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1 Introduction

Scalar-tensor (ST) theory is an alternative theory that describes gravity beyond Einstein’s

general relativity (GR). This theory was originally conceived by Jordan and later general-

ized by Brans and Dicke [1]. The primary motivation comes from cosmology to search for

a theory incorporating Mach’s principle which is not explicitly embodied in GR. In the ST

theory, the gravitational coupling is determined by all matter in the universe. The cosmo-

logical distribution of matter will affect local gravitational experiments [2, 3]. Currently,

interests in ST theory come from many aspects. First, a fundamental scalar field coupled

to gravity is an unavoidable feature of unified theory such as supergravity, string theory [4],

etc. Second, the inflationary scenarios of universe and dark energy may be described by

ST theory [2, 3].

Experimentally, the differences between ST theory and GR are too small to be de-

tected in the weak field regime, i.e, in the solar system [5, 6]. Particular interest of the

phenomenology of the ST theory is in the strong gravity regime. It is expected that the

strong gravity test can be a possible way to distinguish the ST theory from GR.

For compact stars in ST theory, unexpected phenomenon has been discovered compared

with GR [7–11]. For the black hole (BH) background in ST theory, when the scalar field

settles to a constant, we can get the same BH solution as that in GR [12, 13]. However the

perturbations will behave differently as the two theories have different dynamics [14, 15].

It has been shown that compared with the Kerr BH background in GR, the existence of
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a scalar mode in the spectrum of perturbations around a Kerr BH in the ST theory leads

to remarkable effects [16, 17]. When the matter configuration surrounding the Kerr black

hole is dense enough, the BH will be forced to develop scalar hair. On the other hand,

when the BH rotates sufficiently fast, superradiant instability can occur. Neither of these

instabilities has been observed in the Kerr BH solution background in GR. This gives the

hope that BHs can be used as probes in order to distinguish ST theory from GR.

Considering that our universe has a positive cosmological constant [18], we will extend

the discussions in the asymptotically flat Kerr BH backgrounds [16, 17] to Kerr-de Sitter

configurations. We will examine in detail the mechanism that can render the instability of

Kerr-de Sitter BHs driven by superradiance in the ST gravity. To trigger superrandiant

instability, two necessary conditions need to be satisfied [19], namely that the BH must have

superradiance and the existence of a potential well outside the BH to trap the scattered

wave. The superradiant instability in GR has been discussed thoroughly, see review [20]

and references therein. In this work, we will examine how the instability depends on the

matter profile, the rotation of the BH and the cosmological constant. Furthermore we will

investigate the spontaneous scalarization in the Kerr-de Sitter BH background. Comparing

with the stability analysis in GR [21] where no instability was found for Kerr-de Sitter

BH configurations, our results will provide more possible potential observational clues to

distinguish the ST gravity from GR in the BH backgrounds in the real universe.

The organization of the paper is as follows. In section II, we will briefly present

the framework of ST theory and describe the Kerr-de Sitter BH. In section III, we will

derive the perturbation equation of the scalar field. In section IV, we will calculate the

frequencies of the perturbation numerically and list our results. In section V, we will discuss

the spontaneous scalarization for spherical de Sitter BHs. The last section is devoted to

discussion and summary.

2 Kerr-de Sitter black hole in scalar-tensor theory

The general action of the ST theory in the Jordan frame is [2, 3]

S =
1

16π

∫
d4x
√
−g
(
F (φ)RJ − Z(φ)gµν∂

µφ∂νφ− U(φ)
)

+Sm(Ψm; gµν), (2.1)

where RJ is the Ricci scalar of metric gµν , φ is a scalar field and U(φ) is the scalar field

potential. Sm(Ψm; gµν) is the action describing matter Ψm which is minimally coupled

to gµν and φ. Functions F , Z and U represent specific theories within the class, up to a

degeneracy due to the freedom of redefining the scalar [22]. When F = φ, Z = ω0/φ and

U = 0, one gets the Brans-Dicke theory [1]. The ST theory can be viewed as a low-energy

limit of a bosonic string theory when F = φ, Z = −φ−1.

Performing a conformal transformation and the field redefinition

gEµν = F (φ)gµν ,

Φ(φ) =
1√
4π

∫
dφ

(
3

4

F ′(φ)2

F (φ)2
+

1

2

Z(φ)

F (φ)

)1/2

, (2.2)
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A(Φ) = F−1/2(φ),

V (Φ) =
U(φ)

F 2(φ)
,

we get the action in the Einstein frame (For more details, see [2, 3])

S =
1

16π

∫
d4x
√
−gE

(
RE − 8πgEµν∂

µΦ∂νΦ− V (Φ)
)

+Sm(Ψm;A(Φ)2gEµν). (2.3)

In Einstein frame, the scalar field is minimally coupled to gravity, but the matter field is

coupled to the metric A(Φ)2gEµν . The field equations in the Einstein frame can be derived

by varying action (2.3).

GEµν = 8π

(
TEµν + ∂µΦ∂νΦ−

gEµν
2

(∂Φ)2

)
−
gEµν
2
V (Φ), (2.4)

∇µ∇µΦ = −A
′(Φ)

A(Φ)
TE +

V ′(Φ)

16π
. (2.5)

Here TEµν ≡ − 2√
−gE

δSm
δgµνE

. We assume that Φ = Φ0 = const is a solution to the above

equations and around Φ0 we have the following analytical expansions

V (Φ) =
∑
n=0

Vn(Φ− Φ0)n, (2.6)

A(Φ) =
∑
n=0

An(Φ− Φ0)n. (2.7)

For abbreviations, we denote ϕ ≡ Φ − Φ0 and αn ≡ An/A0. Then to the order O(ϕ), the

equations of motion become

GEµν +
V0

2
gEµν = 8πTEµν −

gµν
2
V1ϕ, (2.8)

∇µ∇µϕ = −α1T
m +

V1

16π
+ (α2

1 − 2α2)Tmϕ+
V2

8π
ϕ. (2.9)

The term V0 is related to the cosmological constant Λ ≡ V0
2 . V1 is a linear potential

which will be dropped off since linear potential is seldom met in nature. V2 is related to

a standard mass term. α1 describes the effective coupling between the scalar and matter.

To have a constant scalar solution Φ = Φ0 = const as we mentioned above, from (2.9)

we should set α1 = 0. In addition, observations, such as weak gravity constraints and

tests for violation of the strong equivalence principle, seem to require α1 to be negligibly

small [23, 24]. The configuration with constant scalar and α1 ' 0 was argued most likely

as an approximate solution in most viable ST theories [16, 17]. Finally, the equations of

motion can be reduced to

GEµν + ΛgEµν = 8πTEµν , (2.10)

∇µ∇µϕ =

(
V2

8π
− 2α2T

m

)
ϕ. (2.11)

– 3 –



J
H
E
P
0
8
(
2
0
1
4
)
0
1
1

r
h
=r-

r
h
=rc

H1.1009, 0.1777L

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.00

0.05

0.10

0.15

0.20

0.25

a

L

Figure 1. Parameter space for Kerr-de Sitter BH in a−Λ plane with fixed M = 1. Kerr-de Sitter

BH solutions are allowed for the parameters (a,Λ) in the region between the two curves.

Here µ2
s ≡ V2

8π − 2α2T
m plays the role of effective mass square of the scalar field. When

the backreaction of the matter field on the spacetime geometry is negligible (“the probe

limit”), from (2.10) we can have the Kerr-de Sitter BH as a solution. In Boyer-Lindquist

coordinates, the metric reads

ds2 = − ∆r

(1 + α)2ρ2
(dt− a sin2 θdφ)2 +

∆θ sin2 θ

(1 + α)2ρ2
(adt− (a2 + r2)dφ)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2, (2.12)

in which

α =
Λa2

3
,∆θ = 1 + α cos2 θ, ρ2 = r2 + a2 cos2 θ,

∆r = (a2 + r2)
(

1− α

a2
r2
)
− 2Mr. (2.13)

For some ranges of parameters, ∆r = 0 exists four real roots. Three positive real roots

correspond to three horizons: the inner BH Cauchy horizon r−, the outer BH event horizon

rh and the cosmological horizon rc. The remaining negative root has no physical meaning.

We focus only on cases in which ∆r = 0 has four real roots, so that we have Kerr-de

Sitter BH. In figure 1, we plot the allowed parameter space. We can see that values of

(a,Λ) should lie in the region between two curves where we fix M = 1. The upper nearly

horizontal curve corresponds to the degeneracy of the cosmological horizon and the BH

event horizon rh = rc, while the lower nearly vertical curve represents the degeneracy

between the BH event horizon and the Cauchy horizon rh = r−. The two curves intersect

at the point (a,Λ) ∼ (1.1009, 0.1777), at which r− = rh = rc occurs.

The surface gravities κ and angular velocities Ω on horizons are [21]

κi =
1

2(1 + α)(r2
i + a2)

d∆r(ri)

dr
, Ωi =

a

r2
i + a2

, (2.14)

where ri = {rh, rc}.
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In this paper, we will mainly focus on this Kerr-de Sitter BH configuration in the

probe limit and study its superradiant stability under scalar perturbation. Different from

the stability analysis in [21], we will look for separable solutions of the Klein-Gordon

equations with effective mass µs, not just the canonical mass of a massive scalar field. The

effective mass reflects the influence of the ST theory in the presence of matter surrounding

the BH.

3 Perturbation equations and superradiance

3.1 Perturbation equations

The dynamics of the scalar field in Kerr-de Sitter background is described by (2.11). To

make comparison with the result of Kerr BH in the asymptotically flat spacetime reported

in [16, 17], we take the following form for the effective mass

µ2
s(r) =

2Λ

3
+
G(r)

ρ2
, G(r) = βΘ(r − r0)(r − r0)

(
1

rn
− 1

rnc

)
, (3.1)

which can reduce to the form in Kerr case [16, 17] when the cosmological constant Λ→ 0.

Here Θ(r− r0) is a heaviside function, r0 is the place where the matter distribution starts

from and β indicates the strength of coupling between scalar and matter field. Note that

β ∝ α2 in (2.11) and large positive values of α2 are not constrained by observations, so we

can take arbitrary large β. In fact, we will find that only large enough β can trigger the

instability in the next section. The term 2Λ
3 plays the role of the canonical mass term of

a massive scalar. For Kerr-de Sitter background, it equals to 1
6Rg where Rg is the Ricci

scalar of spacetime. So eq. (2.11) is equivalent to the equation of motion of a massive

conformally coupled scalar.

The Klein-Gordon equation (2.11) is separable when effective mass (3.1) is adopted.

By assuming a separation ϕ = R(r)S(θ)e−iωt+imφ, the angular part of (2.11) turns out

to be
∂θ(sin θ∆θ∂θS)

sin θS
− (1 + α)2B

2

∆θ
− 2α cos2 θ = −λ, (3.2)

with λ the separation constant and B ≡ aω sin θ− m
sin θ . For Schwarzschild BH, a = α = 0,

the separation constant λ = l(l−1) in which l is the angular momentum number. For more

general BHs, there is no explicit analytical expression of λ. For Kerr spacetime, ∆θ = 1

and the above equation becomes a spheroidal equation which has been studied in detail

in [25–32]. And λ can be expanded as a series of aω for small aω, whose explicit form

can be found in [26, 27, 32]. For Kerr-de Sitter BH, eq. (3.2) is a generalized spheroidal

equation and the explicit expansion of separation constant λ in small aω is [33, 34]

λ = l(l + 1) + α
(
−l(l + 1) + 2m2 − l2H(l) + (l + 1)2H(l + 1)

)
+ [−2m− 2mα(1−H(l) +H(l + 1))] aω (3.3)

+

[
H(l + 1)−H(l) + α

(
H(l + 1)−H(l) + 2

(
(l + 1)2H(l + 1)− l2H(l)

)
−lH2(l) + (l + 1)H2(l + 1)− H(l)H(l + 1)

l(l + 1)

)]
(aω)2 +O((aω)3),

– 5 –
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with H(l) ≡ 2(l2−m2)l
(2l−1)(2l+1) and l being the angular momentum which takes an integer or half

integer number satisfying l ≥ m.

The radial part of (2.11) is

∆r
d

dr

(
∆r

d

dr
R

)
+

[
(1 + α)2K2 −∆r

(
2α

a2
r2 +G(r) + λ

)]
R = 0, (3.4)

where K = ω(a2 + r2)− am.

We look for the complex frequencies of the perturbation ω = ωR + iωI . We will

concentrate on looking for unstable modes with ωI > 0, which signal the instability with

the growing behavior of the perturbations. To calculate the perturbation frequencies, we

need to impose suitable boundary conditions,

R→

{
(r − rh)−i(ω−mΩh)/2κh r → rh,

(r − rc)i(ω−mΩc)/2κc r → rc.
(3.5)

This boundary condition is physically acceptable, which corresponds to a purely ingoing

wave at the BH event horizon and an outgoing wave at the cosmological horizon. In

asymptotically flat spacetime, for example the Kerr BH, there is no cosmological horizon

and the outgoing wave condition is put at the infinity. It was argued in [35, 36] that when

the conditions at infinity in asymptotically flat BH are altered in de Sitter black hole, the

usual power-law scenario in the late time tail of the perturbation in asymptotically flat BH

does not necessarily survive in the de Sitter background. Thus it is of interest to examine

the superradiant stability in the Kerr-de Sitter configuration and compare with the result

disclosed in the Kerr BH [16, 17].

In general, it is difficult to solve the perturbation equations analytically. So special

numerical techniques have been developed to calculate the perturbations of BHs [37, 38],

such as Pöschl-Teller potential method [39–41], finite difference method [42–44], WKB

approximation [45–47], continued fraction method [28–30], direct integration method (also

called shooting method) [48, 49], etc. In this paper, we will use the direct integration

method to calculate the frequencies of the perturbations. The algorithm of this method

can be described briefly as follows: with the boundary conditions (3.5), we can perform

two integrations: (1) solve the radial equation from the BH event horizon by integration

to a matching point r = rm; (2) solve the radial equation from cosmological horizon to

the matching point. Then by matching the two integration results, we can derive the

frequencies of the perturbations. The numerical results are given in the next section.

3.2 Superradiance condition

Before doing numerical calculations, let us briefly derive the superradiant condition for

Kerr-de Sitter BH. Taking the following variables

dr∗ =
r2 + a2

∆r
dr , Ψ =

√
r2 + a2R, (3.6)

the radial equation (3.4) can be written in the form of Schrödinger equation

d2Ψ

dr2
∗

+ (ω2 − V )Ψ = 0, (3.7)

– 6 –
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in which the effective potential reads

V = ω2 − V0

(r2 + a2)2
+

∆r

(r2 + a2)3

(
r
d∆r

dr
+
a2 − 2r2

r2 + a2
∆r

)
, (3.8)

V0 = (1 + α)2K2 −∆r

(
2α

a2
r2 +G(r) + λ

)
.

In a scattering experiment, solution of (3.7) has the following asymptotic behavior

Ψ ∼
{
T e−i(1+α)(ω−mΩh)r∗ as r∗ → −∞(r → rh),

e−i(1+α)(ω−mΩc)r∗ +Rei(1+α)(ω−mΩc)r∗ as r∗ →∞(r → rc).
(3.9)

The above boundary conditions correspond to an incident wave of unit amplitude,

e−i(1+α)(ω−mΩc), plunges in from the cosmological horizon and gives rise to a reflected

wave of amplitude R going back to the cosmological horizon and a transmitted wave of

amplitude T at the BH event horizon. Considering that the effective potential is real,

so Ψ∗ (complex conjugate of Ψ) is also a solution of (3.7). The Wronskian of the two

linearly-independent solutions, W (Ψ,Ψ∗) ≡ Ψ d
dr∗

Ψ∗ − Ψ∗ d
dr∗

Ψ, is a constant independent

of r∗. Equating values of the Wronskian at the BH event horizon and at the cosmological

horizon, we get

1− |R|2 =
ω −mΩh

ω −mΩc
|T |2. (3.10)

Then we can see that if (ω −mΩh)(ω −mΩc) < 0, we have |R|2 > 1. This means that the

amplitude of the reflected wave is larger than that of the incident wave, and superradiance

phenomenon occurs. So we get the condition to trigger the superradiance [50, 51]

mΩc < ω < mΩh. (3.11)

When there is no cosmological constant, from (24) and (25), we see that the superradiant

condition goes back to that for the Kerr BH.

4 Numerical results of the superradiant instability

We list our numerical results in this section. We fix the BH mass parameter M = 1, n = 3

in the matter profile and the angular indexes l = m = 1. There are four free parameters left

to affect the numerical results, namely the cosmological constant Λ, the angular momentum

per unit mass a, the location of the matter shell r0 and the coupling between matter and

the scalar field β. To see the effect of rotation on the instability, in the following we will

consider three cases with a = 0.99, 0.7, 0.3, respectively. And in each case, we will choose

some values of Λ to see the influence of the cosmological constant on the instability.

4.1 a = 0.99

In this subsection, we fix the angular momentum per unit mass of the BH and examine

the influences of the other parameters on the superradiant stability.

– 7 –
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Figure 2. Superradiant instability details for Kerr BH. The outer BH event horizon rh = 1.14107

and the angular velocity on the outer horizon Ωh = 0.4338.

In figure 2, we repeat the result of the superradiant instability in the Kerr BH back-

ground and we find that our numerical results are in good agreement with that reported

in [16, 17]. This gives us confidence in generalizing our numerical calculation to examine

the stability in the Kerr-de Sitter backgrounds.

From figures 3–5, we list the superradiant instability details for the Kerr-de Sitter

black hole backgrounds with the cosmological constant Λ = 0.0003, 0.03, 0.1 respectively.

The results are similar to that in the Kerr black hole case. When the real parts of the

perturbation frequencies satisfy the superradiant condition (3.11), the imaginary parts of

the frequencies have positive values, indicating the existence of the superradiant instability.

In the figures, since Ωc is too small at the cosmological horizon, it is not shown.

In the Kerr-de Sitter BH backgrounds, we see that with the increase of the cosmological

constant, the BH event horizon rh increases, which leads the angular velocity on the BH

event horizon to decrease for the BH with the same a [21, 52–54]. The decrease of the

upper bound in the superradiant condition (25) results in the decrease of the real part

of the perturbation frequencies. This can be seen clearly from figures 3–5. In addition,

we can read from figures 3–5 that the imaginary part of the frequencies also decreases

with the increase of the cosmological constant in the Kerr-de Sitter background. Thus

the superradiant instability is quenched with the increase of the cosmological constant.

Physically this can be understood by looking at the effective potential in figure 6. Fixing

parameters a, r0, β, we see that with the increase of the cosmological constant in the Kerr-

de Sitter BH background, the potential well becomes shallower and the barrier to reflect

radiation back becomes lower. This leads to fewer outgoing waves to be reflected back and

stored in the potential well, which explains why the superradiant instability is quenched

for large cosmological constant.

Comparing figures 3–5, we find that to compensate the influence brought by increasing

the cosmological constant, we need larger β or smaller r0 to trigger the superradiant in-

– 8 –
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Figure 3. Superradiant instability details for Kerr-de Sitter BH with Λ = 0.0003. The BH event

horizon and cosmological horizon locate at rh = 1.1421, rc = 98.9447. The angular velocity on the

BH horizon Ωh = 0.4333.
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Figure 4. Superradiant instability details for Kerr-de Sitter BH with Λ = 0.03. The BH event

horizon and cosmological horizon locate at rh = 1.2426, rc = 8.8077. The angular velocity on the

BH horizon Ωh = 0.3922.

stability in the Kerr-de Sitter background. From (3.1), we can see that larger β or smaller

r0 leads to bigger effective mass and so that higher effective potential barrier. Objective

pictures of the effective potentials due to the influences of β and r0 are shown in figure 7.

It is clear that for fixed r0, the increase of β increases the potential barrier height which

is able to reflect more radiations back. Fixing β, the decrease of r0 has the same effect.

Besides if we look closely at the potentials in figure 7 near the BH event horizon, the first

potential barrier is higher so that the developed potential well is deeper for bigger β as well
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Figure 5. Superradiant instability details for Kerr-de Sitter BH with Λ = 0.1. The BH event

horizon and cosmological horizon locate at rh = 1.5261, rc = 3.9722. The angular velocity on the

BH horizon Ωh = 0.2992.

as for smaller r0. Thus more outgoing wave can be reflected back by the higher potential

wall and accumulated in the deeper potential well. This accounts for the phenomenon that

with the increase of the cosmological constant we need to count on bigger β and smaller

r0 to spark off the superradiant instability.

From figures 3–5 we also observe some similar properties to those of the Kerr BH

reported in [16, 17]. When the matter shell is too close to the Kerr-de Sitter BH with very

small r0, there is no superradiant instability, since the real part of the frequencies scales as

1/r0 and too small r0 will make the frequency violate the superradiant condition. If r0 is not

small enough, the superradiant instability can appear, but this instability will be quenched

as soon as the superradiant condition is saturated. The value of r0 where the instability

starts to appear decreases with the increase of the cosmological constant adopted. When r0

is big, the positive imaginary part of the frequencies can last for sufficiently large β. This

is because that once β is big enough to provide high enough potential barrier to bounce

back the outgoing wave, further increasing β to raise the height of the potential wall will

not contribute more to the instability. We find that the above mentioned properties keep

for all values of the cosmological constant in the Kerr-de Sitter BH background.

4.2 a = 0.7 and a = 0.3

In this subsection we will fix Λ = 0.03 and show the results of superradiant instability for

a = 0.7 and a = 0.3. Combining figures 8,9 and figure 4, we can show the influence of the

angular momentum per unit mass on the superradiant instability for the Kerr-de Sitter BH

background.

From figures 8,9 and combining with figure 4 for a = 0.99, we can see that when a

decreases, the upper limit for the superradiant condition decreases which forces the upper

value of the real part of the frequency to decrease. Considering that the real part of
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for the change of r0. We fixed a = 0.99,Λ = 0.03, β = 105.
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Figure 9. Superradiant instability details for Kerr-de Sitter BH with a = 0.3,Λ = 0.03. The BH

event horizon and cosmological horizon locate at rh = 2.0431, rc = 8.7906. The angular velocity on

the black hole horizon Ωh = 0.0704.

the frequency scales with 1/r0, we learn that for the Kerr-de Sitter BH with the same

cosmological constant but slower rotation, the superradiant instability can occur when the

matter shell is put a bit further away with bigger r0. Furthermore we observe that with

the decrease of a, the imaginary part of the frequency falls closer to zero, which indicates

that the instability becomes milder. This is understandable because when the BH rotates

slower, it will be harder to extract the rotational energy through superradiance. Fixing

Λ, r0, β, we show the potential behavior with the change of a in figure 10. It is clearly shown

that with the decrease of a, the potential barrier to reflect the outgoing wave becomes lower

and the potential well becomes shallower. This can be used to account for the observation

that lower a makes the superradiant instability milder. We further exhibit the property

of the potential when the imaginary part of the frequency reaches the peak for small β in

figures 4,8,9 in the left panel of figure 12. For the limiting (r0, β) to trigger the strongest

superradiant instability, we see that for the lower a we have shallower potential barrier

to store the reflected perturbation. This again explains the reason that the superradiant

instability is weaker when a is smaller.

4.3 The minimum a to accommodate the superradiant instability

In the last subsection, we observe that lowering a will make superrandiant instability

milder. We can see this from figure 9 where a = 0.3 and Λ = 0.03. In that case, we need

large enough β to trigger instability. The physical reason is that it is harder to extract the

rotational energy from the Kerr-de Sitter BH background when a is small.

Now the question comes, whether there is the minimum value of a to allow the su-

perradiant instability? We have calculated the result, for Λ = 0.1, amin ∼ 0.54. We

calculate the corresponding unstable modes for this critical case, and the results are shown
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8.28.

in figure 12. Comparing to figure 5 with a = 0.99, we can see that β is needed to be

very large to spark off superradiant instability and the instability is very mild with very

small ωI . Below this amin, no matter how big is the coupling between the matter and the

scalar, the superradiant instability will not happen. For the Kerr BH background, we have

amin ∼ 0.18. We see that amin increases with the increase of the cosmological constant Λ.

This is reasonable because the increase of Λ makes the superradiant instability harder to

occur as we discussed above. From the right panel of figure 11, we illustrate the potential

behavior of the minimum a for Λ = 0.1 to spark off superradiant instability. We see that at

the minimum a, the potential is very flattened and the potential well to store the reflected

outgoing perturbation is very shallow. Although the potential wall is very high to bounce

back the outgoing perturbation, the perturbation will be harder to accumulate near the

BH to cause the superradiant instability. This accounts for the very mild instability at this

critical case. Below this amin, all the reflected outgoing perturbation will fall inside the BH

without any obstacle.

5 Spontaneous Scalarization

In [16, 17], the authors uncovered a new instability caused by the distribution of matter

around BHs. When the matter configuration is dense enough, the BH is forced to develop

scalar hair. This is called the spontaneous scalarization. In their argument, they considered

that the matter distribution is spherically symmetric and its backreaction on the geometry

is negligible. In this probe limit the background metric is a Schwarzschild BH. They have

constructed nonlinear, hairy solutions of ST theories with a Schwarzschild BH at the center.

In this section, we will generalize their argument to the spherically symmetric de

Sitter BHs. We focus on the four-dimensional Schwarzschild-de Sitter BH at the center

sounded by spherical shell of scalar field. Adopting the decomposition of the scalar field

ϕ(t, r, θ, φ) =
∑

lm e
−iωtYlm(θ, φ)Ψlm(r)

r , the radial wave equation of the scalar field obeys

d2Ψlm(r)

dr2
∗

+ [ω2 − V (r)]Ψlm(r) = 0, (5.1)
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choose r0, β values to have the smallest peak of ωI in figures 4,8,9. For a = 0.99, we choose

(r0, β) = (5, 104.31); for a = 0.7, we select (r0, β) = (8.3, 107.325); and for a = 0.3, we adopt

(r0, β) = (8.7885, 1015.03). (Right)Effective potential behavior for the minimum a to accommo-

date superradiant instability when Λ = 0.1 (the black one). For comparison we also plot the line

when a = 0.99 and Λ = 0.1 (the red one). We choose (r0, β) = (3.56, 105.46) for a = 0.99 and

(r0, β) = (3.82156, 1014.3879) for a = 0.54, respectively.
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Figure 12. Superradiant instability details for Kerr-de Sitter BH with a = 0.54,Λ = 0.1. The BH

event horizon and cosmological horizon locate at rh = 2.30281, rc = 3.82226. The angular velocity

on the BH horizon Ωh = 0.0965227.

in which

V (r) = f

(
l(l + 1)

r2
+

1

r

df

dr
+ µ2

s(r)

)
, (5.2)

f = 1− 2M

r
− Λ

3
r2.

Here we have taken the tortoise coordinate defined as dr/dr∗ = f . Ψlm(r) is required to

satisfy boundary conditions, namely the outgoing wave at the cosmological horizon and
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ingoing wave at the BH event horizon. The frequency ω is complex, ω = ωR + iωI . The

unstable modes correspond to ωI > 0.

According to the well known result in quantum mechanics [55], the sufficient condition

for this potential to lead to an instability is
∫∞
−∞ V (r)dr∗ =

∫ rc
rh

V (r)
f dr < 0. Combining

with (5.2), this condition becomes

∫ rc

rh

µ2
s(r)dr < −l(l + 1)

(
1

rc
− 1

rh

)
−M

(
1

r2
c

− 1

r2
h

)
− 2Λ

3
(rc − rh). (5.3)

It is obvious that this sufficient condition can be satisfied if the effective mass square is

sufficiently negative. It is straightforward to prove that for higher dimensional and charged

de Sitter BHs, the instability condition can also be fulfilled if the effective mass square is

negative enough.

To understand the instability due to the spontaneous scalarization in the presence of

matter, we focus on the final state of spherically symmetric configurations described by

ds2 = −h(r)dt2 +
1

f(r)
dr2 + r2dΩ2. (5.4)

The scalar field Φ can be integrated from the Klein-Gordon equation, obeying ∂rΦ = Q
r2
√
fh

,

where Q is the scalar charge (the integral constant). The BH event horizon (f(rh) = 0)

is surrounded by the matter shell, regularity at the BH event horizon requires Q = 0

and Φ = Φ− = const inside the matter shell. For the same reason, at the cosmological

horizon out of the matter shell, f(rc) = 0, which also demands Φ = Φ+ = const there. So

the scalar field can only be constants both inside and outside the matter shell. However,

these two constants, Φ− and Φ+, can be different due to the existence of the matter shell.

That is, there is a finite jump of the scalar field over the matter shell, which leads to a

nontrivial configuration. This configuration is very different from that discussed in [16, 17]

without cosmological horizon but only BH event horizon in the final spherical configuration,

which does not have regularity condition out of the matter shell so that the scalar field Φ

is not limited to be a constant out of the shell and can develop a coordinate-dependent

profile [16, 17].

In our case, due to the constant profile of the scalar field inside and outside the matter

shell, the final metric on both sides will take Schwarzschild-de Sitter forms but with different

parameters (M,Λ). The cosmological constants Λ± on both sides are related to the scalar

field by the relation Λ± = V (Φ±). If the matter shell is made of perfect fluid, the surface

stress-energy tensor takes the form

SEab = σuaub + P (γab + uaub), (5.5)

where σ, P denote density and pressure respectively. ua is the on-shell four velocity and γab
is the induced metric on the shell. According to the Israel-Darmois junction condition, the

jump of the metric over the matter shell can be expressed in terms of the shell composition.
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In particular, for a static shell at r = R, we have [16, 17, 57]

σ = − 1

4πR

(√
f+ −

√
f−

)
(5.6)

P =
1

8πR

(
−4πRσ +

√
f+
Rf ′+
2f+

−
√
f−
Rf ′−
2f−

)
. (5.7)

In summary, in spherical de Sitter BH background, spontaneous scalarization can also

happen but in a special style. We should note that the jump of the scalar field over the

matter shell discussed above is due to the simplification of the thin shell. In a more realistic

configuration, matter will have non-vanishing support as treated in [7–11].

6 Summary and discussion

In this paper, we have studied the stability of Kerr-de Sitter BH surrounded by matter shell

in ST theories. We have found that similar to the asymptotically flat Kerr BH [16, 17],

there exists superradiant instability in the Kerr-de Sitter BH configurations.

In the Kerr-de Sitter BH background, we have observed that with the increase of the

cosmological constant, the superradiant instability becomes harder to be triggered. It needs

to put the matter shell closer to the hole and increase the coupling between the matter

and scalar field to spark off the instability. We have got the physical understanding of the

phenomenon we observed by examining the potential behavior.

Further, we have examined the influence of the angular momentum per unit mass on

the superradiant instability. We have disclosed that slower rotation will make the superra-

diant instability harder to happen. There is a minimum value of the angular momentum

per unit mass to allow the appearance of the superradiant instability. This minimum a

increases when the cosmological constant becomes bigger. The physical reasons behind

this phenomenon have also been explained.

On the superradiant instability study, the difference between asymptotically flat Kerr

black hole and Kerr-de Sitter BH is very little. The main reason is that the superradiant

instability is mainly influenced by the potential barrier to reflect back the outgoing pertur-

bation and the potential well between the BH horizon and the potential barrier to store the

reflected perturbation. It has little to do with the boundary condition at the infinity for the

asymptotically flat spacetime or at the cosmological horizon for the de Sitter spacetime.

We have also examined the spontaneous scalarization in the de Sitter BH background.

Different from the superradiant instability, now the boundary at the cosmological horizon

becomes important in the investigation. Different from the asymptotically flat BH case [16,

17], the regularity condition at the cosmological horizon enforces the scalarization to take

a special style, that is the scalar field takes a constant profile outside the shell as well as

inside the shell in the spherical de Sitter BH background. Since we only focused on the

spherical de Sitter configurations, one question we may ask is that whether a more general

scalarization can happen once the de Sitter BH background starts to rotate. Further

investigations on this topic are called for.
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