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1 Introduction

In the last few years, there has been a significant progress in our understanding of 6d

N = (2, 0) superconformal theories and their compactifications to lower dimensions, start-

ing with [1]. The dynamics of 6d N = (1, 0) superconformal theories, however, remains

quite mysterious.

One class of 6d N = (1, 0) theories is obtained by taking the decoupling limit of Q

coincident M5-branes embedded within the E8 end-of-the-world brane of M-theory. When

Q = 1, the theory is commonly known as the E-string theory, as the stringy degrees of

freedom in this theory has E8 flavor symmetry.1 We call the theories for Q > 1 the E-

string theories of general rank. The objective of this paper is to compute their anomaly

polynomials, thereby adding an item to the list of known properties of these mysterious

theories.

Let us quickly recall the symmetry of E-string theories. As we already mentioned, they

have N = (1, 0) superconformal symmetry and E8 flavor symmetry. The transverse space

to Q M5 branes has the form R
4×R>0, and therefore they have SO(4) ≃ SU(2)L×SU(2)R

symmetry. One of the two SU(2) symmetries is the R-symmetry in the superconformal

algebra. The low-energy limit of this brane system consists of a decoupled single free

1The properties of this theory in 6d were studied e.g. in [2–7]. The dynamics of this theory on S1 or T 2

was rather extensively studied, but we do not cite them here.
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hypermultiplet, describing the center-of-mass motion of Q M5 branes within the E8 end-

of-the-world brane, and a genuinely interacting 6d superconformal field theory.

Without further ado, here we will present the final result. The anomaly polynomial of

the total system, including the contribution from the free hypermultiplet is

AE8+free(Q) = Q3 p2(N)

6
+Q2χ4(N)I4

2
+Q

(

I24
2

− I8

)

(1.1)

where

I4 =
1

4

(

p1(N) + p1(T ) + TrF 2
)

, (1.2)

I8 =
1

48

(

p2(N) + p2(T )−
1

4

(

p1(N)− p1(T )
)2
)

. (1.3)

Here we used the symbols F for the E8 background field, T for the tangent bundle of

the worldvolume and N for the SO(4) normal bundle; pi are the Pontrjagin classes and

χ4(N) is the Euler class.2 Our Tr is the trace in the adjoint representation divided by

the dual Coxeter number. Therefore, the integral of TrF 2/4 over a four-cycle gives the

instanton number in the standard normalization.

Under the decomposition SO(4) ≃ SU(2)R × SU(2)L, we have3

p1(N) = −2
(

c2(R) + c2(L)
)

, χ4(N) = c2(L)− c2(R) , p2(N) = χ4(N)2 (1.4)

where c2(L), c2(R) are the second Chern classes of the rank-2 bundles L, R such that

L ⊗ R ≃ NC. When Q > 0, SU(2)R is the R-symmetry and SU(2)L is a flavor symmetry;

when Q < 0 the assignment is reversed. In the following we assume Q > 0 unless otherwise

specified. The anomaly polynomial of the system without the decoupled center-of-mass

part is obtained by subtracting from (1.1) the contribution of the free hypermultiplet,

which is a half-hypermultiplet in the doublet of SU(2)L. This is given by

Afree =
7p1(T )

2 − 4p2(T )

5760
+

c2(L)p1(T )

48
+

c2(L)
2

24
. (1.5)

The rest of the paper is organized as follows. In section 2, we will compute the

anomaly polynomial by combining the analysis of Hořava and Witten [8] of the anomaly

of the E8 end-of-the-world brane and that of Freed, Harvey, Minasian and Moore [9, 10] of

the anomaly of multiple coincident five-branes.4 In section 3, we perform three checks of

the computation. First, we give another derivation of the terms in (1.1) that do not involve

2Our normalization of the anomaly polynomials is such that the contribution of a Weyl fermion in a

gauge representation ρ is Â(T ) trρ e
iF . In particular, we take F to be anti-hermitian and we include a factor

(2π)−1 in the definition of F .
3In our convention, a positively charged M5-brane has instanton number 1, and preserves the same

supersymmetry as the K3 manifold in the standard orientation. As
∫
K3

p1 = −48 and
∫
K3

χ4 = 24, we have

c2(L) = 24 and c2(R) = 0. This means that c2(R) corresponds to the R-symmetry of the 6d supersymmetry.
4Our computation is performed at the origin of the moduli space of vacua. On generic points on the

tensor branch, the same anomaly should be given by a related Hopf-Wess-Zumino term, which we discuss

in section 4.
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the normal bundle using the compactification of heterotic string theory on K3. Second,

we compare the coefficient of (TrF 2)2 with that computed in [6, 7]. Third, we show that

when Q = 1 the c2(L) dependence of (1.1) comes solely from the free hypermultiplet. We

conclude the paper in section 4 by discussing how the anomaly polynomial might be used.

In this paper, we will compute only the part of the anomaly that can be captured

at the level of de Rham cohomology. For this purpose, the methods of [8–10] suffice. To

obtain the information on the global anomaly, we might need more sophisticated methods

that can be found e.g. in [11, 12]. We note that the global anomaly of M5-branes was

analyzed in [13].

Note also that in our analysis below, we regard the directions transverse to the M5-

branes non-compact. Even when the transverse directions are compact, our computation

guarantees that there is no inconsistency locally at the worldvolume of the M5-branes, and

the only additional constraint is that the Bianchi identity for the M-theory 4-form field

strength G can be solved. This means that the total M5-brane charge should be zero, as

it should be.

2 Computations

2.1 Chern-Simons terms of M-theory

The M-theory contains two kinds of Chern-Simons terms. The first term is the Chern-

Simons coupling of the eleven-dimensional supergravity:5

SCGG =
2π

6

∫

X11

C ∧G ∧G (2.1)

where X11 is the 11d manifold on which the M-theory is defined, C is the 3-form potential

and G is the 4-form field strength of C. We normalize G so that
∫

S G ∈ Z for four-cycles

S with
∫

S w4 = 0.

We prefer to represent this coupling (2.1) as

SCGG =
2π

6

∫

Y12

G ∧G ∧G (2.2)

where Y12 is a 12d manifold whose boundary ∂Y12 is equal to X11.

The second term is

SCI8 = −2π

∫

X11

C ∧ I8 , I8 =
1

48

[

p2(TX11)−
1

4
p21(TX11)

]

(2.3)

where pi denotes the i-th Pontrjagin class. Again we rewrite this term using Y12:

SCI8 = −2π

∫

Y12

G ∧ I8 . (2.4)

5Our sign convention of the Chern-Simons terms is the negative of that in [14]. With this choice, the

overall sign of the anomaly polynomials of Q M5-branes reproduces the one reported in [10]. For a through

discussion of issues of conventions in M-theory Chern-Simons couplings, see [15].

– 3 –
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The existence of this interaction SCI8 , which is not present in the naive supergravity

action up to two derivatives, is known from various points of view, including (but not

limited to) the following: first, by the reduction to the type IIA, this interaction produces

B∧I8 coupling, which is known to be generated by a one-loop effect in type IIA superstring

theory [16]. Second, this interaction is necessary for the gravitational anomaly cancellation

of a single M5-brane [17, 18]. Third, on general manifolds, SCGG is well-defined only when

accompanied with SCI8 [14].

With these Chern-Simons couplings, we can calculate the anomalies due to degrees

of freedom on M5-branes or on E8 end-of-the-world branes, or combinations thereof. In

the next two subsections we review the computations of the anomaly polynomials of Q

coincident M5-branes and of one E8 end-of-the-world brane, respectively. An experienced

reader can go directly to section 2.4.

2.2 Anomalies of M5-branes

Let us first review the procedure of [9, 10] and obtain the anomaly polynomial for Q

coincident M5-branes.

Consider the M-theory with QM5-branes onX6. We take a coordinate xi, i = 1, · · · , 11

such that X6 = {x7 = x8 = x9 = x10 = x11 = 0}. The Bianchi identity for 4-form field

strength G becomes

dG = Q

11
∏

i=7

δ(xi)dxi , (2.5)

because M5-branes are magnetic source for G.

In the presence M5-branes, the Lagrangian density of the bulk Chern-Simons

terms (2.2) and (2.4) becomes singular around the worldvolume X6. Such contribution

gives rise to an anomaly inflow toward X6, which should be cancelled by the anomalies

carried by the degrees of freedom on M5-branes, allowing us to determine the anomalies.

To carry out this computation, we first regularize the singularity appropriately. We

follow [9] and modify the Bianchi identity to be

dG = Qdρ e4/2 . (2.6)

Here, e4 is the global angular form of the normal bundle of X6 with the normalization
∫

S4 e4 = 2, and ρ = ρ(r) is a bump function which depends on the distance r from X6 and

satisfies ρ(0) = −1 and ρ(r) = 0 when r is sufficiently large. The properties of the global

angular form are summarized in appendix. A. With this modification, we have a following

regular solution for (2.6):

G = dC −Qdρ e
(0)
3 /2 . (2.7)

The Chern-Simons couplings (2.2) and (2.4) also require a modification, as G is no

longer closed. The proposal in [9] in our notation is the following. Let Y7 be a submanifold

of Y12 whose boundary is X6. Let G
′ be a closed version of G given by

G′ = G−Qρe4/2 (2.8)

– 4 –
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defined throughout Y12. To avoid the singularity of G′ at Y7, we refine the integration

procedure as:
∫

Y12

→ lim
ǫ→0

∫

Y12\Dǫ(Y7)
. (2.9)

Here and in the following, Dǫ(M) for a space M denotes the tubular neighborhood of M

with radius ǫ in general. The orientation is such that ∂(Y12 \Dǫ(Y7)) = −∂Dǫ(Y7).

The proper Chern-Simons couplings are then finally given by

SCGG =
2π

6
lim
ǫ→0

∫

Y12\Dǫ(Y7)
G′ ∧G′ ∧G′, (2.10)

and

SCI8 = −2π lim
ǫ→0

∫

Y12\Dǫ(Y7)
G′ ∧ I8 . (2.11)

To calculate the anomalies, we concentrate on the most singular part of these terms.

For SCGG, the singular part (which is independent of C) becomes

SCGG|sing = −
2πQ

6
lim
ǫ→0

∫

∂Dǫ(Y7)

(

− (ρe
(0)
3 )/2 ∧G′|sing ∧G′|sing

)

= −
2πQ3

6 · 8
lim
ǫ→0

∫

∂Dǫ(Y7)

(

− ρ(ǫ)
)3
e
(0)
3 e24 = −

2πQ3

24

∫

Y7

p
(0)
2 (N) (2.12)

where N denotes the normal bundle and we used the formula (A.5) in the last line.

Similarly, the singular part of SCI8 gives

SCI8 |sing = 2πQ lim
ǫ→0

∫

∂Dǫ(Y7)

(

− (ρe
(0)
3 )/2 ∧ I8

)

= 2πQ

∫

Y7

I
(0)
7 . (2.13)

Therefore, the contribution to the anomaly polynomial from the bulk Chern-Simons

terms is

−
Q3

24
p2(N) +QI8 , (2.14)

and the anomaly polynomial AM5(Q) of the field theory on Q coincident M5-branes is its

negative, that is,

AM5(Q) =
Q3

24
p2(N)−QI8 . (2.15)

2.3 Anomalies of the E8 end-of-the-world brane

Let us use the formalism reviewed so far to reproduce the computation of Hořava and

Witten [8]. To introduce an end-of-the-world brane, we take a Z2 orbifold X11/Z2 whose

fixed points contain a ten-dimensional component X10. For definiteness, we assume the Z2

action sends x11 to −x11.

In the presence of the end-of-the-world brane, the Bianchi identity is modified as

dG = dσe0I4 . (2.16)

– 5 –
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In this expression, we smoothed out the delta function δ(x11)dx11 to the Thom class

d(σe0/2). Note that e0 is just a step function which is 1 for x11 > 0 and −1 for x11 < 0,

and σ is a bump function which is −1 at x11 = 0 and 0 sufficiently far away. Finally, I4 is

I4 =
1

4

(

TrF 2 + p1(TX11)
)

(2.17)

where F is the field strength of E8 gauge field on the end-of-the-world brane.

We extend the orbifold action to the auxiliary space Y12, and denote by Y11 a com-

ponent of fixed points whose boundary is X10. Repeating the same calculation as in the

previous subsection using

G = dC − dσe0I
(0)
3 , G′ = G− σe0I4 , (2.18)

we get the singular part of the Chern-Simons terms to be

SCGG|sing + SCI8 |sing = −

∫

Y11

I
(0)
3

(

1

6
I24 − I8

)

. (2.19)

Therefore the anomaly polynomial on the end-of-the-world brane is

AE8-brane = I4

(

1

6
I24 − I8

)

. (2.20)

This reproduces the anomaly of an E8 vector multiplet plus one half the anomaly of the

supergravity multiplet, as discussed in [8]. For example, the pure gauge term of the anomaly

of the E8 vector multiplet is (1/2) tradj F
6/6!, which equals (TrF 2/4)3/6 using the identity

tradj F
6 = (15/4)(TrF 2)3.

2.4 E-string anomalies

Let us now compute the anomaly polynomial of the E-string theory of rank Q, which is

the field theory on Q coincident M5-branes in the E8 end-of-the-world brane. In addition

to the set-up in the last subsection, we put Q M5-branes onto X6 ⊂ X10.

We modify the Bianchi identity for G to be

dG = dσe0I4 + 2Qdρ
e4
2
, (2.21)

combining (2.6) and (2.16). There are two bump functions σ and ρ: σ is for the end-of-

the-world brane and is Z2-symmetric, and ρ is for M5-branes and SO(5) covariant. Note

that the flux due to M5-branes should be 2Q, as we need to include the one from mirror

images.

We note that our Bianchi identity (2.21) naturally incorporates the property that

one M5-brane can dissolve into the end-of-the-world brane to become a small 1-instanton

configuration of the E8 gauge configuration. Indeed, consider an E8 gauge field having k

zero-sized instantons along X6. Then, dσI4e0 behaves as 2kdρe4/2, in that both behave

as 2k times a Poincaré dual of X6. In (2.21), this is equivalent to change the number of

M5-branes by Q → Q + k, as expected. In the following, we put the contribution from

zero-sized instantons into Q, and assume I4 is regular on X10.

– 6 –
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We solve the Bianchi identity (2.21) so that the field strength G has no singularity:

G = dC − dσe0I
(0)
3 −Qdρe

(0)
3 . (2.22)

We now need a closed version G′ of G, which is

G′ = dC − d(σI
(0)
3 e0)−Qd(ρe

(0)
3 ) . (2.23)

This modified field strength has two types of singularities: the second term is singular

along Y11, and the third term is singular along Y7.

Then, the properly modified Chern-Simons terms in the action are:

SCS = lim
ǫ1,2→0

2π

∫

Y12\(Dǫ1
(Y11)∪Dǫ2

(Y7))/Z2

(

1

6
G′ ∧G′ ∧G′ −G′ ∧ I8

)

. (2.24)

The singularities which do not contain the third term of (2.23) is the same as what we

calculated in subsection 2.3, and are cancelled by the anomalies on the E8 end-of-the-world

brane. The remaining singular part of (2.24) localizes to the boundary of Dǫ2(Y7), and

should cancel for the anomalies of the E-string theory of rank Q. This remainder is given by

SCS|sing +

∫

Y11

A
(0)
E8-brane

= 2π

∫

∂D(Y7)/Z2

(

−
Q3

6
e
(0)
3 e24 −

Q2

2
e
(0)
3 e4I4e0 −

Q

2
e
(0)
3 I24 +Qe

(0)
3 I8

)

= 2π

∫

Y7

(

−
Q3

6
p
(0)
2 −

Q2

2
χ4I

(0)
3 −

Q

2
I4I

(0)
3 +QI

(0)
7

)

. (2.25)

In the last line, we used the integration formulas of the global angular forms (A.5), (A.6);

note that the fiber is S4/Z2, instead of S4. So the anomaly polynomial AE8+free(Q) of the

E-string theory of rank Q (plus free hyper multiplet) is

AE8+free(Q) =
Q3

6
p2(N) +

Q2

2
χ4(N)I4 +Q

(

1

2
I24 − I8

)

. (2.26)

This gives (1.1), once we rewrite pi(TX11)|X6
in terms of pi(T ) ≡ pi(TX6) and pi(N).

We pause here to give two comments. The first comment is on the behavior under

Q → −Q. When we change the orientation of the M5-branes, the preserved supersymmetry

in 6d switches from N = (1, 0) to N = (0, 1). At the same time, this also exchanges the

roles (the R-symmetry and the flavor symmetry) of two SU(2) groups in the decomposition

SO(4)N ≃ SU(2)L × SU(2)R. Correspondingly, the total anomaly should be multiplied by

−1 when we make the transformation Q → −Q and χ4(N) → −χ4(N). This is indeed the

case, as can be seen in (2.26).

The second is on the ‘holographic’ computation of anomalies. We consider the space-

time of the form AdS7 × (S4/Z2), with the E8 end-of-the-world brane at the boundary.

The ansatz for the G flux is G = Qe4 + e0I4; then the total Chern-Simons term on AdS7,

obtained by the integral over S4/Z2 of SCGG + SCI8 , is exactly the same as (2.25) above.

We chose not to use the holographic computation as the primary method, since that might

have aroused the doubt whether it is exact in Q or not.

– 7 –
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3 Checks

3.1 Terms that do not involve the normal bundle

Let us perform some checks on the anomaly polynomial we obtained so far. As a first

check, let us compute the terms that do not involve the normal bundle using heterotic

string theory on K3.

Recall that the E-string theory of rank Q is the low-energy theory of the small E8

instanton of instanton number Q in heterotic string theory. To analyze this system, we

consider a smooth K3 compactification where the two E8 gauge bundles have instanton

number nA and nB respectively, where nA + nB = 24. This compactification was known

as the (nA, nB) heterotic compactification in the heyday of the second revolution.

We consider the choice of (nA, nB) such that both gauge bundles are obtained by

embedding smooth SU(2) gauge bundles. The unbroken gauge symmetry in 6d is then

E7,A×E7,B. The low-energy matter content in 6d is i) one supergravity multiplet and one

tensor multiplet, ii) twenty hypermultiplets describing the moduli of K3, iii) for both E7,A

and E7,B, we have

• an E7 gauge multiplet,

• nA,B − 4 half-hypermultiplets in 56,

• 2nA,B − 3 neutral hypermultiplets describing the moduli of SU(2) gauge bundle.

The total anomaly polynomial of this matter content is

1

16
(trR2 − TrF 2

A − TrF 2
B)

(

trR2 −

(

nA

2
− 6

)

TrF 2
A −

(

nB

2
− 6

)

TrF 2
B

)

(3.1)

in our normalization, and is cancelled by the Green-Schwarz mechanism.6

Now, let us collapse both the two smooth SU(2) instanton configurations into points.

The unbroken gauge group is now E8,A × E8,B, and for both E8,A and E8,B, we have

• an E8 gauge multiplet

• and the E-string theory of rank nA,B as the “matter content”,

respectively. In addition, we have one supergravity multiplet, one tensor multiplet and

twenty hypermultiplets as before. The total anomaly should still be given by (3.1). From

this we can compute the anomaly of the rank-Q E-string theory, which turns out to be

Q

16

[

1

12
trR4 +

5

48
(trR2)2 −

1

2
(trR2) TrF 2 +

1

2
(TrF 2)2

]

. (3.2)

Using p1 = − trR2/2 and p2 = (trR2)2/8− trR4/4, we find that this reproduces the terms

in (1.1) independent of the normal bundle.

6See e.g. [19, 20] for the details of the computation. Note that the normalization there is 16 times our

normalization.
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3.2 Coefficient of (TrF 2)2

In [6, 7], the coefficient of (TrF 2)2 in the anomaly polynomial was determined to be Q times

−1/12 of the contribution from an E8 vector multiplet. Therefore, the term proportional

to (TrF 2)2 in the anomaly polynomial should be

Q

12

1

4!
tradj F

4 =
Q

32
(TrF 2)2, (3.3)

agreeing with our central result (1.1).

Another manifestation of the same coefficient is as follows. In [21], the anomaly polyno-

mial of an F-theory compactification on a Calabi-Yau 3-fold X which is an elliptic fibration

over the base B was computed by dimensional reduction from 10 dimensions. The terms

that only involve non-Abelian gauge fields can be stated easily: it is given in our normal-

ization by

I8 =
1

32
D ·D , where D =

∑

a

DaTrF
2
a (3.4)

where Da is the a-th divisor in B supporting an F-theory 7-brane with a non-Abelian gauge

symmetry, Fa is the corresponding curvature, and D ·D is evaluated using the intersection

pairing of the base B.

Now the E-string theory with Q = 1 is obtained by blowing down a rational curve C

with self-intersection C ·C = −1 and supporting no 7-brane singularity. Suppose that the

point after the blow-down is an intersection of two divisors Da, Db supporting 7-branes

with gauge groups Ga, Gb respectively. In [22], appendix C, it was shown that the Lie

algebra of Ga ×Gb is always a subalgebra of the Lie algebra of E8.

This means that only the “matter content” charged under both Ga and Gb is the

E-string theory itself. In view of (3.4), this should contribute

1

16
TrF 2

a TrF 2
b (3.5)

to the anomaly polynomial. This indeed arises from (TrF 2)2/32 by replacing TrF 2 of E8

by TrF 2
a +TrF 2

b of Ga ×Gb.

3.3 Behavior when Q = 1

As a final check, consider the behavior of our anomaly polynomial (1.1) when Q = 1.

For general Q, the theory definitely has the flavor symmetry E8 × SU(2)L. In particular,

this SU(2)L acts on the free hypermultiplet describing the center-of-mass motion of Q M5-

branes within the E8 end-of-the-world brane: the hypermultiplet is a half-hypermultiplet

in the doublet of SU(2)L.

For Q = 1, however, it is believed that the SU(2)L does not act on the interacting part

of the E-string theory. Such an additional SU(2)L flavor symmetry was never seen in the

analysis of the T 2 compactification of the rank-1 E-string theory. Note also that the Higgs

branch of the rank-Q E-string theory is the moduli space of Q instantons of E8. When

Q = 1, the Higgs branch of the interacting part of the E-string theory is the centered

moduli space of 1-instanton of E8. The SU(2)R-symmetry acts nontrivially by rotating
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three complex structures, whereas SU(2)L does not act on the centered 1-instanton moduli

space. Due to the same fact, the SU(2)L symmetry on 4d N = 2 superconformal theories

on Q D3-branes probing a 7-brane is nontrivial only when Q > 1 [23].

Therefore, we expect that the anomaly polynomial of the E-string theory with rank

1, without the free hypermultiplet, should be completely free of the characteristic class

c2(L) of SU(2)L. Indeed, subtracting the contribution of the free hypermultiplet (1.5) from

the total anomaly (1.1), and setting Q = 1, we see that all the coefficients of monomials

involving c2(L) vanish. There are four such potentially non-vanishing terms, namely c2(L)
2,

c2(L)c2(R), c2(L)p1(T ) and c2(L) TrF
2, making the check rather nontrivial.

4 Conclusions and future directions

In this paper, we computed the anomaly polynomial of the E-string theory of general rank

Q, by combining the methods of Hořava and Witten and of Freed, Harvey, Minasian and

Moore. The result was given in (1.1), and contained terms of order Q3, Q2 and Q. We

performed a few consistency checks of our result, by comparing it against known properties

of the E-string theory available in the literature.

As a generalization of our work, it would be worth while to compute the anomaly poly-

nomials of other N = (1, 0) superconformal theories. One general way to have N = (1, 0)

theories is to consider M5-branes or heterotic E8 small instantons on an ALE singularity;

similarly, we can put heterotic SO(32) instantons on an ALE singularity. These theo-

ries were studied using various duality frames. Namely, F-theory was used in [24, 25],

NS5-branes on ALE in [26–28], and D8-D6-NS5 brane setup in [29, 30]. The ones which

have realizations with M5-branes are rather similar to the E-string theories of general rank

treated in this paper, and it would not be very hard to compute their anomaly polynomials.

Holographic duals of some of these theories were also constructed using massive type

IIA supergravity in [31]. It would be interesting to compute their anomaly polynomials

independently and compare with the results from holography.

A classification scheme of 6d N = (1, 0) superconformal theories was given in [22] using

F-theory. It would be nice to obtain a general formula for the anomaly polynomials in terms

of the F-theory data. The ‘normal bundle’ part of the anomaly is, however, rather hard to

see in the F-theoretic approach, and the authors do not know how to proceed at present.

It would also be interesting to study the anomaly inflow to the worldsheet of the

self-dual string from the bulk of the E-string theory; note that such inflow to the string

worldsheet in the case of N = (2, 0) theories was studied in [32, 33].

It was argued in [34] (see also [35]) that N = (2, 0) theories necessarily cotain a Hopf-

Wess-Zumino term away from the origin of the moduli space of vacua and it is fixed by

the anomaly matching. It would be possible to determine a Hopf-Wess-Zumino term for

E-string theories by the anomaly matching for the anomaly polynomial (1.1).

Another direction of research is to study the compactification of the E-string theory

of general rank on a Riemann surface, possibly with punctures. This should give rise to a

large class of 4d N = 1 theories with E8 flavor symmetry, and should be an N = 1 analogue

of Gaiotto’s construction [1]. With the anomaly polynomials obtained in this paper, we
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can at least compute the central charges a and c of these theories, assuming that there is

no emergent U(1) mixing with the superconformal R-symmetry.

Of course, it would be more interesting if we could systematically understand com-

pactifications of other 6d N = (1, 0) theories discussed above on general Riemann surfaces

and on higher-dimensional manifolds, too. There seems to be many interesting structures

ready to be uncovered in the near future.

Acknowledgments

KO and HS are partially supported by the Programs for Leading Graduate Schools, MEXT,

Japan, via the Advanced Leading Graduate Course for Photon Science and via the Leading

Graduate Course for Frontiers of Mathematical Sciences and Physics, respectively. KO is

also supported by JSPS Research Fellowship for Young Scientists. YT is supported in part

by JSPS Grant-in-Aid for Scientific Research No. 25870159, and in part by WPI Initiative,

MEXT, Japan at IPMU, the University of Tokyo.

A Global angular forms

In this appendix, we recall the properties of a smoothed-out version of differential forms

with delta-function support. They are constructed using the help of the so-called global

angular forms.

Let M denote an oriented manifold and E be an oriented rank 2k+1 real vector bundle

over M . Assume that E admits a metric and a connection Θ compatible with its metric.

Denote its zero section by s0. We can construct an S2k bundle π : S(E) → M which is

homeomorphic to E0 = E \s0(M) by assigning each point p of M a unit sphere in the fibre

of E around s0(p).

Then, we can construct a form e2k on S(E) which satisfies following properties:

• e2k is a globally well-defined 2k-form on S(E).

• de2k = 0.

•
∫

π−1(p) e2k|π−1(p) = 2 for any point p of M . In other words, π∗e2k = 2.

Let ρ be a compactly supported function on E which satisfies ρ(s(p)) = −1. We can

explicitly write a Thom class Φ(E) of the bundle E, the smooth analogue of δ(M →֒ E), as

Φ(E) = dρ e2k/2 . (A.1)

Here identify the form e2k on S(E) and its pullback in terms of the homeomorphism

S(E) ≃ E0.

We can apply the usual decent notation:

de
(0)
2k−1 = e2k , δe

(0)
2k−1 = e

(1)
2k−2 . (A.2)

Here δ denote a SO(2k + 1) gauge transformation associated with the connection Θ.
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Let us concentrate on the cases k = 0 and k = 2, which are relevant for our calculation.

e0 is just a step function whose value is +1 or −1. The explicit form of e4 is given by

e4 =
1

32π2
ǫa1···a5

[

(Dŷ)a1(Dŷ)a2(Dŷ)a3(Dŷ)a4 ŷa5

− 2F a1a2(Dŷa3)(Dŷ)a4 ŷa5 + F a1a2F a3a4 ŷa5
]

. (A.3)

Here, ai = 1 · · · 5 labels the fiber coordinates and ŷai are coordinates of the unit sphere S4.

A covariant derivate and 2-form is defined using the connection Θ by

Dŷa = dŷa −Θabŷb, F ab = dΘab −Θac ∧Θcb. (A.4)

Using this explicit form, we can prove the formulae

π∗(e4) = 2 , π∗(e
3
4) = 2p2(E) . (A.5)

The formula π∗(e
3
4) = 2p2(N) is first proved by Bott and Cattaneo [36].

When the SO(5) connection reduces to SO(4), we can consider e0 and e4 at the same

time; e0 is a step function taking +1 and −1 on the northern and the southern hemispheres

of S4, respectively. Then we have

π∗(e4e
2
0) = 2 , π∗(e

2
4e0) = 2χ4(F ) (A.6)

where χ4(F ) is the Euler class of the rank 4 bundle F which is associated with the SO(4)

connection.
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