-relativistic system to obey the second law

of thermodynamics. We start with a relativistic fluid but never impose any physicality

constraint (except the fluid satisfies first law of thermodynamics) on the relativistic side.

Relativistic system, in our case, can be considered as a mathematical model (where we allow

all possible terms allowed by the symmetry). After reduction we see that at least for the

parity-even sector constraint from the second law turns out to be same (compatible) both

in relativistic and non-relativistic case (eq. (2.37) and (5.4)). But for parity-odd sectors

they are completely different. For example, CIJK do not even appear in non-relativistic

relations eq. (5.7)–(5.9), though for relativistic fluid the second law relates fI and f̃IJ to

CIJK (eq. (2.40)). Whereas for non-relativistic fluid one can consider ωI and ω̃IJ to be

independent and fI and di are fixed in terms of them. However, one can also start with a

relativistic fluid satisfying second law of thermodynamics (as an additional condition). In

that case for an incompressible fluid it is possible to express the non-relativistic transport

coefficients (fI , dI , ωI , ω̃I) in terms of anomaly coefficients of the relativistic system. But

for compressible fluid it is not possible as these coefficients turn out to be zero.

5.2 Incompressible fluid in constant magnetic background in (2+1)-dim

Equation of state of an incompressible fluid is given by:

ρ = constant, (5.11)

which implies that ∇kvk = 0, or in other words, there is no compression or expansion of

the fluid during the flow.

Using the non-relativistic constitutive equations one can easily show that:

dε

dt
+ (ε+ p)∇kvk = vj∇iπij −∇iς i, (5.12)

which means that for incompressible fluids, dε/dt is atmost two derivative in order, and is

zero for ideal fluids. Considering this result at first derivative order we can infer that:

uµ∇µ(E − P ) = 0⇒ uµ∇µP
E + P

= −θ, (5.13)

in first derivative order. Same can be inferred directly from eq. (4.32).
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Maxwell’s equation in the magnetic limit appendix A are given by:

∇iεiI = 0, (5.14)

∇iβijI = 0, (5.15)

2εij∇iεIj + εij∇+βIij = 0. (5.16)

Second equation implies that magnetic field is constant in space. Also, if magnetic field

β12I is time independent (as we demand), electric field is curl free. But first equation

already tells us that electric field should be divergence-free. Hence electric field is constant

over the 2 dimensional space. However, electric field can still be time dependent, as the

corresponding term does not appear in the magnetic limit of Maxwell’s equations. Finally

in our case we have, a constant electric field (may depend on time) and a constant magnetic

field.

For this system, the form of jiS is given by

jiS = svi − µI
τ
υiI + bIε

ij∇j
(µI
τ

)
+ dIε

ij
(
εIj − vkβIkj

)
. (5.17)

where bI and dI are determined by equations (5.7)–(5.9). Hence we will get the positivity

of entropy in the form of eq. (5.3), along with constraints eq. (5.4). However ωI and ω̃IJ
remain unconstrained by entropy positivity. Results of this case have been summarized in

tables 3.

6 Discussion

We started with a generic (d+ 2)-dim non-conformal relativistic fluid (d ≥ 2) with anoma-

lies specific to d = 2 in presence of background electromagnetic fields on flat space. Light

cone reduction of this system gives a (d + 1)-dim non-relativistic fluid. We demand that

our non-relativistic fluid satisfies the second law of thermodynamics which imposes certain

constraints on the system. For example we find that the parity odd terms in non-relativistic

theory can only sustain for incompressible fluid in electromagnetic background with con-

stant magnetic field in (2 + 1)-dim.

Our non-relativistic fluid (obtained by LCR) has generic13 dissipative terms, which

are allowed by the symmetry and the condition that local entropy production is always

positive definite. LCR does not constraint the size of these coefficients. They all are fixed

in terms of the transport coefficients of the ‘mother’ relativistic theory. On the contrary,

when one performs a 1/c expansion the relativistic constitutive equations to get a non-

relativistic fluid system, as done in [15], many of these terms are suppressed depending

on the physical considerations and the type of system under view. We discuss the basic

aspects of 1/c expansion in appendix B.

Apart from the dissipative terms, our system and the system obtained by 1/c expansion

in [15] have certain fundamental differences. Firstly, their system is ‘extensive’ as the

13Word generic here just means all possible terms obtained by LCR, and not all possible terms allowed by

symmetry. We might have more or less terms, depending on the type of relativistic theory we are starting

with and the identification.
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Non-rel. variables Rel. variables

Parity-odd ωI fI(u+)2

coefficients ω̃IJ f̃IJu+

Mom. Curr. tij vivjρ+ pgij − nσij

Energy
ji

vi
(
ε+ p+

1

2
ρv2

)
− nσikvk

Current −κ∇iτ − τσI∇i
(µI
τ

)
+ σI

(
εiI − vjβ

ji
I

)

jiI

qvi − κ̃I∇iτ − τ σ̃IJ∇i
(µJ
τ

)
Charge +σ̃IJ

(
εiJ − vkβkiJ

)
Current +ωIε

ij
(κ
n
∇jτ +

σJτ

n
∇j
(µJ
τ

)
− 2

ρ
∇jp

)
+σ̄IJε

ij
(
εJj − vkβJkj

)

jiS

svi +
µI
τ

(
κ̃I∇iτ + τ σ̃IJ∇i

(µJ
τ

)
Entropy −σ̃IJ

(
εiJ − vkβkiJ

))
Current −µI

τ
ωIε

ij
(κ
n
∇jτ −

2

ρ
∇jp

)
+

(
bJ −

ωIµIqJ
ρ

)
εij∇j

(µJ
τ

)
+
(
dJ −

µI
τ
σ̄IJ

)
εij
(
εJj − vkβJkj

)
Table 3. Relativistic and non-relativistic transport coefficients for parity-odd fluid

thermodynamic variables follow Euler’s relation; however since LCR breaks the Euler’s

relation, our system is no longer extensive. Secondly, in our system ρ is not necessarily

proportional to qI , while in [15] it is true at least at the leading 1/c order. This is why our

non-relativistic system has one more independent parameter as opposed to the 1/c case.

We can however enforce ρ ∝ qI in our system as well, but it turns out that demanding so

switches off all the dissipative terms from the theory except for the bulk viscosity.

In [15] authors do not present an entropy current calculation for non-relativistic fluid

obtained by 1/c expansion. In fact, as we will review in appendix B, the entropy positivity

turns out to be trivial, and is just followed from the leading order entropy current of

the relativistic theory. The constraints on the transport coefficients (which survives at

the leading order) also turns out to be the same. However in our case, we have slightly

different constraints, because of the above mentioned fundamental differences between the

two cases.
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A Magnetic limit of electrodynamics

Maxwell’s Electrodynamics is a relativistic theory. In fact it was a precursor to Einstein’s

Special Theory of Relativity. Having a consistent relativistic description of electrodynam-

ics, eradicated any need for a ‘non-relativistic’ theory of electrodynamics. However as

in current context, one needs a Galilean description of electrodynamics, just to keep it

consistent with other non-relativistic theories.

Recently in [18], authors discussed the non-relativistic limit of electrodynamics in

two distinct ways. Depending on the strength of fields,14 we can have two discrete non-

relativistic limits: | ~E| � c| ~B| electric limit and | ~E| � c| ~B| magnetic limit. We find

that the light-cone reduction of relativistic sourceless Maxwell’s equations, under certain

identifications, gives magnetic limit of Maxwell’s equations, which will be our interest of

discussion here. A more thorough discussion of non-relativistic electrodynamics can be

found in [18].

In arbitrary dimensions, inhomogeneous Maxwell’s equations are given by:

∇iF i0 = −µocρ, ∇0F
0i +∇jF ji = −µoJ i, (A.1)

while the homogeneous ones (Bianchi identities) are:

εαβ···µνσ∇µFνσ = 0, (A.2)

where εαβ···µνσ is the full-rank Levi-Cevita tensor. The last identity follows directly from the

gauge invariant form of Fµν = ∇µAν−∇νAµ or the constituent fields:15 Ei = −∇iφ−∇0A
i

and F ij = ∇iAj − ∇jAi. As LCR gives a non-relativistic theory with gauge invariance,

we are interested in a non-relativistic limit which preserves eq. (A.2). We will see that the

magnetic limit essentially does the same. However there exists a consistent electric limit

as well, where Bianchi identities are broken, but inhomogeneous Maxwell’s equations are

preserved.

In terms of dimensionless fields and sources one can write the inhomogeneous Maxwell’s

equations as:

α∇iEi = ρ, β
∂

∂t
Ei +∇jF ji = −β

α
J i, (A.3)

and the Bianchi identities as:

εlm···ij∇iEj = −β 1

2
εlm···ij

∂

∂t
F ij , (A.4)

εm···kij∇kFij = 0, (A.5)

14In this section we use the conventional notation for electrodynamics: E for electric field, B for magnetic

field, ρ for charge density, J for charge current etc.
15Instead of the conventional magnetic field, we use its 2nd rank dual in our work, as in arbitrary

dimensions we do not have electromagnetic duality and magnetic field does not have any fixed rank, while

its dual has.
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where α and β are some dimensionless constants given by:

α =
[E]εo
[ρ][L]

, β =
[L]

[T ]c
. (A.6)

From here we can easily read out, that in non-relativistic limit β � 0. To preserve the

Bianchi identities therefore, Ei should be one order smaller than F ij ; which is why this

limit is called ‘magnetic limit’. If we measure smallness in terms of a parameter ε ∼ 1/c,

we will have Ei ∼ εn+1 and F ij ∼ εn. Therefore from eq. (A.3), first nontrivial order of

ρ ∼ αεn+1, and J i ∼ αεn−1, and inhomogeneous Maxwell’s Equations (in conventional

units) reduce to:

∇iEi =
ρ

εo
, ∇jF ji = −µoJ i. (A.7)

Essentially we have just dropped the displacement current term from the Ampere’s Law.

To explicitly see if this limit is Galilean invariant, one can lookup [18]. These are the very

equations that have been used in section 4.1 and 5.2.

One can now push the expansion of eq. (A.3) to εn+2 order and derive the continuity

equation:
∂

∂t
ρ+∇iJ i = 0. (A.8)

It should be remembered however that there are mixed orders in this equation and to

the highest order it just states: ∇iJ i = 0, which also follows from eq. (A.7). Continuity

equation takes its usual form only when first two leading orders of J i vanish and ρ ∼ J i, but

in which case one of the Maxwell’s equations modifies to: ∇jF ji = 0. This in conjugation

with the Bianchi identity would mean that the magnetic field is constant over space.

Finally in conventional units this limit can be summarized as: F ij ∼ Ei ∼ c−n, and to

the maximum order ρ ∼ c−nεo, J i ∼ c−n+2εo.

B 1/c expansion of relativistic fluid dynamics

In this section we discuss briefly the 1/c expansion limit of relativistic fluid dynamics to get

a non-relativistic theory, using the prescription of [15]. We consider here just a parity-even

fluid for comparison with our work. Parity-odd sector in our case and in [15] are in different

hydrodynamic frames and thus are incomparable.

The constitutive equations of a relativistic fluid (with appropriate factors of c) are:

∇µTµν = cF ναI JIα, ∇µJaµI = 0, (B.1)

where

Tµν = (E + P )uµuν + Pgµν + Πµν , (B.2)

JaµI = QIu
µ + Uµ

I . (B.3)

Respective dissipative terms are given as:

Πµν = −2ητµν − ζθPµν , (B.4)

Υµ
I = − 1

c2
TλIJP

µν∇ν
(
MJ

T

)
+

1

c
λIJE

µ
J . (B.5)
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We can separate out rest contributions from E and MI :

E = Rc2 + E , MI =
1

K
mIc

2 + µI . (B.6)

Here mI is the mass is to ‘I’th charge ratio of constituent particles in their local rest frame,

which is assumed to be constant. K is the total number of U(1) charges. Non-relativistic

mass and energy density are related to their relativistic counterparts as:

ρ = RΓ, ε = EΓ, (B.7)

where Γ = (1−v2/c2)−1. Since the fluid under consideration is single component, R/QI =

mI is a constant. Non-relativistic charge density is defined as:

qI = J0
I . (B.8)

Pressure and Temperature are however kept same, which to be consistent with the main

text notation we will denote as: τ = T and p = P .

Before continuing with expansion we need to fix the order of various quantities. ρ,ε,p,τ,vi

can be thought of finite order without much ambiguity. mI on the other hand is quite sen-

sitive to the kind of system under consideration. Let us consider a charged fluid made of

‘ions’ where mI ∼ c2; mI cannot be too low, or else the fluid would start coupling to the

background fields. Correspondingly the charge density qI would be of order c−2. Further,

to keep the thermodynamics intact, one has to assume µI to be of order of c2. Finally, for

external fields to have finite effect (e.g. force) on the fluid, εiI ∼ β
ij
I ∼ c2.

Using this information we can reduce the energy-momentum tensor to:

T 00 = ρc2 +
1

2
ρv2 + ε+O(1/c),

T i0 = ρvic+

(
1

2
ρv2 + ε+ p

)
vi

c
+

1

c
πijvj +O(1/c2),

T ij = tij +O(1/c), tij = ρvivj + pgij + πij , (B.9)

where we have used:

n =
η

c
, z =

ζ

c
, (B.10)

πij = −n
(
∇ivj +∇jvi − gij 2

d
∇kvk

)
− zgij∇kvk. (B.11)

Energy-momentum conservation equations, at highest order, will then reduce to:

∂tρ+ ∂i(ρv
i) = 0, (B.12)

∂t(ρv
i) + ∂it

ij = εiIqI + βijI jIj . (B.13)

It will be worth to mention here the underlying assumption: n, z ∼ 1 which is just an

empirical fact. This is precisely the reason why no dissipative corrections appear to the

continuity equation. We can now expand the charge current:

J0
I = qI , qI = QIΓ +O(1/c6),

J iI =
1

c
jiI +O(1/c7), jiI = qIv

i + ς iI , (B.14)
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where we have used:

σ̃IJ =
λIJ
c
, γ̃IJ =

γIJ
c
, (B.15)

ς iI = c2σ̃IJ
mJ

Kτ
∇iτ. (B.16)

Here again we have used a physical input to fix the order of σ̃IJ . We would demand that

in the non-relativistic theory, charge to mass ratio should be a constant. Therefore charge

continuity and mass continuity equations should be the same upto leading order in 1/c,

and hence ς iI should at maximum be of the order of c−4. It further implies that σ̃IJ ∼ c−8.
As a consequence, effects like electric conductivity are suppressed in whole theory.

Finally we use: ∇µ
(
Tµ0 − 1

KmIc
2JµI

)
= 0 to get the energy conservation:

∂t

[
1

2
ρv2 + ε

]
+ ∂i

[
vi
(

1

2
ρv2 + ε+ P

)
+ ς i

]
= 0, (B.17)

ς i = πijvj − κ∇iτ, (B.18)

where we have identified the thermal conductivity:

κ = σ̃IJ
c4

K2

ma
Im

a
J

τ
. (B.19)

which is of finite order.

The non-relativistic theory has essentially turned out to be identical to the chargeless

fluid discussed in [1], because for uni-component fluids, charge density serves just as number

density upto a factor. For multi-particle fluids however this might become more interesting,

as then one does not have to expect charge is to mass ratio to be constant. In fact one can

have some chargeless particles also in the system.

B.1 1/c expansion of thermodynamics

First law of thermodynamics and the Euler’s relation in the relativistic theory are given by:

dE = TdS +MIdQI , (B.20)

E + P = TS +MIQI . (B.21)

Under 1/c expansion they reduce to:

dε = εds+ µIdqI , (B.22)

ε+ p = τs+ µIqI , (B.23)

which are just the non-relativistic analogues of the same equations. We therefore conclude

that the non-relativistic system gained by 1/c expansion follows extensivity.

Now lets have a look at the second law of thermodynamics in the relativistic side,

which mentions: ∇µJµS ≥ 0. From eq. (2.35) we know the positive definite form of entropy

current:

∇µJµS =
1

T
ητµντµν +

1

T
ζθ2 +

[
EαI
c2T
− 1

c
Pαµ∇µ

(
MI

T

)]
%IJ

[
EJα
c2T

− 1

c
Pαν∇ν

(
MJ

T

)]
.

(B.24)
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In highest order this equation for non-relativistic systems says that:

∇ts+∇ijiS =
1

2τ
nσijσij +

1

τ
z
(
∇kvk

)
+

κ

τ2
(
∇iτ

)2
. (B.25)

But if we look at the respective coefficients from the relativistic side:

n =
η

c
≥ 0, z =

ζ

c
≥ 0, (B.26)

κ = %IJ
c3

K2

ma
Im

a
J

T 2
≥ 0. (B.27)

We hence see that the relativistic entropy positivity implies non-relativistic entropy posi-

tivity.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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