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the heterotic theory is compactified on a smooth Calabi-Yau threefold that is elliptically

fibered with a single section and carries smooth irreducible vector bundles, and the dual

F-theory model has a corresponding threefold base that has the form of a P1 bundle. We

formulate simple conditions for the geometry on the F-theory side to support an elliptically

fibered Calabi-Yau fourfold. We match these conditions with conditions for the existence

of stable vector bundles on the heterotic side, and show that F-theory gives new insight

into the conditions under which such bundles can be constructed. In particular, we find

that many allowed F-theory models correspond to vector bundles on the heterotic side with

exceptional structure groups, and determine a topological condition that is only satisfied

for bundles of this type. We show that in many cases the F-theory geometry imposes

a constraint on the extent to which the gauge group can be enhanced, corresponding to
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(4962) F-theory threefold bases for dual F-theory/heterotic constructions in the subset of
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1 Introduction and overview

1.1 Introduction

Since the early days of string theory it has been known that a wide range of different physical

theories in four and higher dimensions can be realized by compactifying ten-dimensional

string theories (and their more recently discovered higher-dimensional relatives M-theory

and F-theory) on different geometric spaces [1, 2]. Tremendous effort has been expended in

exploring the range of theories that can be realized through such compactification. While

for theories in higher dimensions with extended supersymmetry, the range of possible string

models has a tractable scope, for theories in four dimensions with minimal supersymmetry

known constructions seem to give rise to such a vast “landscape” [3–5] of possibilities that

– 1 –



J
H
E
P
0
8
(
2
0
1
4
)
0
2
5

it is difficult to systematically study the set of allowed models and the constraints that

they impose on 4D physics. It is suspected, in fact, that the known constructions of 4D

N = 1 theories from string theory may represent only the tip of a much larger iceberg

composed of compactifications described by more general mathematical objects including

non-Kähler and non-geometric compactifications.

Nonetheless, it may be possible by analyzing specific string constructions to ascertain

some global constraints and systematic features of the theories that arise from compact-

ification of string theory. Recent work on globally classifying 6D string/F-theory com-

pactifications and associated constraints on 6D supergravity theories [6–8] suggests that a

systematic analysis is possible in six dimensions and may provide tools for a similar treat-

ment of some aspects of the space of 4D compactifications [9]. In this paper we analyze how

geometric constraints on two general classes of string compactifications to 4D are related,

as a step towards a more systematic understanding of the space of 4D N = 1 theories that

can arise from string theory.

Compactifications of heterotic string theory and F-theory provide two corners of the

string landscape where 4-dimensional N = 1 supersymmetric theories with chiral matter

and exceptional gauge symmetries arise naturally. There is a tremendous literature on het-

erotic string compactifications; some recent work has sought to explore and enumerate the

possible effective theories that can be obtained from compactification of the heterotic the-

ory on a smooth Calabi-Yau (see [10–18] for some recent systematic studies). The duality

between smooth heterotic compactifications and equivalent 4D F-theory constructions has

also been broadly explored; see e.g. [19, 20]. The effective low-dimensional theories arising

from compactifications of both heterotic string theory and F-theory are highly constrained

by the background geometry of the compact dimensions. Indeed, it is an attractive possi-

bility that these constraints might be strong enough to characterize which effective theories

can arise (in any dimension) from heterotic or F-theory compactifications, or in the case of

compactifications to 4 dimensions, used to characterize which string geometries could be

relevant for string phenomenology and give rise to the low-energy physics we see in nature.

A major obstacle in any systematic attempt to classify the possible compactification

geometries and effective theories for either the heterotic string or F-theory is the cur-

rent limitation on our mathematical understanding of the relevant geometries. It is not

known, for example, whether the number of distinct diffeomorphism classes of Calabi-Yau

threefolds and fourfolds is even finite, much less how to characterize all the properties of

the manifolds that determine the effective theories. There is, however, at least one class of

backgrounds, involving dual heterotic and F-theory compactifications on elliptically fibered

Calabi-Yau threefolds and fourfolds, where the number of topologically distinct string ge-

ometries is finite, and some systematic analysis is possible.

For those theories that have dual heterotic and F-theory constructions, the compacti-

fication geometries take the form [21, 22]

Heterotic on Xn, πh : Xn
E−→ Bn−1 ⇔ F-theory on Yn+1, πf : Yn+1

K3−→ Bn−1 (1.1)

where Xn is elliptically fibered over Bn−1 and the K3-fibered manifold Yn+1 admits a more

detailed description as an elliptically-fibered Calabi-Yau (n + 1)-fold with section over a
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base Bn which is itself P1 fibered over Bn−1. The classification of such dual theories can be

done at increasing levels of complexity by including successively more information about

the geometry. At the coarsest level, the theories can be classified by the topological type of

the base Bn−1. In dimensions eight and six there is a unique Bn−1 associated with smooth

heterotic/F-theory dual pairs (respectively a point and P1), but in four dimensions there

are many distinct possible bases Bn−1. At the next level of detail, theories can be classified

by the geometry of the F-theory base Bn. For any given Bn−1 there are in general many

distinct topological types of Bn that characterize allowed F-theory geometries. Theories

with different bases Bn (including those with different Bn−1) are connected on the F-

theory side by tensionless string transitions and on the heterotic side by small instanton

transitions [22–24]. We primarily focus in this paper on classifying theories at the level

of Bn. The choice of Bn on the F-theory side fixes some of the topology of the dual

heterotic bundles, but not all (specifically, it fixes some components of the second Chern

classes of the bundles). For a given choice of Bn, Higgsing/unHiggsing transitions in the

effective theory, which correspond to deforming along/tuning moduli in the F-theory and

heterotic bundle pictures, can modify the gauge group of the low-energy effective theory,

and correspondingly modify the bundle structure group on the heterotic side. For N = 1

theories in 4D, G-flux on the F-theory side lifts some moduli and can give disjoint sets

of string vacua associated with compactifications on a given Bn. For the most part, in

this paper we concentrate on features that depend only on the geometry of Bn and are

independent of the moduli lifting and other issues associated with G-flux. While a further

understanding of the consequences of G-flux is clearly desirable, a good understanding of

the underlying geometric structure that we focus on in this paper seems to be an important

first step in a systematic understanding of general 4D F-theory models.

In this work we focus on 4-dimensional effective theories arising from heterotic string

theory on a smooth elliptically fibered Calabi-Yau threefold and F-theory on a dual K3-

fibered Calabi-Yau fourfold that admits a compatible elliptic fibration and has a smooth

resolution. For both the Calabi-Yau threefold and fourfold geometries, we consider only

geometries where the elliptic fibrations admit a (single) section. We assume that the

gauge bundle in the heterotic theory is smooth, and that there are no heterotic 5-branes

wrapping curves in the base B2, which would be associated with singular small instanton

configurations.1

Beginning on the heterotic side of the duality, it is known that the number of topo-

logical types of smooth elliptically fibered Calabi-Yau threefolds with section is finite [25]

(see also [7], for a more constructive argument in the context of Weierstrass models). In

a heterotic dimensional reduction, the 10-dimensional gauge field and the vacuum gauge

field configuration over the Calabi-Yau threefold must be taken into account. These are

described in the E8 × E8 heterotic theory by adding to the Calabi-Yau geometry a pair

of holomorphic vector bundles Vi (i = 1, 2) on X3 with structure groups Hi ⊆ E8. In the

SO(32) heterotic theory, only a single vector bundle is used. For fixed bundle topology

1In some cases, the dual geometries we consider may include heterotic 5-branes wrapping the elliptic

fiber of the CY threefold. See [19] for a discussion of the different roles that heterotic 5-branes can play.
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(specified by rank(V ) and a total Chern class, c(V )), it is known that the moduli space

of bundles2 compatible with N = 1 supersymmetry in 4D has only finitely many compo-

nents3 [26, 27]. Although these proofs of general finiteness are at present not constructive,

it seems possible to systematically construct at least one important class of dual models.

As we discuss further in section 3, when the geometries are smooth on both the het-

erotic and F-theory sides the base surface B2 is restricted to be a generalized del Pezzo

surface [28], of which there are a finite number of topologically distinct types. Over these

bases a rational (P1) fibered threefold B3 must be built and here we restrict our attention

to the case where B3 can be constructed as a P1 bundle over B2. We demonstrate here

that there are a finite number of topologically distinct P1 bundles over any generalized del

Pezzo surface such that B3 supports an elliptically fibered Calabi-Yau fourfold. Moreover,

we show that this finite set of B3’s can be enumerated for any B2. The number of distinct

branches of the moduli space of Weierstrass models over any specific B3 corresponding to

distinct gauge group and matter contents is finite by a similar argument to that for base

surfaces in (section 6.5 of) [7].

This class of dual heterotic/F-theory models thus represents a reasonable starting point

with which we can get a first foothold into the problem of classifying and characterizing

4D N = 1 string vacua and their effective theories, as well as understanding constraints on

the effective theories arising from string geometry.4

The general structure just detailed is illustrated clearly in the simple case of 4D models

where the base B2 is toric. The powerful mathematical toolkit of toric geometry allows

for simple and direct computations in this class of examples. While there are hundreds of

generalized del Pezzo surfaces B2 that can act as bases of smooth dual heterotic/F-theory

Calabi-Yau threefolds and fourfolds, only 16 of these B2’s are toric. The direct enumeration

of all associated F-theory bases B3 (built as P1 bundles) is a straightforward calculation,

which we carry out in this paper as an example of the general theoretical framework.

1.2 Overview of main results

For the convenience of the reader, we summarize here some of the main results of the

paper that we believe have some novelty, and indicate where in the paper these results are

described in more detail.

2More precisely, the moduli space of Mumford semi-stable sheaves on X3.
3Finiteness of the number of heterotic geometries here is established in two steps. First, the results

of [26, 27] guarantee that for stable, hermitian bundles with fixed first and second Chern classes c1, c2 there

are a finite number of possible values for the third Chern class c3(V ) (note that in the case exceptional

structure groups, c3 is no longer a topological invariant). To argue that the number of heterotic geometries

is finite we must further observe that c1 ≡ 0 mod 2, and the second Chern class is bounded as 0 ≤ c2(V ) ≤
c2(TX3) by heterotic anomaly cancelation (see eq. (5.2)).

4As this paper was being completed, the paper [29] appeared, in which magnetized brane models were

considered over smooth elliptically fibered Calabi-Yau threefolds over del Pezzo bases, and the number of

models in this class was shown to be finite.
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1.2.1 Classification and enumeration of models

Classification of P1-bundle bases B3 for F-theory models with smooth heterotic

duals

As described at the conclusion of the previous section, we show in section 4.1 that there

are a finite number of P1 bundles B3 over smooth bases B2 for F-theory models with

smooth heterotic duals on elliptically fibered Calabi-Yau threefolds with section. This

follows from the fact that the number of generalized del Pezzo surfaces B2 is finite, and

the number of possible “twists” of the P1 bundle B3 over any B2 is finite. We construct

explicit bounds on the twist that reduce the classification of B3’s to a finite enumeration

problem in section 4.1.3, and write a simple set of topological conditions that characterize

allowed B3’s in section 4.1.5 and section 4.1.6. These results are quite general, and do not

depend on toric geometry or any other specific conditions on the F-theory base geometry

beyond the P1 bundle structure.

Enumeration of models with toric B2 and smooth heterotic duals

As a concrete example of the general classification results, we explicitly construct all F-

theory bases B3 that can be built as P1-bundles over toric surfaces B2 giving rise to smooth

elliptically fibered fourfolds for F-theory compactifications with smooth heterotic duals.

For the 16 toric B2’s we find 4962 threefolds B3, and classify the generic associated effec-

tive theories. These manifolds add to the dataset of Calabi-Yau fourfolds that have been

systematically studied to date (see [30–36]). These results are described in section 9.

1.2.2 Topological constraints on symmetries and spectra

Matching geometric F-theory constraints and heterotic bundle constraints

We show that there is a close correspondence between the geometric constraints on F-

theory models and conditions for the existence of smooth, slope-stable bundles in heterotic

theories. This extends earlier work of Rajesh [37] and Berglund and Mayr [38]. The details

of this correspondence are elaborated in section 6. Some of the most interesting aspects

of this correspondence arise when a constraint is better understood on one side of the

duality than the other. In particular, the next two items describe constraints on the gauge

group and bundle structure that are currently understood most clearly from the F-theory

perspective, while the last item below describes aspects of matter content that are clearest

from the heterotic point of view.

Heterotic bundles and the base-point free condition

One of the most general methods known for explicitly constructing bundles suitable for

heterotic compactification is the spectral cover construction [19, 39]. This construction is

used to build bundles with structure group SU(N) or Sp(N). Irreducible bundles can only

be constructed via a spectral cover when the second Chern class of the bundle satisfies a

condition of base-point freedom. We find that for SU(N) or Sp(N) structure groups the

base point freeness condition can be derived from the F-theory geometry independent of

the assumption of any particular method of bundle construction. Thus, for these structure

– 5 –
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groups base-point-freeness of (a part) of the second Chern class is required for all bundles

in the moduli space.

In addition, we find that many F-theory models that should have smooth heterotic

duals violate this base-point free condition. We show that these are all associated with

bundles having exceptional or SO(8) structure groups and thus do not violate the above

constraints for SU(N) and Sp(N) bundles. More general methods such as the cameral

cover construction [40–42] and other approaches to constructing general G-bundles de-

scribed in [19] based on a theorem of Looijenga [43, 44] can in principle provide construc-

tions of bundles with these more general structure groups. Our analysis gives a general

classification of situations in which bundles with exceptional structure groups are expected

to exist — though in many cases explicitly describing the properties of such bundles is

an open problem in geometry. The property of base-point-freedom and its violation also

has important consequences for the problem of vector bundle deformations and symmetry

group breaking/enhancement. The base-point free condition is described in section 5.3.

The corresponding F-theory condition and circumstances for its failure are described in

section 6.4. Examples of cases where this condition is violated in F-theory are described

in sections 7, 9.

Limitations on gauge enhancement

Geometric constraints on the F-theory side not only provide a minimal gauge group for the

low-energy theory given a compactification topology, but can also limit the extent to which

the gauge group can be enhanced over a given base geometry. For example, in many situa-

tions SU(2) and SU(3) gauge groups are constrained by F-theory geometry so that they can-

not be in a broken phase of an SU(5) gauge group. In these cases the restriction is associated

with the structure of a codimension one singularity in the F-theory geometry. In other cases,

codimension two singularities related to matter fields constrain enhancement — so that,

for example, in some cases an E6 cannot be enhanced to an E7. These limitations on gauge

enhancement are described in section 4.2 and section 8 with examples given in section 7.

Chiral matter

The circumstances under which the low-energy theory has chiral matter are better under-

stood on the heterotic side. We identify a class of situations in which chiral matter must

arise due to the heterotic geometry, with implications for the dual F-theory model when

G-flux is incorporated. On the heterotic side these correspond to bundles built via the spec-

tral cover construction with structure group given by SU(2n + 1), giving rise to 4D GUT

theories with, for example, E6 or SU(5) symmetry [45]. In particular, in the dual F-theory

geometries enumerated in this work, we find that many examples of theories with generic

E6 symmetry contain chiral matter. Examples of this type are described in section 7.8.

1.3 Outline

This paper is organized as follows: we begin in section 2 with a brief review of the dual-

ity between heterotic string theory and F-theory in dimensions eight and six. We focus

on the nature of heterotic/F-theory duality, the classification of models, and constraints
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on the effective theory, illustrating features and tools that are helpful in analyzing four-

dimensional compactifications in the remainder of the paper. In section 3 we summarize

heterotic/F-theory duality in four dimensions and describe the range of constructions of

interest. Section 4 gives a more detailed description of the geometric constraints on the

F-theory side, and section 5 describes the constraints on both the Calabi-Yau threefold and

bundle geometries on the heterotic side. In section 6 we compare the constraints on the

two sides and show when they are equivalent and when one side of the duality provides new

information about the geometry of the other side. Section 7 contains some examples. In

section 8 we summarize the consequences of our study for heterotic bundle moduli spaces,

and in section 9 we describe the results of the systematic enumeration of all smooth F-

theory geometries with toric base B2 and a smooth heterotic dual construction. Finally, a

brief summary of this work and associated open questions are given in section 10. Some

technical details are relegated to appendices.

2 Lessons from heterotic/F-theory duality in higher dimensions

2.1 Heterotic/F-theory duality in eight dimensions

Beginning with the initial formulation of F-theory in 8 dimensions [21, 46] (see [47] for

a review), the duality of F-theory with the heterotic string has provided an important

window through which both theories can be better understood. In 8 dimensions, F-theory

compactified on an elliptically fibered K3 surface Y2, π : Y2 → P1, is dual in certain

(separate) limits of its parameter space to the perturbative E8 ×E8 and SO(32) heterotic

string theories on T 2. In the case of the 8D E8 × E8 heterotic theory, this duality can

be understood most explicitly in the weak coupling limit of the effective theory, which is

realized by taking the volume of T 2 to be large in the heterotic theory. The heterotic

T 2 volume modulus is mapped into a complex structure modulus of the K3 surface in

F-theory. Geometrically, the E8 × E8 limit corresponds to decomposing the K3 surface

into a (singular) fiber product of two elliptically fibered dP9 surfaces, glued together along

an elliptic curve5 — the so-called “stable degeneration limit” [19, 21, 22].

In the 8D stable degeneration limit, all the features of the two theories, including the

moduli parameterizing the vacua, can be matched exactly [22, 46, 48–51]. For example,

the possible gauge groups arising from different configurations of the heterotic flat gauge

bundles on T 2 (i.e. Wilson lines) can be matched to the symmetries arising from ADE

degenerations of the elliptic fiber of K3 that produce different non-Abelian symmetries

over points in the P1 base (corresponding to the positions of 7-branes in the language of

Type IIB); these degenerations were classified mathematically by Kodaira [52, 53]. From

the point of view of the classification of models and constraints, the 8D story is quite simple.

In this case the base manifold B0 is a point, and the F-theory base B1 = P1 is the unique

P1 bundle over this point. Thus, there is a single moduli space of 8D models connected by

“Higgsing” type transitions that reduce or increase the size of the gauge group by de-tuning

5For the limit which produces the SO(32) heterotic theory, the K3 degenerates into a fiber-product of

rational surfaces, see [48] for details.
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or tuning moduli to modify the singularity structure of the elliptic fibration. On both the

F-theory and heterotic sides, the only constraint is that the gauge algebra G must have

a root lattice that can be embedded into the unique signature (2, 18) unimodular lattice

Γ2,18 ([54], reviewed in [55]).

In lower dimensions, heterotic/F-theory duality is understood by fibering the 8D du-

ality over a nontrivial shared base manifold Bn−1. As in (1.1), a heterotic theory on an

elliptically fibered Calabi-Yau n-fold Xn, πh : Xn → Bn−1 is dual to F-theory on a K3-

fibered (n + 1)-fold Yn+1 with the same base, πf : Yn+1 → Bn−1, in which the K3 fiber

is in turn elliptically fibered as described above. The elliptic and K3 fibrations are taken

to be compatible, and both are chosen to have sections. This duality has been studied

primarily in the stable degeneration limit [19], though in this paper we describe aspects of

the duality that are true more generally, independent of this limit.

2.2 Heterotic/F-theory duality in six dimensions

2.2.1 Dual 6D geometries

For dual heterotic/F-theory compactifications to six dimensions, the perturbative heterotic

compactification space is a K3 surface that is elliptically fibered over the common base

B1 = P1, and the dual F-theory geometry is a Calabi-Yau threefold Y3 that is elliptically

fibered with section over a Hirzebruch surface, π : Y3 → Fn, where the Hirzebruch surface

B2 = Fn is itself a P1 bundle over B1. As in 8D, codimension one singularities in the

elliptic fibration encode a gauge group in the F-theory picture, which in 6D can include

non-simply laced groups when monodromy is present [56]. Codimension two singularities

encode matter fields.

In principle, heterotic/F-theory duality can be extended beyond the set of smooth dual

geometries by incorporating non-perturbative effects such as NS5-branes in the heterotic

theory. In this case, the dual F-theory geometry Y3 is an elliptic fibration over a more

general 2-dimensional base B2, which is a blow-up of a Hirzebruch surface [21, 22], cor-

responding to a more general P1 fibration over B1 = P1. The base B2 = P2 can also be

realized on the F-theory side, e.g. after a tensionless string transition from B2 = F1 [21, 24].

For each choice of B2, there is a connected moduli space of elliptically fibered Calabi-Yau

threefolds describing a set of 6D theories connected by Higgsing and unHiggsing transi-

tions. The global space of 6D F-theory compactifications [7] consists of a finite family of

such moduli spaces connected by tensionless string type transitions. The connectivity of

the set of moduli spaces associated with distinct B2’s corresponds to the mathematical

framework of minimal surface theory [57, 58], in which curves of self-intersection −1 are

blown down until a minimal surface (in this case a Hirzebruch surface Fn with n ≤ 12,

P2, or the Enriques surface [59]) is reached. A systematic classification of F-theory bases

B2 according to the intersection properties of effective divisors is given in [8]. A complete

enumeration of allowed bases is in principle possible and has been carried out explicitly

for toric B2’s [60], and the more general “semi-toric” class of B2’s that admit a single

C∗ action [61]. The global description of the moduli space is much more complicated on

the heterotic side, where multiple coincident small instantons must be analyzed systemati-
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cally (section 2.2.4). We restrict attention in this paper to smooth heterotic/F-theory dual

geometries where no small instantons arise, which in 6D limits us to B2 = Fn.

2.2.2 Geometric conditions on vacua

Even in 6D, each side of the duality encodes some nontrivial information about the geome-

try of its dual theory. In early explorations of F-theory [21, 22, 56], the degrees of freedom

and effective theory of heterotic compactifications were used to develop the “dictionary” of

how the dual Calabi-Yau threefold geometry determines the gauge symmetries and matter

spectra in the F-theory description. F-theory can in turn be used to enumerate possible

heterotic backgrounds (K3, V1, V2) and to make useful statements about their properties.

One of the most significant aspects of this duality is the way that the dual theories

realize the condition for N = 1 (minimal) supersymmetry in 6 dimensions. On the F-

theory side this appears as the condition that the total elliptically fibered compactification

space is a Calabi-Yau threefold (more precisely, the manifold can be singular, in which

case the resolved geometry is a Calabi-Yau threefold; the F-theory description can be

thought of as a singular M-theory limit, as reviewed for example in [47]). On the heterotic

side, this condition corresponds to the statement that the compactification manifold is

a K3 surface and that the gauge bundles (V1, V2) with structure groups embedded into

each E8 factor satisfy the Hermitian Yang-Mills equations [1], that is, that they are slope-

(poly)stable [62–64]. Furthermore, the first Chern class of the principal bundles must

vanish,6 with c1(Vi) ≡ 0 (mod 2).

The choice of a smooth heterotic/F-theory dual pair in 6D is determined by a single

integer. In the heterotic theory this appears as the choice of a fixed second Chern class for

the vector bundles c2(V1,2) = 12±n. On the F-theory side, this corresponds to the choice of

Hirzebruch surface Fn for the two-fold base B2. The constraint n ≤ 12 (originally described

in [21]) gives a simple example of the type of geometric constraint that we explore later in

this paper for 4D compactifications. On the heterotic side this constraint follows from the

slope-stability of the vector bundles and the heterotic anomaly cancellation condition which

relates the second Chern class of the holomorphic tangent bundle of K3 with those of the

gauge bundles V1,2. On the F-theory side this constraint follows from the fact that for n >

12 the existence of an effective divisor in B2 = Fn with self-intersection −n < −12 yields

a singularity in any elliptic fibration over B2 that cannot be resolved to yield a total space

that is a Calabi-Yau manifold. Thus, in this case rather different geometric considerations

on the two sides give the same analytic constraint on the structure of the allowed theories.

2.2.3 Moduli and the stable degeneration limit

It is worth briefly reviewing the moduli of heterotic/F-theory compactifications in 6D and

the interpretation of these moduli in the two dual pictures. As described in [21, 22] and

6More precisely, since the generators of E8 are traceless, all principal bundles V that are sub-bundles

of an E8 bundle (i.e. that have structure group H ⊆ E8) must have vanishing first Chern class. However,

if the associated vector bundles V,∧2V . . . (arising in the heterotic theory from the decomposition of the

248-dimensional adjoint of E8) are reducible, then their first Chern classes can be non-zero and satisfy

c1(Vi) ≡ 0 (mod 2).
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easily confirmed in the toric description (reviewed in section 3.3), a Calabi-Yau threefold

Y3 that is elliptically fibered over the Hirzebruch surface Fn can be described in Weierstrass

form as

y2 = x3 + f(z1, z2)x+ g(z1, z2) (2.1)

where (z1, z2) are coordinates on Fn and

f(z1, z2) =

I∑
i=0

zi1f8+n(4−i)(z2) I ≤ 8 such that 8 + n(4− I) ≥ 0 (2.2)

g(z1, z2) =

J∑
j=0

zj1g12+n(6−j)(z2) J ≤ 12 such that 12 + n(6− J) ≥ 0 (2.3)

More abstractly, f, g are sections of the line bundles O(−4K),O(−6K), where K is the

canonical class of the base B2; these explicit expressions give a local coordinate description

of generic sections of these line bundles.

As is now well understood [19, 21, 22], the heterotic/F-theory dictionary in 6D indi-

cates that the “middle” polynomials (the coefficients of z4
1 and z6

1 in f and g, respectively

in (2.2), (2.3)) correspond to the moduli of the heterotic K3 surface, while polynomials

of low degree (coefficients of zi1 with i < 4 in f and coefficients of zj1 with j < 6 in g)

parameterize one of the heterotic bundles V1, and polynomials of high degree (i > 4, j > 6)

parameterize the other bundle V2. The bundle V1 has structure group H1, which is embed-

ded in E8, and the resulting gauge group is the commutant G1 of H1 ⊆ E8. On the F-theory

side this corresponds to a Calabi-Yau threefold with 7-branes wrapping the P1 base of the

K3-fibration, giving rise to symmetry G1 encoded in the singularity structure of the elliptic

fibration at the point z1 = 0. Similarly, the second heterotic bundle V2 has structure group

H2 with commutant G2, associated with the singularity structure of the F-theory elliptic

fibration at z1 = ∞. This correspondence can be made precise in the stable degeneration

limit, in which Y3 → Y1 ∪K3 Y2 where Y1,2 are (non-CY) dP9-fibered threefolds. In this

limit, the infinitesimal deformation space, Def(Yi), of Yi can be matched exactly to that

of the bundles Def(Vi) and the K3 surface, Def(K3) (see [21, 22, 56, 65] and [66] for a

modern treatment of this result in terms of limiting mixed Hodge structures). That is,

h2,1(Yi) = h1(K3,End0(Vi)) + 20 (2.4)

The correspondence between the F-theory moduli in the Weierstrass model and moduli

of the dual heterotic bundles is particularly transparent in the spectral cover construc-

tion (5.3), where the polynomials fk, gk play a dual role in parameterizing the spectral

cover divisor on the heterotic side.

2.2.4 Constraints on bundles and gauge symmetry

For a fixed topology of B2 on the F-theory side, the moduli encoded in the functions

f, g (2.2), (2.3) parameterize Weierstrass models for all elliptically (and K3) fibered three-

folds Y3 over the base B2. Parts of this moduli space in principle give a complete encod-

ing of each dual heterotic moduli space of sheaves with fixed total Chern class, denoted
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Mω(rank, c1, c2), that are stable with respect to a chosen Kähler form7 ω on K3. In

this context, nontrivial features of the heterotic and F-theory geometries can be exactly

matched. Considering only F-theory on the elliptically fibered threefolds with the 13 Hirze-

bruch bases Fn, n = 0, . . . 12, it is possible to deduce a number of facts about the dual

moduli spaces of sheaves Mω(rank, c1, c2). The first of these is that for c1 = 0, fixed c2,

and the structure group Hi of Vi fixed subject to Hi ⊆ E8, Mω has only one component

— corresponding to a connected deformation space of a dual Calabi-Yau threefold Y3 as

described above.8

The moduli space structure on the F-theory side is matched non-trivially not only to

the irreducibility of Mω(rank, c1, c2) for fixed rank, but also provides information about

deformations of Vi that change the rank. A change in the rank (and hence structure group

Hi) of the bundles Vi corresponds to changing the gauge symmetry of the 6D effective

theory (Gi ⊆ E8). In the F-theory geometry, this gauge symmetry can be varied by

changing the complex structure of Y3. By tuning the complex structure to special loci in

moduli space, it is possible to augment the Kodaira singularity types of the elliptic fibration

over divisors in the base, which enhances the gauge group symmetry of the 6D theory;

this corresponds on the heterotic side to specializing Vi to bundles with smaller structure

groups. In the reverse process, in cases where complex structure deformations exist to break

a symmetry, there is a simple realization in the effective theory as a direct “Higgsing” of G

by charged hypermultiplets. Complete “chains” of these breaking/enhancement patterns

have been determined for the dual 6D theories and matched exactly to complex structure

deformations of the corresponding threefolds Y3 [56] (see also figure 1).

While the gauge symmetry of a 6D theory can often be made smaller or larger by

Higgsing or un-Higgsing through de-tuning and tuning moduli in the F-theory picture,

there are also constraints on both sides that can restrict the extent to which a gauge

group can be broken or expanded. For n ≥ 3, the threefolds π : Y3 → Fn are generically

singular (though they admit a smooth resolution). This means that in these cases there

is a 6-dimensional gauge symmetry that cannot be Higgsed away by giving vevs to the

hypermultiplets associated to the complex structure moduli. In the F-theory geometry,

this corresponds to the presence of a divisor of self-intersection −n in Fn, over which the

elliptic fibration must become singular and has a Kodaira type associated with a nontrivial

gauge group factor. On the heterotic side, this implies that for certain values of the second

Chern class c2 there is a maximum structure group H possible for any bundle with that

topology, since H ⊆ E8 encodes the unbroken symmetry G in the 6-dimensional heterotic

7It is important to note that while heterotic/F-theory duality is believed to hold for the full moduli

space of the the two theories, the explicit “dictionary” between degrees of freedom is only well understood

for suitably weakly coupled regions of parameter space. On the heterotic side, this corresponds to moduli

spaces of stable sheaves that are stable for the appropriate “adiabatic” choice [19] of Kähler form on K3.
8To avoid confusion it should be noted here that the rank appearing in the definition of the moduli space

Mω(rank, c1, c2) refers to a fixed fiber dimension for a given vector bundle appearing in a representation of

Hi determined by the decomposition of the adjoint of E8, not the rank of Hi as a Lie group. For example,

although F4 has rank 4 as a Lie group, one relevant moduli space for F4 bundles appearing in heterotic

theories would consist of rank 26 vector bundles. See section 5.2 for a general discussion of the relevant

bundles, ranks and group representations.
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SUH2L SUH3L

SOH4L

E7

E6

F4

SOH12L

SOH11L

SOH10L

SOH9L

SOH8L

SOH7L

G2

SUH3LIV

SUH2LIII

SUH6L

SUH5L

SUH4L

SUH3L

SUH2L

SpH3L

SpH2L

Figure 1. The possible Higgsing/Enhancement chains for smooth heterotic/F-theory dual pairs;

modified from [56]. Figure depicts Higgsing possibilities based on heterotic bundles with structure

group H ⊂ E8, which match with dual F-theory models. F-theory gauge groups from Kodaira sin-

gularities with f, g having nonzero degrees of vanishing lie to the right of the vertical red dashed line,

such gauge groups can be forced from the geometry (geometrically “non-Higgsable”) and cannot be

unHiggsed to anything left of the line. The SU(3)’s and SU(2)’s connected near the bottom by hori-

zontal dashed lines correspond to transitions between different Kodaira types in F-theory from type

IV, III to type I3, I2. The top row above the horizontal blue dashed line corresponds to an alterna-

tive Higgsing sequence from E8 to SU(3),SU(2) with non-standard commutants (e.g. H = SU(3)×
G2 for upper SU(3)), generically associated with matter in the adjoint representation, which on the

F-theory side involves wrapping on higher genus curves for 6D models. Note that in F-theory models

that do not have heterotic duals, further unHiggsing (e.g. to SU(N > 6)) can occur. Note also that in

the heterotic theory some Higgsing chains lead to product gauge groups, as discussed further in text.

theory. For example, if c2(V ) = 4, the maximal structure group of V is SU(2), for any

such bundle on K3. It follows then that the moduli space of stable sheaves, Mω(r, 0, 4)

contains no locally free sheaves (i.e. smooth bundles) for r > 2 (we will sometimes for

brevity refer to such a moduli space as “empty”). This corresponds in F-theory to the fact

that π : Y3 → F8 is singular with a generic, non-Higgsable E7 symmetry [22].

A fact that is perhaps not generally well appreciated is that there are also cases in 6D

where there are nontrivial constraints on the ways in which a gauge group can be enhanced

by “unHiggsing” the generic model in a given component of the moduli space (i.e. possible

up/rightward paths towards E7 or SO(12) in figure 1). In particular, in any 6D F-theory

construction where the low-energy theory has a generic (non-Higgsable) gauge group SU(3)

arising from a Kodaira type IV singularity associated with a curve C of self-intersection

−3, the group cannot be enhanced to any larger SU(N). In F-theory this follows from

the fact that the Weierstrass coefficients f, g must vanish to degrees 2, 2 on C, which is
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incompatible with an An type singularity for n > 2. This condition corresponds on the

heterotic side to a constraint on the extent to which the E6 bundle over K3 with instanton

number 9 can be deformed to a bundle with reduced structure group. In the case at hand,

the enhancement SU(3)→ G2 (i.e., the reduction of the E6 bundle V27 → V26 ⊕O in9 F4)

is possible, while the enhancement SU(3) → SU(4) via V27 → V10 + V16 ⊕ O in SO(10)

is not. Phrased differently, in terms of the Higgsing chains given in figure 1, if we begin

with the lower right SU(3)IV for this case, it is possible to move upwards (un-Higgsing)

and to the right along the right-hand path G2 ← SO(7) ← . . ., but the group cannot be

unHiggsed to the path SU(4) ← SU(5) ← . . .. While in 6D, those F-theory models with

smooth heterotic duals have gauge groups that can always be enhanced to E7 (or SO(12))

along some path in figure 1, the obstacles to gauge group enhancement can be stronger

for more complicated 6D F-theory models (without smooth heterotic duals), and in four

dimensions there are a number of constraints of this type. We explore the 4D constraints

to gauge group enhancement in more detail in section 4.2.

The set of possible Higgsing/unHiggsing chains in dual pairs of 6D heterotic/F-theory

models contains a number of other interesting features. As depicted in figure 1, a heterotic

E8 symmetry can be broken to SU(3) in several distinct ways, depending on whether the

commutant is H = E6 or H = G2×SU(3), for example. In the latter case, explicit compu-

tation of the branching rules generically gives matter in the adjoint representation for the

smaller groups along the Higgsing chain. In 6D F-theory models, SU(N) matter in the ad-

joint representation is only possible when the gauge group arises on a curve of higher genus

in the F-theory base B2. This is also true for SU(N) models containing any representation

other than the fundamental and k-fold antisymmetric tensor representation [67–69]. For

F-theory models on Fm dual to smooth heterotic models, the gauge group factors live on

divisors of self-intersection ±m. The divisors of self-intersection −m with m > 0 are rigid

and cannot support a higher genus curve. The divisors of self-intersection +m, however,

can be taken with higher multiplicity, giving a higher genus Riemann surface. For exam-

ple, in F2 there are irreducible curves of genus one that have twice the divisor class of the

irreducible curve S̃ of self-intersection +2. An SU(3) gauge group with an adjoint results,

corresponding to an SU(3) factor in the dual heterotic model with the non-standard com-

mutant. Note that for m 6= 0 this can only happen on one side, so only one gauge group

can have adjoint matter representations and lie on the top line of figure 1, corresponding

on the heterotic side to the fact that only bundles with c2(V ) > 12 can have a structure

group such as G2× SU(3). Another interesting feature that can arise in this context is the

appearance of product gauge groups as one of the factors Gi ⊂ E8 in a heterotic model.

On the F-theory side this corresponds again to a gauge group on a multiple of the divisor

class with positive self-intersection, now given as a sum of two irreducible parts.

Constraints on heterotic bundles dual to F-theory models on B2 = Fn are particularly

strong for n = 9, . . . 12, in which cases the generic symmetry of Y3 is E8 (located on the

patch containing z1 = 0 in Fn). This corresponds on the heterotic side to no structure group

at all. That is, H is trivial and full E8 symmetry is unbroken. In these cases, no smooth

9Here O denotes the trivial line bundle over X3.
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vector bundles exist on K3 with c2 = 1, 2, 3. On the F-theory side this corresponds to the

fact that the −9,−10 or −11 curve in Fm must contain a point where the elliptic fibration is

so singular that the point in the base must be blown up for the total space to have the struc-

ture of a Calabi-Yau threefold [8]. On the heterotic side this blowing up corresponds to the

shrinking of an instanton to a point; in these cases there are sheaves (not locally free) with

the desired topology. These cases go outside the smooth heterotic/F-theory dual paradigm

that we focus on here; we encounter 4D analogues of these situations later but do not study

them in detail. F-theory geometry and heterotic/F-theory duality thus lead to the inclusion

of small instantons and sheafy degenerations in the heterotic picture, making it clear that

the structure of the physical theory is in agreement with the mathematical notion of bun-

dle/sheaf moduli spaces. Mathematically, any attempt to construct a moduli space of bun-

dles alone results in a non-compact space. It is only by including sheaves (i.e., degenerations

in the vector bundle) that a compact moduli spaceMω arises. Physically, in the heterotic

theory these sheaves10 correspond to point-like instantons (NS/M5 branes) on the K3 [21,

22], in the cases above with “instanton number” c2 = 1, 2, 3. Thus for 0 < c2 < 4 we note

that the moduli spaceMω is non-empty but contains only sheaves and no smooth bundles.

In principle, this line of development could be used to develop a full description of the 6D

moduli space of non-perturbative vacua from the heterotic side of the duality which could be

matched to the geometric F-theory description, though we do not pursue this further here.

2.2.5 Summary of 6D duality and relevance for 4D

To summarize this review of the 6D story, in 6 dimensions heterotic/F-theory duality

encodes a deep and non-trivial correspondence between the moduli space of elliptically

fibered Calabi-Yau threefolds (and their stable degeneration limits) and the moduli space

of stable sheaves over K3. In six dimensions, essentially all of the information that can be

inferred from the F-theory geometry about the heterotic bundle moduli space, including a)

the irreducibility ofMω(r, c1, c2) and b) the existence of a “maximal” rank/structure group

for a given c2, can be independently determined using known mathematics to study the

heterotic geometry. Both of the facts, a) and b) were previously known in the mathematics

literature in the study of moduli spaces of stable sheaves on K3 and Donaldson-Thomas

invariants on K3 (see for example [72]).

In this paper, we ask many of the questions described above in the context of 4D

heterotic/F-theory duality, which relates the moduli space of vector bundles (V1, V2) on an

elliptically fibered Calabi-Yau threefold to the moduli of a K3 fibered Calabi-Yau four-fold.

In this context, however, the information obtained is made more significant by the fact that

far fewer mathematical techniques are known for determining the moduli space of stable

sheaves on Calabi-Yau threefolds. Indeed, aside from a handful of examples with special

topology (see e.g. [73–78]), no systematic tools exist for constructing the moduli spaces

Mω(rank, c1, c2, c3) or the corresponding Donaldson-Thomas Invariants [79].

In the following sections we use heterotic/F-theory duality to develop analogous state-

ments to those made above for bundles on K3, and explore a number of new features,

10More precisely, skypscraper sheaves supported over points in the P1 base of K3 [70, 71].
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unique to the 4D theory. These include deriving strong upper and lower bounds (based on

c2(V )) on the bundle structure group H, as well as constraints tying the matter spectrum

of the theories to topology.

3 Heterotic/F-theory duality in four dimensions

We now briefly review the duality between heterotic string and F-theory compactifications

for four-dimensional N = 1 supergravity theories [19, 80]. We begin with a general abstract

formulation of the duality in section 3.1, and then characterize the possible compactification

geometries that are smooth on both sides of the duality in section 3.2. In section 3.3, we

give a more detailed description of constructions that involve a toric base surface B2.

3.1 Geometry of heterotic/F-theory duality

We focus on the best understood class of dualities, in which the heterotic compactification

is on a smooth Calabi-Yau threefold X3 that is elliptically fibered with a single section over

a base B2, the heterotic bundles are smooth and irreducible and there are no additional

5-branes wrapping curves in the base. In the dual F-theory compactification, we consider

a threefold B3 that is a P1 bundle over B2. The F-theory compactification space B3 in

turn acts as a base for an elliptically-fibered Calabi-Yau fourfold Y4. Following [19], we

can construct the P1 bundle B3 as a projectivization of a sum of two line bundles

B3 = P(O ⊕ L) , (3.1)

where L is a general line bundle on the base B2. On B3 we have the classes R =

c1(O(1)), T = c1(L), where O(1) is a bundle that restricts to the usual O(1) on each

P1 fiber. There are sections Σ− and Σ+ = Σ− + T of B3 that satisfy Σ− · Σ+ = 0,

corresponding to the relation R(R+ T ) = 0 in cohomology.

An F-theory model on B3 is dual to a heterotic model on X3. For the E8×E8 heterotic

theory, the bundle decomposes as V1 ⊕ V2, and the curvatures split as (see appendix A)

1

30
Tr F 2

i = ηi ∧ ω0 + ζi , i = 1, 2 (3.2)

where ηi, ζi are (pullbacks of) 2-forms and 4-forms on B2 and ω0 is Poincaré dual to the

section. The Bianchi identity gives η1 + η2 = 12c1(B2). Heterotic/F-theory duality is

possible when

η1,2 = 6c1(B2)± T , (E8 × E8) . (3.3)

This correspondence between ηi and T was identified by Friedman, Morgan, and Witten

for bundles in the stable degeneration limit in [19]. It was shown more generally in [9] that

this correspondence follows directly from the structure of axion-curvature squared terms

in the dimensionally reduced supergravity action, independent of the stable degeneration

limit or type of bundle construction. For the SO(32) heterotic string, the analysis [9] of

the axion-curvature squared terms in the 4D supergravity action constrains the twisting T

of the bundle on the F-theory side to satisfy

T = 2c1(B2) , (SO(32)) (3.4)

– 15 –



J
H
E
P
0
8
(
2
0
1
4
)
0
2
5

for a dual SO(32) heterotic compactification to exist. This generalizes the corresponding

6D case where the SO(32) heterotic theory is dual to F-theory on F4 (n = 4⇒ T = 4H =

2c1(B1 = P1)).

Note that we assume that the elliptic fibration on the heterotic side has precisely one

section. It is possible that fibrations with more than one independent section (i.e., with

nontrivial Mordell-Weil group) — or with multisections — may admit some more general

kind of F-theory dual. We leave this interesting question for further work. On the F-theory

side, elliptic fibrations without a global section were explored in [81], and included into

the moduli space of Weierstrass models in [82]. As described in [82], such models can

be understood from Higgsing abelian U(1) symmetries, which can in turn be understood

from Higgsing nonabelian symmetries, all of which should have a clear parallel between the

F-theory and heterotic descriptions, though we do not pursue this here.

For elliptic fibrations X3 with one section and smooth total space, not all topological

features of the heterotic bundle are determined by the dual F-theory geometry. Knowing

the base B2 and the twist T of the dual F-theory P1 bundle (i.e., knowing B3) allows for the

identification of all components of c2(Vi) except for ζi in (3.2); these components together

satisfy ζ1 + ζ2 = 11c1(B2)2 + c2(B2) (appendix A, [19]). The F-theory fourfold geometry

also does not fix c3(Vi); for this we must consider in addition G-flux on Y4. These features

each correspond to one undetermined parameter on the heterotic side. It is interesting that

many of the consequences that can be derived from F-theory for the structure of heterotic

bundles — discussed later in this paper — are largely independent of any possible freedom

in these two parameters on the heterotic side.

A central piece of information on which we focus in our analysis is the generic gauge

group in the low-energy 4D supergravity theory corresponding to a given heterotic/F-theory

dual pair. On the F-theory side, the threefold base B3 defined by B2 and T supports an

elliptic fibration that may have singularities along certain divisors. The Kodaira classifi-

cation of such singularities indicates the presence of nonabelian gauge group factors in the

4D supergravity theory [21, 22]. There can only be a smooth heterotic dual when the only

nonabelian gauge group factors are associated with the divisors Σ−,Σ+. For any given base

B3, there is therefore a minimal gauge group G = G1 × G2, corresponding to singularity

structures present over Σ−,Σ+ in a completely generic elliptic fibration over B3. When such

a gauge group is present, it implies that the largest possible structure group for a bundle

on the heterotic side over B2 with the topological data η1,2 fixed by (3.3) is H = H1 ×H2

where the commutant of Hi in E8 is Gi. The singularity structure of the F-theory ellip-

tic fibration is determined in terms of a Weierstrass model Y 2 = X3 + fX + g over B3,

parameterized by f and g, which are as before sections of line bundles O(−4K),O(−6K)

where K is the canonical class of B3. The minimal group factors Gi are determined by the

minimal degrees of vanishing of f, g as listed in table 1, and in some cases distinguished

by monodromy around the singular divisor [22, 56, 83]. Note that the Kodaira singularity

dictates the physical gauge algebra only; different theories may have gauge groups that

differ by a discrete factor that does not affect the algebra. In much of this paper we

are somewhat cavalier about the distinction between gauge algebra and gauge group, but

the reader should keep in mind that in most cases the only structure fixed by the local
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deg f deg g Gi Hi
1 2 su2 e7

2 2 su3, su2 e6, e7

2 3 so8, so7, g2 so8, so9, f4

3 4 e6, f4 su3, g2

3 5 e7 su2

4 5 e8 trivial

Table 1. The gauge algebra summands associated with group factors Gi arising in 4D supergrav-

ity theory from divisors on which Weierstrass parameters f, g vanish to various degrees, and the

associated structure group factors for dual heterotic bundles.

singularity structure of the F-theory geometry is the gauge algebra.

The only gauge factors listed in table 1 are those that can be forced to arise from

the structure of the F-theory base threefold, independent of the choice of elliptic fibration,

in cases with a smooth heterotic dual. This is analogous to the generic gauge groups for

6D F-theory models over Hirzebruch surfaces Fm [21], with for example a generic gauge

group of E6 over the curve of self-intersection -6 in F6. For more general F-theory models

(i.e., those without smooth heterotic duals) there can be more complicated minimal gauge

groups, some involving multiple gauge group factors — in analogy to the the general set

of structures arising in maximally Higgsed 6D F-theory constructions, which can contain

“non-Higgsable” matter [8]. In general, the gauge group in a particular model may be larger

than the minimum group dictated by the structure of the base. For example, over some

F-theory base threefolds it is possible to tune the Weierstrass coefficients f, g to have an A4

singularity corresponding to a gauge factor SU(5) over certain divisors, though this group

does not arise as an automatic consequence of the geometry of any base corresponding to a

singularity that arises in the generic elliptic fibration over that base. While a wide variety

of models with different gauge groups can be tuned over each base, we are focused here on

the minimal gauge group for each base.

In a number of places we will need to know the precise gauge algebra associated with

given degrees of vanishing of f, g over the divisors Σ±, including the effects of monodromy.

As described in [56, 83], this can be determined by performing an expansion f = f0 +

f1z + f2z
2 + · · · , g = g0 + g1z + g2z

2 + · · · around the divisor D of interest, where z is

an algebraic coordinate that vanishes on D. Since the precise conditions that determine

the monodromy are expressed differently in various places in the literature, we collect

here a succinct summary of the possible situations. When deg f = 2, deg g = 2, the

gauge algebra is su3 when g2 is a perfect square, and su2 otherwise. Similarly, when

deg f = 3,deg g = 4 the algebra is e6 when g4 is a perfect square, and f4 otherwise. The

case deg f = 2, deg g = 3 is somewhat more complicated; in this case, the algebra depends

on the factorization properties of the cubic X3 +f2X+g3. If this cubic can be algebraically

factorized into a product of three terms to the form (X − a)(X − b)(X + (a+ b)) then the

gauge algebra is so8, if it factorizes into the form (X − a)(X2 + aX + b) the algebra is so7,
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and if it does not factorize algebraically, the algebra is g2. We use these conditions in the

analysis in several places in the remainder of the paper.

It is also worth noting that in the cases T = 2c1(B2) that admit an SO(32) heterotic

dual, the twist T — and hence the base B3 on the F-theory side — is fixed uniquely for any

B2. The corresponding minimal gauge group is always so8, matching with the expectation

from the heterotic side. This is shown in section 6.3

3.2 Possible base surfaces for smooth heterotic/F-theory duals

There are only a limited class of bases B2 over which the elliptic fibration geometry is a

smooth Calabi-Yau on the heterotic side. The set of complex base surfaces over which an

elliptically fibered Calabi-Yau threefold exists can be classified according to the intersection

structure of effective divisors on the base [8]. When the base contains a curve of self-

intersection −3 or below, the total space of the elliptic fibration becomes singular, and in

general the heterotic theory acquires an enhanced gauge group. Note that there are some

special cases where an F-theory construction on a P1 bundle over a base surface with −3

curves can apparently exist without an extra nonabelian gauge group, though there is still

no smooth heterotic dual in such cases as the dual Calabi-Yau geometry would be singular;

an example of such a model is given in section 7.3. Our restriction to models with smooth

heterotic duals means that we limit our analysis here to bases B2 that only have effective

curves of self-intersection −2 or above.

The set of bases B2 that contain no curves of self-intersection −3 or below consist of

the del Pezzo surfaces dPn, given by P2 blown up at n ≤ 9 points, the bases F0 = P1 × P1

and F2 (which is a limit of F0 with a −2 curve), and the broader class of generalized del

Pezzo surfaces, which are in general described as limits of del Pezzo surfaces containing

curves of self-intersection −2 [28]. For each n, 1 < n < 9, there are generalized del Pezzo

surfaces corresponding to limits of dPn with a set of −2 curves having an intersection

structure corresponding to any proper subgraph of the extended Dynkin diagram Ên [84].

For n = 9, the classification is slightly more complicated. There are 279 rational elliptic

surfaces with different combinations of −2 curves, corresponding to generalized del Pezzo

surfaces with n = 9; these surfaces are classified in [85, 86]. Over each of the possible base

surfaces B2 there are a wide range of possible twists T giving different geometries on the

F-theory side. Each such geometry will correspond to a different class of bundles on the

heterotic side on the Calabi-Yau describing an elliptic fibration over B2. In principle, all

possible F-theory bases B3 with a smooth heterotic dual can be classified by determining

all allowed twists T for each del Pezzo and generalized del Pezzo (and for F0 = P1 × P1).

3.3 Heterotic/F-theory duals with toric base surfaces

A particularly simple class of bases B2 can be described using toric geometry. In [60], the

complete set of toric bases for elliptic threefold fibrations was enumerated. Here we are

only interested in those cases where all effective curves have self-intersection −2 or above,

which restricts us to only 16 possible bases: the del Pezzo surfaces dPn with 0 ≤ n ≤ 3,

the surfaces F0 and F2, and 11 other toric generalized del Pezzo surfaces with various

combinations of curves of self-intersection −2. These 16 bases are listed in table 4.
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Following standard methods in toric geometry [87, 88], we characterize the base B2

by the toric fan, consisting of vectors v0, . . . , vk+1 ∈ N2 = Z2. This describes a base with

h1,1(B2) = k. We can choose a basis in which v0 = (1, 0) and vk+1 = (0, 1). The coordinates

of the remaining vectors defining B2 can be written as vi = (xi, yi) in this basis. Any toric

P1 bundle over B2 can then be described in terms of a 3D toric fan

w0 = (1, 0, 0) (3.5)

wi = (xi, yi, ti), 1 ≤ i ≤ k (3.6)

wk+1 = (0, 1, 0) (3.7)

wk+2,k+3 = s± = (0, 0,∓1) , (3.8)

where s± correspond to the divisors Σ±, and wa, 0 ≤ a ≤ k + 1, are 3D rays that project

to va, with the third component ti parameterizing the twist T that defines the P1 bundle.

The vanishing of the third component of w0, wk+1 is a coordinate choice on N3 = Z3 used

to eliminate two redundant degrees of freedom in the twist T . For convenience we will use

indices i ∈ {1, . . . , k}, a ∈ {0, . . . , k + 1}, and α ∈ {0, . . . , k + 3}, and write r = k + 4 for

the total number of rays generating the 3D toric fan.

The toric language gives a simple description of the monomials available in the Weier-

strass description of the F-theory model. If the set of 1D rays describing the toric threefold

B3 are wα, α = 0, . . . , r−1, then the monomials in f are in one-to-one correspondence with

the elements m = (a, b, c) ∈ M = N∗ of the dual lattice whose inner product with all of

the wα is not less than -4,

F = {m ∈ N∗3 : 〈m,wα〉 ≥ −4,∀α} . (3.9)

Similarly, the monomials in g are associated with

G = {m ∈ N∗3 : 〈m,wα〉 ≥ −6,∀α} . (3.10)

As a simple example, for the case B3 = P1 × P1 × P1, which is the trivial P1 bundle over

F0 = P1 × P1, the rays wα are the basis vectors (±1, 0, 0), (0,±1, 0), (0, 0,±1), and the

monomials in f, g are the triplets (a, b, c) ∈ Z3 with |a|, |b|, |c| ≤ 4, 6.

For a toric F-theory base, we can compute the (anti)canonical class of B2 directly

from the toric description. There are two equivalence relations on the set of divisors Da

associated with the rays va, giving

D0 ∼
k∑
i=1

−xiDi (3.11)

Dk+1 =

k∑
i=1

−yiDi . (3.12)

We have then

−K2 = c1(B2) =

k+1∑
a=0

Da =
∑
i

(1− xi − yi)Di . (3.13)
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Similarly, we have

−K3 = 2Σ− −K2 + T , (3.14)

where T =
∑
tiDi. As discussed below for more general F-theory geometries with a

heterotic dual, the formula (3.14) also follows straightforwardly from the definition of B3

given in (3.1) and the adjunction formula [19].

4 F-theory constraints

In this section we describe the geometric constraints on P1-bundle threefold bases in the

class of models with smooth heterotic duals. In section 4.1 we describe constraints on the

threefold geometry, and in section 4.2 we describe further constraints on the gauge group

of the corresponding 4D supergravity theory and the extent to which it can be enhanced

through “unHiggsing” by moving on the Calabi-Yau moduli space.

4.1 Constraints on threefold base geometry

The basic conditions on an F-theory threefold base geometry B3 are that there are no

codimension one or codimension two loci with singularities worse than the e8 singularity

in the Kodaira classification. These conditions can be described in terms of constraints on

the base geometry B2 and twist T describing B3 as a P1 bundle over B2. We begin (sec-

tion 4.1.1) with a brief overview of the general F-theory constraints, which are easy to make

explicit in the toric context (section 4.1.2). In section 4.1.3, we use the general conditions

to derive a set of local constraints on the twist T associated with specific divisors in the

base. The toric description of these constraints is given in section 4.1.4. In section 4.1.5,

we derive a simple set of necessary conditions associated with the divisors Σ±. Combined

with the constraints on T , this gives a set of conditions that are necessary, but not suffi-

cient, for the existence of a good F-theory compactification geometry. In section 4.1.6, we

include more general, nonlocal conditions associated with curves in B3, which give a set of

sufficient conditions for an acceptable F-theory model, subject to issues from codimension

three singularities and G-flux that we do not address here (see section 7.8 for some relevant

aspects of G-flux for 4D F-theory compactifications).

In the analysis in this section we repeatedly use a basic result from algebraic geometry,

which states that if an effective divisor A on a surface S has a negative intersection A·D < 0

with an irreducible effective divisor D having negative self-intersection D ·D < 0, then A

contains D as a component, meaning that A = D+X with X effective. This means in par-

ticular that any section s ∈ O(A) must vanish on D. This result was used in [8] to identify

the “non-Higgsable clusters” that classify the intersection structure of base surfaces B2 for

6D F-theory compactifications. More generally, an effective divisor may contain a number

of rigid divisors Di with multiplicity γi by repeated applications of the preceding rule

A =
∑
i

γiDi +X, (X effective) . (4.1)

When such a decomposition is carried out over the rational numbers γi ∈ Q, it is called

the Zariski decomposition of A. While in higher dimensions the Zariski decomposition can
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be more subtle, for surfaces the computation of the terms γiDi, known as the base locus

of A is straightforward. For example, if D is a curve of self-intersection D ·D = −2, and

A ·D = −4, then A = 2D +X with X effective, X ·D = 0.

In a number of places in this section we focus on curves in B3 of the form C = Σ±∩D,

where D is a divisor on B3 pulled-back from a corresponding divisor in the base surface

B2. We will generally use C for the curve in B3, while D can refer either to the divisor in

B3 or in B2, depending on context.

4.1.1 General constraints from F-theory geometry

We begin with a general statement of the F-theory constraints that hold for any geometry.

For a good F-theory model to exist on a base B3 there must be a Calabi-Yau fourfold

that is elliptically fibered over B3 [21, 22, 46]. As described in section 3.1, when the

Weierstrass coefficients f, g and the discriminant ∆ = 4f3 + 27g2 vanish on a divisor in

B3, the corresponding 4D supergravity theory gets a nonabelian gauge group contribution

depending upon the Kodaira type of the corresponding singularity in the elliptic fibration.

When the vanishing degrees of (f, g,∆) reach or exceed (4, 6, 12) on a divisor, the fibration

becomes too singular to admit a Calabi-Yau resolution. Thus, a constraint on B3 is that

−nK3 must admit a section of vanishing degree < n for n = 4 or 6 on any irreducible

effective divisor D. Similarly, f, g cannot vanish to orders 4, 6 on any curve, or the curve

would need to be blown up, giving a different base structure, for a Calabi-Yau resolution

of the singular elliptic fibration to exist. This provides a strong set of constraints on

bases B3 that admit good F-theory models. The constraint on codimension three loci

(points) on the base is less clear; if the degrees of f, g reach 8, 12 on a point then the point

must be blown up for a good Calabi-Yau resolution. On the other hand, if the degrees of

vanishing reach 4, 6 on a codimension three locus but do not exceed 8, 12 then the model

may be problematic yet cannot be blown up directly [89]. We focus in this paper on the

constraints associated with codimension one and two loci, associated with gauge groups

and matter content in the low-energy theory. We include therefore in our analysis models

with codimension 3 singularities, leaving the resolution of the status of these models to

future work. Codimension three singularities are discussed further in section 7.8.

4.1.2 Constraints for toric bases

The F-theory constraints described above are particularly simple to describe for toric F-

theory bases B3 using the explicit description of the Weierstrass monomials as elements of

the dual lattice, as described in the previous section.11 The degrees of vanishing of f, g on

the divisor Dα associated with the ray wα are given by

degDαf = minm∈F 〈m,wα〉+ 4, degDαg = minm∈G〈m,wα〉+ 6 . (4.2)

These are easily computed for any given base and divisor. For a good F-theory base, these

degrees cannot both reach or exceed 4, 6 on any divisor Dα. When the degrees are nonzero,

11Related constraints in the toric language of “tops” were described in [91].
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they indicate the presence of a generic gauge algebra factor on Dα, according to table 1.

The degrees of vanishing of f, g on the toric curve Dα ∩Dβ are given by

degDα∩Dβf = minm∈F 〈m,wα+wβ〉+8, degDα∩Dβg = minm∈G〈m,wα+wβ〉+12 . (4.3)

Again, these degrees cannot both reach or exceed 4, 6 on any curve or the F-theory base

must be blown up along that curve to give a new base. When these degrees reach or exceed

1, 2 along a given curve they generally indicate the presence of N = 2 matter transforming

under gauge groups carried on the divisors Dα, Dβ, in analogy to the 6D situation. In some

toric 4D cases, however, there are no such nonabelian gauge groups. An example of such

a situation is described explicitly in section 7.2, with B3 a P 1 bundle over B2 = F1. Such

codimension two singularities may simply represent cusps where the discriminant becomes

singular, as occurs in 6D compactifications (see e.g. [90]), or may in some cases represent

matter charged under U(1) gauge factors.

4.1.3 F-theory bounds on twists

We now specialize to the class of F-theory geometries that have smooth heterotic duals as

described in section 3. In this case, the relation (3.14) derived above in the toric context

holds more generally from the adjunction formula applied to B3 defined in (3.1)

−K3 = 2Σ− −K2 + T . (4.4)

Writing the Weierstrass functions f, g locally in a region around the locus Σ− defined by

the coordinate z = 0, where Σ+ is at z =∞, we have

f = f0 + f1z + f2z
2 + · · · f8z

8 (4.5)

g = g0 + g1z + g2z
2 + · · · g12z

12 . (4.6)

The term fkz
k vanishes to order k on Σ− and to order 8 − k on Σ+, and fk is a section

of O(−4K3 − kΣ− − (8 − k)Σ+). Similarly, gkz
k vanishes to order k on Σ− and to order

12 − k on Σ+, and gk is a section of O(−6K3 − kΣ− − (12 − k)Σ+). Thus, fk and gk are

sections of O(−4K2− (4−k)T ) and O(−6K2− (6−k)T ) respectively. We can use this fact

to determine constraints on the possible twists T compatible with any particular base B2.

A set of necessary conditions on T can be determined by imposing the condition that

f, g should not vanish to orders 4, 6 on any curve C in B3 that is of the form Σ−∩D, whereD

is associated with an irreducible effective divisor onB2. We consider the various possibilities

depending upon the self-intersection of D in B2, using the fact that (K2 + D) · D = −2

when D is a rational curve. We focus on divisors D with non-positive self-intersection

D · D ≤ 0, since determining conditions on these divisors is sufficient to bound the total

number of twists T over any base B2. Note that, as shown in [8], any higher genus divisor

of negative self-intersection in the base B2 gives a singular elliptic fibration that cannot be

resolved to a Calabi-Yau, so it is sufficient to restrict attention to rational curves D.

We begin with the case D ·D = −2, where K2 ·D = 0. Consider then the intersection

(−nK2 − (n− k)T ) ·D = −(n− k)T ·D, k < n . (4.7)
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When T · D > 0, this intersection is negative, and (−nK2 − (n − k)T ) contains D as a

component for n = 4, 6 when 0 ≤ k < n. This means that the sections fk, gk must vanish

on D. If T ·D ≥ 2, then fk, gk must vanish on D at least to order 4− k, 6− k respectively,

which would mean that f, g vanish to degrees 4, 6 on C. Thus, the twist must satisfy

T · D < 2 for any rational curve D in the base having self-intersection D · D = −2. A

similar argument for Σ+ shows that T ·D > −2, so |T ·D| ≤ 1 for any −2 curve in B2.

Now, consider the case D ·D = −1. In this case, −K2 ·D = 1, so we have (−nK2 −
(n− k)T ) ·D = n− (n− k)T ·D. This is less than or equal to −(n− k) for all k < n = 4, 6

when T ·D > 6, which would force f, g to vanish on D ∩Σ− to degrees 4, 6, with a similar

constraint with the opposite sign for Σ+, so we have a bound in this case of |T ·D| ≤ 6.

(For example, if T ·D = 6, then (−6K2 − T ) ·D = 0, so g5 need not vanish on D, though

all other fk, gk vanish on D to degree n− k.)

Similar reasoning shows that analogous constraints hold for curves of self-intersection

0 and for curves of more negative self-intersection; the complete set of constraints for the

twist over any rational curve of (non-positive) self-intersection −n is

n = 0 : |T ·D| ≤ 12 (4.8)

n = 1 : |T ·D| ≤ 6 (4.9)

6 ≥ n ≥ 2 : |T ·D| ≤ 1 . (4.10)

n ≥ 7 : T ·D = 0 . (4.11)

We only need the results for n ≤ 2 in this paper.

These bounds provide strong constraints on the twists that are allowed for a P1 bundle

over any base B2. As promised in section 1, these reduce the problem of identifying all

smooth F-theory bases B3 with smooth heterotic dual geometries to a finite enumeration

problem, since the curves of negative or 0 self-intersection in the base B2 form a connected

set. We summarize the results of a complete enumeration of all twists over toric bases with

smooth heterotic duals in section 9.

4.1.4 Toric bounds on twists

The bounds on twists can be seen explicitly in the toric context. We can identify the bounds

on the twist ti over the divisor Di associated with a given base ray vi by considering the

local geometry of the P1 bundle over the sequence of rays vi−1, vi, vi+1. (If i = 0 or i = k+1,

we replace i− 1 or i+ 1 with k + 1 or 0 respectively in the obvious fashion to respect the

cyclic ordering of rays). We can choose a basis for N2 so that vi−1 = (1, 0) and vi = (0,−1)

(note that this is a different choice of basis than that used in (3.5)–(3.8)). Associated with

the three 2D rays vi−1, vi, vi+1 there are twists ti−1, ti, ti+1, associated with the extension

of the corresponding 3D rays wi−1, wi, wi+1 in the third dimension (3.6). In the 3D toric

lattice N3 we can perform a linear transformation taking

wi−1 = (1, 0, ti−1)→ w̃i−1 = (1, 0, 0), wi = (0,−1, ti)→ w̃i = (0,−1, 0) . (4.12)

Since we are assuming that the base B2 is smooth, the third ray has the form wi+1 =

(−1,−n, ti+1), where the integer −n is the self-intersection of the divisor Di [87]. The
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linear transformation (4.12) takes

wi+1 → w̃i+1 = (−1,−n, t̃i), where t̃i = ti−1 + ti+1 − nti . (4.13)

The parameter t̃i = T · Di determines the nontrivial part of the twist around the ray vi,

and can be constrained geometrically depending upon n, to reproduce the conditions (4.8)–

(4.11). As in the general situation described in the previous subsection, the strongest con-

straint on the twist component t̃i comes from the condition that f, g do not have degrees 4, 6

on the curves associated with wi+s±. Let us assume that t̃i ≥ 0. Then we have the follow-

ing constraints on the monomials associated with m = (a, b, c) ∈ N∗3 for f, g with B = 4, 6

〈m, w̃i−1〉 ≥ −B → a ≥ −B (4.14)

〈m, w̃i〉 ≥ −B → b ≤ B (4.15)

〈m, s−〉 ≥ −B → c ≥ −B (4.16)

∃〈m, w̃i + s−〉 < −B → b− c > B (4.17)

〈m, w̃i+1〉 ≥ −B → −a− nb+ t̃ic ≥ −B . (4.18)

All of these inequalities except (4.17) must be satisfied for all monomials in F ,G. Inequal-

ity (4.17) on the other hand, need only be satisfied by at least one point m, to avoid having a

4, 6 singularity on wi+s−. But this means that there must be at least one integral point sat-

isfying all of these inequalities. The second through fourth inequalities define a simple tri-

angle in the b-c plane within which any solutions must lie (figure 2). The final constraint im-

poses a condition that restricts the solutions within this triangle. This constraint is weakest

when a is maximally negative, so if there are any solutions in b, c for any a they will also be

acceptable for a = −B. Therefore, we need only ask whether there can exist any solutions

of the form (−B, b, c) to inequalities (4.15)–(4.18). For n = 0, (4.18) becomes t̃ic ≥ −2B,

and since c < 0 from (4.17) and (4.15), we need t̃i ≤ 2B for a solution of all the inequalities

to exist. This is weakest for B = 6, so we have the constraint t̃i ≤ 12 when n = 0. For

n = 1, (4.18) becomes b ≤ t̃ic+ 2B, which combined with (4.17) becomes c+B < t̃ic+ 2B,

so (t̃i − 1)(−c) < B and since −c > 0 we need t̃i ≤ 6. Finally, for n = 2, (4.18) becomes

2b ≤ t̃ic+ 2B, which combined with (4.17) becomes 2c < t̃ic, and since c < 0 this implies

t̃i ≤ 1. To summarize, we have reproduced the constraints (4.8)–(4.11) in the toric context

n = 0 : |t̃i| ≤ 12 (4.19)

n = 1 : |t̃i| ≤ 6 (4.20)

n ≥ 2 : |t̃i| ≤ 1 . (4.21)

The constraints on coefficients in g (B = 6) for n = 2, t̃i = 1 are shown in figure 2.

4.1.5 General constraints on geometry from f, g on divisors

In section 4.1.3 we used curves of the form C = Σ±∩D in the base B3 to determine bounds

on the individual components T ·D of the twist T parameterizing the P1 bundle over B2.

We now describe more general constraints on T associated directly with the divisors Σ±.
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Hb, cL = H5, -2L
yz4

c ³ -6

2 b £ c + 12

H0, 0L

b > c + 6

Figure 2. Constraints imposed on dual monomials in the Weierstrass function g parameterized

by a, b, c in the toric description of a twist t̃i = 1 over a curve of self-intersection −n = −2;

the depicted constraints on b, c correspond to weakest conditions, which hold at a = −B = −6.

For a smooth F-theory geometry, at least one monomial in the shaded region (not including the

boundary at b > c + 6, or the corresponding region for f(B = 4) must be nonzero. The circled

point (5,−2) corresponds to the monomial yz4 in coordinates where z = 0 corresponds to Σ− and

y = 0 corresponds to Di. This point is relevant in ruling out gauge algebra factors e7, e8 on Σ−
under these conditions (section 6.4).)

Note that the divisors D on the base cannot give further constraints on T since f, g cannot

vanish on D to higher degree than they do on the corresponding curve in B2. This follows

from the fact that f4, g6 are sections of −4K2,−6K2 respectively. Thus, we need only

consider constraints associated with the degrees of vanishing of f, g on the divisors Σ±.

As described in section 4.1.3, the components fk, gk of the discriminant locus that

vanish to degree k on Σ− are associated with sections of the line bundlesO(−4K2−(4−k)T )

and O(−6K2 − (6 − k)T ) respectively. In particular, g5 is a section of O(−6K2 − T ). If

−6K2 − T is effective, then this line bundle admits a section, so generically g5 is nonzero

and g does not vanish to degree 6 on Σ−. On the other hand, if −6K2 − T is not effective

then there are no sections and g5 = 0. Furthermore, if −6K2 − T is not effective then

−6K2 − nt cannot be effective for n ≥ 2, since

n(−6K2 − T ) = −6K2 − nt+ (n− 1)(−6K2) (4.22)

and −6K2 is effective, as is any positive combination of effective divisors. Similarly, if
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−6K2 − T is not effective then −4K2 −mt cannot be effective for m ≥ 1 since

m(−6K2 − T ) = −4K2 −mt+ (6m− 4)(−K2) , (4.23)

where again the last term is effective. This shows that −6K2 − T is effective if and only

if f, g do not vanish to degrees 4, 6 on Σ−. A parallel argument shows that −6K2 + T is

effective if and only if f, g do not vanish to degrees 4, 6 on Σ+.

From these considerations we can distinguish several possible configurations of allowed

geometries on the F-theory side

A) One possibility is that

T = −6K2 . (4.24)

In this case all coefficients of fk, gk vanish up to but not including degrees (4, 5).

B) If T 6= −6K2 then g5 is not a constant and must vanish on some curves D in B2. To

avoid having f, g both vanish to degrees 4, 6 on the associated curve C = Σ− ∩D in

B3 at least one other coefficient fk≤3, gk≤4 must be nonvanishing. But by a parallel

argument to the above this means that

− 4K2 − T is effective . (4.25)

C) If there is any curve D in the base with self-intersection D · D = −2, where the

associated component of the twist is T ·D = +1, then by the analysis of section 4.1.3

we know that f3, g5 both vanish on D. This means that one of fk≤2, gk≤4 must be

nonvanishing. Again, a parallel argument to the above means that in this case

∃D : D ·D = −2, T ·D = +1 ⇒ −3K2 − T is effective . (4.26)

Any good F-theory base geometry must satisfy these conditions and must fit into one

of the 3 categories (A-C). A similar set of conditions hold for Σ+ where the sign is changed

for T on all equations.

4.1.6 General constraints on geometry from f, g on curves

The conditions (A-C) derived in section 4.1.5, along with the local twist conditions (4.8)–

(4.11), give a set of necessary conditions that must be satisfied for any F-theory compactifi-

cations on a space B3 that is a P1 bundle over a base B2 without divisors of self-intersection

below -2. These conditions are not, however, sufficient. While the conditions derived in

the preceding subsection are both necessary and sufficient for f, g to be well-behaved on

divisors, the local constraints on twist components T ·D are not sufficient to guarantee that

f, g are well-behaved on all curves C = Σ− ∩D with D a divisor in B2. In general, “nonlo-

cal” effects from other divisors can limit the range of allowed twists more stringently than

the local conditions (4.8)–(4.11). Note, however, that there are no further constraints asso-

ciated with curves formed from the intersection of two divisors Di, Dj since the vanishing

on such curves cannot be greater than at the corresponding points in B2.
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As an example of a further constraint following from the interaction between twists

on different divisors, consider a base B2 that contains two divisors D1, D2 with D1 ·D1 =

D2 ·D2 = −2, D1 ·D2 = 1. While the bound (4.10) seems to allow T ·D1 = T ·D2 = 1, if this

were to hold then f, g would vanish to degrees 4, 6 on D1∩Σ−, D2∩Σ−. This can be seen by

considering (as usual, for n = 4, 6 and 0 ≤ k < n) Q = (−nK2 − (n− k)T ), which satisfies

Q ·D1 = −(n− k)T ·D1 = −(n− k) < 0 (4.27)

Q ·D2 = −(n− k)T ·D2 = −(n− k) < 0 . (4.28)

We then have a decomposition (4.1) of Q of the form

Q = γD1 + ηD2 +X , (4.29)

with X ·D1 ≥ 0, X ·D2 ≥ 0, so (η − 2γ) ≤ −(n − k), (γ − 2η) ≤ −(n − k), from which it

follows that η ≥ n− k, γ ≥ n− k.

A general statement of the sufficient conditions on T for f, g to be well-behaved on all

curves D∩Σ± (and all divisors Σ−) is that for each divisor D in B2, there is at least one n, k

(n = 4 or 6, k < n) so that Qn,k = −nK2− (n− k)T has a decomposition of the form (4.1)

with γD < k. This condition is automatically satisfied for any base B2 without -2 curves,

since for a -1 curve D as long as −6K2−T is effective, Q6,5 ·D = 6−T ·D ≥ 0 for T ·D ≤ 6,

so Q6,5 is effective and has sections that do not vanish on any -1 curves D in the base.

This shows that while the conditions described in section 4.1.5 and (4.8)–(4.11) are

sufficient for a model to have acceptable f, g on all divisors and curves when the base is

del Pezzo (or P2 or F0) with no -2 curves, when the base has -2 curves the more general

conditions stated above must be included to give a set of sufficient conditions.

In formulating these conditions, note again that we have not considered potential prob-

lems with codimension 3 singularities or G-flux, which may make a geometry unsuitable for

F-theory compactification even when the sufficient conditions discussed here are satisfied.

These other issues are deferred to future work. In specific, however, note that any curve on

which f, g vanish to degrees 4, 5 but are not constants will generically have points where

f, g vanish to degrees 4, 6, which are of codimension 3 in the full base B3.

4.2 Constraints on gauge enhancement

The constraints described so far limit the possible geometries that can be used for F-

theory compactification, and for any given geometry impose a minimum gauge group that

cannot be broken without changing the F-theory base B2. In some situations, the vanishing

conditions on f, g also impose constraints that limit the extent to which gauge group factors

in the effective supergravity theory can be enhanced by “unHiggsing” matter fields to form

larger gauge groups. These constraints give nontrivial limitations on bundle structure in

the dual heterotic picture. We consider two specific types of such constraints. In the first

type, generic SU(2) and SU(3) gauge groups are constrained from being enhanced to SU(N)

with N > 3; in the second type, constraints are associated with codimension two loci in the

F-theory picture. In both cases, the restriction on enhancement is related to the absence

of sufficient matter to represent a Higgsed phase of a theory with higher symmetry.
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Note that while the bounds considered here on gauge enhancement are a consequence

of the geometry, it is possible that in some cases G-flux may decrease the size of the gauge

group, as discussed further in later sections. This would not affect the upper bounds

described in this section.

4.2.1 Constraints on SU(2) and SU(3) enhancement

One unusual feature of the gauge groups SU(2) and SU(3) is that they can be realized in

two separate ways in F-theory, associated with two different Kodaira singularities. There is

a standard AN−1 realization of SU(N) where f and g do not vanish on a given divisor but ∆

vanishes to order N (an IN singularity in the Kodaira classification). Another realization of

SU(2) arises when f, g,∆ vanish to degrees 1, 2, 3 and SU(2) or SU(3) can be realized when

f, g,∆ vanish to degrees 2, 2, 4 (Type III and IV singularities in the Kodaira classification).

While type III and IV singularities are in one sense simply special limit points on the loci of

type I2 and I3 singularities, their physical properties are rather different. When su2 or su3

gauge algebras are forced to exist on a divisor D by type III or type IV singularities in the

F-theory geometry, there is no way to tune the Weierstrass moduli to realize any SU(N)

gauge group with N > 3 on D since this can only happen from a type IN singularity where

f, g do not vanish on D. This means that for many theories with generic SU(2) or SU(3)

gauge symmetries there is in principle no branch of the theory with enhanced SU(N) gauge

symmetry (particularly no SU(5) gauge symmetry).

As a concrete example of where this constraint is relevant, we begin by considering

the 6D case of F-theory compactification on F3. In this case, the base B2 = F3 contains a

divisor Σ with self-intersection Σ ·Σ = −3 on which f, g,∆ necessarily vanish to degrees 2,

2, 4. The resulting SU(3) gauge group in the corresponding 6D supergravity theory cannot

be enhanced to SU(4) or any higher SU(N) by tuning the Weierstrass moduli to get an

AN−1 singularity. This is clear in the low-energy 6D theory, as there is no matter charged

under the SU(3), such as would arise under Higgsing from a larger gauge group. As we

discuss in section 7, this corresponds in the heterotic dual picture to a constraint on how

the associated bundle over K3 can be decomposed.

A similar constraint occurs for a wide range of 4D F-theory compactifications. In many

4D compactifications the structure of the base B3 is such that f, g,∆ are forced to vanish

to degree 1, 2, 3 or 2, 2, 4, giving rise to a non-Higgsable SU(2) or SU(3) gauge group. In

such cases these gauge groups cannot be enhanced to higher SU(N) with N > 3 anywhere

in the moduli space, though the SU(2) gauge factors can generally be enhanced to SU(3)

by tuning moduli. We describe some specific examples where these kinds of constraints

appear in section 7.

4.2.2 Constraints from codimension two loci

In another class of situations, the extent to which a gauge group factor can be enhanced

is limited by the degrees of vanishing of f, g,∆ on a locus of codimension 2. This occurs

when the enhancement of the factor G on a divisor D to a given Kodaira singularity type

automatically raises the degrees of vanishing of f, g,∆ on a codimension two locus to 4, 6, 12

or beyond.
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In six dimensions, constraints of this type only appear for F-theory constructions

without smooth heterotic duals. A simple example is when the base B2 contains two

effective irreducible divisors C1, C2 with self and mutual intersections C1 ·C1 = −2, C2 ·C2 =

−3, C1 · C2 = 1. In such a situation, the 6D theory has a non-Higgsable gauge group with

Lie algebra summands su2⊕g2, and there is matter charged under both groups, as described

in [8]. While naively the G2 factor can be tuned to an E6 or F4 by increasing the degrees

of vanishing of f and g on C2 to 3, 4, doing this raises the degrees of vanishing of f, g to

4, 6 on the intersection point C1 ·C2, leading to a point in the base that must be blown up.

Writing the Weierstrass coefficients explicitly, in a coordinate system where z, w vanish on

C1, C2 respectively we have f = azw2 + O(z, w)4, g = bz2w3 + O(z, w)6, from which the

above conclusions follow directly.

While this kind of enhancement constraint only arises for 6D F-theory models that do

not have heterotic duals, in 4D the issue is much more general. One key class of examples,

which we discuss further in section 6, are 4D compactifications of F-theory that have het-

erotic duals violating the base-point free condition (see section 5.3). In such situations an F4

symmetry can have an obstruction to enhancement to an E6, E7 or E8 on the F-theory side

as such an enhancement would lead to a 4, 6 vanishing of f, g on a codimension two locus.

5 Heterotic constraints

As noted in section 1, the compactification of the E8×E8 heterotic string gives rise to a num-

ber of consistency constraints, linking the topological data of the Calabi-Yau threefold with

that (i.e., Chern classes) of the vector bundles V1, V2. We will be interested here in these

bounds on topology, as well as in the conditions for supersymmetric N = 1 heterotic vacua.

We consider a pair (V1, V2) of vector bundles on a Calabi-Yau threefold with structure

groups Hi ⊆ E8, i = 1, 2, which break each E8 factor to the commutant Gi of Hi in E8.

The bundles must satisfy the topological constraints

c1(V1) ≡ c1(V2) ≡ 0 (mod 2) (5.1)

ch2(TX3)− ch2(V1)− ch2(V2) + [W ]eff = 0 (5.2)

The first of these conditions is equivalent to the vanishing of the second Steifel-Whitney

class of the bundles Vi, a necessary condition for the existence of spinors; in the case of

irreducible principal bundles, this reduces to the condition c1 = 0 (see the discussion in

section 2.2.2). Henceforth in this paper we focus attention on irreducible bundles and

take c1 = 0. The second constraint on the second Chern characters of the bundles is the

familiar 10D anomaly cancellation condition we have already encountered in section 3.1

in the context of heterotic/F-theory duality. The last term in (5.2) is a non-perturbative

contribution arising from NS5-branes (equivalently M5 branes, in heterotic M-theory),

where [W ]eff denotes the total class of effective curves wrapped by 5-branes. In this work,

we will not include 5-branes wrapping curves in the base B2 (i.e., degenerations of the

bundle corresponding to sheaves supported over curves) and as a result, any possible term

[W ]eff 6= 0 will not affect (3.3), the definition of η given in section 3.1. In some cases,
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non-perturbative effects in the form of 5-branes wrapping the elliptic fibers may be present

(see [19] for a discussion of such heterotic 5-branes and G-flux).

For a supersymmetric vacuum, the vanishing of the 10-dimensional gaugino variation

requires each bundle Vi to satisfy the well-known “Hermitian-Yang-Mills” equations [1]

Fab = Fāb̄ = 0 , gab̄Fab̄ = 0 (5.3)

The first half of these conditions, namely the vanishing of F 2,0 = F 0,2 = 0, is by definition

the condition that the vector bundle is holomorphic (i.e., that its transition functions are

holomorphic functions over the base X3). The consequences of the condition gab̄Fab̄ = 0

are not so easy to state, however; solving this partial differential equation has historically

posed a significant challenge to the construction of supersymmetric heterotic vacua, since

the background Ricci-flat Calabi-Yau metric gab̄ and the field strength F associated to

the bundle V are not known analytically except in very special cases.12 Thanks, however,

to the powerful Donaldson-Uhlenbeck-Yau theorem [62–64], it is possible to translate this

problem in differential geometry into one in algebraic geometry. According to the DUY

theorem, a holomorphic bundle V admits a connection A that solves (5.3) if and only if V

is slope poly-stable. A bundle V is defined to be slope stable with respect to a given Kähler

form ω ∈ H1,1(X3) if for all sub-sheaves F ⊂ V , with 0 < rk(F) < rk(V ),

µ(F) < µ(V ) , (5.4)

where for any sheaf,

µ(F) =
1

rk(F)

∫
X3

c1(F) ∧ ω ∧ ω . (5.5)

A bundle is called semi-stable13 if µ(F) ≤ µ(V ) for all sub-sheaves, and “poly-stable” if

V =
⊕

i Vi with Vi stable and µ(V ) = µ(Vi) ∀i. Regardless of the structure group H of V ,

vector bundles describing a good heterotic vacuum must be holomorphic, slope poly-stable

and satisfy

µ(V ) = 0 (5.6)

for the physical Kähler form ω.

It is poly-stable bundles that we must consider in the context of N = 1 4D heterotic

Calabi-Yau vacua, and although the study of such bundles and their moduli spaces is a rich

and ongoing subject in algebraic geometry, at present very little is known in general about

how to fully classify and enumerate the moduli space of stable bundles (sheaves) on Calabi-

Yau threefolds.14 One of our goals in this work is to try to use heterotic/F-theory duality

to understand as much as possible about which stable bundles can exist on Calabi-Yau

threefolds and what properties characterize the associated heterotic effective theories.

12For recent progress in solving these equations via numeric approximations, see for example [92–94].
13Note that all poly-stable bundles are automatically semi-stable, but the converse does not hold.
14See [78, 95, 96] for some recent results in the math/physics literature on bundle moduli spaces on

Calabi-Yau threefolds in examples with special topology.
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5.1 The Bogomolov bound

There are a number of constraints that slope-stability places on the topology of a holo-

morphic vector bundle. One of the most important of these is the so-called “Bogomolov

bound” (see [97] for a review), which states that if a rank N bundle V is slope (poly-)

stable with respect to a choice of Kähler form ω = tkωk (with k = 1, . . . h1,1(X3)) on the

CY 3-fold X3, then ∫
X3

(
2Nc2(V )− (N − 1)c2

1(V )
)
∧ ω ≥ 0 (5.7)

For simplicity, let us consider first the case of vector bundles with c1(V ) = 0, in which case

the Bogomolov bound reduces to
∫
X3
c2(V ) ∧ ω ≥ 0.

Thus far our discussion of the consistency conditions on heterotic vacua has been gen-

eral. We restrict our attention now to those threefolds that can give rise to F-theory duals,

namely smooth, elliptically fibered Calabi-Yau threefolds, π : X3 → B2 (with section).

More specifically, we restrict our consideration to the case in which there is a single section

(i.e., the Mordell-Weil group of sections is trivial and h1,1(X3) = 1 + h1,1(B2)) and the

manifold can be put in Weierstrass form as

Ŷ 2 = X̂3 + f(u)X̂Ẑ4 + g(u)Ẑ6 (5.8)

where {X̂, Ŷ , Ẑ} are coordinates on the elliptic fiber (described as a degree six hypersurface

in P231) and {u} are coordinates on the base B2.

Let us consider the consequences of the Bogomolov bound for a bundle over an X3

defined as above. Recalling the geometric identities in appendix A, as in (A.9) we can

expand the second Chern class of the bundle as

c2(V ) = π∗(η) ∧ ω0 + π∗(ζ) (5.9)

where π∗(η) and π∗(ζ) are pullbacks of, respectively, {1, 1} and {2, 2} forms on the base

B2. (Note that in other sections we often use the notation e.g. η both for the form on B2

and for the pullback form — technically π∗(η) — on B3. Which form is used should be

apparent in any given equation from context.) Expanding the Kähler form ω in the explicit

basis of appendix section A, we have

ω = aω0 + π∗(ωbase) (5.10)

where a is a constant and ωbase = bαωα (α = 1, . . . h1,1(B2)) is an ample divisor on B2.

Without loss of generality, we can scale the Kähler form to set a = 1

ω = ω0 +Mπ∗(ωbase) (5.11)

for some constant M . Substituting this form for the Kähler moduli into the Bogomolov

bound, the constraint becomes∫
X

(π∗(η) ∧ ω0 + π∗(ζ)) ∧ (ω0 +Mπ∗(ωbase)) (5.12)

= Mω0 ∧ π∗(η ∧ ωbase) + (ω0 ∧ π∗(ζ) + π∗(η) ∧ ω0 ∧ ω0) ≥ 0 .
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Moreover, we recall that by the triple intersection numbers in (A.5),∫
X3

ω0 ∧ π∗(η ∧ ωbase) = η · ωbase , (5.13)

and π∗(η) ∧ ω0 ∧ ω0 = η ·KB2 . Thus, the Bogomolov bound becomes the condition∫
X3

c2(V ) ∧ ω = Mη · ωbase + ζ + η ·KB2 ≥ 0 (5.14)

(with ζ viewed now as the coefficient of the {2, 2}-form on B2). Note that in (5.13)

and (5.14) while the l.h.s. is computed by integrating over the threefold X3, the r.h.s. is

computed in terms of intersection products on the base B2.

In general, to extract consistency conditions on η from the Bogomolov bound, the

condition in (5.14) must be examined in a case-by-case manner. That is, given a choice of

ζ and a Kähler form in (5.11), it is possible to derive consistency conditions on η associated

to the underlying bundle being slope-stable (though once again it is important to recall

that the Bogomolov bound is necessary but not sufficient for the stability of V ).

There is one limit, however, that is of particular interest in heterotic/F-theory duality.

In order to take the stable degeneration limit of section 3, it is necessary that we evaluate

this expression with not just any Kähler form, but one chosen in the appropriate “Adiabatic

limit” [19] in which the volume of the elliptic fiber is small compared to that of the base

(and the volume of X3, as given in (A.6), is large). This limit is achieved by taking M � 1

in (5.14). For M sufficiently large, it is clear that the dominant constraint from the Bogo-

molov bound in (5.14) is that η has positive intersection with the Kähler form of the base

B2. In the adiabatic limit, it is impossible for the Bogomolov bound to be satisfied unless

η · ωbase ≥ 0 (5.15)

If this is taken to hold for any ample Kähler form ωbase of the base then, by definition, this

is simply the condition that η is an effective divisor in B2.

5.2 Matter spectra in heterotic theories

As described above, the presence of a vector bundle Vi with structure group Hi on the

Calabi-Yau threefold breaks E8 to Gi, the commutant of Hi inside of E8. All matter

in the low-energy effective theory arises under dimensional reduction from components

of the 10-dimensional gauge field, that is from the decomposition of the 248-dimensional

representation of E8 under the direct product Gi ×Hi (see [1] for a standard review):

248→ (Ad(G), 1) +
⊕
A

(RA, rA) (5.16)

where Ad(G) represents the adjoint representation of G and {(RA, rA)} denotes a set of

representations of G×H. For example, the presence of a bundle with H = SU(3) over X3

breaks one E8 factor down to G = E6 and the possible states in the theory are determined

by the decomposition

248→ (78,1) + (27,3) + (27, 3̄) + (1,8) (5.17)
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Field Multiplicity

27 h1(X,V )

27 h1(X,V ∨)

1 h1(X,End0(V ))

Table 2. Matter multiplicities for the E6 example.

That is, in addition to the adjoint-valued E6 gauge boson, the low energy theory can

contain charged matter in the 27 and 27 representations, as well as E6-singlet fields.

While the decomposition above is sufficient to determine the type of matter in the 4-

dimensional E6 theory, to find the multiplicity of these massless scalar fields it is necessary

to count the number of bundle-valued 1-forms on the Calabi-Yau manifold. More precisely,

under dimensional reduction, the zero-modes of the 4-dimensional theory are determined

by the dimensions of vector bundle-valued cohomology groups (in the representation rA)

over the Calabi-Yau threefold, such as

H1(X3, V ), H1(X3,∧2V ), H1(X,End0(V )), etc. . . . (5.18)

For the E6 example above this leads to the bundle-valued cohomology groups shown in

table 2 where V is the rank 3 vector bundle valued in the fundamental of SU(3) (and hence

V ∨ is associated to the 3̄ and End0(V ) to the 8).

The chiral index15 of the N = 1 theory is determined by the Atiyah-Singer index

theorem [98] as the alternating sum

Ind(V ) = h0(X,V )− h1(X,V ) + h2(X,V )− h3(X,V ) . (5.19)

But by slope stability of the bundle V and the condition c1(V ) = 0,

H0(X3, V ) = H0(X3, V
∨) = 0 (5.20)

(as well as the induced representations; i.e., H0(X,∧nV ) = 0, with n < rk(V ), etc).

Finally, it should be recalled that by Serre duality [98], hm(X,V ) = h3−m(X,V ∨) and as

a result, the chiral index can be expressed simply as the difference,

Ind(V ) = −h1(X,V ) + h1(X,V ∨) . (5.21)

In the case that c1(V ) = 0 this is further given by Ind(V ) = Ch3(V ) = 1
2c3(V ), the third

Chern character. Finally, it should be noted that the index given in (5.21) is written in

terms of the vector bundle associated to the fundamental representation of the underlying

principal H-bundle. The chiral asymmetry in all other representations (i.e., for the induced

vector bundles, V ∨,∧mV, SpV, . . .) is fact determined by the index of the fundamental

representation given above (see [99] for further details). In heterotic theories, the exact

15Physically, the chiral index in a heterotic compactification counts the number of generations minus the

number of anti-generations of chiral particles. For example, the number of 27 multiplets minus the number

of 27’s in the E6 theory given above, or the number of families in a heterotic Standard Model.
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massless matter spectrum is frequently easier to compute than in F-theory, and in this

work we use the simple structure of heterotic matter to extract useful information about the

spectrum and chiral index arising from F-theory compactifications on Calabi-Yau fourfolds.

For heterotic theories defined over elliptically fibered Calabi-Yau threefolds, the

bundle-valued cohomology groups defined above have a simple decomposition in terms

of the base/fiber geometry. Using the techniques of Leray spectral sequences, there exists

a decomposition

Hm(X,V ) =
⊕

p+r=m

Hr(B2, R
pπ∗(V )) (5.22)

where Rpπ∗(V ) is the p-th derived push forward [98] of V . On any open set U , Rpπ∗(V )

can locally be represented on B2 by the pre-sheaf

U → Hp(π−1(U), V ) (5.23)

This formalism allows for a very precise notion of “localized” matter in the heterotic theory

(supported over loci in the base B2) which (in the case of simply-laced G) can be matched

exactly to the localized matter associated to 7-brane intersections in the dual F-theory

geometry. We explore this localized matter and the chiral index further in section 7.8 and

in the context of the spectral cover construction of vector bundles below.

5.3 The spectral cover construction

Thus far our discussion of heterotic compactifications and constraints has been completely

general, and throughout this work we attempt as far as possible to keep our study of

the holomorphic vector bundles (V1, V2) independent of any particular method of bundle

construction. It will, however, be useful in certain examples to appeal to one method of

constructing vector bundles on elliptically fibered manifolds in which heterotic/F-theory

duality is particularly well understood [19, 42]. This is the well-known “spectral cover”

construction [39, 41].

5.3.1 Spectral covers

The spectral cover construction can be used to build rank N bundles, V → X3, with

structure group SU(N) or Sp(2N). Moreover, for some bundles with these structure groups,

which are slope-stable in the adiabatic region described in the previous section, the Fourier-

Mukai transform16 [40] provides a 1−1 map (in fact a full functor on the category of coherent

sheaves) from V to a pair (S, LS) where S is a divisor in X3 that is an N -fold cover of the

base B2 and LS is a rank-1 sheaf on S. The class of S is given by

[S] = N [σ] + π∗(η) (5.24)

where σ is the zero section of π : X3 → B2 and η is defined as in (5.9). As in (5.8), let

X̂, Ŷ , Ẑ be the coordinates of the elliptic fiber (where Ẑ = 0 defines the section σ). Then

16The precise conditions for stability and consistency of spectral cover bundles will be discussed further

in the next section.
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in the case that the structure group of V is SU(N), the spectral cover S can be represented

as the zero set of the polynomial

s = a0Ẑ
N + a2X̂Ẑ

N−2 + a3Ŷ Ẑ
N−3 + . . . (5.25)

ending in aNX̂
N
2 for N even and aNX̂

N−3
2 Ŷ for N odd [19] (see [19] also for the analogous

construction for Sp(2N) structure group). The coefficients aj are sections of line bundles

over the base B2

aj ∈ H0(B2,K
⊗j
B2
⊗O(η)) = H0(B2,O(η + jK2)) , (5.26)

which can locally be described as polynomial functions with appropriate degrees. Note

that in the duality to F-theory, the coefficients aj play a dual role as coefficients fk, gk
in the F-theory Weierstrass model, providing a direct map between the moduli on the

two sides of the duality. In order for the spectral cover to be an actual algebraic surface

in X3 it is necessary that S be an effective class in H4(X3,Z). It is straightforward to

show [19, 39, 100] that this is true if and only if η is an effective class in B2. This can

be seen by noting that η must be effective for a0 to be nonvanishing, and since −K2 is

effective no other coefficient aj can be nonvanishing if η is not effective. In view of the

Bogomolov condition in the previous section, it is clear that spectral cover bundles are

built to be slope-stable in the adiabatic region of Kähler moduli space.17

There is a further condition that must be imposed in order for the spectral cover

bundle V to be slope stable. By construction, irreducible spectral covers are stable in the

adiabatic region given above [19, 39]. However, the condition that the cover is irreducible

places another condition on η. It can be argued that S is irreducible18 if η is base-point free

(i.e., has no base locus in a decomposition of the type (4.1)) and η −Nc1(B2) is effective

(see [102] for example). The condition of base point free-ness will be explored in further

detail for surfaces in section 6.4, but for now it should simply be noted that this condition

guarantees that there exist irreducible curves in the class [η].

To fully determine the bundle V and its topology after Fourier-Mukai transform, it is

necessary to specify not only the class η in (5.24), but also the rank-1 sheaf LS above. The

condition that c1(V ) = 0 fixes the first Chern class of LS to be [19]

c1(LS) = N

(
1

2
+ λ

)
σ +

(
1

2
− λ

)
π∗Sη +

(
1

2
+Nλ

)
π∗Sc1(B2) (5.27)

17More precisely, it is known [100] that for a spectral cover bundle there exists some value M0 such that

for M � M0 in (5.11), the bundle associated to that spectral data is slope stable for the given region of

Kähler moduli space. For Kähler twofolds the proof of stability is constructive and yields an explicit value

of M0 defining the stable region of Kähler moduli space. For Calabi-Yau threefolds however, the arguments

are not constructive and we are restricted to considering the limit M � 1 [19, 100].
18Note that if S is irreducible as an algebraic curve in X3, the associated vector bundle under Fourier-

Mukai transform will be indecomposable (i.e. not a direct sum V1 ⊕ V2 ⊕ . . .). However, the converse

does not hold. Some reducible spectral covers can still correspond to indecomposable vector bundles.

See [71, 101] for examples.
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where πS : S → B2, the bundle V has structure group H = SU(N), and the parameter λ

is either integer or half-integer depending on N :

λ =

{
m+ 1

2 , if N is odd

m, if N is even
(5.28)

where m ∈ Z. This condition arises from the fact that c1(LS) must be an integral class in

H1,1(S,Z). When N is even it is clear that this integrality condition imposes

η ≡ c1(B2) mod 2 (5.29)

where “mod 2” indicates that η and c1(B2) differ only by an even element of H2(B2,Z).

The relation (5.27) holds when the cohomology of S is spanned by the class σ and the

pullback of the cohomology in the base. While this is expected to be true generically,

there can be situations in which S has a larger Picard group (i.e. more independent divisor

classes). Examples where this increase in h1,1(S) may occur include Noether-Lefschetz

loci in the complex structure of S and degenerate (singular) spectral covers (see [103] for

some generalizations of (5.27) for such examples). In these more general situations, the

constraint (5.29) may not hold. We will see the need for such interesting possibilities (and

their F-theory duals) in later sections.

Finally, with this data in hand it is possible to extract the full topology of V , including

the chiral index, Ind(V ) = −h1(X3, V )+h1(X3, V
∨). The Chern classes of a spectral cover

bundle V , specified by η and the integers N and λ, are [19, 39, 45, 103]

c1(V ) = 0 (5.30)

c2(V ) = η ∧ σ − N3 −N
24

c1(B2)2 +
N

2

(
λ2 − 1

4

)
η ∧ (η −Nc1(B2)) (5.31)

c3(V ) = 2λσ ∧ η ∧ (η −Nc1(B2)) = 2λη · (η −Nc1(B2)) (5.32)

Note that since c1(V ) = 0, Ind(V ) = ch3(V ) = 1
2c3(V ).

The essential heterotic constraints on a bundle constructed via spectral covers can be

simply encapsulated by the {1, 1} form η. For a bundle Vi, if ηi and ηi − Nc1(B2) are

effective, ηi is base-point free, and an LS is chosen subject to (5.27), (5.28) and (5.29), a

spectral cover bundle is guaranteed to exist and to be slope stable (for a region in Kähler

moduli space in which heterotic/F-theory duality is well understood). In section 6 we

explore the way that some of these same constraints appear in the dual fourfold geometry,

giving information about when these constraints must be true based on topological data

independent of a specific method of bundle construction.

5.3.2 Localized matter and spectral covers

In SU(N) spectral covers, at least some of the zero-modes of the theory have a simple

realization in terms of the geometry of the spectral cover S ⊂ X3. By the Leray spectral

sequence arguments outlined above, it can be shown that the matter in the theory deter-

mined by H1(X,V ) is localized at the intersections S ∩ σ in B2 (see section (6.2) of [19]
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for a review). For example, for an SU(2) spectral cover of the form

a0Ẑ
2 + a2X̂ = 0 (5.33)

S intersects the zero-section σ at the zero-locus of the section a2(u) ∈ H0(B2,K
⊗2
2 ⊗O(η))

over B2. This localized matter appears as the 56 multiplets of the 4-dimensional E7 theory.

The exact multiplicity of these fields can be found by a Leray calculation to determine the

exact zero-mode spectrum along the curve a2 = 0 in B2.19

More generally, given an SU(N) spectral cover of the form shown in (5.25), the

localized matter counted by H1(X,V ) (i.e., the matter valued in the fundamental

representation of V ) will be controlled by the zeros of aN (u) ∈ H0(B2,K
⊗N
2 ⊗O(η)). Note

that this matter need not be chiral, and this is of course not the full matter spectrum of

the low-energy 4D theory — for that other representations appearing in the decomposition

of the 248 of E8 in (5.16), such as H1(X,∧2V ), H1(X,End0(V )) etc., must be considered.

For these, we must consider not just the N -sheeted spectral cover associated to the

fundamental representation of the SU(N) bundle, but other curves associated to other

induced vector bundles (such as ∧kV, SpV , etc) as well. At present, it is not known how

to construct all such associated spectral covers in full generality (see [20, 104] for some

progress in this direction), though in the case of some of these representations there will

likewise be a notion of localized matter [20].

Finally, it is worth noting that although the presence of “matter curves” in the class

[aN = 0] in B2 indicates the presence of charged matter in the 4D theory, the exact matter

spectrum with multiplicities cannot be determined without fully specifying all the data

of the bundle, including detailed properties of a particular V (not just its topology) and

of course, the third Chern class (5.21). With this data in hand, the restriction of V to

both the fiber and base implicit in (5.22) and (5.23) can be explicitly calculated. From the

perspective of F-theory, we expect this further data to be necessary, since it is known that

the exact (chiral) matter spectrum depends crucially not just on the fourfold geometry, but

also a choice of G-flux. We will return to the issue of chiral matter and heterotic/F-theory

duality again in section 7.8.

5.3.3 Limitations of spectral covers

Despite the fact that it constitutes one of the most studied and best understood corners of

the dual heterotic/F-theory landscape, the spectral cover construction is far from general

and care must be taken in generalizing results derived in this context to the full vector

bundle moduli space or the generic dual fourfold geometries. As pointed out above, the

spectral cover construction is valid only for special structure groups (i.e., H = SU(N) or

Sp(2N)) and perhaps more importantly, its applicability is limited even in these settings.

That is, not all consistent SU(N) or Sp(2N) bundles arising in heterotic compactifications

can be represented by well-behaved spectral covers.

19Note that in the dual F-theory geometry matter curves appear in the shared base B2 in exactly the same

way. In the notation of (4.5)–(4.6), the dual Weierstrass model to (5.33) is y2 = x3+(a2z
3+. . .)x+(a0z

5+. . .)

and on the vanishing locus a2 = 0 there is an enhancement of E7 → E8 as expected.
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Since this has an impact on the heterotic/F-theory comparisons undertaken in this

work, it is worth briefly reviewing some of these constraints here. The Fourier-Mukai

transform is a well-behaved functor on the moduli space of sheaves, subject to the following

conditions: that the restriction V |Ep of the bundle to each elliptic fiber Ep is

1. Semistable

2. Regular (i.e., that the restricted rank N bundle on the elliptic curve has an automor-

phism group of the minimum possible dimension: dim(Aut(V |Ep)) = N)

For the first of these, the semi-stability of V is defined with respect to the restricted

slope in (5.5). For indecomposable stable bundles V this will be true for generic fibers

when the Kähler class is chosen to be

ω = ω0 +Mωα , M � 1 (5.34)

where, as above, for threefolds the stability proof is based on M > M0 for some unknown

M0 and is not constructive. The condition above is sufficient to guarantee that a stable

region for V exists, compatible with the large volume, weakly-coupled limit that we require

for heterotic/F-theory dual pairs. It is important to note, however, that this limitation of

moduli space is certainly not necessary for the consistency of heterotic theories [105, 106].

This point is explored further in appendix B.

The second condition of “regularity” appearing above was introduced by Atiyah in his

classification of semi-stable sheaves on elliptic curves [107]. In particle, V is called “regular”

if when it is restricted to every elliptic fiber it decomposes into a poly-stable sum of line

bundles (i.e., by the divisor-line bundle correspondence, a set of points on Ei summing

to zero) rather than a non-trivial extension (for example, Atiyah’s I2 bundle of the form

0 → OEi → I2 → OEi → 0). Unlike the previous one, this condition cannot be stated

as a simple global restriction on the heterotic moduli space and is harder to characterize

for generic bundles. Indeed, it is significant that many good heterotic bundles will fail the

regularity criterion. For instance, it is known that most bundles described via the monad

construction [108, 109] are not regular [110]. In fact, there are indications that this criteria

can sometimes be consistently violated in the context of perturbative heterotic/F-theory

dual geometry (including in such well-known examples [71] as the heterotic “Standard

Embedding” in which V = TX3). See [101] for some recent results on degenerate spectral

covers and dual F-theory geometry. The regularity condition will not be explored here

in detail, but it may be relevant in explaining some of the unsolved questions regarding

geometric constraints arising in dual heterotic/F-theory pairs, including exotic G-flux (see

section 7.9) and the role of quantization conditions like (5.28) and (5.29).

6 Equivalence of constraints

We now consider the relation between constraints on F-theory geometry and the constraints

on bundle constructions on the heterotic side.
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6.1 Effective condition on ηi

We begin by showing that the F-theory condition that f, g do not vanish to degrees 4, 6

on either Σ− or Σ+ is equivalent to the heterotic condition that η1 and η2 are effective.

This follows directly from the analysis of section 4.1.5, where it was shown that −6K2±T
must be effective in any F-theory geometry where f, g are well-behaved on Σ±. With the

identification

η± = η1,2 = −6K2 ± T (6.1)

it follows that the condition that η± are effective is a necessary condition for the existence

of a good F-theory geometry. This is thus a necessary condition for the existence of a

good heterotic dual. This matches with what is known of the heterotic theory, where this

bound is necessary in order to satisfy the Bogomolov bound in the adiabatic limit of the

stable degeneration limit. The fact that this bound is necessary for any good F-theory

geometry shows that this bound on the heterotic side must be more general and applies to

any bundle construction, irrespective of of the stable degeneration limit.

In fact, from the F-theory side the constraint is significantly stronger. The constraint

on the F-theory side states that either η− = 0, or −4K2 − T = η− − 2c1 must be effective.

This constraint, and the analogous constraint for η+ must be necessary conditions on the

heterotic side for the existence of any smooth bundle with the specified components of c2.

6.2 Effective constraint and gauge groups

In [38] the effective constraint on η for a bundle to exist on the heterotic side was generalized

to situations where the 4D gauge group can be seen to be restricted in specific ways on

the F-theory side. These constraints can be readily attained by a generalization of the

analysis in the previous section. For example, if we consider a divisor Σ− that carries a

gauge group no larger than E7, then −4K2 − T must be effective for f to have a term of

degree ≤ 3 , so η = 6c1 − T ≥ 2c1, where by A ≥ B we mean that A − B is effective.

This corresponds on the heterotic side to a constraint on η for bundles with structure

group H = SU(2), so we conclude that η ≥ 2c1 is a necessary condition for the existence

of a bundle with structure algebra su2 (or greater). This matches with the result found

in [38]. Similarly, bundles with structure su3 or g2 correspond to gauge algebras G = e6, f4,

which have g4 or a lower term in g or f vanishing, so −6K2 − 2t = 2η − 6c1 = 2(η − 3c1)

is effective. The results for these and the other minimal gauge group types are shown in

table 3, again in agreement with [38]. Note that these conditions for bundles with structure

group SU(2),SU(3) precisely agree with the condition that η − Nc1(B2) is effective that

was needed in section 5.3, showing that this constraint is more general and independent of

bundle construction. In the case where G is trivial and the structure group on the heterotic

side is E8, it is only necessary that −6K2 − 5t = 5(η − 24c1/5) be effective (corresponding

to a nontrivial g1). For SU(N) groups with N > 3, on the other hand, f0 and g0 must be

nonvanishing so −6K2 − 6t = 6(η − 5c1) must be effective and η ≥ 5c1.
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G H bound

e8 1 η = 0

e7 su2 η ≥ 2c1

e6, f4 su3, g2 η ≥ 3c1

so8, g2 so8, f4 η ≥ 4c1

su3 e6 η ≥ 9
2c1

su2 e7 η ≥ 14
3 c1

1 e8 η ≥ 24
5 c1

Table 3. Constraints on η for certain structure groups H of heterotic bundles, identified from

F-theory bounds on η for a given 4D gauge group G; η ≥ ac1 means that η−ac1(B2) is an effective

divisor on B2. For example, a heterotic bundle with structure group SU(2) is only possible when

η − 2c1 is effective. These results match those found in [38].

6.3 F-theory constraints and SO(32) models

As discussed in section 3, for any given base B2 there is a unique twist T = 2c1(B2) so that

F-theory on the resulting B3 is dual to the SO(32) heterotic theory on a generic elliptically

fibered Calabi-Yau threefold over B2. In this case the F-theory conditions are that f2 is a

section of O(−4K2−2T ) = OB3 and g3 is a section of O(−6K2−3T ) = OB3 . Both of these

are therefore simply complex numbers so that the cubic x3 + f2x + g3 has three complex

roots and the resulting gauge algebra is so8. This matches the dual heterotic theory where a

generic choice of bundle will break the full SO(32) (really Spin (32)/Z2) down to SO(8), just

as in the 6D case where the F-theory dual of heterotic on K3 is F-theory on an elliptically

fibered Calabi-Yau threefold over the base F4.

6.4 Base-point free condition

We now consider the conditions that the heterotic base-point free condition imposes on

F-theory geometry. On the heterotic side, the constraint is that ηi is base-point free on

B2. As discussed in section 4.1, on a surface this simply means that there does not exist

any effective divisor (curve) D of negative self-intersection such that ηi · D < 0. In the

F-theory picture this means that

(−6K2 ± T ) ·D ≥ 0 (6.2)

for all effective divisors D in B2. Let us examine the consequences of this condition for

curves satisfying D ·D = −n where n = 1, 2.

For a curve D with n = 1, we have −K2 ·D = 1, since (K2 + D) ·D = 2g − 2 = −2

where D is a rational curve, so (6.2) becomes

6± T ·D ≥ 0 . (6.3)

This is automatically satisfied from (4.9). Thus, the base-point free condition imposes

no additional conditions for F-theory bases associated with twists over curves of self-

intersection −1. In particular, this means that any F-theory base B3 formed as a P1 bundle
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over a del Pezzo base B2 automatically gives rise to ηi that satisfy the base-point free con-

dition on the heterotic side, since B2 contains no curves of self-intersection lower than −1.

Now consider the case of a curve D with self-intersection −n = −2. In this case, we

have −K2 ·D = 0, so (6.2) becomes

± T ·D ≥ 0 . (6.4)

This relation is only satisfied with both signs when T ·D = 0. Thus, the base-point free

condition will be violated whenever the twist over a −2 curve has T ·D = ±1. From (4.10),

these are the only nonzero possibilities.

We can now analyze the consequences for the gauge group on the divisors Σ± when

the base-point free condition is violated. This corresponds to the condition (C) analyzed

in section 4.1.5. Assume that D is a curve of self-intersection −2 with an associated twist

having T · D = +1. In this situation, (−nK2 − (n − k)T ) · D = −(n − k). As described

in section 4.1.3, this means that g5, g4, f3, f2 vanish on D to degree at least 1, g3, g2, f1, f0

vanish on D to degree at least 2, etc. An immediate consequence is that f, g cannot vanish

on Σ− to degrees 3, 5 or higher, or they would vanish on Σ− ∩ D to degrees 4, 6. This

means that there cannot be a generic e7 or e8 gauge group on Σ−. Furthermore, if the

degrees of vanishing are 3, 4 then g4 cannot be a perfect square, since if it was then it

would vanish to degree two on D and again f, g would vanish to degrees 4, 6 on Σ− ∩D.

As reviewed in section 3.1, this condition means that in the 3, 4 vanishing case the generic

gauge group must be f4 and not e6. Thus, in the non-base-point free cases where an F-

theory construction is possible, the generic gauge group cannot be e6, e7, or e8. A similar

consideration holds for the generic gauge group on Σ+ when T ·D = −1.

These conditions can be made more explicit in the toric context. Given a divisor Di

with t̃i = T ·Di = 1, we have a local set of rays in the toric fan as in (4.12)

s− = (0, 0, 1) (6.5)

w̃i−1 = (1, 0, 0) (6.6)

w̃i = (0,−1, 0) (6.7)

w̃i+1 = (−1,−2, 1) . (6.8)

All monomials m = (a, b, c) ∈ N∗ in F ,G then satisfy the inequalities (4.14)–(4.16), as well

as (4.18), which becomes c ≥ a+ 2b− B for B = 4, 6. In addition, there must be at least

one monomial m that satisfies (4.17), b− c > B, for B = 4 or 6.

First, we can ask if it is possible to have a gauge group factor on Σ− associated with

a summand e7 or e8. From table 1, this would mean that every monomial m = (a, b, c)

would have c ≥ −1 for both B = 4 and B = 6. From figure 2, it is clear that this is not

possible, however. The only simultaneous solution in (b, c) to c < b − B, b ≤ B, c ≥ −1 is

b = B, c = −1, and this is ruled out for both values of B by c ≥ a+ 2b−B since a ≥ −B.

Thus, when the base-point free condition is violated through t̃i = +1 over a −2 curve, the

gauge algebra summand associated with Σ− cannot be e7 or e8. A similar result follows for

Σ+ when t̃i = −1.
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Now let us consider the possible summands e6 and f4, both associated with vanishing

degrees of 3, 4 for f, g on Σ−. In this case the constraint for B = 6 is c ≥ −2. There

is a simultaneous solution to the inequalities for this value of c, given by m = (a, b, c) =

(−6, 5,−2), again as depicted in figure 2. So this combination of vanishing degrees can be

realized. The distinction between e6 and f4 can be seen most easily from the leading term

in the Weierstrass coefficient g = g4z
4 + g5z

5 + · · · , in a local expansion in coordinates

around the relevant divisor, which in this case is Σ−. If g4 is a perfect square, the gauge

algebra is e6, and otherwise it is f4. Since the only allowed monomial at order z4 is g4 = y,

which is not a perfect square, the gauge algebra must always be f4 when the base-point

free condition fails on η1 = 6c1 + T and the degree of vanishing of f, g is 3, 4 on Σ−. The

same result follows for Σ+ when t̃i = −1.

The upshot of this analysis is that the only gauge algebras that are possible for

the structure group of the bundle in the dual heterotic model when the base-point

free condition is violated are the commutants of the possible gauge algebras of the 4D

theory, namely e8, e7, e6, f4, so8, and g2. This is in good agreement with what is known of

heterotic/F-theory duality in these cases, since the spectral cover construction for SU(N)

and Sp(N) structure group bundles is not possible when the base point free condition is

violated. Furthermore, these results demonstrate that the base-point-free condition must

be necessary for any heterotic bundle with structure group SU(N) or Sp(N), independent

of the spectral cover construction.

For the gauge groups associated with the more general exceptional algebras, it is

expected that other bundle constructions such as the more general “cameral cover” con-

struction [40–42] will exist for the heterotic bundles (though explicit conditions on bundle

topology are at present not as well understood in this context as they are in the case of spec-

tral covers) and as a result, the base-point free condition is not necessarily a requirement for

the construction of a sensible bundle. The analysis of this section suggests that all F-theory

models on P1 bundles over B2’s that are generalized del Pezzo surfaces have well-defined

heterotic duals, even when the base-point free condition is violated, though new tools may

be needed for explicit construction of the appropriate bundles on the heterotic side.

6.5 A note of caution: G-flux

To close this section, we return briefly to a caveat mentioned in section section 1 regarding

the results presented here that are based purely on F-theory geometry. In deriving the

bounds on structure groups and η in sections 3–6 we have ignored G-flux which must

be taken into account for a full description of the F-theory physics and dual heterotic

bundle moduli space. Some general aspects of G-flux in 4D F-theory models, and relevant

references are given in section 7.8, section 7.9.

In some cases it may be possible for non-trivial G-flux (in the singular limit of the

fourfold geometry) to change the apparent symmetry group that would be inferred from

the Weierstrass equation. Although counterintuitive from the perspective of Abelian G-

flux in a smooth M-theory limit, such symmetry-breaking by flux can be generic in the

singular limit and is expected to occur in a wide range of 4D F-theory models. This has

recently been explored in the context of local F-theory models as “T-branes” [111, 112] (or
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equivalently “gluing data” [113, 114]) and in the global context in both 4- [115, 116] and

6-dimensional compactifications [101].

The basic mechanism by which G-flux can break an apparent symmetry appearing

from the geometric F-theory analysis in terms of a Weierstrass model is most clear in the

dual heterotic picture. As discussed in section 3.1, the geometry of the F-theory base B3

determines almost all of the topology of the corresponding bundle on the heterotic side.

The components ζi in (3.2), however, are not determined by the 4-fold geometry. On the

heterotic side, non-trivial bundles with a second Chern class entirely in ζi can break the

gauge group just as effectively as bundles with non-vanishing ηi that have a clear dual

in F-theory geometry. The symmetry breaking bundles corresponding to the topology

c2(Vi) ∼ ζi will not be visible in the F-theory geometry, and can only be seen in F-theory

when G-flux is correctly incorporated.

In the context of the present investigation, we hope to explore the full moduli/vacuum

space of the dual theories including G-flux in future work. For now, however, we simply

provide an illustration of where the purely geometric criteria may miss solutions involving

exotic G-flux, in an example appearing in section 7.9.

7 Examples

We examine some specific examples of F-theory models on bases B3 that are P1 bundles

over various bases B2 and which illustrate various features discussed in the main part of

the paper.

7.1 P1 bundles over P2

We begin with the simplest example, taking B3 to be a P1 fibration over B2 = P2. The

effective divisors on P2 are multiples nH of the hyperplane class H with H ·H = 1. The

(anti-)canonical class is −K2 = 3H. The general constraint on the twist T = tH is that

|t| ≤ 18; this is the analogue of the constraints (4.8)–(4.11) for a curve of self-intersection

+1. This class of F-theory models and their heterotic duals was described in [30, 38].

From the general classification of allowed F-theory models it follows that there is a

valid model with t = 18 (−6K2 − tH = 0), and that there are valid models for 0 ≤ t ≤ 12

(−4K2 − tH effective). Models with negative t are equivalent under reflection to those

with positive t. The twists 13 ≤ t ≤ 17 correspond to bases B3 in which g5 vanishes on

some curves on the e8 locus Σ−, which must be blown up for a smooth threefold base,

analogous to the Hirzebruch surfaces F9,10,11 in the 6D construction. Since the base B2 has

no curves of self-intersection −2 or below, the base-point free condition is never violated.

The resulting 4D supergravity models have a range of gauge group factors according to the

value of t. We thus have a total of 14 distinct bases B3 corresponding to different twists in

a P1 bundle over P2 giving F-theory models with distinct smooth heterotic duals.

These features can be seen explicitly through a toric construction, where the parts of

the fan from B2 are

w0 = (0, 1, 0), w1 = (1, 0, 0), w2 = (−1,−1, t) . (7.1)
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Here we have used linear transformations to set the component of T to 0 for the first two

vectors. The F-theory condition that f, g do not automatically vanish to degrees 4, 6 on

Σ− corresponds to the condition that t ≤ 18 in the toric picture since the plane spanned by

w1, w2, w3 intersects the third axis at (0, 0, t/3), so t/3 ≤ 6. (In general, the condition that

g not vanish on a divisor such as Σ− at degree 6 can be described in any toric case as the

condition that the plane spanning the wi’s intersect the z axis at a value less or equal to

6, as can be verified geometrically.20) The corresponding condition for Σ+ gives t ≥ −18.

On the heterotic side, the choice of t corresponds to the bundle decomposition where

η1,2 = 18± t ≥ 0 is the number of instanton factors in each component of the gauge group,

which must be nonnegative associated with the condition that ηi is effective.

Specific examples with generic gauge algebras su(2) and su(3) arise in the cases t = 4, 5.

For t = 4, f and g vanish to degrees 1, 2 on Σ−, as can be seen from the fact that f0, g0,

and g1 must all vanish as the corresponding divisors −nK2− (n−k)tH = −4H,−6H,−2H

are all non-effective. Similarly, for t = 5, f, g vanish to degrees (2, 2). Both of these cases

correspond to situations where the gauge algebra su(2) or su(3) cannot be enhanced to an

su(5), though the algebra can be enhanced to the exceptional series g2, f4, e6, e7, e8.

The unique model with an SO(32) heterotic dual is the model with t = 6 (tH = −2K2),

with gauge algebra so(8), parallel to the 6D model on F4.

7.2 P1 bundles over Fm

Now consider F-theory models where the base B2 is a Hirzebruch surface. Some of these

models were also discussed in [30]. The cases F0 and F1 are qualitatively similar to the

models described in the previous section, and are always base-point free as there are no

−2 curves in the base. The cases Fm with m > 2 correspond to singular geometries on the

heterotic side. We briefly describe the cases F0 and F1 and then focus on the case F2. For

any Hirzebruch surface Fm, the cone of effective divisors is generated by divisors S, F with

S · S = −m,F · F = 0, S · F = 1, and −K2 = 2S + (2 +m)F .

For F0, we have −K2 = 2S + 2F , and we can parameterize T = aS + bF . There are

symmetries under T → −T and a↔ b. The general constraints on twists over curves of self-

intersection 0 give −12 ≤ a, b ≤ 12. There is a single e8 model with a = b = 12 (T = −6K2).

For all other good bases −4K2 ± T are effective, so −8 ≤ a, b ≤ 8. Up to symmetries this

gives 81 + 1 = 82 distinct twists associated with valid F-theory models. As in the models

over B2 = P2, there are a variety of gauge groups associated with the different twists.

For F1, we have −K2 = 2S + 3F , and we can again parameterize T = aS + bF .

There is a symmetry under T → −T . The general constraints on twists over curves of

self-intersection 0 and −1 give |a| = T · F ≤ 12, |b − a| = T · S ≤ 6. There is a single e8

model with a = 12, b = 18 (T = −6K2). For all other good bases −4K2 ± T are effective,

so |a| ≤ 8, |b| ≤ 12. Up to the sign symmetry of T this gives 108 + 1 = 109 distinct

twists associated with valid F-theory models. Again, there are a variety of gauge groups

associated with the different twists, and all models have η± = −6K2 ± T base-point free.

20Thanks to L. Swanson for discussions on this point.
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A situation mentioned in section 4.1.2 occurs for several P1 bundles B3 over B2 = F1,

where a codimension two singularity arises on a curve despite the absence of gauge groups

from codimension one singularities. A sample example of this occurs for the twist T = 2F .

In this case, −nK − (n− k)T = 2nS + (n+ 2k)F has a negative intersection with S when

n > 2k, so f0, f1, g0, g1, g2 all vanish on S, giving a (2, 3) codimension two singularity type

over the curve S ∩Σ− although there is no gauge group on Σ− as −nK − (n− k)T are all

effective for n = 4, 6, 0 ≤ k < n.

Now we consider models with B2 = F2. We have −K2 = 2S+4F , and we parameterize

T = aS+bF , with a symmetry under T → −T exchanging Σ±. The general constraints on

twists over curves of self-intersection 0 and −2 constrain |a| = T ·F ≤ 12, |b−2a| = T ·S ≤ 1.

There is a single e8 model with a = 12, b = 24 (T = −6K2). The models with b = 2a are

base-point free; from the constraint that −4K2− T be effective the base-point free models

have 0 ≤ a ≤ 8 up to symmetry, so along with the e8 model there are 10 base-point free

configurations. For the non-base-point free configurations, up to the sign symmetry on T

we can choose b = 2a+ 1, from which

− 3K2 − T = (6− a)S + (12− 2a− 1)F (7.2)

must be effective, and similar for −3K2 + T . This constrains

− 8 ≤ a ≤ 5 (7.3)

so there are 14 non-base-point free configurations, with gauge groups up to f4 on Σ−.

We can describe these cases explicitly in toric language. The toric fan for B3 contains

the rays

s± = (0, 0,±1) (7.4)

w0 = (0, 1, 0) (7.5)

w1 = (1, 0, 0) (7.6)

w2 = (0,−1, a) (7.7)

w3 = (0,−1, b) . (7.8)

The twist T is parameterized by the integers a, b. An explicit computation of the monomials

in the dual lattice that satisfy 〈m,wα〉 ≥ −4,−6 confirms that the cases described above

are the only ones for which the F-theory model is acceptable and that in all these cases

f, g have acceptable degrees of vanishing on all divisors and curves.

We consider explicitly the cases where η− = −6K2 − T fails the base-point free condi-

tion. When a < 2, b = 2a+1, there is no vanishing of f, g on Σ−. For the twist combination

(a, b) = (2, 5), the vanishing degrees are 1, 2, so the gauge algebra contribution from Σ−
is su2. This should correspond on the heterotic side to an E7 structure bundle on the

Calabi-Yau described by the generic elliptic fibration over F2 that violates the base-point

free condition, with η = 6c1−T = 10S+19F , which is not base-point free since η ·S = −1.

A similar analysis for the twist combination (a, b) = (3, 7) gives vanishing degrees of

f, g on Σ− 2, 3, for a gauge algebra factor of g2 and a dual heterotic bundle structure
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group of f4. In this case the bundle has η = 9S + 17F . For the twists (a, b) = (4, 9) and

(5, 11) the vanishing degrees are 3, 4, so the gauge algebra contribution on Σ− is f4, and

the heterotic structure group is g2.

This gives a number of explicit examples of F-theory constructions that violate the

base-point free condition, where the dual heterotic model should nonetheless exist with a

bundle having an exceptional structure group.

7.3 An F-theory model over B2 = F3 with a codimension two singularity but

no gauge group

As discussed in section 3.2, all elliptically fibered Calabi-Yau geometries over the base

B2 = F3 are singular due to the Kodaira singularity over the −3 curve D in the base with

vanishing of f, g to degrees (2, 2) or greater. This means that no F-theory models on any

base B3 over B2 = F3 can have a smooth heterotic dual. In most cases, the absence of the

heterotic dual is made particularly clear by the appearance of an additional gauge group

factor in the 4D F-theory model over the divisor in B3 associated with D. In the singular

heterotic dual theory this would correspond to an additional gauge factor arising at the

singularity in the Calabi-Yau geometry. It is interesting to note, however, that for certain

values of the twist T , a P1 bundle B3 over B2 = F3 can be constructed so that there is

no extra nonabelian gauge group factor. For example, with the twist T = F , there is no

divisor that must carry a gauge group factor, though there is a codimension two singularity

where (f, g) vanish to degrees (3, 4) on the curve S ∩ Σ−. These assertions can easily be

checked explicitly using the monomials computed in the toric description.

7.4 dP2

The second del Pezzo surface, dP2, is constructed by blowing up P2 at two points, giving

a pair of exceptional divisors E1, E2 with E1 ·E1 = E2 ·E2 = −1, E1 ·E2 = 0. The proper

transform of the line passing through the two points is a third -1 curve F = H −E1 −E2,

with F · E1 = F · E2 = 1. The cone of effective divisors is spanned by F,E1, E2, which

we can write as (1,−1,−1), (0, 1, 0), (0, 0, 1) in a basis where the intersection product is

diag(1,−1,−1). dP2 also has a simple toric presentation, but we use this more abstract

formulation for the del Pezzo examples to illustrate how the methods of this paper can

be implemented outside the toric context. The (anti-)canonical class of dP2 is the proper

transform of −K = 3H on P2,

−K = 3F + 2E1 + 2E2 . (7.9)

If we parameterize the twist as

T = aF + bE1 + cE2 , (7.10)

there are symmetries under b↔ c and (a, b, c)↔ (−a,−b,−c).
We can now count the set of allowed twists T using the conditions described in sec-

tion 4.1.3 and section 4.1.5. From the analysis in section 4.1.6, we know this gives a

necessary and sufficient set of conditions for the set of allowed B3’s. There is a single twist
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T = −6K of class (A). There are no -2 curves in the base, so all other B3’s are of type (B).

The constraints that

− 4K ± T = (12± a)F + (8± b)E1 + (8± c)E2 (7.11)

are effective constrain |a| ≤ 12, |b| ≤ 8, |c| ≤ 8. The constraints that |T ·E1|, |T ·E2|, |T ·F | ≤
6 imply |a − b| ≤ 6, |a − c| ≤ 6, |a − b − c| ≤ 6. Up to the symmetries listed above, there

are 471 distinct T ’s that satisfy these conditions, so the number of distinct P1 bundles B3

over B2 = dP2 that give good F-theory models is 472. This agrees with a direct analysis

using toric methods, as described in section 9.

7.5 dP3

The story for dP3 is similar to that for dP2. Blowing up P2 at 3 generic points gives 3

exceptional divisors E1, E2, E3, and three −1 curves X1 = H − E2 − E3, X2 = H − E1 −
E3, X3 = H − E1 − E2 from the proper transforms of the lines connecting each pair of

points. In a basis with intersection form diag(1,−1,−1,−1) we have

X1 = (1, 0,−1,−1) E1 = (0, 1, 0, 0) (7.12)

X2 = (1,−1, 0,−1) E2 = (0, 0, 1, 0) (7.13)

X3 = (1,−1,−1, 0) E3 = (0, 0, 0, 1) (7.14)

There are symmetries under the 6 permutations of the indices i = 1, 2, 3, and under Ei ↔
Xi, which maps

(a,−b1,−b2,−b3)↔ (2a− b1 − b2 − b3, a− b2 − b3, a− b1 − b3, a− b1 − b2) (7.15)

In the toric picture this can be seen as the 12-fold dihedral symmetry group D6 of the

regular hexagon. A divisor D = (a,−b1,−b2,−b3) is effective if a ≥ 0, b1 + b2 + b3 ≤ 2a.

The (anti-) canonical class of B2 = dP3 is again the proper transform of H

−K = (3,−1,−1,−1) =
∑
i

Xi +
∑
i

Ei. (7.16)

There is one base B3 of type (A), with T = −6K. To enumerate bases B3 of type (B), follow-

ing the analysis of section 4.1.6, it is sufficient to identify all twists T = (a,−b1,−b2,−b3)

so that the local twist conditions

|T · Ei| = |bi| ≤ 6 (7.17)

|T ·Xi| = |a− bj − bk| ≤ 6, i, j, k distinct ∈ {1, 2, 3} (7.18)

are satisfied and −4K ± T = (12± a,−4∓ b1,−4∓ b2,−4∓ b3) is effective, which implies

|a| ≤ 12, |2a− b1 − b2 − b3| ≤ 12 . (7.19)

A simple enumeration shows that up to the D6 symmetry group there are 775 solutions of

all these conditions, so a total of 776 distinct possible bases B3 that are P1 bundles over

dP3. As for dP2, this result agrees with the explicit enumeration done using toric methods

described in section 9.
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7.6 dP4

For dPn the analysis is again similar to dP3 and dP2, though there is no toric construction,

there are more symmetries, and the effectiveness condition is increasingly complicated as

the number of -1 curves on the wall of the cone of effective divisors increases.

For dP4 there are 4 exceptional divisors Ei, E1 = (0, 1, 0, 0, 0), . . . E4 = (0, 0, 0, 0, 1),

and 6 proper transforms of lines Xij , X12 = (1,−1,−1, 0, 0), . . .. The intersection form is

diag (1, -1, -1, -1, -1), with (anti-)canonical class −K = (3,−1,−1,−1,−1). There are sym-

metries under arbitrary permutations of the i’s, as well as additional symmetries of the form

E1 ↔ X23, E2 ↔ X13, E3 ↔ X12, Xi4, E4 fixed (7.20)

The full symmetry group is of order 5! = 120, and can be seen most clearly by re-

defining X̃0i = Ei, X̃ij = 1
2 |εijkl|Xkl, for which the nonzero intersection products are

X̃µν · X̃µν = −1, X̃µν · X̃λσ = 1 when µ, ν, λ, σ ∈ {0, 1, 2, 3, 4} are distinct; in terms of the

X̃’s, the symmetry group is simply the set of permutations on all 5 possible index values.

In dP4, a divisor D = (a,−b1,−b2,−b3,−b4) is effective iff bi ≤ a ∀i,
∑

i bi ≤ 2a, which

can be seen from the conditions that D must be formed from a positive integral linear

combination of Xij ’s and Ei’s. The twist T = (s, t1, t2, t3, t4) must satisfy the conditions

|T · Ei| = |ti| ≤ 6, |T ·Xij | = |s− ti − tj | ≤ 6 . (7.21)

As in the previous del Pezzo examples, there is one solution with T = −6K, and we can

enumerate all solutions with −4K±T effective, which along with the twist conditions (4.8)–

(4.11) give necessary and sufficient conditions for a good base B3. An explicit enumeration

shows that after taking account of symmetry there are 6976 distinct bases B3 of type (B),

for a total of 6977 B3 that are P1 fibrations over dP4.

For higher dPn, and for generalized del Pezzo surfaces, the analysis can be carried out

in a similar fashion. As n increases, however, the details of the calculation become more

complicated. For dP5, for example, there is an additional -1 curve from a conic passing

through all 5 blown up points, C = 2H −E1 −E2 −E3 −E4 −E5, which complicates the

effectiveness condition on divisors. In principle, however, for any base B2, the number of

twists satisfying the local twist conditions is finite, and the determination of the full set of

B3’s over B2 can be done efficiently and explicitly.

7.7 An example of an upper and lower bound on η

One of the more novel observations of this study is the fact that for certain fourfold geome-

tries there exist generic symmetries that can be neither broken (Higgsed) or enhanced at

any points in the complex structure moduli space of Y4. These restrictions arise because of

a variety of features, however all the failures of “enhancement” occur because of too-high

a degree of vanishing of (f, g) on divisors and curves as described in section 6.

The consequences of having a twist T of the P1-fibered base B3 on the F-theory side

that gives rise to such a restrictive condition on the gauge group corresponds in the heterotic

geometry to a choice of partial bundle topology η for which only one structure group H is

possible (subject once again to the caveats arising from ignoring G-flux, see section 6.5)
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Let us consider here an example of this type for which only one symmetry is possible

and all Higgsing/enhancing is forbidden. This is the case for the base B3 defined by the P1

bundle with twist T = 5S + 11F on F2. Constructing the generic Weierstrass model over

this base B3, it is straightforward to verify that this Y4 manifests a generic F4 symmetry.

In the dual heterotic theory, this corresponds to a G2 bundle over the threefold X3

with η = 7S + 13F . More precisely, the heterotic bundle V1 has η− = 7S + 13F and is

a G2 bundle. The second bundle, associated to η+, has generic E8 structure group and

hence one E8 factor is generically completely broken and will not concern us further. More

explicitly, we have the following Weierstrass equation for Y4:

Y 2 = X3 + (f3z
3 + f4z

4 + . . .)X + (g4z
4 + g5z

5 + g6z
6 + . . .) (7.22)

(Here (X,Y, Z = 1) are the coordinates on the elliptic fiber of the CY4, while z = 0

defines the 7-brane locus (i.e., the section Σ−) inside of B3 and is of E6/F4 type according

to Kodaira-Tate.) As mentioned in previous sections, if g4 is a perfect square then the

symmetry is E6, and for more general polynomials it is F4.

For the twist T = 5S + 11F , (7.22) is the generic form of the Weierstrass model for

arbitrary complex structure. The fact that the F4 symmetry is generic (i.e., cannot be

Higgsed) from the point of view of the F-theory Weierstrass model has the same natural

low-energy 4D interpretation on both sides of the duality — there is simply no charged

matter available to get a vev in vacuum.

For the given twist, all additional tunings of the complex structure that might increase

the gauge group on Σ− induce non-CY singularities. As an example, consider the special-

ization of g4 = α2 for some polynomial α of the appropriate degree. Here the vanishing

degree of (f, g,∆) increases from the generic values of (4, 5, 10) on the curve Σ− ∩ S to

(4, 6, 12) on the same curve, and hence the singularity cannot be resolved without going to

a different F-theory base B3 by blowing up the curve.

In this case, the restriction on enhancement has a clear interpretation in terms of the

heterotic bundle geometry. An enhancement of the symmetry of F4 → E6 for example,

corresponds in the heterotic theory to a reduction in rank of the associated bundle from

G2 → SU(3). For the case at hand this would indicate that by tuning the complex structure

of Y4 we were inducing a “splitting” of the vector bundle. In terms of the associated vector

bundles the following reduction of representations in G2 → SU(3),

7→ 3 + 3̄ + 1 (7.23)

would lead to

V7 = V3 ⊕ V3
∨ ⊕OX3 (7.24)

the fact, however, that this tuning leads to a badly singular Y4 indicates that a generic G2

bundle with η = 7S + 13F cannot be decomposed as in (7.24) for smooth SU(3) bundles

V3. Instead, any such decomposition must lead to non-locally free sheaves (i.e., heterotic

“small instantons” [117–119]) and a degenerate limit of the theory.

For this choice of twist, we have an additional confirmation of this heterotic result in

the fact that η is not base-point-free. Thus by the arguments of section 6, we cannot define
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any smooth SU(3) spectral cover bundle to play the role of V3 in (7.24). Although the spec-

tral cover construction is not guaranteed to be representative for the bundle moduli space

in general, the consistency conditions on Y4 applied to these “non-enhanceable” geometries

indicate that if a generic symmetry F4 is not base-point free, it will be impossible to enhance

the symmetry for special values of the complex structure (compatible with a CY resolu-

tion). This provides an interesting window into the moduli space of all such G2-bundles

by providing general restrictions on possible decompositions like the one given above.

7.8 Examples with non-trivial chiral matter

In the previous examples we have seen that the F-theory fourfold geometry frequently

encodes otherwise hard to obtain information about the moduli space of vector bundles

on heterotic CY threefolds. In this section, we use the heterotic theory to obtain new

information about the matter spectrum of a 4D effective F-theory. To accomplish this, we

return to the formulas for chiral matter given in section 5.2.

As an example, let us consider E6 theories in the dual heterotic/F-theory geometry.

As discussed in section 5.3.2, for an SU(N) bundle described via a spectral cover the chiral

index is [45, 103]

Ind(V ) = −h1(X,V ) + h1(X,V ∨) = λ[η] · [η +NK2] (7.25)

where λ is defined by (5.27) and (5.28). Thus, the chiral index is proportional to a simple

geometric intersection of the curve [η] in the base with the matter curve [η +NK2].

To understand the significance of this geometry, the case of E6 theories is particularly

interesting because for SU(3) bundles described as spectral covers we can guarantee that

the constant λ is non-vanishing. Recall from (5.28) that for some integer m

λ =

{
m+ 1

2 , if N is odd

m, if N is even
(7.26)

Thus, for SU(3) bundles/E6 theories it is required that λ 6= 0 and the question of whether

or not the theory has chiral matter can be reduced to a of question of intersection theory

for the matter curve [η + 3K2] in the 2-fold base. We will be interested in whether or not

this curve is reducible and whether or not it has non-trivial intersection with [η].

To illustrate the possibilities, we can consider the four generic E6 theories over the

base B2 = F1. There the twists

T = nS + 9F , 3 ≤ n ≤ 6 (7.27)

all give rise to E6 symmetries on Σ−. This is easy to check since the coefficient g4 in the

Weierstrass equation

Y 2 = X3 + (f3z
3 + f4z

4 + . . .)X + (g4z
4 + g5z

5 + g6z
6 + . . .) (7.28)

satisfies g4 ∈ H0(B2,O(η)⊗2⊗K⊗6
2 ) = H0(B2,O(−6K2−2T )) = H0(F1, 2(6−n)S), which

indicates that g4 is a perfect square in these cases21 and hence (as described in the previous

21Note that the line bundle cohomology over Fn can be shown to satisfy: h0(Fn,O(S)) = 1 for the

divisor S2 = −n. Hence if s is the toric coordinate associated to the divisor S, the generic (only) element

of H0(Fn, nS) is sn.
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section) the fiber type is split to E6 (rather than the generic, non-split F4). Moreover, for

3 ≤ n ≤ 6 we have the heterotic topology:

η = (12− n)S + 9F and η + 3K2 = (6− n)S (7.29)

For these SU(3) bundles, η is effective and base-point-free, η − 3c1 is effective, and it is

straightforward to verify that simple line bundles LS of the form (5.27) can be found with

λ 6= 0. Thus, we are guaranteed that smooth spectral cover bundles exist (stable in the

appropriate adiabatic region in Kähler moduli space).

In the case that g4 = α2 the polynomials in (7.28) appear as a SU(3) spectral cover

inside the heterotic CY3 of the form

g5Ẑ
3 + f3X̂Ẑ + αŶ = 0 (7.30)

where (X̂, Ŷ , Ẑ) are coordinates on the CY3 elliptic fiber (the above equation gives three

points on the elliptic fiber for each point on the F2 base, as expected for an SU(3) spectral

cover). As usual, f4, g6 in the fourfold Weierstrass equation above appear as the coefficients

in the CY3 Weierstrass

Ŷ 2 = X̂3 + f4X̂ + g6 (7.31)

Recall from the arguments of section 5.3.2 that the coefficient α ∈ H0(O(η) ⊗ K⊗3
2 ) =

H0(F2,O((6−n)S) in (7.30) defines the “matter curve”, α = 0. This is where the 27-type

matter is localized in both the heterotic/F-theory geometries.

Thus, for this class of bundles (5.28) and (5.32) can be used to straightforwardly

compute

Ind(V ) = no. of 27
′
s− no. of 27′s = (6− n)(n− 3) (7.32)

From this we see that the cases n = 3 and n = 6 have chiral index zero, but for n = 4, 5

the theory must have chiral matter. Given the full defining data of the bundle, the exact

multiplicity of the 27’s and 27s could be computed using Leray spectral sequences [98],

but even at this preliminary level, the results of the chiral index are intriguing. For these

dual geometries, given a value of η, it can immediately be determined whether or not the

theory contains chiral matter.

Of course, we derived the necessity of a non-vanishing chiral index for an SU(3) bundle

described as a spectral cover, but the third Chern class (and hence the Chiral index) is

a topological invariant in the bundle moduli space. As a result, so long as a good SU(3)

spectral cover bundle exists, we can use it as a probe to extract the structure of the

full moduli space of hermitian bundles, all of which must have non-vanishing index! As

discussed in section 6.4, all CY fourfold geometries with generic E6 symmetry and smooth

heterotic duals satisfy the base-point-free condition and can be described by well-behaved

spectral cover bundles as in section 5.3.

It would be interesting to investigate the question of chiral matter in this context

more directly on the F-theory side in the future, in particular by including G-flux. Some

general aspects of how G-flux can be incorporated in 4D F-theory models are described

in [120–123]. Progress has been made in understanding how chiral matter in F-theory
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models can be determined in the presence of G-flux based on aspects of the spectral cover

construction [20, 124–130] and more directly from the M-theory description [131], but a

more complete and directly computable formulation is desirable. An inspection of (7.28)

shows that the points determined by the intersection

[η] · [η +NK2] (7.33)

in the F-theory geometry corresponds exactly to the simultaneous vanishing of g4 and g5

at points in the base — that is, the chiral index in these cases is counted by co-dimension 3

singular loci in the 4-fold geometry. The observation that chiral matter and co-dimension

3 singularities (and associated G-flux) could be linked (at least in K3-fibered 4-folds) has

been observed for some time [124, 125] and has been used more recently in F-theory model

building [20, 132].

It would be interesting to study more generally whether simple correlations such as

those between (5.21) and (5.28) and (5.32) exist between η and the chiral index, indepen-

dent of the existence of a heterotic dual. In fact, it is possible that the F-theory 4-fold

could explicitly give indications of such correlations through its topology. For example, it is

well known that some 4-folds cannot be good F-theory vacua without including non-trivial

G-flux. In these cases their second Chern class (or more generally Wu class) is incompati-

ble with trivial G-flux in the presence of quantization conditions. A study of the topology

of Y4 and its links to intersection structure such as that in (7.25) could yield important

information along these lines (for similar investigations see [133, 134] which explore Chern

and Wu classes of Y4 with simple singularities). We hope to explore this in future work.

7.9 Generic G-flux that breaks gauge symmetry

In section 6.5, we discussed how G-flux can break the gauge group associated with a

purely geometric construction, through the structure of the second Chern class of the dual

heterotic bundle. As an example of this mechanism, consider the case of base B2 = P1×P1

with twist T = 6c1(B2); i.e., η− = 0. According to the arguments of section 3, we would

naturally have determined from the F-theory geometry Y4 that Σ− carried an E8 symmetry

(i.e., the fiber degeneration is type II*) and hence that there were no smooth bundles V1

on X3 with η− = 0 (i.e., that V1 is trivial and V2 satisfies η+ = 12c1(B2)). However, this

is too quick since this argument ignores the fact that η alone is not enough to determine

even c2(V1). To see this, consider the following smooth heterotic geometry.

On the base B2, consider the poly-stable rank 2 vector bundle defined as a kernel (of

the map m) via the following short exact sequence (i.e., a “monad” bundle [108]):

0→ V1 → O(0, 1)⊕2 ⊕O(1, 0)⊕2 m→ O(1, 1)⊕2 → 0 (7.34)

(where O(a, b) = O(aS + bF ) and S, F are the hyperplanes in each P1 factor). For an

appropriately block-diagonal choice of the map m, V1 is a simple twist of the poly-stable

tangent bundle of F0 with vanishing slope; i.e., V1 = TP1⊗O(1, 1). For generic choices of m

this bundle is slope-stable for all of the Kähler cone of P1×P1. Over the entire elliptically

fibered threefold, π : X3 → B2, we can likewise define the stable, slope-zero pull-back
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bundle π∗(V1) = V1 with c1(V1) = 0 and c2(V1) non-trivial solely from the pull-back of the

(2, 2)-form on the base, π∗(ζ)

c2(V1) = π∗(ζ) = π∗ (4ω1ω2) ⇒ η− = 0 (7.35)

where ωi are the (1, 1)-forms dual to the divisors S, F in F0.

The pull-back bundle defined by (7.34) is an example of a smooth, everywhere stable

SU(2) bundle which breaks E8 → E7 in the heterotic effective theory. Thus, in con-

tradiction to the conventional indication of the F-theory E8-type Weierstrass equation,

it is clear that this is an everywhere well-defined E7 theory. In the other E8 factor a

generic bundle with c2(V2) = 12c1(F0) + 88π∗(ω1ω2) (as required by anomaly-cancellation,

see (5.2) and (A.7)) breaks all the symmetry. At first pass it would seem that the bun-

dle in (7.34) cannot be naively be described by a smooth spectral cover and that as a

result the Heterotic/F-theory dictionary is unclear. For spectral covers η = 0 indicates

that [S] = 2[σ] from (5.24) and we would be tempted to conclude here that the spectral

cover (5.25) with η = 0 described only the Fourier-Mukai transform of the trivial rank 2

bundle O⊕2. However, this is forgetting half of the data of the Fourier-Mukai transform:

in particular the rank 1 sheaf LS over S (see section 5.3 and (5.27)). Taking into account

the possibility of rank 1 sheaves on the non-reduced scheme S which arise from higher

rank sheaves (in this case rank 2) on σ = 0 [135, 136] it is clear that more general bundles

V1 are possible after FM transform.22 In the standard heterotic/F-theory dictionary, the

data of these rank 1 sheaves (whether ordinary line bundles or higher rank sheaves in the

non-reduced or reducible case as above) is mapped into G-flux [20, 42, 80].

As this example illustrates, such possibilities must be taken into account if one hopes

to fully determine the properties of heterotic vector bundle moduli space from its F-theory

dual. For now, we consider only the data of Y4 itself, focusing on purely geometric

structure and properties, and leave an investigation of the intriguing possibilities of G-flux

for future work.

8 Consequences for heterotic bundles

Many of the new results in this paper are conclusions/constraints regarding properties

of the moduli space of bundles (more precisely, the moduli space of semi-stable sheaves)

arising in heterotic theories and links between bundle topology and structure group. In

this section we provide a brief summary of these results.

Unlike in six dimensions, four-dimensional heterotic/F-theory duality provides new

and non-trivial insight into the structure of the heterotic moduli space Mω(c(V )) of

semi-stable sheaves with fixed topology on X3. At present, very few techniques are known

for determining the dimension and structure ofMω on Calabi-Yau threefolds and there are

many open questions which are of interest to both physics and mathematics. These include

applications to string phenomenology (for example the large scale scans for “Standard

22As mentioned in section section 5.3.3, the holomorphic tangent bundle to an elliptically fibered threefold,

TX3, is frequently found to have a degenerate spectral cover description of this type (i.e., reducible or non-

reduced S) [110, 137].
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Model” bundles undertaken in [15–17]) as well as more mathematical questions such as the

possible existence of new mathematical rules for linking topology (c(V )) to conditions for

vanishing/triviality of Mω(c(V )) and the computation of higher rank Donaldson-Thomas

invariants. For elliptically fibered Calabi-Yau threefolds, heterotic/F-theory duality

provides a rich set of new computational tools and we view this work as a preliminary

step in using these tools to determine the full structure of Mω. We briefly summarize

here the main new results:

Effectiveness conditions on η.

• As discussed in section 5.1 and section 5.3, the parameter η determining part of the

second Chern class of the heterotic bundles must obey several effectiveness constraints

in different contexts. η must be effective in the stable degeneration limit, and η −
Nc1(B2) must be effective for a spectral cover construction of an SU(N) bundle. We

have found that these constraints are more general. For any F-theory construction

with a smooth heterotic dual, η must be effective, and η − Nc1 must be effective

for N = 2, 3 for gauge groups E7, E6 (or smaller) corresponding to heterotic theories

with structure bundles SU(2), SU(3), independent of the stable degeneration limit or

method of bundle construction.

Base-point-freeness and bundles with exceptional structure group.

• Previous work aimed at describing vector bundles over Calabi-Yau threefolds in the

context of heterotic/F-theory duality, such as [19], has focused on bundles with

SU(N) and Sp(N) structure groups, constructed using spectral covers in the sta-

ble degeneration limit. Here we have considered consistency conditions on topology

in a construction-independent way and demonstrated that the base-point-freeness

condition on η is necessary for SU(N) and Sp(N) structure groups, independent of

the the method of bundle construction.

Moreover, our study has shown that these constraints on the topology of the vec-

tor bundle do not seem to be universal. We have considered a broader class of

heterotic/F-theory dual models and identified a large range of models in which the

base-point free condition on the components η of the second Chern class need not be

satisfied in the dual F-theory model. In all these models the structure group on the

heterotic side is an exceptional group or SO(8). Thus, F-theory allows us to identify

the conditions on the second Chern class that are necessary, and apparently sufficient,

for vector bundles with exceptional and SO(8) structure group to be constructed over

a broad class of Calabi-Yau threefolds. These results could be mathematically useful

in explicitly constructing or characterizing such bundles. In particular, it would be

intriguing to utilize these conditions in formulating topological consistency conditions

for bundles constructed through the cameral cover construction (which are at present

not as explicitly described as those for the spectral cover construction).
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• One interesting feature of the heterotic models with F-theory duals where the

base-point free condition is violated is that they all involve elliptic fibrations over

generalized del Pezzo surfaces that contain curves of self-intersection −2. These

surfaces are limits of usual del Pezzo surfaces where the points where P2 is blown up

are brought together in specific ways. In principle, the Calabi-Yau threefolds formed

over generalized del Pezzo surfaces should simply be special limits in the moduli

space of the generic elliptically fibered Calabi-Yau threefold over the corresponding

del Pezzo. This limit can be controlled precisely and may provide an avenue for the

explicit construction of the vector bundles with exceptional structure groups that

arise in these cases. More precisely, in these limits as the complex structure of B2

is tuned to produce the generalized del Pezzo surfaces, the Mori cone of effective

divisors in B2 jumps discontinuously (though h1,1(X3) remains unchanged), and

the Kähler cone of the Calabi-Yau threefold decreases correspondingly. This change

in the Kähler cone impacts the properties of the moduli space of stable bundles

that can arise, and also seems to restrict the existing bundles to have exceptional

structure groups in many cases.23

SO(32) heterotic/F-theory duality and the connectivity of string moduli space.

• By using topological terms in the 4D effective supergravity action to characterize

heterotic F-theory duality [9], we can identify topologically which F-theory models

are dual to heterotic models for SO(32) as well as E8 ×E8 models without requiring

a stable degeneration limit. We have explicitly identified those F-theory models that

are dual to SO(32) heterotic string theory over a general smooth elliptically fibered

Calabi-Yau threefold base, and shown that in all such cases the generic model has a

gauge group of SO(8), which cannot be broken further by Higgsing.

• On the F-theory side, all the models we have considered are connected in a smooth

geometric moduli space. Over each base B3 there is a moduli space of Weierstrass

models that provides a nonperturbative completion of the perturbative heterotic mod-

uli space of bundles (sheaves) over the dual heterotic elliptically fibered Calabi-Yau

threefold. Furthermore, the distinct bases are connected by tensionless string tran-

sitions that correspond to small instanton transitions on the heterotic side. For

those F-theory bases with SO(32) heterotic duals, there are also E8 × E8 duals; F-

theory/heterotic duality may illuminate the connection between these two distinct

heterotic perturbative limits and the resulting relationship on Calabi-Yau threefolds

between the moduli spaces of SO(8) structure group bundles and other bundle struc-

tures associated with the E8×E8 theory. This extends to four dimensions results on

the geometry of E8×E8/SO(32) dual heterotic pairs that were previously understood

in higher-dimensional contexts [21, 22, 56, 143–146].

23See [103, 138–142] for similar “Noether-Lefschetz” type-problems and “jumping” in complex struc-

ture/bundle moduli space.
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Upper bounds on H.

• As first explored in [37, 38], the presence of generic, non-Higgsable symmetries for

singular Y4 geometries indicates that for a given η there is an upper bound on the

size of the structure group H for any bundle in the moduli space. As explained in

section 6, if a generic symmetry G cannot be Higgsed in the 4-dimensional effective

theory, this implies that for the given topology (η) there exist no bundles with

structure group larger than H, the commutant of G in E8. Phrased differently, in

order to define a bundle with structure group H over the elliptically fibered CY

threefold, there is a minimum “size” for η. These conditions (given in the absence

of G-flux) are listed in table 3.

• We further observe that these rules are at present only a first step in determining

Mω(c(V )) and its constraints. As described in section 6.5, for some choices of

bundle/4-fold topology it may be that generic G-flux breaks the apparent symmetry

G indicated by the Weierstrass equation of Y4. In these cases, the bundle structure

group may be bigger than indicated by the bounds on η in table 3. When this

occurs, it must involve non-trivial values for ζ in (3.2); this indicates a new layer

of structure linking not only η with H, but also with (ζ, c3(V )) — the two integer

values specifying the remaining bundle topology not studied in this work. Such a

correlation would involve a finer level of structure linking H and c(V ) than has been

so far explored in the literature. We hope to explore these issues in further work.

Lower bounds on structure group, H. In addition to the non-Higgsable symmetries

described above and their heterotic consequences, in the F-theory geometry we have seen

many examples of Y4 with a generic symmetry G which cannot be consistently enhanced (see

section 6). In the dual heterotic geometry, these geometric observations provide constraints

on when a given vector bundle can be consistently decomposed into a reducible sum:

V → V1 ⊕ V2 ⊕O ⊕ . . . (8.1)

with a smaller (reduced) structure group.

• The results of section 6.4 indicate that the base-point-free condition described in

section 5.3 and section 6.4 cannot be consistently violated in the case of H = SU(N)

(i.e., for a hermitian bundle, regardless of the method of construction). As a result,

for any technology applied to a bundle associated with a consistent non-base-point

free choice of η, it is clear that there is no way to reduce the structure group to SU(N).

We find that all the non-base-point free examples of η correspond to structure groups

H = SO(8), G2, F4, E6, E7 or E8. In these cases, the bundle structure group can

never be consistently decomposed H → H1×H2 . . . with Hi ⊂ H hermitian; in these

cases the gauge group G thus cannot be enhanced to E6 or E7.

• In a similar spirit, for many examples (see section 4.2.1) there are generic SU(3)

or SU(2) symmetries on Y4, with (f, g) vanishing to degree (2, 2) or (1, 2) and no

possible enhancements to higher SU(N) gauge symmetries are possible (this would
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require (f, g) non-vanishing and ∆ vanishing to degree N). As in the case of the

non-base-point free examples above, this constrains the ways in which bundles with

exceptional structure groups can be decomposed into hermitian factors.

• We find examples for which there appear to be both upper and lower bounds on

H; in these cases for the given value of η the moduli space of semi-stable sheaves

can contain bundles with exactly one allowed structure group only. See for example

section 7.7, where an example of a topology is given for which F4 is the only

consistent structure group.

• The lower bounds on H constrain the structure of possible sub-sheaves F ⊂ V ,

and determine a bound below which V cannot decompose as V = F ⊕ V/F ,

etc. The determination of such substructure has important consequences for the

Harder-Narasimhan filtration of V , and the group quotient structure ofM itself [72].

• Finally, these “lower” bounds on H may be strengthened by the presence of G-flux.

While G-flux cannot enhance the gauge group in a way that violates these lower

bounds on H, it could act to reduce the generic gauge symmetry arising purely from

geometry, which could lead to even stronger lower bounds on H in some cases.

9 Enumeration of heterotic/F-theory dual pairs with toric bases B2

We have systematically analyzed all toric F-theory bases B3 (constructed as P1 bundles)

that have smooth heterotic duals on Calabi-Yau threefolds that are elliptically fibered with

section. The toric bases B2 that support such models are the generalized del Pezzo (gdP)

surfaces, a subset of 16 of the complete set of 61,539 toric surfaces enumerated in [60] that

can act as bases for elliptically fibered Calabi-Yau manifolds with section. Over the 16

toric gdP bases we find 4962 distinct B3’s that have smooth heterotic duals. Each choice

of B3 corresponds to a specific Calabi-Yau threefold X3 giving the generic elliptic fibration

over B2, with a particular choice in the part of the bundle topology characterized by ηi
in (3.2). The analysis was performed by considering all possible twists T compatible with

the bounds (4.8)–(4.10), and explicitly analyzing the monomial and singularity structure

of the resulting Weierstrass model in the toric description. For each model that does not

have a (4, 6) singularity on a divisor or curve, we determine the gauge group content and

whether η1, η2 are base-point free. The resulting enumeration of B3’s for some specific B2’s

matches that described in the previous section using the more general constraints described

in section 4. The results of the toric analysis are listed in tables 4, 5. For each base B2 we

have indicated the number of distinct B3’s over that base (the number of possible “twists”

T in the P1 bundle giving acceptable B3’s), and the number of these B3’s that violate the

base-point free condition for one or both gauge group factors. A subset of the F-theory

bases B3 tabulated in table 4 have been explored in previous work; in particular, the P1

bundles over P2 and Fm described in the first four lines of the table, and the 18 toric Fano

varieties were also described in [30, 137, 147].

One interesting observation from the data in table 4 is that more than half of the

possible toric F-theory geometries violate the base-point free condition on at least one

– 57 –



J
H
E
P
0
8
(
2
0
1
4
)
0
2
5

base B2 h1,1 # B3’s NB (1) NB (2) # cod 3

(1, 1, 1) (P2) 1 14 0 0 0

(0, 0, 0, 0) (F0) 2 82 0 0 0

(1, 0, -1, 0) (F1) 2 109 0 0 0

(2, 0, -2, 0) (F2) 2 24 14 0 0

(0, 0, -1, -1, -1) (dP2) 3 472 0 0 0

(1, -1, -1, -2, 0) 3 173 100 0 0

(-1, -1, -1, -1, -1, -1) (dP3) 4 776 0 0 0

(0, -1, -1, -2, -1, -1) 4 729 396 0 0

(0, 0, -2, -1, -2, -1) 4 312 213 42 0

(1, 0, -2, -2, -1, -2) 4 62 31 25 32

(-1, -1, -2, -1, -2, -1, -1) 5 1119 755 140 0

(0, -1, -1, -2, -2, -1, -2) 5 406 219 150 217

(-1, -1, -2, -1, -2, -2, -1, -2) 6 351 149 185 173

(-1, -2, -1, -2, -1, -2, -1, -2) 6 214 119 69 0

(0, -2, -1, -2, -2, -2, -1, -2) 6 83 18 59 45

(-1, -2, -2, -1, -2, -2, -1, -2, -2) 7 36 8 26 29

total 4962 2022 696 496

Table 4. Table of all smooth F-theory bases with smooth heterotic duals that are P1 bundles

over toric bases B2. The base B2 is characterized by the sequence of self-intersections of toric

divisors. NB (Non-Base point free) indicates the number of bases B3 that violate the base-point

free condition on one (1) or both (2) sides Σ±. The final column is the number of models that have

a toric codimension 3 locus where f, g vanish to degrees 4, 6.

of the gauge factors, so that more than half of the corresponding heterotic models have

generic bundles with exceptional or SO(8) structure group. The only models that can

violate the base-point free condition are those with generalized del Pezzo bases having

−2 curves, and for such bases a very high fraction of models violate the base-point free

condition on at least one side. Since the vast majority of the hundreds of possible non-toric

bases B2 compatible with a smooth heterotic dual are generalized del Pezzo’s, we expect

that the fraction of all models with smooth heterotic duals that have exceptional or SO(8)

structure group is quite high.

In table 5 we tabulate the number of models in the full set that have each of the possible

distinct gauge algebras G1⊕G2. Note that this gauge algebra represents the minimal (most

generic) gauge algebra for each base. For each B3, tuning Weierstrass monomials can lead

to enhanced gauge groups through “unHiggsing,” corresponding on the heterotic side to

special loci in bundle moduli space where the structure group H becomes smaller and

G correspondingly larger. The minimal gauge algebra summands Gi for each base B3
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× · su2 su3 g2 so8 f4 e6 e7 e8

· 712

su2 499 47

su3 121 11 2

g2 589 62 7 34

so8 276 14 1 12 3

f4 1245 74 6 54 9 32

e6 184 2 0 2 0 2 0

e7 890 24 0 14 2 13 0 4

e8 15 0 0 0 0 0 0 0 0

Table 5. Gauge algebras G1 ⊕ G2 arising in generic models for the 4962 F-theory bases B3 with

toric B2 and smooth heterotic duals. Note that for many bases B3 a variety of distinct models with

enhanced gauge groups can be realized when moduli are tuned to specific loci, corresponding to

distinct elliptically fibered fourfolds in the F-theory picture.

are determined from the dual monomials in f, g in the toric picture using table 1. In

places where the degrees of vanishing of f, g do not uniquely determine the gauge algebra

type, the gauge algebra is fixed by the monodromy around the codimension one divisor,

which can be read off from the structure of the monomials following the discussion in

section 3.1. When the vanishing degrees of f, g,∆ are 2, 2, 4, the gauge algebra is su2

unless g = g2(u, v)z2 + O(z3) with g2(u, v) a perfect square, where z = 0 on the divisor

locus in question and u, v are coordinates on the divisor. When there is no restriction other

than the vanishing of certain monomials, g2(u, v) is only guaranteed to be a perfect square

if it contains only a single even monomial u2nv2m. Similarly, when f, g,∆ vanish to degrees

3, 4, 8, the gauge algebra factor is only e6 when the leading part of g is a perfect square,

which again is only possible when it is a single even monomial. For vanishing degrees 2, 3, 6

the story is slightly more subtle, but again easy to analyze in terms of the monomials. The

generic gauge algebra factor is g2. The algebra becomes so8 when f3
2 = cg2

3, with c an

overall constant (complex) coefficient, which is only possible when each contains only a

single monomial f2 = au3nv3m, g3 = bu2nv2m. In principle, the gauge algebra could be so7,

which can occur when g3 = 0 and f2(u, v) is not a perfect square, but this does not occur

for any of the 3D bases B3 considered here. (Note, however, that for more general bases

that do not have smooth heterotic duals we do expect so7 to arise as a generic gauge algebra

component. This occurs, for example, in 6D models when the base B2 contains intersecting

curves of self-intersection −2,−3,−2, which support the gauge algebra su2⊕ so7⊕ su2 [8].)

In table 5 we see that the great majority of models (85%) have some gauge group

automatically imposed from the geometry, which cannot be removed by Higgsing charged

moduli fields. Furthermore, most of the models either have gauge factors that are not

subgroups of SU(5), or contain SU(2) or SU(3) factors that cannot be enhanced to SU(5)

as discussed in the previous sections. Note that the gauge group described here is purely
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that determined by the geometry. As discussed in section 6.5, in some situations the gauge

group may be modified when G-flux is taken into account. We leave further investigation

of this effect to future work.

Note that there are many toric B3’s that are P1 bundles over toric B2 bases for which

gauge algebra summands e8 arise that are not included in this tabulation because there

are codimension two curves in B3 living in the e8 locus where the degree of vanishing of

f, g reaches 4, 6. These are a special class of examples of situations where a curve in the

base B3 must be blown up to have a base B′3 that can act as the base of an elliptically

fibered Calabi-Yau fourfold. After this blow-up, the F-theory model no longer has a smooth

heterotic dual and is not included in this analysis. In this situation the blown up base is

also generically non-toric. These cases are closely analogous to base surfaces B2 for 6D

F-theory models that contain −9,−10, and −11 curves; along such curves there is an e8

gauge algebra summand and 3, 2, or 1 points where f, g vanish to degrees 4, 6 and the base

must be blown up for a smooth F-theory model [8, 60, 61].

Several unusual features arise in many of the 4962 models we have constructed. As

mentioned in section 4.1, in some models that are otherwise well-behaved there are codi-

mension three singularities of order (4, 6). It is not known whether these singularities

herald a sickness of the associated 4D supergravity theories [89]; as discussed in section 7.8,

such codimension three singularities may also be associated with chiral matter, G-flux, or

abelian gauge symmetries. In some cases, a codimension three (4, 6) singularity arises at a

toric point given by the intersection of three toric divisors. There are a total of 496 models

with this feature (or bug) in the toric set; we have tabulated the number of threefolds

B3 where this occurs for each base surface B2 in the last column of table 4. One of the

simplest examples of a threefold with this property is the P1 bundle over the 10th base B2

in table 4, characterized by divisors in the base with self-intersections (1, 0, -2, -2, -1, -2)

and a twist divisor T = D5, where D5 is the divisor in B2 with self-intersection -1. This

model has no codimension one singularities associated with nonabelian gauge groups, but

f and g vanish to degrees (4, 6) at the point Σ− ∩ D3 ∩ D4. Note that, as mentioned in

section 4.1.6 there can also be codimension three (4, 6) singularities arising at non-toric

points, such as generically occurs on curves where f, g vanish to degrees (4, 5). We have

not attempted to classify the models with such singularities here.

Another feature that can arise is a codimension two singularity on a curve that does not

lie on any divisor carrying a gauge group. While in general codimension two singularities

indicate matter charged under the nonabelian gauge groups of the corresponding divisors,

in this situation this interpretation is not possible. It is possible that these singularities

are simply cusps in the discriminant locus with no physical meaning, or they may herald

the presence of abelian U(1) factors. This occurs in roughly half (2495 of the 4962 total) of

the threefold bases B3. The simplest example is the P1 bundle over F1 with twist T = 2F ;

this base gives no codimension one singularity associated with nonabelian gauge groups,

but has a (2, 3) vanishing of f, g on S ∩ Σ−. We leave further investigation of the models

with these features to future work.
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10 Conclusions and open questions

In this paper we have given a global characterization of a broad class of 4D N = 1 string

vacua that admit both a heterotic description and a dual F-theory description. The class of

vacua we have considered are described in the heterotic theory through compactification on

a smooth Calabi-Yau threefold that is elliptically fibered with section over a base B2 and

carries a smooth vector bundle (and in some cases, 5-branes wrapping the elliptic fiber),

and in F-theory through compactification on an elliptic fibration over a base threefold that

is itself a P1 bundle with section over the same base B2. We have shown that the number

of topologically distinct vacua in this class is finite, and we have explicitly enumerated all

models where the base B2 is toric.

By focusing on the underlying geometrical and topological structure of the theories, we

have developed tools and identified features of these models that do not depend on specific

limits or bundle constructions on the heterotic side of the duality. We have identified

from the F-theory side a simple set of constraints that are necessary and sufficient for the

existence of a Calabi-Yau compactification geometry; these constraints are expressed in

terms of the “twist” defining the P1 bundle on the F-theory side and related components

of the second Chern class of the bundles on the heterotic side. These constraints give

a detailed characterization of the circumstances under which slope-stable bundles with

general structure groups should exist both for heterotic E8 × E8 and SO(32) theories on

smooth Calabi-Yau threefolds. The structure of chiral matter on the heterotic side has

implications for the interplay between chiral matter and G-flux on the F-theory side.

The results described in this work represent a small step towards a systematic charac-

terization of the broader class of N = 1 4D supergravity theories that can be realized in

string theory. There are clearly many directions in which this work could be expanded fur-

ther. Many more detailed aspects of the physics of the large class of models described here

can be explored further using the tools described here. This work also provides a basis for

a further systematic expansion of our understanding of heterotic/F-theory duality, as well

as tools for expanding the range of applicability of both heterotic and F-theory approaches

to string compactification. We conclude with a brief summary of some of these possible

future directions.

10.1 Detailed physics of smooth heterotic/F-theory dual pairs

In this work, following [9], we used topological structure, in the form of axion-curvature

squared terms in the 4D supergravity theory, to identify dual heterotic and F-theory ge-

ometries. This gives an association between F-theory constructions and heterotic bundles

that is independent of the stable degeneration limit [19] in which the duality has been most

thoroughly studied; the approach taken here has enabled a systematic classification of all

smooth dual geometries where the F-theory model is described in terms of a threefold base

B3 that is a P1 bundle over a base B2. Within this class of smooth dual geometries, there

are many questions that could be explored further.

The roughly 5000 models where B2 is toric provide an extensive dataset of dual

heterotic/F-theory constructions that may be useful in a variety of contexts. To aid further
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development in this direction, we have provided the details of this set of F-theory compact-

ification geometries in a file that can be downloaded.24 This file contains a listing for each

of the bases B2 of the complete set of allowed twists T describing a P1 bundle over that B2

that does not have (4, 6) codimension one or two singularities, as well as the generic gauge

algebras G1 ⊕ G2 generated by for codimension one singularities over that base (SO(8) in

those cases that have an SO(32) heterotic dual). The methods of this paper can be applied

more generally for any of the several hundred generalized del Pezzo bases that support a

smooth elliptically fibered Calabi-Yau threefold. One natural extension of the work here

would be the explicit construction and classification of this broader class of (generically

non-toric) bases, along the lines of the example dP4 worked out in section 7.6 (which by

itself already gives rise to roughly 7000 additional B′3s; other non-toric generalized del

Pezzo surfaces are expected to similarly generate large numbers of additional examples).

For the models considered and enumerated here, many more detailed questions remain

to be addressed. For each of the ∼ 5000 toric B3’s, there are many branches of the moduli

space in which the generic gauge group is enhanced by “unHiggsing”, corresponding to

a tuning of Weierstrass moduli in the F-theory picture and special loci in bundle moduli

space on the heterotic side. Many general aspects of the branching structure of these

moduli spaces remain to be investigated. We have identified from the F-theory side specific

conditions under which the dual heterotic model should admit a bundle with exceptional

structure group; in many of these cases there is no explicit mathematical construction

known for such models, finding such constructions represents another class of open problems

related to this work. And, as mentioned throughout the text, we have not incorporated the

effects of G-flux on the F-theory side; this mechanism will in general lift many geometric

F-theory moduli and produce chiral matter. We hope that the explicit correspondence we

have developed here will help in elucidating these issues further.

Although we have focused in this paper on general aspects of heterotic and F-theory

constructions that are independent of specific models, some lessons have emerged that may

be relevant for more phenomenological “model building”. One general lesson from the sys-

tematic study of F-theory models both in 6D and in 4D, illustrated particularly clearly in six

dimensions [60, 61], is that a large fraction of the elliptically fibered Calabi-Yau manifolds

that can be used to compactify F-theory give rise to large “non-Higgsable” gauge groups.

While a clear understanding of the connection between geometrically non-Higgsable gauge

groups and 4D physics requires a better incorporation of the effects of G-flux, the models

we have studied here are among those in which the minimal geometric gauge groups are

smallest, and may provide the most promising candidates for realistic models of physics. In

terms of potentially phenomenologically relevant gauge groups, we have found that many F-

theory geometries contain geometric SU(2) and/or SU(3) factors that cannot be enhanced

to SU(5), but that can for example be enhanced to SO(10), E6, or E7. Much work has

been done in constructing phenomenologically oriented F-theory models based on an SU(5)

unification structure (see [149–151] for a review of some of this work, and [34, 152–158] for

24The list of 4962 toric bases B3 and associated minimal gauge groups described in section 9 is available

online in an ancillary mathematica format text file at [148] or at http//ctp.lns.mit.edu/wati/data/het-F-

dual-bases.m.
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some specific global GUT models). It would be interesting to study more broadly how the

generic gauge group structures that we have explored here might play into more general

model building approaches, perhaps in the context of GUT groups other than SU(5). As

we have focused on generic geometric structure in the models studied here, we have also

not investigated the tuning of abelian gauge group factors. Much recent work [82, 159–

174] has focused on the role of global U(1) factors in F-theory models. In most cases such

U(1) factors arise only at very special tuned loci in the Weierstrass moduli space over any

given F-theory base; it was recently found, however, that U(1) factors can be generic over

certain special F-theory bases in 6D [61], including bases related to non-toric generalized

del Pezzo bases considered here. Further investigation of U(1) factors in the class of dual

heterotic/F-theory models provides another interesting direction for further work.

At present, the explicit heterotic/F-theory dual “dictionary” has been most fully de-

termined in a corner of moduli space in which the heterotic bundles can be described via

spectral (more generally cameral) covers [19, 41, 42, 80]. However, the results of this work

shows that many consistent, perturbative heterotic theories cannot be described by a naive

application of these constructions. For example, the bundle with η = 0 of (7.34) can clearly

not be described as an ordinary, smooth spectral cover (see section 7.9 for a discussion).

Other specific examples arise in the class of models we have analyzed here. For instance,

considering the set of 4962 toric dual pairs described in section 9, there appear to be many

good F-theory geometries for which we cannot directly construct the heterotic dual bundles

with standard tools, even when the heterotic structure bundle is SU(N). For example, of

the 947 4-folds with a generic E7 symmetry (on at least one patch), 897 of these fail to

satisfy the parity condition (5.29) for SU(2) bundles constructed as generic, irreducible

spectral covers. This indicates that if good heterotic duals exist they must either a) not

be constructible as ordinary SU(2) spectral covers (i.e., they possess one of the limitations

described in section 5.3.3) or b) the bundle moduli space contains no irreducible spectral

covers at all (see [103] for example, for more exotic possibilities). It is also possible that this

parity condition may be a more general constraint and may indicate some problem with the

associated F-theory models, for example that may indicate a conflict with the existence of

a consistent choice of G-flux. In any case, there remains something to be understood in the

explicit moduli mapping of the heterotic/F-theory dual pair which could yield important

new insights into both theories.

As mentioned above, we have not considered here the effects of G-flux in modifying

the underlying Calabi-Yau geometry of F-theory. One of the most interesting aspects of 4-

dimensional heterotic/F-theory duality is the fact that deformations that change the gauge

symmetry (i.e., deformations of the complex structure of Y4 or of the bundles Vi on X3) can

be obstructed. These obstructions can appear both through D- and F-term contributions to

the potential in the low energy theory. A better understanding of this potential would have

impact not only on the problem of moduli stabilization in heterotic/F-theory effective theo-

ries but could also lead to novel dynamical effects in the 4-dimensional theories — including,

for example, the obstruction of tensionless string/small-instanton transitions and possible

duality to non-commutative D3 branes. We hope to explore these topics in future work.
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10.2 Expanding heterotic/F-theory duality

In this work we have focused on the simplest class of heterotic/F-theory dualities, where

both sides have elliptically fibered Calabi-Yau geometries with a single section, and the

F-theory base B3 is a P1 bundle that also has a single section. Since we expect that

the heterotic and F-theory constructions are simply different mathematical approaches to

describing the same physical theory in distinct limits, we expect that it should be possible

to extend this duality to a much broader class of vacua, possibly at the expense of needing

to introduce more complicated mathematical objects in the theory on one or both sides.

One clear question is the extent to which heterotic/F-theory duality can be systemati-

cally described when the heterotic Calabi-Yau geometry and/or bundle structure becomes

singular, leading mathematically to a description in terms of more singular objects such as

sheaves. While many examples of this have been studied in the literature, the appearance of

structure such as enhanced gauge groups and additional geometric moduli arising through

tensionless string transitions is more transparent geometrically from the point of view of

Weierstrass models on the F-theory side. The framework developed here may provide a

useful context in which to systematically extend the duality in these directions. The sim-

ple geometric framework of F-theory has the potential to clarify some of the mathematical

questions that are rather subtle in this context on the heterotic side.

More generally, there are classes of geometries that are slightly more general than

those considered here in which heterotic/F-theory duality is not understood. These in-

clude bases B3 built as more general P1 fibrations (rather than P1 bundles) and situations

where either the heterotic or F-theory elliptic fibrations have multiple sections (higher rank

Mordell-Weil group) or no section at all. In particular, for Calabi-Yau geometries that are

elliptically fibered but have more than one section, or a multi-section, the story is not yet

completely clear. F-theory models with multiple sections (higher rank Mordell-Weil group)

are understood simply as models with additional U(1) factors, which generally should have

natural heterotic duals. F-theory models with a multi-section but no global section have

recently been incorporated into the global moduli space of Weierstrass models [81, 82]. It

is less clear, however, how to construct an F-theory dual for a heterotic model on a Calabi-

Yau threefold with multiple sections or a multi-section. While in principle such threefolds

can be realized as special limits in the Weierstrass moduli space of elliptic fibrations (using

the Jacobian fibration associated with threefolds having a multi-section, as in [82]), which

should give a corresponding construction on the F-theory side, the details of the physics

of this correspondence have not been worked out. In this paper we considered only cases

where the F-theory threefold base B3 is itself a P 1 bundle with section. It is also possible

to consider situations where B3 is a P 1 fibration without a section or indeed even more

general geometries [66, 175].

Another example of a situation where heterotic/F-theory duality is not well understood

comes from the fact that for Calabi-Yau threefolds, the moduli space of bundles M can

have multiple components (see appendix B). If is not known how F-theory duals to such

situations can be understood. A natural hypothesis is that for each component of the het-

erotic moduli space there would exist topologically identical, non-diffeomorphic Calabi-Yau

4-folds on the F-theory side. This is another interesting avenue for further investigation.
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Finally, on the heterotic side there are compactifications on Calabi-Yau threefolds that

are not elliptically fibered. Such geometries can be reached by nonperturbative transitions

from elliptically fibered Calabi-Yau threefolds, so should in principle be connected to the

underlying geometric moduli space of F-theory compactifications. At present, there is no

known mechanism by which F-theory can include such vacua. F-theory is at present still

an incomplete physical theory, however; there is no direct action principle for the theory

that incorporates all degrees of freedom. In an optimistic scenario, further development of

heterotic/F-theory duality may provide some insight into a more complete formulation of

the theory and a broader and more unified characterization of the full space of N = 1 4D

supersymmetric string theory vacua.
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A Properties of elliptically fibered Calabi-Yau three- and fourfolds

In this appendix we briefly review a collection of useful results regarding the geometry

and topology of elliptically fibered Calabi-Yau manifolds (see [19, 30] for a more complete

treatment). We focus on smooth elliptically fibered Calabi-Yau threefolds, π : X3 → B2

with a single section (which defines B2 as an algebraic sub-manifold within X3). If X3 is in

Weierstrass form, a minimal set of divisors25 that span the Picard group of X3 is given by

the zero section, D0 and divisors pulled back from the base of the form Dα = π∗(Dbase
α ),

where Dbase
α , α = 1, . . . h1,1(B2) is an ample divisor on B2. For such smooth, minimal

elliptic fibrations, h1,1(X3) = h1,1(B2) + 1. We will denote the basis of {1, 1}-forms dual

to the divisors above as {ω0, ωα}.
By virtue of this simple fibration structure, the triple intersection numbers of these

divisors exhibit a universal behavior. First, since the base is a 2-fold it is clear that

Dα ∩Dβ ∩Dγ = 0 (A.1)

Moreover, from the very definition of what it means for D0 to be section (and not a

multisection) it is guaranteed that for any two-form ζ on B2 (dual to a single point),

25We focus here on a minimal form of elliptically fibered threefold in which all exceptional curves in the

fiber have been blown down.
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D0 ∩ ζ = 1 (that is, the zero section intersects each elliptic fiber precisely once). It follows

from this fact that

D0 ∩Dα ∩Dβ = mαβ (A.2)

where mαβ = Dbase
α ∩ Dbase

β . These facts are enough to derive the following important

cohomological identity on {2, 2} forms,

ω0 ∧ ω0 = K ∧ ω0 (A.3)

where K is the canonical class of the base, K = −c1(B2) = Kαωα. With these results, the

triple intersection numbers of X3

dABC =

∫
X3

ωA ∧ ωB ∧ ωC (A.4)

where ωA = {ω0, ωα}, are given by

d000 = mαβK
αKβ d00α = mαβK

β (A.5)

d0αβ = mαβ dαβγ = 0

With these intersection numbers and a chosen Kähler form ω = t0ω0+tαωα, the volume

of X3 takes the form

Vol(X3) =
1

3!

∫
X
ω ∧ ω ∧ ω =

1

3!

(
d000(t0)3 + 3d00α(t0)2tα + 3d0αβt

0tαtβ
)

(A.6)

The fibration structure guarantees that the second Chern class of X3 can be written

as [19]

c2(TX3) = 12c1(B2) ∧ ω0 + c2(B2) + 11c1(B2)2 (A.7)

where in addition the topology of B2 satisfies

χ(B2) =

∫
B2

c2(B2) = 2 + h1,1(B2) ,

∫
B2

c2
1(B2) = KαKβmαβ = 10− h1,1(B2) (A.8)

Finally, using the redundancy relation on {2, 2} forms in (A.3) it is possible to write

the second Chern class of any bundle, V , on X3

c2(V ) = η ∧ ω0 + ζ (A.9)

where η and ζ are pullbacks through π of {1, 1} {2, 2} forms from B2.

B A brief exploration of rigid bundles

A novel feature of four-dimensional compactifications of heterotic string theory/F-theory is

the possibility of multiple components in the dual (vector bundle/fourfold) moduli spaces.

In the case of heterotic/F-theory duality, such multiple components to the moduli space

have not yet been studied in detail. Indeed, thus far in the literature the correspondence
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between vector bundle moduli spaces in heterotic theories and the complex structure mod-

uli space of Calabi-Yau fourfolds has only been studied in the case of single, connected

components [19].

For the moduli space of stable sheaves on Calabi-Yau threefolds a natural case of

interest is given when the local moduli space in fact contains an isolated, rigid component.

In general, given two bundles with the same topology, it is difficult to decide whether or

not they reside in the same component of a global bundle moduli space. However, if one

bundle is rigid (and the other has local deformation moduli), it is clear that the rigid bundle

consists of its own distinct component to bundle moduli space. As a result, a search for

rigid bundles is one of the simplest probes for multiple components of bundle moduli spaces.

For elliptically fibered Calabi-Yau threefolds, it is straightforward to come by examples

of such rigid vector bundles. For instance, over the Calabi-Yau threefold defined as a single

degree {3, 3} hypersurface in the product, P2 × P2, of two projective spaces, consider the

following poly-stable SU(2) bundle

V2 = L+ L∨ = O(−H1 +H2) +O(H1 −H2) (B.1)

where H1, H2 are the restrictions of the hyperplanes of each ambient P2 factor to X3. On

this space, V2 is rigid, since the dimension of the space of bundle-valued singlets is given by

h1(X3, L
⊗2) = h1(X3, L

∨⊗2
) = 0 (B.2)

for generic values of the complex structure of X3 [99]. Geometrically the spaces

H1(X3, L
⊗2), H1(X3, L

∨⊗2) constitute the space of non-trivial extensions (for example

H1(X3, L
⊗2) parameterizes the space of non-trivial extensions 0 → L → V2 → L∨ → 0)

which parameterize how L,L∨ may be non-trivially “glued” back into an indecomposable

SU(2) bundle. Since the space of such extensions vanishes in these cases, the split bundle

L+ L∨ has no infinitesimal deformations, that is, it is rigid.

Although the example above is interesting from the point of view of vector bundle

moduli spaces, it is not clear what the impact of such examples will be in the heterotic-F-

theory pairs constructed in this work. Although the threefold above is elliptically fibered,

it has no section and cannot be written in Weierstrass form. At present its F-theory dual

(if any) is unknown.

In this appendix, we make a tentative exploration of whether it is possible to obtain

isolated components to the moduli space of SU(2) bundles, such as the one described

above, over the class of Calabi-Yau threefolds considered here — that is, elliptically fibered

threefolds with a single section, obeying the topological identities listed in appendix A.

Once again, we can search for bundles of the form

L+ L∨ (B.3)

where L is a holomorphic line bundle on X3 satisfying µ(L) = 0 in the Kähler cone,

as required for supersymmetry by (5.6). This reducible bundle in (B.3) will be rigid if

h1(X,L⊗2) = h1(X, (L∨)⊗2) = 0
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As we will argue below, however, for the geometry in consideration in this work, such

examples appear to be rare and we have obtained no explicit examples. This result is fully

consistent with the fact that in the dual F-theory geometry we find a single Calabi-Yau

fourfold (with a single connected (and non-trivial) component to its complex structure

moduli space) for each choice of vector bundle topology/twisting parameter, T .

To see this, we must consider the line bundle cohomology of L⊗2 on π : X3 → B2.

Here we are aided by the formalism of Leray Spectral sequences [98]. According to this

spectral sequence for the fibration π : X3 → B2, we have a natural bi-grading such that

for any bundle V on X3,

Hp(X,V ) =
∑

p=l+m

El,m∞ (B.4)

where

El,m1 = H l(B2, R
mπ∗(V )) (B.5)

and and Rmπ∗(V ) is the m-th direct image sheaf of the bundle V (pushed forward under

the fibration π). We need not concern ourselves with the iteration of the sequence via the

maps dr : Ep,qr → Er
p+r,q−r+1, since the spectral sequence terminates at E1. To see this,

note that on any open set U on P1, the m-th direct image sheaf, Rmπ∗(V ) can be locally

represented by the pre-sheaf

U → Hm(f−1(U), Rmπ∗(V )) (B.6)

For elliptic fibrations, however, the fiber (locally isomorphic to f−1(U)) is one dimen-

sional. As a result, Rmπ∗(V ) is non-vanishing only for m = 0, 1 and the spectral sequence

terminates at

E∞ = E1 (B.7)

To analyze the cohomology, we further need to observe how a line bundle of the form

L = O(aσ + bαπ∗(Dα)) (B.8)

behaves under the push-forward functor. The first useful useful observation is that line

bundles of the form O(bαDα) built from divisors pulled back from the base B2 satisfies

π∗OB2(bαDα) = OX3(bαπ∗(Dα)). This implies that under push-forwards we have the

so-called “projection formula”. For a fibration π : X3 → B2, and any bundles V on X and

U on B,

Rqπ∗(V ⊗ π∗U) = Rqπ∗(V )⊗ U (B.9)

To determine the cohomology of L = OX3(aσ+bαπ∗(Dα)) then, we need only consider

Riπ∗(OX3(aσ + bαπ∗(Dα)) = Riπ∗(OX3(aσ)) ⊗ OB2(bαDα). Moreover, the structure of

Riπ∗(OX3(aσ)) can straightforwardly be determined by considering the Koszul sequence:

0→ OX3(−σ)→ OX3 → O|σ=B2 → 0 (B.10)

Twisting this by OX3(σ) yields

0→ OX3 → OX3(σ)→ O(σ · σ)|σ=B2 → 0 (B.11)
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But by (A.3) and the definition of σ as the zero-section this is simply

0→ OX3 → OX3(σ)→ O(K2 · σ)|σ=B2 → 0 (B.12)

and pushing forward to B2 gives the short exact sequence

0→ OB2 → R0π∗(OX3(σ))→ K2 → 0 (B.13)

For B2 the base of a CY threefold, the above sequence splits and we have determined the

direct image sheaf:

R0π∗(OX3(σ)) = OB2 ⊕K2 (B.14)

The calculation outlined above can be iterated inductively to find the higher direct image

sheaves Riπ∗(OX3(aσ)) for a > 1 in a similar manner. It is straightforward to demonstrate

that

R0π∗(OX3(2σ)) = OB2 ⊕K2 ⊕K⊗2
2 R1π∗(OX3(2σ)) = 0 (B.15)

R0π∗(OX3(3σ)) = OB2 ⊕K2 ⊕K⊗2
2 ⊕K⊗3

2 R1π∗(OX3(3σ)) = 0 (B.16)

...
... (B.17)

R0π∗(OX3(aσ)) = Syma(OB2 ⊕K2) R1π∗(OX3(aσ)) = 0 (B.18)

Similar results for a < 0 can be found by using Grothendieck duality: for any sheaf F on

X3, the push-forward functors obey the following relation:

R1−iπ∗(F
∨ ⊗ ωX3|B2

) = (Riπ∗F )∨ , i = 0, 1 (B.19)

where ωX3|B2
= KX3 ⊗π∗(K∨2 ) = π∗(K∨2 ) is the “dualyzing sheaf” [98]. With these results

in hand, we can now in principle calculate all line bundle cohomology on X3. In order to

build reducible, rigid SU(2) bundles like those above we must note that for the line bundles

of interest, µ(L) = 0, and hence [99]

H0(X,L) = H3(X,L) = 0 (B.20)

Thus, to construct a rigid SU(2) bundle we must use the results above for line bundle

cohomology and further ask, for what values of a, b in (B.8) can we have H1(X,L) =

H1(X,L∨) = 0? By (B.4) and (B.5) it is clear that we require

H1(B2, R
0π∗L) = H0(B2, R

1π∗L) = 0 (B.21)

in order to satisfy H1(X,L) = 0 and

H2(B2, R
0π∗L) = H1(B2, R

1π∗L) = 0 (B.22)

for H2(X,L) = H1(X,L∨) = 0 (by Serre duality). This, coupled with (B.20) means that

the direct image sheaves R0π∗L and R1π∗L must have entirely vanishing cohomology on

B2. However, as we will see below, this does not occur for simple threefolds of the type we

are considering here.
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To see that it is rare for H i(B2, R
0π∗L) = 0 ∀i, it is useful to consider the index of

R0π∗L using the Riemann-Roch theorem. With L as in (B.8)

R0π∗L = (OB2 ⊕K2 ⊕ . . .K⊗a2 )⊗OB2(bαDα) (B.23)

we have that for each term in the sum, the index is additive. Thus

χ(R0π∗L) = χ(OB2(bαDα) + χ(K2 ⊗OB2(bαDα)) . . . (B.24)

Letting D = bαDα and using the fact that for any divisor, A ⊂ B2,

χ(A) = 1 +
1

2
A · (A−K2) (B.25)

we have

χ(R0π∗L) = (a+ 1) +D ·D (B.26)

If we demand that the index vanishes as a necessary condition for entirely vanishing coho-

mology, we require D ·D = −(a + 1) for some curve D ⊂ B2. Putting this together with

other geometric constraints in the problem, we see that the Bogomolov bound of section 5.1

places a positivity condition on c2(V ). For V = L⊕L∨ this enforces that a ≥ 0. Finally, it

can be noted that for the case a = 0, the line bundles can be verified to have non-vanishing

cohomology. Thus, here we will consider a > 0.

For the geometries considered in this work, we have at most −2 curves, thus without

loss of generality we can restrict ourselves to line bundles of the form O(σ + bαDα) where

D = bαDα is a −2 curve. Although there do exist curves of this type (for example the

divisor S in F2), it can be verified on a case-by-case basis that here the necessary condition

is not in fact sufficient and H1(B2, R
0π∗L) 6= 0. Although we have not rigorously ruled

out all possible −2 curves in our set of base manifolds B2, systematic searches have found

no examples with entirely vanishing cohomology. Thus, we expect that for the simple ge-

ometries outlined in appendix A, no reducible SU(2) bundles of the form shown in (B.3)

exist as rigid components in the moduli space. It would be nice, however, to have a more

general abstract proof of this result. If rigid bundles can be found within the context of

heterotic/F-theory duality, it would be interesting to investigate the dual F-theory con-

structions. Some possibly related F-theory models may exist; for 6D compactifications over

B2 = P2, some models with exotic matter were identified in [68] that are similarly rigid in

the sense that they have no moduli that preserve the gauge group and matter content.
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