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1 Introduction

Searches for electric dipole moments (EDMs) are a powerful means of probing new sources

of the violation of charge parity (CP ) and time reversal (T ) symmetries beyond the stan-

dard model (SM) of particle physics [1–6]. Recently the ACME experiment [7], which

utilized the polar molecule thorium monoxide to look for the EDM of the electron, de, has

produced a new result of de = (−2.1 ± 3.7stat ± 2.5syst) × 10−29 e cm, which corresponds

to an upper limit of |de| < 8.7 × 10−29 e cm at 90% confidence level (CL). This is more

stringent than the previous best bound by about an order of magnitude, but still way

above the SM expectation for de, which is at the level of 10−44 e cm [8]. Hence there is

abundant room between the current limit and SM value of de where potential new physics

may be observed in future measurements. In the quark sector, the EDM of the neutron,

dn, plays an analogous role in the quest of new physics. At present its experimental limit

is |dn| < 2.9 × 10−26 e cm at 90% CL [9], while the SM predicts it to be in the range of

10−32-10−31 e cm [10–13].

Extra ingredients beyond the SM can increase the electron and neutron EDMs tremen-

dously with respect to their SM predictions, even up to their existing measured bounds.

Such substantial enlargement may have various causes which could greatly differ from

model to model. It is, therefore, of interest to analyze fermion EDMs arising from possible

nonstandard origins under a framework that allows one to deal with some general features
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of the physics without getting into model specifics. This turns out to be feasible under

the context of the so-called minimal flavor violation (MFV) which presupposes that the

sources of all flavor-changing neutral currents (FCNC) and CP violation reside in renor-

malizable Yukawa couplings defined at tree level [14–22]. Thus the MFV framework offers

a systematic way to explore SM-related new interactions which do not conserve flavor and

CP symmetries.

In an earlier paper [23], motivated by the recent ACME data, we have adopted the MFV

hypothesis in order to examine de in the SM slightly expanded with the inclusion of three

right-handed neutrinos and in its extension incorporating the seesaw mechanism for light

neutrino mass generation. In the present work, we would like to provide a more extensive

treatment of our previous study, covering the EDMs of the other charged leptons as well.

For de particularly, we demonstrate in greater detail how various factors may affect it within

the MFV context, taking into account extra empirical information on neutrino masses.

Moreover, we address the possibility that de is correlated with the effective Majorana

mass that is testable in ongoing and upcoming searches for neutrinoless double-beta decay.

We will also perform an MFV analysis on the quark EDMs and estimate the resulting

neutron EDM. In addition, we consider the MFV effect on the contribution of the theta

term in QCD to the neutron EDM.

The structure of the paper is as follows. In section 2, we describe the MFV framework

and its aspects which are relevant to our evaluation of fermion EDMs as probes for the

scale of MFV. In section 3 we derive the expressions for quark and lepton EDMs from

several effective operators satisfying the MFV principle. Section 4 contains our numerical

analysis. After determining the neutron EDM from the quark contributions and inferring

the constraint on the MFV scale from the neutron data, we examine how the contribution of

the QCD theta-term is altered in the presence of MFV. In the lepton sector, we devote much

of our attention to the electron EDM in light of the ACME data and briefly address its muon

and tau counterparts. The acquired constraints on the MFV scale depend considerably on

whether the light neutrinos are Dirac or Majorana in nature, the EDMs in the former case

being much smaller than the latter. Subsequently, we look at CP -violating electron-nucleon

interactions, which were also investigated by ACME and other experiments looking for

atomic or molecular EDMs. Lastly, we discuss potential constraints from flavor-changing

and other flavor-conserving processes. We make our conclusions in section 5. An appendix

collects some useful lengthy formulas.

2 Minimal flavor violation framework

In the SM supplemented with three right-handed neutrinos, the renormalizable Lagrangian

for the quark and lepton masses can be expressed as

Lm = −Q̄k,L (Yu)klUl,R H̃ − Q̄k,L (Yd)klDl,RH − L̄k,L (Yν)kl νl,R H̃ − L̄k,L (Ye)klEl,RH

− 1
2 ν

c
k,R (Mν)kl νl,R + H.c. , (2.1)

where summation over k, l = 1, 2, 3 is implicit, Qk,L (Lk,L) represents left-handed quark

(lepton) doublets, Uk,R and Dk,R

(

νk,R and Ek,R

)

denote right-handed up- and down-type
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quarks (neutrinos and charged leptons), respectively, Yu,d,ν,e are matrices containing the

Yukawa couplings, Mν is the Majorana mass matrix of the right-handed neutrinos, H is

the Higgs doublet, and H̃ = iτ2H
∗ involving the second Pauli matrix τ2. The Higgs’

vacuum expectation value v ≃ 246GeV breaks the electroweak symmetry as usual, which

makes the weak gauge bosons and charged leptons massive and also induces Dirac mass

terms for the neutrinos. The Mν part in Lm plays an essential role in the type-I seesaw

mechanism [24–32].1 If neutrinos are Dirac particles, however, the Mν terms are absent.

For the quark sector, the MFV hypothesis [21] implies that the Lagrangian in eq. (2.1)

is formally invariant under the global group U(3)Q×U(3)U×U(3)D = Gq×U(1)Q×U(1)U×
U(1)D, where Gq = SU(3)Q × SU(3)U × SU(3)D. This entails that the three generations

of Qk,L, Uk,R, and Dk,R transform as fundamental representations of the SU(3)Q,U,D, re-

spectively, namely

QL → VQQL , UR → VUUR , DR → VDDR , VQ,U,D ∈ SU(3) . (2.2)

Moreover, the Yukawa couplings are taken to be spurions which transform according to

Yu → VQYuV
†
U , Yd → VQYdV

†
D . (2.3)

Consequently, to arrange nontrivial FCNC and CP -violating interactions satisfying

the MFV principle and involving no more than two quarks, one puts together an ar-

bitrary number of the Yukawa coupling matrices Yu ∼ (3, 3̄, 1) and Yd ∼ (3, 1, 3̄) as

well as their Hermitian conjugates to set up the Gq representations ∆q ∼ (1 ⊕ 8, 1, 1),

∆u8 ∼ (1, 1 ⊕ 8, 1), ∆d8 ∼ (1, 1, 1 ⊕ 8), ∆u ∼ (3̄, 3, 1), and ∆d ∼ (3̄, 1, 3), combines

them with two quark fields to build the Gq-invariant objects Q̄Lγα∆qQL, ŪRγα∆u8UR,

D̄Rγα∆d8DR, ŪR(1, σαβ)∆uQL, and D̄R(1, σαβ)∆dQL, includes appropriate numbers of

the Higgs and gauge fields to arrive at singlets under the SM gauge group, and contracts

all the Lorentz indices. Since Q̄Lγα∆qQL, ŪRγα∆u8UR, and D̄Rγα∆d8DR in this case

must be Hermitian, ∆q,u8,d8 must be Hermitian as well.

The Lagrangian describing the EDM df of a fermion f is Lf edm = − i
2df f̄σ

κωγ5fFκω,

where Fκω is the photon field strength tensor. Accordingly, among the combinations listed

in the preceding paragraph, only ŪRσαβ∆uQL and D̄Rσαβ∆dQL pertain to our exami-

nation of quark EDMs. For ∆u,d, one can take ∆u = Y †
u∆ and ∆d = Y †

d∆, where ∆ is

built up of terms in powers of A = YuY
†
u and B = YdY

†
d , which transform as (1⊕ 8, 1, 1)

under Gq.

Formally ∆ comprises an infinite number of terms, namely ∆ =
∑

ξjkl···A
j
B
k
A
l · · ·

with coefficients ξjkl··· expected to be at most of O(1). The MFV hypothesis requires that

ξjkl... be real because complex ξjkl... would introduce new CP -violation sources beyond that

in the Yukawa couplings. Using the Cayley-Hamilton identity

X3 = X2TrX + 1
2 X
[

TrX2 − (TrX)2
]

+ 1DetX (2.4)

1An analogous situation occurs in the type-III seesaw model [33].
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for an invertible 3×3 matrix X, one can resum the infinite series into a finite number of

terms [34, 35]

∆ = ξ11+ ξ2A+ ξ3B+ ξ4A
2 + ξ5B

2 + ξ6AB+ ξ7BA+ ξ8ABA+ ξ9BA
2

+ξ10BAB+ ξ11AB
2 + ξ12ABA

2 + ξ13A
2
B
2 + ξ14B

2
A
2 + ξ15B

2
AB

+ξ16AB
2
A
2 + ξ17B

2
A
2
B , (2.5)

where 1 denotes a 3×3 unit matrix. One can then also utilize this to devise Hermitian

combinations such as ∆q = ∆+∆†.

Even though one starts with all ξjkl··· being real, the resummation process will render

the coefficients ξr in eq. (2.5) generally complex due to imaginary parts generated among

the traces of the matrix products A
j
B
k
A
l · · · with j+k+l+· · · ≥ 6 upon the application of

the Cayley-Hamilton identity. In appendix A we show the detailed reduction of one of the

lowest-order products which give rise to the imaginary components of ξr. We find that the

imaginary contributions are always reducible to factors proportional to ImTr
(

A
2
BAB

2
)

=

(i/2)Det[A,B] which is a Jarlskog invariant and much smaller than one [34].

Taking advantage of the invariance under Gq, we will work in the basis where Yd is

diagonal,

Yd =

√
2

v
diag

(

md,ms,mb

)

, (2.6)

and the fields Uk,L, Uk,R, Dk,L, and Dk,R belong to the mass eigenstates. Hence we can

write Qk,L and Yu in terms of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing

matrix VCKM as

Qk,L =

(

(

V †
CKM

)

kl
Ul,L

Dk,L

)

, Yu =

√
2

v
V †

CKM diag
(

mu,mc,mt

)

, (2.7)

where in the standard parametrization [9]

V
CKM

=







c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s23 s13 e
iδ c12 c23 − s12 s23 s13 e

iδ s23 c13
s12 s23 − c12 c23 s13 e

iδ −c12 s23 − s12 c23 s13 e
iδ c23 c13






, (2.8)

with δ being the CP violation phase, ckl = cos θkl, and skl = sin θkl. We note that, as a

consequence, ∆u8 and ∆d8, whose basic building blocks are Y †
uYu and Y †

d Yd, respectively,

are all diagonal and thus will not bring about new flavor- and CP -violating interactions.

For the lepton sector, since it is still unknown whether light neutrinos are Dirac or

Majorana particles, we address the two possibilities separately. In the Dirac case, the Mν

part is absent from Lm in eq. (2.1), which is therefore, in the MFV language, formally

invariant under the global group U(3)L × U(3)ν × U(3)E = Gℓ × U(1)L × U(1)ν × U(1)E
with Gℓ = SU(3)L × SU(3)ν × SU(3)E . This means that the three generations of Lk,L,

νk,R, and Ek,R transform as fundamental representations of SU(3)L,ν,E in Gℓ, respectively,

LL → VLLL , νR → VννR , ER → VEER , (2.9)
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where VL,ν,E ∈ SU(3), whereas the Yukawa couplings are spurions transforming accord-

ing to

Yν → VLYνV
†
ν , Ye → VLYeV

†
E . (2.10)

We will work in the basis where Ye is already diagonal,

Ye =

√
2

v
diag

(

me,mµ,mτ

)

, (2.11)

and the fields νk,L, νk,R, Ek,L, and Ek,R refer to the mass eigenstates. We can then express

Lk,L and Yν in terms of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing

matrix UPMNS as

Lk,L =

(

(UPMNS)kl νl,L
Ek,L

)

, Yν =

√
2

v
U

PMNS
m̂ν , m̂ν = diag

(

m1,m2,m3

)

, (2.12)

where m1,2,3 are the light neutrino eigenmasses and UPMNS has the same standard

parametrization as in eq. (2.8). Thus the discussion for the down-type quarks can be

easily applied to the charged leptons by replacing VCKM with U †
PMNS and employing the

building blocks A = YνY
†
ν and B = YeY

†
e to construct ∆ν and ∆e, which are the lepton

counterparts of ∆u and ∆d, respectively.

If neutrinos are of Majorana nature, the Mν part in eq. (2.1) is allowed. As a con-

sequence, for Mν ≫ MD = vYν/
√
2 the seesaw mechanism [24–32] becomes operational

involving the 6×6 neutrino mass matrix

M =

(

0 MD

MT
D Mν

)

(2.13)

in the
(

U∗
PMNS

νcL, νR
)

T basis. The resulting matrix of light neutrino masses is

mν = −v2

2
YνM

−1
ν Y T

ν = U
PMNS

m̂ν U
T
PMNS

, (2.14)

where now UPMNS contains the diagonal matrix P = diag(eiα1/2, eiα2/2, 1) multiplied from

the right, α1,2 being the Majorana phases. It follows that Yν in eq. (2.12) is no longer valid,

and one can instead take Yν to be [36]

Yν =
i
√
2

v
U

PMNS
m̂1/2

ν OM1/2
ν , (2.15)

where O is a matrix satisfying OOT = 1 and Mν = diag(M1,M2,M3). As we will see

later, O can provide a potentially important new source of CP violation besides UPMNS. We

comment that the presence of Mν breaks the global U(3)ν completely if M1,2,3 are unequal

and partially into O(3)ν if M1,2,3 are equal [22].
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3 Fermion EDMs in MFV framework

To explore the MFV contribution to the EDMs of quarks and charged leptons, one needs to

construct the relevant operators using ∆u,d,e in combination with the quark, lepton, Higgs,

and gauge fields. At leading order, the operators can be written as [21, 22]

O
(u1)
RL = g′ŪRY

†
u∆qu1σκωH̃

†QLB
κω , O

(u2)
RL = gŪRY

†
u∆qu2 σκωH̃

†τaQLW
κω
a ,

O
(d1)
RL = g′D̄RY

†
d∆qd1σκωH

†QLB
κω , O

(d2)
RL = g D̄RY

†
d∆qd2 σκωH

†τaQLW
κω
a , (3.1)

O
(e1)
RL = g′ĒRY

†
e ∆ℓ1σκωH

†LLB
κω , O

(e2)
RL = g ĒRY

†
e ∆ℓ2 σκωH

†τaLLW
κω
a , (3.2)

where W and B denote the usual SU(2)L × U(1)Y gauge fields with coupling constants g

and g′, respectively, τa are Pauli matrices, a = 1, 2, 3 is summed over, and ∆quς,qdς,ℓς with

ς = 1, 2 have the same form as ∆ in eq. (2.5), but generally different ξr. One can express

the effective Lagrangian containing these operators as

Leff =
1

Λ2

(

O
(u1)
RL +O

(u2)
RL +O

(d1)
RL +O

(d2)
RL +O

(e1)
RL +O

(e2)
RL

)

+ H.c. , (3.3)

where Λ is the MFV scale. In general the operators in Leff have their own coefficients

which have been absorbed by ξr in their respective ∆’s. These coefficients also take into

account the possibility that the MFV scale in the quark sector may differ from that in the

lepton sector.

Expanding eq. (3.3), one can identify the terms relevant to fermion EDMs. In the quark

sector the resulting EDMs of up- and down-type quarks are, respectively, proportional

to Im
(

Y †
u∆quςV

†
CKM

)

kk and Im
(

Y †
d∆qdς

)

kk. The contributions of ∆quς,qdς to the EDMs

come not only from some of the products of the A and B matrices therein, but also from

the imaginary parts of ξr. As mentioned earlier, Im ξr are always proportional to Jξ ≡
ImTr

(

A
2
BAB

2
)

= (i/2)Det[A,B], or explicitly

Jξ =
−64

(

m2
u −m2

c

)(

m2
c −m2

t

)(

m2
t −m2

u

)(

m2
d −m2

s

)(

m2
s −m2

b

)(

m2
b −m2

d

)

v12
Jq , (3.4)

where Jq = Im
(

VusVcbV
∗
ubV

∗
cs

)

= c12 s12 c23 s23 c
2
13 s13 sin δ is a Jarlskog parameter for VCKM.

Not all of the products of A = YuY
†
u and B = YdY

†
d in ∆quς,qdς will contribute to

quark EDMs. Since Yu has the form in eq. (2.7) and Yd is diagonal, the Hermiticity

of A and B implies that only certain combinations of them are relevant. For example,
(

Y †
d A
)

kk =
√
2mDk

Akk/v is purely real and hence does not affect dDk
. In this case,

one needs to have terms in ∆qdς which are not Hermitian in order to have imaginary

components in
(

Y †
d∆qdς

)

kk. We find that only two terms, proportional to B
2
AB and B

2
A
2
B,

are pertinent to the up-type quarks’ EDMs and only the ABA
2 and AB

2
A
2 terms are

pertinent to the EDM’s of down-type quarks.

The preceding discussions show that the contributions of Im ξr to the EDM of, say, the

u (d) quark are suppressed by a factor of m2
c/v

2
(

m2
sm

2
b/v

4
)

compared to the contributions

from B
2
AB

(

ABA
2
)

, which has the least number of suppressive factor from Yu (Yd) among
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the products in eq. (2.5) that can potentially contribute. Hence we can neglect the impact of

Im ξr on the quark EDMs. One, however, needs to take Im ξr into account when considering

how MFV affects the contribution of the strong theta-term to the neutron EDM, as we

demonstrate later.
Simplifying things, we arrive at the leading-order contributions to the u- and d-quarks’

EDMs

du =

√
2 e v

Λ2
Im
[

Y †
u

(

∆qu1 +∆qu2

)

V †
CKM

]

11

=
32 emu

Λ2

[

ξu15 +
2
(

m2
c +m2

t

)

v2
ξu17

]

(

m2
c −m2

t )(m
2
d −m2

s)(m
2
s −m2

b)(m
2
d −m2

b)

v8
Jq , (3.5)

dd =

√
2 e v

Λ2
Im
[

Y †
d

(

∆qd1 −∆qd2

)]

11

=
32 emd

Λ2

[

ξd12 +
2
(

m2
s +m2

b

)

v2
ξd16

]

(

m2
s −m2

b

)(

m2
u −m2

c

)(

m2
c −m2

t

)(

m2
u −m2

t

)

v8
Jq , (3.6)

where ξur = ξu1r + ξu2r and ξdr = ξd1r − ξd2r . The expressions for dc,t and ds,b can be simply

derived from eqs. (3.5) and (3.6), respectively, by cyclically changing the quark labels.2

In the lepton sector, we get from eq. (3.3) the electron EDM

de =

√
2 e v

Λ2
Im
(

Y †
e ∆ℓ1 − Y †

e ∆ℓ2

)

11

=

√
2 e v

Λ2

[

ξℓ12 Im
(

Y †
e ABA

2
)

11
+ ξℓ16 Im

(

Y †
e AB

2
A
2
)

11

]

, (3.7)

where ξℓr = ξℓ1r − ξℓ2r , we have ignored Im ξℓr, and here A = YνY
†
ν and B = YeY

†
e . If

neutrinos are Dirac particles, analogously to dd, we obtain

dDe =
32eme

Λ2

[

ξℓ12+
2
(

m2
µ +m2

τ

)

v2
ξℓ16

]
(

m2
µ −m2

τ

)(

m2
1 −m2

2

)(

m2
2 −m2

3

)(

m2
3 −m2

1

)

v8
Jℓ ,

(3.8)

where Jℓ = Im
(

Ue2Uµ3U
∗
e3U

∗
µ2

)

is a Jarlskog invariant for UPMNS.

In the case of Majorana neutrinos, if νk,R are degenerate, Mν = M1, and O is a real

orthogonal matrix,3 from eq. (2.15) we have

A =
2

v2
MU

PMNS
m̂νU

†
PMNS (3.9)

and consequently

dMe =
32emeM3

Λ2v8
(

m2
µ −m2

τ

)(

m1 −m2

)(

m2 −m3

)(

m3 −m1

)

ξℓ12 Jℓ , (3.10)

2It is worth commenting that since Im ξr ∝ Det[A,B], due to the reality of the coefficients ξjkl··· in the

infinite series expansion of ∆, and since A and B are Hermitian, dq would be identically zero if there were

only one generation of fermions. The same applies to the lepton sector.
3Since the lepton Lagrangian with νk,R being degenerate is O(3)ν symmetric, one could transform this

real O into a unit matrix [37].
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the ξℓ16 term having been neglected. Since mk ≪ M, we can see that dDe is highly sup-

pressed relative to dMe . The formulas for dDµ,τ and dMµ,τ can be readily found from eqs. (3.8)

and (3.10), respectively, by cyclically changing the mass subscripts.

In the discussion above, de arises from the CP -violating Dirac phase δ in UPMNS, and

the Majorana phases α1,2 therein do not participate. However, if νk,R are not degenerate,

nonzero α1,2 can bring about an additional effect on de, even with a real O 6= 1. With

a complex O, the phases in it may give rise to an extra contribution to de, whether or

not νk,R are degenerate. The formulas for de in these scenarios are more complicated than

eq. (3.10) and are not shown here, but we will explore some of them numerically in the

next section.

The various contributions to the fermion EDMs that we have considered have high

powers in Yukawa couplings. Since the MFV hypothesis presupposes that all CP -violation

effects originate from the Yukawa couplings, the high orders in them reflect the fact that

nonvanishing EDMs in the SM begin to appear at the three-loop level for quarks and in

higher loops for the electron. One may wonder whether these are the only contributions

to fermion EDMs under the MFV framework. The answer is no because one can realize

fermion EDMs by combining some lower-order Yukawa terms from the MFV operators with

SM loop diagrams, such as those contributing to quark EDMs in the SM. Nevertheless,

hereafter we will not include such type of possible contributions. The contributions that we

have already covered should provide a good idea about how fermion EDMs are generated

in the presence of MFV. For definiteness, we will apply numerically the results we have

acquired and discuss some of their implications.

4 Numerical analysis

We will first treat the neutron EDM, dn, evaluated from the quark contributions and infer

from its data a bound on the scale of quark MFV. We will also look at how MFV affects

the contribution of the strong θ-term to dn. Proceeding to the lepton sector, we will devote

much of the section to the electron EDM, and briefly deal with the muon and tau EDMs,

in order to explore limitations on the scale of leptonic MFV. Afterwards, we will examine

constraints from CP -violating electron-nucleon interactions which were probed by recent

searches for atomic and molecular EDMs. Finally, we will address potential restrictions

from some CP -conserving processes.

4.1 Neutron EDM

In calculating quark EDMs, as in eqs. (3.5) and (3.6), one needs to take into account

the running of the quark masses due to QCD evolution. We adopt the mass ranges

mu = 0.00139+0.00042
−0.00041, md = 0.00285+0.00049

−0.00048, ms = 0.058+0.018
−0.012, mc = 0.645+0.043

−0.085,

mb = 2.90+0.16
−0.06, and mt = 174.2 ± 1.2, all in GeV, at a renormalization scale µ = mW

from ref. [38]. With the central values of these masses and the quark Jarlskog parameter
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Jq =
(

3.02+0.16
−0.19

)

× 10−5 from the latest fit by CKMfitter [39], we arrive at

du =
1.4× 10−35 e cm

Λ2/GeV2

(

ξu15 + ξu17
)

, dd =
1.3× 10−29 e cm

Λ2/GeV2

(

ξd12 + 0.00028 ξd16
)

,

ds =
−2.6× 10−28 e cm

Λ2/GeV2

(

ξd12 + 0.00028 ξd16
)

, (4.1)

where ξur = ξu1r + ξu2r and ξdr = ξd1r − ξd2r . Evidently, the s-quark effect may be dominant.

To determine the neutron EDM, one needs to connect it to the quark-level quantities.

The relation between dn and du,d,s can be parameterized as

dn = ηn
(

ρun du + ρdn dd + ρsn ds
)

, (4.2)

where ηn = 0.4 accounts for corrections due to the QCD evolution from µ = mW down to

the hadronic scale [40] and the values of the parameters ρu,d,sn depend on the model for the

matrix elements 〈n|q̄σκωq|n〉 = ρqn ūnσ
κωun. For instance, in the constituent quark model

ρdn = 4
3 = −4ρun and ρsn = 0 [1], whereas in the parton quark model ρun = −0.508, ρdn =

0.746, and ρsn = −0.226 [5]. From the various models proposed in the literature [1, 5, 41],

we may conclude that

−0.78 ≤ ρun ≤ −0.17 , 0.7 ≤ ρdn ≤ 2.1 , −0.35 ≤ ρsn ≤ 0 . (4.3)

In view of these numbers and eq. (4.1), we can ignore the du and ξd16 terms. Hence, taking

the extreme values ρdn = 2.1 and ρsn = −0.35, as well as scanning over the quark mass

and Jq ranges quoted above to maximize dn, we get

dn =
8.4× 10−29 e cm

Λ2/GeV2
ξd12 . (4.4)

It is then interesting to note that Λ/
∣

∣ξd12
∣

∣

1/2 = 100GeV translates into dn = 8.4 ×
10−33 e cm, which is roughly similar to the SM expectation dSM

n ∼ 10−32-10−31 e cm [10–

13]. Comparing eq. (4.4) with the current data |dn|exp < 2.9× 10−26 e cm at 90% CL [9],

we extract

Λ
∣

∣ξd12
∣

∣

1/2
> 0.054 GeV , (4.5)

which is not strict at all. Less extreme choices of ρd,sn would lead to even weaker bounds.

We conclude that the present neutron-EDM limit cannot yield a useful restriction on Λ.

One can also look at the contributions of quark chromo-EDMs to the neutron EDM [1].

The relevant operators are obtainable from the MFV quark-EDM operators by replacing

Wµν
a and τa with the gluon field strength tensor Gµν

c and the color SU(3) generators λc,

respectively. The extracted constraints on Λ are similar.

– 9 –
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4.2 MFV contribution to strong theta term

Besides the quark (chromo-)EDMs, another contributor to the neutron EDM is the theta

term of QCD [42–44], which in the SM is given by [5]

Lθ̄ =
−θ̄ g2s
32π2

ǫκυφωG
κυ
c Gφω

c , (4.6)

where θ̄ = θ + argDet(YuYd) involves the bare θ-parameter, gs is the strong coupling

constant, and ǫ0123 = +1. The inclusion of MFV causes θ̄ to be modified to

θ̄MFV = θ + argDet
(

∆†
quYu∆

†
qdYd

)

= θ̄ + argDet∆†
qu + argDet∆†

qd , (4.7)

where ∆qu,qd have the same expression as ∆ in eq. (2.5), but generally different coefficients

ξr. Although the addition of these new factors to the Yukawa Lagrangian amounts only

to a redefinition of Yu,d and hence has no direct experimental implications after the quark

mass matrices are diagonalized, we can expect that ∆qu,qd are close to the unit matrix.

Our interest is in investigating the size of argDet∆qu,qd in eq. (4.7) and thus whether or

not their presence makes the fine tuning between the two terms in θ̄ worse.

To compute Det∆qu, we first write the real and imaginary parts of ξr in terms of real

constants ̺r and ır as

Re ξr = ̺r , Im ξr = ır Jξ (4.8)

with Jξ given in eq. (3.4). Upon applying the Cayley-Hamilton identity, we then get

Det∆qu = 1
6

(

Tr∆qu

)3 − 1
2 Tr∆quTr

(

∆2
qu

)

+ 1
3 Tr

(

∆3
qu

)

, (4.9)

which leads us to

Re
(

Det∆qu

)

≃ ̺31 + ̺21
(

̺2 y
2
t + ̺4 y

4
t

)

, (4.10)

J−1

ξ Im
(

Det∆qu

)

≃ −̺2
[

̺2 ̺15 + ̺3
(

̺13 − ̺14
)

+ ̺5 ̺9 + ̺7 ̺11
]

− ̺3
(

̺3 ̺12 − ̺4 ̺11 − ̺6 ̺9
)

−
(

̺6 − ̺7
)(

̺2 ̺10 + ̺3 ̺8 + ̺4 ̺5 − ̺6 ̺7
)

− ̺2
(

̺4 ̺17 + ̺9 ̺13
)

y4t

+
[

−̺2
(

̺2 ̺17 + ̺4 ̺15 − ̺6 ̺14 + ̺7 ̺13 + ̺9 ̺11
)

− ̺3
(

̺6 ̺12 − ̺8 ̺9
)

−
(

̺6 − ̺7
)(

̺4 ̺10 − ̺6 ̺9
)]

y2t

+ ̺1
{

−̺2 ̺17 − ̺3 ̺16 + ̺4 ̺15 + ̺5 ̺12 + ̺6 ̺13 − ̺7 ̺14 + ̺8 ̺11 − ̺9 ̺10

+
[

2 ̺2 ı1 − ̺6 ̺16 + ̺8
(

̺13 − ̺14
)

+ ̺11 ̺12
]

y2t

+
(

2 ̺4 ı1 + ̺12 ̺13
)

y4t
}

+ ̺21
(

3 ı1 + ı2 y
2
t + ı4 y

4
t

)

, (4.11)

where yq =
√
2mq/v and on the right-hand sides we have ignored terms suppressed by

powers of yu,c,d,s,b. The formulas for Det∆qd are similar.

Since y2t ∼ 1 ≫ y2u,c,d,s,b, the requirement that ∆qu,qd ≃ 1 implies that

̺1 ≃ 1 ,
∣

∣̺2,4
∣

∣ ≪ 1 ,
∣

∣̺3,5,6,...,17
∣

∣ ≤ O(1) ,
∣

∣ı1,2,...,17
∣

∣ ≤ O(1) , (4.12)

Using these conditions and the quark parameter values employed earlier, we have checked

numerically that eqs. (4.10) and (4.11) approximate well the exact (but much lengthier)

expressions, especially if |̺2,4| ≤ O(0.001). Moreover, we get |argDet∆qu,qd| < 10−21.

Obviously, the MFV effect is negligible compared to the present bound θ̄exp < 10−10 [5].
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Observable NH IH

sin2 θ12 0.308± 0.017 0.308± 0.017

sin2 θ23 0.425+0.029
−0.027 0.437+0.059

−0.029

sin2 θ13 0.0234+0.0022
−0.0018 0.0239± 0.0021

δ/π 1.39+0.33
−0.27 1.35+0.24

−0.39

∆m2
21 = m2

2 −m2
1

(

7.54+0.26
−0.22

)

× 10−5 eV2
(

7.54+0.26
−0.22

)

× 10−5 eV2

∆m2 =
∣

∣m2
3 −

(

m2
1 +m2

2

)

/2
∣

∣

(

2.44+0.08
−0.06

)

× 10−3 eV2 (2.40± 0.07)× 10−3 eV2

Table 1. Results of a recent fit to the global data on neutrino oscillations [45]. The neutrino mass

hierarchy may be normal
(

m1 < m2 < m3

)

or inverted
(

m3 < m1 < m2

)

.

4.3 Electron EDM

To evaluate the EDMs of charged leptons, we need the values of the various pertinent

quantities, such as the elements of the neutrino mixing matrix UPMNS as well as the masses

of neutrinos and charged leptons. If neutrinos are Dirac in nature, the parametrization of

UPMNS is the same as VCKM in eq. (2.8). In table 1, we have listed sin2θkl and δ from a

recent fit to global neutrino data [45]. Most of these numbers depend on whether neutrino

masses fall into a normal hierarchy (NH), where m1 < m2 < m3, or an inverted one (IH),

where m3 < m1 < m2. If neutrinos are Majorana particles, UPMNS contains an additional

matrix P = diag(eiα1/2, eiα2/2, 1) multiplied from the right, where α1,2 are the Majorana

phases which remain unknown.

Also listed in table 1 are the differences in neutrinos’ squared masses, which are well

determined. In contrast, our knowledge about the absolute scale of the masses is still poor.

Some information on the latter is available from tritium β-decay experiments [46, 47]. In

particular, their latest results imply an upper limit on the (electron based) antineutrino

mass of mν̄e < 2 eV [9]. Planned measurements will be more sensitive by an order of

magnitude [46, 47]. Indirectly, stronger bounds on the total mass Σkmk = m1 +m2 +m3

can be inferred from cosmological observations. Specifically, the Planck Collaboration

extracted Σkmk < 0.23 eV at 95%CL from cosmic microwave background (CMB) and

baryon acoustic oscillation (BAO) measurements [48]. Including additional observations

can improve this limit to Σkmk < 0.18 eV [49]. On the other hand, there are also recent

analyses that have turned up tentative indications of bigger masses and hence quaside-

generacy (QD) among the neutrinos. The South Pole Telescope Collaboration reported

Σkmk = (0.32± 0.11) eV from the combined CMB, BAO, Hubble constant, and Sunyaev-

Zeldovich selected galaxy cluster abundances dataset [50]. This is compatible with the

later finding Σkmk = (0.36 ± 0.10) eV favored by the Baryon Oscillation Spectroscopic

Survey CMASS Data Release 11 [51]. In the following numerical work, we take this QD

possibility into consideration.

If neutrinos are of Dirac nature, we first note that the mass difference definitions in

table 1 imply that
(

m2
1 −m2

2

)(

m2
2 −m2

3

)(

m2
3 −m2

1

)

= ∆m2
21

(

∆m2
)2 − 1

4

(

∆m2
21

)3, which

is independent of mk individually. Then, scanning the parameter ranges in table 1 to
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maximize dDe in eq. (3.8), we obtain for the NH (IH) of neutrino masses [23]

dDe =
1.3 (1.3)× 10−99 e cm

Λ2/GeV2
ξℓ12 , (4.13)

after dropping the ξℓ16 part. This is negligible compared to the latest data |de|exp <

8.7 × 10−29 e cm reported by ACME [7], and the smallness is due to the light neutrino

masses being tiny.

In contrast, if neutrinos are Majorana particles, de can be sizable. To see this, we

begin with the simplest possibility that νk,R are degenerate, Mν = M1, and the O matrix

in eq. (2.15) is real. For this scenario, de is already given in eq. (3.10), which depends on

the choice for one of m1,2,3 after the mass data are included. Scanning again the empirical

parameter ranges in table 1 to maximize dMe , we obtain for m1 = 0
(

m3 = 0
)

in the NH

(IH) case

dMe
e cm

= 4.7 (0.52)× 10−23

( M
1015GeV

)3(GeV

Λ̂

)2

, (4.14)

where Λ̂ = Λ/
∣

∣ξℓ12
∣

∣

1/2. Then |dexpe | < 8.7× 10−29 e cm [7] implies

Λ̂ > 0.74 (0.24) TeV

( M
1015GeV

)3/2

. (4.15)

Although this might suggest that Λ̂ could be extremely high with an excessively large

M, there are limitations on M. Since the series in eq. (2.5), which implicitly incorporates

arbitrarily high powers of A and B, has to converge, their eigenvalues need to be capped [23,

35]. Otherwise, the coefficients ξr might not converge to finite numbers after the reduction

of ∆ from its infinite series expansion to eq. (2.5). In the lepton sector, we only need to

be concerned with A = YνY
†
ν , as B = YeY

†
e already has diminished eigenvalues. Thus one

may demand that the eigenvalues of A are at most 1. However, since MFV may emerge

from calculations of SM loops, the expansion quantities may be more naturally be A/(16π2)

and B/(16π2), in which case the maximum eigenvalue of A cannot be more than 16π2. As

another alternative, one may impose the perturbativity condition on the Yukawa couplings,

namely (Yν)jk <
√
4π [52], implying a cap of 4π instead.

In this paper we require the eigenvalues of A = YνY
†
ν not to exceed unity. Furthermore,

in our illustrations we will choose the largest eigenmasses of the right-handed neutrinos

subject to this condition. For the example resulting in eq. (4.15), this translates into the

maximal value M = 6.16 (6.22)× 1014GeV in the NH (IH) case and consequently

Λ̂ > 0.36 (0.12) TeV . (4.16)

This constraint would weaken if m1(3) > 0. For comparison with later illustrations, the

M numbers above translate into dMe Λ̂2 = 1.1 (0.13)× 10−23 e cm.

Now, with νk,R still degenerate, Mν = M1, but O complex, A has a less simple

expression,

A =
2

v2
MU

PMNS
m̂1/2

ν OO†m̂1/2
ν U †

PMNS , (4.17)
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which is to be applied to dMe in eq. (3.7). From now on, we ignore the ξℓ16 parts. We can

always write OO† = e2iR with a real antisymmetric matrix

R =







0 r1 r2
−r1 0 r3
−r2 −r3 0






. (4.18)

Since OO† is not diagonal, A will in general have dependence on the Majorana phases in

UPMNS if they are not zero. To concentrate first on demonstrating how O can give rise to CP

violation beyond that induced by the Dirac phase δ in UPMNS, we switch off the Majorana

phases, α1,2 = 0. Subsequently, for illustrations, we pick two possible sets of r1,2,3, namely,

(i) r1 = −r2 = r3 = −ρ and (ii) r1 = 2r2 = 3r3 = ρ, and employ the central values of the

data in table 1, particularly

δ = 1.39π (NH) or 1.35π (IH) . (4.19)

We present in figure 1(a)-(d) the resulting dMe Λ̂2 versus ρ for the NH (IH) of light

neutrino masses with m1(3) = 0. Since δ is not yet well-determined, we also depict the

variations of dMe over the one-sigma ranges of δ quoted in table 1 with the lighter blue

and red bands. We remark that the boundaries of the bands do not necessarily correspond

to the upper or lower ends of the δ ranges. Within these bands, the blue and red solid

curves belong, respectively, to the NH and IH central values in eq. (4.19). We also graph the

(dashed) curves for δ = 0 to reveal the CP -violating role of O alone. The solid and dashed

curves in figure 1(a,b) are roughly the mirror images about ρ = 0 of the corresponding

curves given in ref. [23] for r1,2,3 = ρ.

In figure 1(a)-(d), as well as in ref. [23], we have only examples where the lightest neu-

trinos are massless and, consequently, the neutrino masses sum up to Σkmk = 0.059 eV and

0.099 eV in the NH and IH cases, respectively. These numbers satisfy the aforementioned

bound from cosmological data, Σkmk < 0.18 eV [49]. In light of the hints of quasidegen-

erate neutrinos with Σkmk ∼ 0.3 eV from other cosmological observations [50, 51], which

still need confirmation by future measurements, here we also provide a couple of instances

in figure 1(e,f) after making the NH choice m1 = 0.1 eV < m2 < m3, which translates into

Σkmk = 0.31 eV.

All these examples in figure 1 clearly indicate thatO can generate potentially significant

new effects of CP violation which can exceed those of δ. The latter point is most noticeable

in figure 1(b,d) from comparing the IH δ 6= 0 regions at ρ ∼ 0 with the extreme values of

the corresponding IH δ = 0 curves.

With α1,2 = 0, the CP -violating impact of O can still materialize even if it is real

provided that νk,R are not degenerate. In that case

A =
2

v2
U

PMNS
m̂1/2

ν OMνO
†m̂1/2

ν U †
PMNS (4.20)

based on eq. (2.15). For instance, assuming that O is real, O = eR with r1 = −r2 = r3 =

−ρ, and that Mν = M diag(1, 0.8, 1.2), we show the resulting dMe Λ̂2 versus ρ in figure 2(a),

– 13 –
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Figure 1. Dependence of dMe times Λ̂2 = Λ2/
∣

∣ξℓ12
∣

∣ on the O-matrix parameter ρ in the absence of

the Majorana phases, α1,2 = 0, for degenerate νk,R and complex O with (a,b,e) r1 = −r2 = r3 = −ρ

and (c,d,f) r1 = 2r2 = 3r3 = ρ, as explained in the text. The lighter blue, red, and green bands

reflect the one-sigma ranges of δ, while the solid and dashed curves correspond, respectively, to its

central values in eq. (4.19) and to δ = 0. In (e,f) and other QD plots below, only the NH scenario

is assumed, unless stated otherwise.

where only the δ 6= 0 curves are nonvanishing and the sinusoidal behavior of de is visible.

As in the previous figure, we also display the variations of dMe over the one-sigma ranges of

δ from table 1. The solid curves in figure 2(a) are similar to their r1,2,3 = ρ counterparts

in ref. [23]. As another example, we select again r1 = 2r2 = 3r3 = ρ, keeping the other

input parameters unchanged, and plot figure 2(b) which differs somewhat qualitatively

from figure 2(a). In figure 2(c,d) we graph the QD cases with m1 = 0.1 eV < m2 < m3,

which turn out to have much smaller dMe ranges. All of these results further demonstrate

the importance of O as an extra source of CP violation.

Turning our attention now to the contribution of the Majorana phases, we first illus-

trate it for Mν = M1 and O = eiR with the two sets of r1,2,3 chosen in the previous

– 14 –
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Figure 2. Dependence of dMe Λ̂2 on O-matrix parameter ρ in the absence of Majorana phases,

α1,2 = 0, for nondegenerate νk,R with Mν = M diag(1, 0.8, 1.2) and real O = eR with (a,c) r1 =

−r2 = r3 = −ρ and (b,d) r1 = 2r2 = 3r3 = ρ, as explained in the text. The lighter blue, red, and

green bands reflect the one-sigma ranges of δ, while the solid curves correspond to its central values

in eq. (4.19).

paragraph. Thus, fixing α1 = 0 and ρ = 1
2 , we depict the resulting dependence of dMe on

α2 in figure 3 for nonzero δ within its one-sigma ranges from table 1 and also for δ = 0.

For further illustrations, we do the same with Mν = M diag(1, 0.8, 1.2) and O = eR,

displaying the results in figure 4. It is noticeable that each of the solid or dashed curves

in figures 3 and 4 repeats itself after α2 changes by 4π, which is attributable to the eiα2/2

dependence of dMe in these cases. Also, one can verify visually that the solid curves in

figures 1 and 3 (2 and 4) are consistent with each other at ρ = 1
2 and α1,2 = 0. It is

evident from the instances in figures 3 and 4, as well as their counterparts in ref. [23], that

the Majorana phases yield additional important CP -violating effects on de beyond δ.

It is interesting that some of the CP -violating variables which enter dMe also affect

neutrinoless double-β decay due to the Majorana nature of the electron neutrino. This

process is of fundamental importance because it does not conserve lepton number and thus

will be evidence for new physics if detected [46, 47]. If there are no other contributions, the

rate of neutrinoless double-β decay increases with the square of the effective Majorana mass
〈

mββ

〉

=
∣

∣

∣

∑

k

U2
ek m̂k

∣

∣

∣ =
∣

∣

∣

(

U
PMNS

m̂νU
T
PMNS

)

11

∣

∣

∣

=
∣

∣

∣
c212 c

2
13m1 e

iα1 + s212 c
2
13m2 e

iα2 + s213m3 e
−2iδ

∣

∣

∣
. (4.21)
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Figure 3. Dependence of dMe Λ̂2 on α2 for α1 = 0, degenerate νk,R, and O = eiR with (a,c) r1,3 =

−r2 = − 1

2
and (b,d) r1 = 2r2 = 3r3 = 1

2
, as explained in the text. The bands and curves have the

same meanings as in preceding figures.

In figure 5 we display several examples of 〈mββ〉 versus α2 for α1 = 0, but not those for

δ = 0 to avoid crowding the plots. It is obvious that each of the curves repeats itself after

α2 changes by 2π, which is due to the presence of eiα2 in 〈mββ〉, unlike the dMe curves

in figures 3 and 4. The peak values in the third plot of figure 5 are already close to the

existing experimental upper limits on 〈mββ〉, the best one being 0.12 eV [53–56]. Thus the

QD possibility will be tested by forthcoming searches within the next decade, which are

expected to have sensitivities reaching 0.04 eV to 0.01 eV [57].

From figures 3–5, one can conclude that dMe and 〈mββ〉 may be correlated. For the

MFV scenario under consideration and the parameter choices we made with the central

values from table 1, we show in figure 6 some sample relations between the two observables.

One can see in particular that the plots in figure 6(a,c) [(d,f)] are related to the solid curves

in the first and third (green) graphs of figure 5, respectively, and the corresponding solid

curves in figure 3 [figure 4] for r1 = 2r2 = 3r3 = 1
2 . In figure 6 we have also indicated a

projected sensitivity of 0.04 eV in future hunts for neutrinoless double-β decay which may

be achieved after several years.

The illustrations in figure 6 suggest that, if searches in coming years still yield null

results, the acquired limits on de and 〈mββ〉 will impose significant restrictions on various

scenarios based on lepton MFV. On the other hand, unambiguous observations of dMe
and/or neutrinoless double-beta decay will help pin down the favored underlying model

and parameter space, under the assumption that the latter process is mediated by a light
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Figure 4. The same as figure 3, except νk,R are nondegenerate with Mν = M diag(1, 0.8, 1.2) and

O = eR.

Majorana neutrino [46, 47]. The information to be gained from the direct neutrino-mass

determination in planned tritium β-decay experiments, with expected sensitivities as low

as 0.2 eV [46, 47], and the total neutrino mass to be inferred from upcoming cosmological

data with improved precision will supply complementary constraints and cross checks.

Before moving on, we would like to make some remarks on the situation in which only

two right-handed neutrinos are added into the theory. In that case, Yν and Mν as defined

in eq. (2.1) are 3×2 and 2×2 matrices, respectively. As a natural consequence [58], it is

straightforward to realize from eq. (2.14) that |Detmν | = m1m2m3 = 0, indicating that

one of m1,2,3 has to vanish. Another difference is that the O matrix in eq. (2.12) is now

3×2. Accordingly, with m1 = 0 or m3 = 0 we can write respectively [59]

O =







0 0

1 0

0 1






O2 or O =







1 0

0 1

0 0






O2 (4.22)

where O2 is a complex 2×2 matrix satisfying O2O
T
2 = 12, where 12 is 2×2 unit matrix.

Thus O2 has 2 free real parameters, whereas O in the presence of 3 right-handed neutrinos

has six. All this implies that the specific examples we have provided so far with m1 or

m3 set to zero are applicable to the situation with only 2 right-handed neutrinos, as the

2 parameters of O2 are functions of the 6 parameters of O in the case of 3 right-handed
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Figure 5. Dependence of effective Majorana mass 〈mββ〉 on α2 for α1 = 0, nonzero δ, and some

selections of m1 or 3. The bands and solid curves have the same meanings as in previous figures.

neutrinos with m1 or 3 = 0. We conclude that for de the situations with 2 and 3 right-

handed neutrinos are similar.

4.4 Muon and tau EDMs

If neutrinos are of Dirac nature, the muon and tau EDMs will be tiny, like dDe . Therefore

here, and in the rest of the section, we suppose that neutrinos are Majorana fermions.

Furthermore, for definiteness and simplicity, we consider only the scenario in which the

right-handed neutrinos are degenerate, Mν = M1, and the orthogonal matrix O is real.

For the neutrino parameters, we will adopt the specific values which yielded eq. (4.14) and

M = 6.16 (6.22)× 1014GeV in the NH (IH) case with m1(3) = 0.

Accordingly, from eq. (3.10) we easily infer the muon and tau EDMs, respectively, to be

dMµ = dMe
mµ

(

m2
τ −m2

e

)

me

(

m2
µ −m2

τ

) , dMτ = dMe
mτ

(

m2
e −m2

µ

)

me

(

m2
µ −m2

τ

) , (4.23)

with dMe in eq. (4.14). Since dMτ ∼ −0.06 dMµ and the experimental information on dτ is

still imprecise [9], we will not deal with it further.

Hence we get dMµ = −2.3 (−0.26) × 10−21 GeV2/Λ̂2. Currently the best measured

limit on the muon EDM is |dµ|exp < 1.8× 10−19 e cm at 95% CL, set by the Muon (g− 2)
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Figure 6. Sample correlations between dMe Λ̂2 and 〈mββ〉 over 0 ≤ α2 ≤ 4π for α1 = 0 and the

central values of δ in the cases of (a,b,c) degenerate νk,R and O = eiR and (d,e,f) nondegenerate

νk,R and O = eR, all with r1 = 2r2 = 3r3 = 1

2
, as described in the text. The vertical dashed

lines mark a possible sensitivity in future searches for neutrinoless double-β within decay the next

decade.

Collaboration [60]. This implies

Λ̂ > 0.11 (0.038) GeV , (4.24)

which are not competitive to the bounds in eq. (4.16) from |de|exp.
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4.5 CP -violating electron-neutron interactions

Searches for atomic and molecular EDMs may be sensitive to other mechanisms possibly re-

sponsible for them besides the electron EDM, such as the EDMs of nuclei and CP -violating

electron-nucleon interactions. In this section we are interested in the third possibility, par-

ticularly that described by [5, 6]

LeN =
−iCSGF√

2
ēγ5e N̄N − iCPGF√

2
ēe N̄γ5N − iCTGF√

2
ēσκωγ5e N̄σκωN . (4.25)

The recent ACME experiment has set the best limit on the first coupling, |CS |exp <

5.9× 10−9 at 90% CL [7]. The strictest limits on the other two, |CP |exp < 5.1× 10−7 and

|CT |exp < 1.5×10−9 at 95% CL, were based on the latest search for the EDM of the 199Hg

atom [61].

These interactions may originate from MFV in the lepton sector as well as the quark

sector, which has to be included for a consistent analysis. The Lagrangian for the relevant

lowest-order operators is

Lℓq =
1

Λ2

(

ŪRY
†
u ∆̄qu1iτ2QL ĒRY

†
e ∆̄ℓ1LL + Q̄L∆̄

†
qd1YdDR ĒRY

†
e ∆̄ℓ2LL

+ ŪRσ
κωY †

u ∆̄qu2 iτ2QL ĒRσκωY
†
e ∆̄ℓ3LL

+ Q̄Lσ
κω∆̄†

qd2YdDR ĒRσκωY
†
e ∆̄ℓ4LL

)

+ H.c. , (4.26)

where ∆̄quς,qdς

(

∆̄ℓ1,ℓ2,ℓ3,ℓ4

)

are the same in form as ∆ in eq. (2.5) and contain the quark

(lepton) Yukawa couplings. The leptonic contributions to CS,P,T turn out to be dominant.

To determine CS , we need the matrix elements 〈N |mq q̄q|N〉 = gNq ūNuNv. Thus, we

derive

CS =
16
√
2meM3

Λ2GF v
9

(

m2
τ −m2

µ

)(

m1 −m2

)(

m2 −m3

)(

m3 −m1

)

×
[

(

gNu + gNc + κu1 g
N
t

)

ξ̄ℓ112 −
(

gNd + gNs + κd1 g
N
b

)

ξ̄ℓ212

]

Jℓ , (4.27)

where ξ̄ℓ1,ℓ212 belong to ∆̄ℓ1,ℓ2 and have absorbed the first coefficients ξ̄u1,d11 of ∆̄qu1,qd1,

respectively, and κx ≃ 1 +
(

ξ̄x2 + ξ̄x4
)

/ξ̄x1 are numbers expected to be at most of O(1).

Numerically, we adopt the chiral Lagrangian estimate [62, 63]

gNu = 0.04 (0.12)× 10−3 , gNd = 0.08 (0.21)× 10−3 , (4.28)

gNs = 0.25 (2.88)× 10−3 , gNc,b,t = 0.26 (0.05)× 10−3 , (4.29)

corresponding to the so-called pion-nucleon sigma term σπN = 30 (80) MeV, which is not

yet well-determined [64–67].4 Then, using the maxima of gNq and assuming κx = 1, we

can neglect the ξ̄ℓ112 part in eq. (4.27) to obtain from |CS |exp < 5.9× 10−9

Λ
∣

∣ξ̄ℓ212
∣

∣

1/2
> 0.27 (0.091) GeV (4.30)

4Lattice QCD computations [64, 65] tend to produce results smaller than those of chiral Lagrangian

calculations and some other methods [66, 67]. As a consequence, employing the lattice values of gNq in

eq. (4.27) would yield even looser limits than in eq. (4.30).
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in the NH (IH) neutrino parameter values specified in the preceding subsection. These

restraints are far weaker than those from |de|exp.
For CP , the expression is the same as that for CS in eq. (4.27), except gNq is re-

placed by ςq h
N
q mN/v with ςq = +1 (−1) if q = u, c, t (d, s, b) and hNq defined by

〈N |mq q̄γ5q|N〉 = hNq mN ūNγ5uN . Since for mercury CP is estimated to be mostly from the

neutron contribution [6], we focus on it. Ignoring the effects of hnc,b,t, we can relate hnu,d,s to

the axial-vector charges g
(0,3,8)
A by 6hnu = 2g

(0)
A −3g

(3)
A +g

(8)
A , 6hnd = 2g

(0)
A +3g

(3)
A +g

(8)
A , and

3hns = g
(0)
A − g

(8)
A , where g

(0)
A = 0.33 ± 0.06, g

(3)
A = 1.270 ± 0.003, and g

(8)
A = 0.58 ± 0.03

were measured in baryon β-decay and deep inelastic scattering experiments [68]. Taking

ξ̄ℓ112 = ξ̄ℓ212 and maximizing CP , we obtain from |CP |exp < 5.1× 10−7

Λ
∣

∣ξ̄ℓ212
∣

∣

1/2
> 0.020 (0.0068) GeV , (4.31)

less restrictive than eq. (4.30) by more than an order of magnitude.

To evaluate CT , we need the matrix elements 〈N |q̄σκωq|N〉 = ρqN ūNσκωuN , where

ρqN have the values in eq. (4.3) for light quarks, assuming isospin symmetry, and vanish for

heavier quarks. This leads us to

CT =
32
√
2meM3

Λ2GF v
10

(

m2
τ −m2

µ

)(

m1 −m2

)(

m2 −m3

)(

m3 −m1

)

ρnumu ξ̄
ℓ3
12 Jℓ , (4.32)

where ξ̄ℓ312 belongs to ∆̄ℓ3 and has absorbed ξ̄u21 from ∆̄qu2. The contributions of the down-

type quarks cancel due to the relation q̄σκωγ5q ēσκωe = q̄σκωq ēσκωγ5e. Hence, with the

largest mu from section 4.1 and ρun = −0.78, we get from |CT |exp < 1.5× 10−9

Λ
∣

∣ξ̄ℓ412
∣

∣

1/2
> 0.033 (0.011) GeV , (4.33)

comparable to eq. (4.31).

4.6 Muon g − 2, µ → eγ, nuclear µ → e conversion, B̄ → Xsγ

The MFV coefficient ξℓ12 that determines the electron EDM also enters the anomalous

magnetic moment of the muon (gµ − 2) and the rates of the radiative decay µ → eγ

and nuclear µ → e conversion, the latter two being still unobserved. Since gµ − 2 has

been very precisely measured and the experimental limits of the flavor-changing transitions

are stringent, it is important to check if these processes can yield stronger bounds on

Λ̂ = Λ/
∣

∣ξℓ12
∣

∣

1/2 than those evaluated in the preceding subsections. Although the other

ξℓr 6=12,16 terms may contribute to these processes as well and therefore may reduce the

impact of the ξℓ12 term, one also cannot rule out the possibility of a scenario in which the

latter dominates the other contributions.

The anomalous magnetic moment al of lepton l is described by Lal =
[

e al/(4ml)] l̄σ
κωlFκω. From eq. (3.3) we have

LEi→Ekγ =
e

2Λ2
Ēk σκω

{

mEk
(∆ℓ)ki +mEi

(∆ℓ)
∗
ik −

[

mEk
(∆ℓ)ki −mEi

(∆ℓ)
∗
ik

]

γ5

}

EiF
κω ,

(4.34)
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where (E1, E2, E3) = (e, µ, τ) and ∆ℓ = ∆ℓ1 −∆ℓ2. It follows that

aEk
=

4m2
Ek

Λ2
Re(∆ℓ)kk . (4.35)

Thus, with the NH neutrino parameter values specified in section 4.4, we have

aµ =
4m2

µ

Λ2
Re(∆ℓ)22 =

(

45 ξℓ1 + 23 ξℓ2 + 20 ξℓ4 + 0.00085 ξℓ8 + 0.00094 ξℓ12

)GeV2

103Λ2
(4.36)

where terms with numerical factors much smaller than that of ξℓ12 have been dropped. The

corresponding numbers in the IH case are roughly similar. Currently the experimental

and SM values differ by aexpµ − aSM

µ = (249± 87)× 10−11 [69], which suggests that we can

require
∣

∣aµ
∣

∣ < 3.4×10−9. For the ξℓ12 term alone, this translates into the rather loose limit

Λ̂ > 17 GeV, which may be weakened in the presence of the other terms in eq. (4.36).

From eq. (4.34), one can also calculate the branching ratio B(µ → eγ) of µ → eγ. In

the me = 0 limit

B(µ → eγ) =
τµ e

2m5
µ

4πΛ4

∣

∣(∆ℓ)21
∣

∣

2 , (4.37)

where τµ is the muon lifetime. In the NH case

(∆ℓ)21=(0.061−0.1i)ξℓ2+(0.011−0.11i)ξℓ4−
[

(26 + 48i)ξℓ8 + (6 + 51i)ξℓ12
]

×10−7 , (4.38)

where again terms with numerical factors less than that of ξℓ12 have been ignored. The

(∆ℓ)21 numbers in the IH case are comparable in size. If only ξℓ12 is nonvanishing in (∆ℓ)21,

then the experimental bound B(µ → eγ)exp < 5.7× 10−13 [70] implies

Λ̂ > 2.0 TeV . (4.39)

This is stronger by up to ∼20 times than those in eq. (4.16) from the electron EDM data.

However, the other terms in (∆ℓ)21, some of which are potentially much bigger than the

ξℓ12 contribution, can in principle decrease the impact of the latter, thereby lessening the

restriction on Λ̂. Consequently, de provides a less ambiguous probe for Λ̂.

Measurements on µ → e conversion in nuclei can provide constraints on new physics

competitive to those from µ → eγ searches [71]. The relation between the rates of µ → e

conversion and µ → eγ produced by possible new physics is available from ref. [72]. As-

suming that the MFV dipole interactions described by eq. (3.2) saturate µ → e conversion

in nucleus N , we can express its rate divided by the rate ωN
capt of µ capture in N as

B(µN → eN ) =
e2m5

µ

∣

∣(∆ℓ)21DN

∣

∣

2

4Λ4ωN
capt

, (4.40)

where DN represents the dimensionless overlap integral for N and for the NH parameter

choices (∆ℓ)21 is given in eq. (4.38). Based on the existing experimental limits on µ → e

transition in various nuclei [9] and the corresponding DN and ωN
capt values [72], significant

restrictions can be expected from B(µTi → eTi)exp < 6.1 × 10−13 [73] and B(µAu →

– 22 –



J
H
E
P
0
8
(
2
0
1
4
)
0
1
9

eAu)exp < 7 × 10−13 [9]. From these data, if only the ξℓ12 term in (∆ℓ)21 is nonvanishing,

employing DTi = 0.087, DAu = 0.189, ωTi
capt = 2.59×106/s, and ωAu

capt = 13.07×106/s [72],

we extract

Λ̂Ti > 0.49 TeV , Λ̂Au > 0.47 TeV , (4.41)

which are stricter than the results in eq. (4.30) by up to a few times, but weaker

than eq. (4.39). Upcoming searches for µ → e in the next several years will, if it still

eludes detection, lower the limits to the 10−16 level or better [71], which will push Λ̂

higher. Nevertheless, since again the other ξℓr terms are generally present in (∆ℓ)21, these

bounds on Λ̂ are not unambiguous. Thus de provides the best probe for Λ̂ in connection

with CP violation.

Since there is a possibility that the MFV scales in the lepton and quark sectors are

equal or related to each other, it is of interest to check if there are any quark processes that

can also offer bounds stronger than those on Λ̂ from de. Since, as we saw in section 4.1,

the neutron EDM could not provide a competitive constraint, we need to look at other

processes. The most stringent restriction on the quark MFV scale turns out to be from

the rare decay B̄ → Xsγ [21]. Its experimental and SM branching ratios are B
(

B̄ →
Xsγ

)

exp = (3.43 ± 0.22) × 10−4 [74, 75] and B
(

B̄ → Xsγ
)

SM = (3.15 ± 0.23) × 10−4 [76]

both for the photon energy Eγ > 1.6GeV. To isolate the MFV contribution, we adopt

from ref. [21] the relation

B
(

B̄ → Xsγ
)

exp ≃
(

1− 2.4CMFV

7γ

)

B
(

B̄ → Xsγ
)

SM , (4.42)

where CMFV

7γ is evaluated at µ = mW and enters the effective Lagrangian

Lb→sγ =
eGFmb

8
√
2π2

V ∗
tsVtb

(

CSM

7γ + CMFV

7γ

)

s̄σκω
(

1 + γ5
)

b Fκω , (4.43)

implying that

CMFV

7γ =
4
√
2π2

Λ2GF

(∆qd)
∗
32

V ∗
tsVtb

. (4.44)

For the central values of the quark masses quoted in section 4.1

(∆qd)
∗
32

V ∗
tsVtb

= ξd2 y
2
t + ξd4 y

4
t + y2b

(

ξd7 y
2
t + ξd8 y

4
t + ξd9 y

4
t + ξd12 y

6
t

)

, (4.45)

where the imaginary parts and other ξdr terms are negligible, y2t ≃ 1, and y2b ≃ 0.0003.

Combining the errors in quadrature for the ratio of branching ratios in eq. (4.42) and

assuming that ξdr 6=12 = 0, we obtain at 90%CL

Λ
∣

∣ξd12
∣

∣

1/2
> 0.19 (0.11) TeV (4.46)

if CMFV

7γ has destructive (constructive) interference with the SM term. These numbers are

somewhat lower than those in eq. (4.16) and, as in the lepton cases, may go down in the

presence of the other ξdr terms in eq. (4.45).

– 23 –



J
H
E
P
0
8
(
2
0
1
4
)
0
1
9

5 Conclusions

We have explored CP violation beyond the SM via fermion EDMs under the framework of

minimal flavor violation. The new physics scenarios covered are the standard model slightly

expanded with the addition of three right-handed neutrinos and its extension including the

seesaw mechanism for endowing neutrinos with light mass. Addressing the quark sector

first, we find that the present empirical limit on the neutron EDM implies only a loose

constraint on the scale of quark MFV. Moreover, we show that the impact of MFV on the

contribution of the strong theta-term to the neutron EDM is insignificant. Turning to the

lepton sector, we demonstrate that the current EDM data also yield unimportant restraints

on the leptonic MFV scale if neutrinos are of Dirac nature. In contrast, if neutrinos are

Majorana particles, the constraints become tremendously more stringent and, in light of

the latest search for de by ACME, restrict the MFV scale to above a few hundred GeV or

more. Furthermore, de can be connected in a complementary way to neutrinoless double-β

decay if it is induced mainly or solely by the exchange of a light Majorana neutrino. We

find in addition that constraints on the MFV scale inferred from the CP -violating electron-

nucleon couplings probed by ACME and the most recent search for the EDM of mercury

are relatively weak as well. Finally, we take into account potential restrictions from the

measurements on the muon g − 2, radiative decays µ → eγ and B̄ → Xsγ, and µ → e

conversion in nuclei, which are not sensitive to CP violation.
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A Evaluation of some products of A and B matrices

From the Cayley-Hamilton identity in eq. (2.4) with X = aA+ bB, where and a and b are

free parameters, one can extract [34]

A
2
B+ ABA+ BA

2 = A
2〈B〉+ (AB+ BA)〈A〉+ A(〈AB〉 − 〈A〉〈B〉) + 1

2

(〈

A
2
〉

− 〈A〉2
)

B

+ 1

[

1
2

(

〈A〉2 −
〈

A
2
〉)

〈B〉+
〈

A
2
B
〉

− 〈A〉〈AB〉
]

(A.1)

and an analogous expression for ABB+BAB+BBA, where 〈· · · 〉 = Tr(· · · ). These relations

can be used to derive other combinations of A and B. For instance, by replacing B with B
2

([B,AB]) in eq. (A.1), we can write A
2
B
2 + AB

2
A + B

2
A
2
(

A
2
BAB + ABABA + BABA

2 −
A
2
B
2
A−AB

2
A
2−A

3
B
2
)

in terms of lower-ordered products of these matrices. After further

algebra, we arrive at

A
2
BAB

2 = ζ11+ ζ2A+ ζ3B+ ζ4A
2 + ζ5B

2 + ζ6AB+ ζ7BA+ ζ8ABA+ ζ9BA
2

+ ζ10BAB+ ζ11AB
2 + ζ12ABA

2 + ζ13A
2
B
2 + ζ14B

2
A
2 + ζ15B

2
AB

+ ζ16AB
2
A
2 + ζ17B

2
A
2
B , (A.2)
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where

ζ1 =

〈

A
2
BAB

2
〉

+ 〈AB〉
〈

A
2
B
2
〉

+
〈

A
2
B
〉〈

AB
2
〉

3
+ 〈A〉〈B〉4

〈

A
2
〉〈

B
2
〉

− 6
〈

A
2
B
2
〉

− 3〈A〉2〈B〉2
6

+

(

〈B〉3 − 〈B〉
〈

B
2
〉)

DetA+
(

〈A〉3 − 〈A〉
〈

A
2
〉)

DetB

6
+ 〈AB〉13〈A〉

2〈B〉2 − 3
〈

A
2
〉〈

B
2
〉

12

+ 〈AB〉5〈A〉
2
〈

B
2
〉

+ 〈B〉2
〈

A
2
〉

− 8〈A〉
〈

AB
2
〉

− 4〈B〉
〈

A
2
B
〉

12
+
〈

AB
2
〉

〈B〉 〈A〉
2 −

〈

A
2
〉

6

− 〈A〉
〈

B
2
〉 〈A〉2〈B〉+ 2

〈

A
2
B
〉

6
, (A.3)

ζ2 =
−〈A2〉DetB

3
+ 〈AB〉4

〈

AB
2
〉

− 5〈A〉
〈

B
〉2 − 3〈A〉

〈

B
2
〉

6
+ 〈B〉

〈

B
2
〉7〈A〉2 +

〈

A
2
〉

12

− 〈B〉2〈A〉
〈

AB
2
〉

+
〈

A
2
B
2
〉

3
+

〈B〉2
〈

A
2
B
〉

3
+ 〈B〉3 9〈A〉2 −

〈

A
2
〉

12
, (A.4)

ζ3 =
−〈B2〉DetA

3
+ 〈AB〉2〈A

2
B〉 − 5〈A〉2〈B〉 − 〈A2

〉

〈B〉
6

+ 〈A〉
〈

A
2
〉3〈B〉2 −

〈

B
2
〉

12

− 〈A〉
〈

A
2
B

〉

〈B〉+
〈

A
2
B
2
〉

3
+
〈

AB
2
〉 〈A〉2 +

〈

A
2
〉

6
+ 〈A〉3 9〈B〉2 +

〈

B
2
〉

12
, (A.5)

ζ4 =
〈A〉DetB

3
+
〈

B
2
〉2〈AB〉 − 7〈A〉〈B〉

6
− 〈A〉〈B〉3

6
+

〈

AB
2
〉

〈B〉
3

, (A.6)

ζ5 =
〈B〉DetA

3
+
〈

A
2
〉2〈AB〉 − 5〈A〉〈B〉

6
− 〈A〉3〈B〉

6
, (A.7)

ζ6 =
〈

A
2
〉

〈

B
2
〉

+ 〈B〉2
6

− 〈A〉2
〈

B
2
〉

+ 7〈B〉2
6

+
2〈A〉

〈

AB
2
〉

+ 〈B〉
〈

A
2
B

〉

− 2
〈

A
2
B
2
〉

3
, (A.8)

ζ7 =
〈

A
2
〉

〈

B
2
〉

− 〈B〉2
12

− 〈A〉2 5
〈

B
2
〉

+ 11〈B〉2
12

+
2〈A〉

〈

AB
2
〉

+ 〈B〉
〈

A
2
B

〉

−
〈

A
2
B
2
〉

3
, (A.9)

ζ8 = 〈A〉5〈B〉
2 + 3

〈

B
2
〉

6
− 2

〈

AB
2
〉

3
, ζ9 =

〈A〉
〈

B
2
〉

−
〈

AB
2
〉

3
, (A.10)

ζ10 = 〈B〉5〈A〉
2 +

〈

A
2
〉

6
−
〈

A
2
B

〉

3
, ζ11 =

〈

A
2
B

〉

−
〈

A
2
〉

〈B〉
3

, (A.11)

ζ12 =
−〈B〉2

2
−
〈

B
2
〉

6
, ζ13 =

4〈A〉〈B〉+ 〈AB〉
3

, (A.12)

ζ14 = 〈A〉〈B〉 − 〈AB〉
3

, ζ15 =
−〈A〉2

2
−
〈

A
2
〉

6
, (A.13)

ζ16 =
2〈B〉
3

, ζ17 =
2〈A〉
3

. (A.14)

The Hermiticity of A and B implies that all the traces and determinants in ζ1,2,··· ,17 are

purely real, except
〈

A
2
BAB

2
〉

in ζ1 which has an imaginary component

Jξ = Im
〈

A
2
BAB

2
〉

=
i

2
Det[A,B] (A.15)
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obtainable from the Cayley-Hamilton identity

[A,B]3 = 1Det[A,B] + 1
2 [A,B]

(〈

[A,B]2
〉

− 〈[A,B]〉2
)

+ [A,B]2 〈[A,B]〉 . (A.16)

Clearly the reduction of A2
BAB

2 into a sum of matrix products with lower orders causes

the coefficient ζ1 to gain an imaginary component equal to Jξ. It follows that higher-order

matrix products containing A
2
BAB

2 will lead to contributions to the coefficients ξr with

imaginary parts which are always proportional to Jξ

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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