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1 Introduction

First order phase transitions may result in gravitational wave spectra observable at the

next generation of interferometer experiments, and have therefore recently received much

attention. Most of that attention has focused on the spontaneous breaking of a gauge

symmetry. Particularly well-studied examples include the electroweak phase transition in

Beyond the Standard Model (BSM) theories (for recent reviews, see [1, 2]), but recently,

perturbative phase transitions in hidden sectors (e.g. [3–8]), and phase transitions in GUT-

theories [9, 10] have also been studied.

Here we will focus instead on chiral phase transitions, which result from the breaking

of a global symmetry after a gauge group confines. The order of such phase transitions

has been the topic of decades of scientific inquiry. A famous analytic argument made by

Pisarski and Wilczek [11] (PW in the following) is based on a linear sigma model,1

V (Σ) = −m2
ΣTr

(
ΣΣ†

)
+
λ

2

[
Tr
(

ΣΣ†
)]2

+
κ

2
Tr
(

ΣΣ†ΣΣ†
)
, (1.1)

where Σ is a quark condensate. The PW argument relies on an expansion in ε = 4 − d,

where d is the number of space-time dimensions. To leading order in ε, it is found that

1Note that we will also include the ’t Hooft determinental interaction (µΣ detΣ + h.c.) further on in this

work, but the PW argument does not rely on its presence.
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there is no infrared stable fixed point for NF >
√

3. such that a first order phase transitions

is expected for a large number of light flavors [11].2 Of course, thermal phase transitions

should be described by an effective theory in d = 3 dimensions, as time-like fluctuations

are cut off at finite temperature. The PW argument can therefore be taken as a guide

only. Nevertheless, the result that chiral phase transitions with NF ≥ 3 are first order is

commonly accepted, and demonstrated on the lattice for NF = 6 [12].

The gravitational wave phenomenology of first order confining phase transitions has im-

plications for pressing questions beyond the Standard Model (SM). One such open question

is whether or not QCD violates CP, known as the strong CP problem. The experimen-

tally small CP violating coupling, θ̄ = θQCD + arg detM < 10−10 [13, 14] is unexplained

in the SM. The most common dynamical explanation for the lack of CP violation in the

strong sector is the introduction of a global U(1) Peccei-Quinn (PQ) symmetry that al-

lows the CP violating parameter to be rotated to zero via field redefinitions [15]. Upon

spontaneous breaking of the U(1)PQ, the resulting associated pseudo-Goldstone boson that

couples anomalously to the field strength of QCD is the axion [16, 17].

The strong CP problem can also be solved using massless quarks [18]. In such models,

a U(1) chiral rotation of the massless quark fields rotates θ̄ to zero [19]. This U(1) is also

spontaneously broken by the chiral condensation when the quarks’ color group confines.

The resulting pseudo-Goldstone boson that couples anomalously to the field strength of

the confining group is the η′, composed of massless quarks. In this class of models, the η′

plays the role of the composite, or dynamical, axion.

The behavior of the η′ can be studied in the framework of new exotic confining color

groups, which are prevalent in model building to address the strong CP problem [20–31].

Heavy or visible axion models predominately utilize exotic color groups to alter the typical

(ma, fa) relationship [22–26, 28–33]. There are generic features of chiral phase transitions in

dynamical axion models that set them apart from general confining hidden sector models.

In particular, axion models that utilize an exotic color group typically have matter charged

under both QCD and the exotic group. If any of that matter is fermionic, the three colors

of QCD guarantee at least an approximate NF = 3 flavor symmetry from the point of

view of the exotic group, and this is exactly the minimum flavor symmetry required for a

first order phase transition. Also, the pions associated with the broken SU(NF ) symmetry

will get quadratically divergent mass terms due to interactions with QCD, and so such

models have a generic form for the explicit symmetry breaking from QCD in the linear

sigma model. Although one could imagine a number of ways to achieve the dynamical

axion solution, in this paper we often use the example discussed in [30] as a benchmark.

Gravitational wave signals from confining phase transitions have recently been studied

in dark QCD-like models with NF = 3 [34–36]. In this paper, we will focus on the relation

between the dynamical axion and the gravitational wave signature of the chiral phase

transition, for NF = 3 and NF = 4. Using the linear sigma model as the low-energy

effective theory, we find that the gravitational wave predictions depend sensitively on the

2This can ultimately be derived from the presence of both the λ and the κ coupling in the linear sigma

Lagrangian.
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SU(3)QCD SU(Ñ)

ψ � �

Table 1. The messenger field between the SM QCD and the SU(Ñ) confining exotic group.

mass of the dynamical axion.3 This is an interesting result, which invites further study of

the phenomenology of these models.

2 The dynamical axion in the linear sigma model

To discuss the origin of the dynamical heavy axion we consider a typical framework, an

exotic SU(Ñ) color sector that confines at a scale Λ� ΛQCD, connected to the SM through

a quark field ψ charged under QCD and SU(Ñ), shown in table 1. This quark field

guarantees an approximate NF ≥ 3 flavor symmetry upon SU(Ñ) confinement as ψ is a

triplet of QCD.

Here we study the chiral symmetry breaking phase transition associated with the

SU(Ñ) confinement. Upon confinement, the chiral SU(NF )L × SU(NF )R symmetry is

broken to SU(NF )V , where NF is the number of flavors in the exotic sector. Below con-

finement, the dynamics of the hidden sector are modeled by the linear sigma model. The

resulting pion fields we discuss are bound states made out of exotic quarks.

If ψ is massless, this field is important to the solution of the strong CP problem. Chiral

rotations on the ψ field can be used to rotate away the CP violating angle of either QCD

or SU(Ñ), though not both independently.4 Moreover, a vanishing tree-level mass for ψ

ensures that ψ is active when SU(Ñ) confines, protecting the first order nature of the chiral

phase transition. Below confinement, ψ will be hidden in the resulting bound states. One

of those bound states, the η′, will be the pseudo-Goldstone boson of U(1)A, which is broken

explicitly by the instantons of SU(Ñ). This particle will then couple anomalously to GG̃,

and plays the role of the dynamical axion in the theory below the confinement scale.

2.1 Low energy effective theory

At low energies, the dynamics of the quark condensate Σij ∼ 〈ψ̄RjψLi〉 can be described by

a linear sigma model. The effective potential for the dynamical field Σ which transforms

as a (�, �̄) under SU(NF )L × SU(NF )R is given by

V (Σ) = −m2
ΣTr

(
ΣΣ†

)
− (µΣ detΣ + h.c.) +

λ

2

[
Tr
(

ΣΣ†
)]2

+
κ

2
Tr
(

ΣΣ†ΣΣ†
)
. (2.1)

The chiral condensate 〈Σij〉 ∼ fΣδij spontaneously breaks the global chiral symmetry

SU(NF )L × SU(NF )R → SU(NF )V . This effect is captured by the linear sigma model

3An alternative choice is to study gravitational waves from the chiral phase transition using the Nambu-

Jona-Lasinio model [36, 37].
4Additional model building is needed to solve the strong CP problem completely in these types of models.

For example, either another massless quark field is introduced or a symmetry relates θQCD and θ̃.

– 3 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
6

when:

−
m4

Σ

κ+NFλ
< 0 . (2.2)

Σ can be decomposed as:

Σij =
ϕ+ iη′√

2NF
δij +XaT aij + iπaT aij , (2.3)

where T aij are the generators of the SU(NF )L,R symmetry. The πa are the pseudo-Goldstone

bosons associated with the broken combination SU(NF )A. The ϕ and Xa fields are massive

bound states associated with the preserved SU(NF )V ×U(1)V symmetry.

In the µΣ → 0 limit, the chiral symmetry of V (Σ) is enhanced to U(NF )L ×U(NF )R,

which contains an extra U(1)A restored in (2.1), but spontaneously broken by the chiral

condensate. The η′ in (2.3) is the Goldstone boson associated with the spontaneous U(1)A
breaking. The µΣ → 0 limit does not properly describe properties of a confining gauge

group, as we know the axial anomaly explicitly breaks U(1)A to ZNF by quantum effects.

These quantum effects originate from instantons of the confining SU(Ñ). Indeed, it was

recognized in [11] that the sum of instanton and anti-instantons generate 2NF -point in-

teractions of the form detΣ + h.c.. Thus the µΣ-term in the linear sigma model captures

the U(1)A-breaking instanton effects in the low energy theory. However, identifying µΣ

with the temperature-dependent instanton density [38], one can draw the conclusion that

µΣ(T ) vanishes for T → ∞, as Debye screening shields electric field fluctuations at high

temperature. We will discuss this issue in more detail in section 3.1.1.

Crucially, the η′ is anomalously coupled to GG̃, making it a dynamical axion. Above

the confinement scale, the strong CP problem is solved by the presence of the massless ψ

quarks. The η′ is a bound state composed of ψ quarks, and therefore its connection to the

global U(1) that rotates the CP violating phase is explicit. Note that in the presence of a

mass term for the ψ quarks, the U(1)A is classically explicitly broken and no longer meets

the criteria for a dynamical axion.5

The η′ axion obtains a mass due precisely to the explicit U(1)A-breaking effects from

the instantons of the confining group. This explicit breaking should result in an axion

potential, which typically takes the form:

Ls.b. 3 Λ4 cos

(
η′

fa

)
. (2.4)

Using (2.4) we can connect the µΣ parameter in the linear sigma model to the physical

axion mass predicted by the axion’s couplings to GG̃, motivating our choices for linear

sigma model parameters in our gravitational wave signal analysis in section 3.2.

The QCD-colored pions resulting from the spontaneous symmetry breaking should

also receive masses since QCD explicitly breaks SU(NF ). The QCD-induced mass of the

5Explicit mass terms for the ψ quark would lead to an addition of a MqTrΣ term in (2.1). If this term is

present, then rotations like Σ → eiφΣ would not be able to remove complex phases from both the µΣ and

Mq simultaneously [39]. A complex phase in Mq is evidence of possible CP violation in the strong sector.
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pions can be included in the linear sigma model by adding the explicit flavor symmetry

breaking term

V (Σ) 3 ξ
(

TrQaΣΣ†Qa† − TrQaΣQa†Σ† − ΣTrQaΣ†Qa† + TrΣQaQa†Σ†
)
. (2.5)

This potential term is motivated by the fact that the QCD flavor breaking comes from the

kinetic term DµΣ (DµΣ)† ⊃ g2GµaGaµTr
[
(Qa

LΣ− ΣQa
R)
(
Σ†Qa

L
† −Qa

R
†Σ†
)]

, where DµΣ =

∂µΣ− igGµQLΣ + igGµΣQR. The form of QaL,R will depend on the number of flavors and

how QCD interacts with the fields inside Σ. This is worked out explicitly for NF = 3 and

NF = 4 below.

Evidence of QCD breaking the flavor symmetry comes in the form of quadratically

divergent gluon loops driving the masses of the pions up towards Λ. Their zero-temperature

loop-induced masses are:

m2(πR) ≈ 3C2(R)
αc
4π

Λ2 . (2.6)

C2(R) is the quadratic Casimir of R, where the pion is in the R representation of SU(3)QCD.

In general, if the dynamical axion solves the QCD strong CP problem, the massless quarks

that compose the axion should be coupled to QCD. Typically, the massless messenger

quark present at SU(Ñ) confinement will leave behind some pion states charged under

QCD. Thus, pion masses of the form (2.6) are a generic feature of dynamical axion models

with hidden chiral phase transitions.

Octet pions are present in both the NF = 3 and NF = 4 models, while the triplets

are only present in the NF = 4 model, as will be discussed in section 2.2.2. Colored states

can be searched for at colliders via their gluon couplings. Collider searches provide a lower

limit on the masses of the octet and triplet pions [40–42],

m(π8) & 770 GeV m(π3) & 890 GeV . (2.7)

Using (2.16) and (2.17), the lower limits on pion masses provide a lower limit for the on

the confinement scale:

Λ & 2.9 TeV . (2.8)

The other relevant bound comes from the lightest dynamical axion. Here the dynamical

scale for the axion is the chiral symmetry breaking scale fa = fΣ, where 4πfΣ ≥ Λ. For a

confinement scale O(TeV), a lower bound on the light axion mass comes from beam dump

experiments, and an axion heavier than 100 MeV easily avoids these bounds. The colliders

LEP, CDF, and LHC, probe but do not fully cover axions with a dynamical scale O(TeV)

and mass O(TeV) [43–45].

2.2 Meson masses

In this section we compute the spectrum of meson states, required to compute the one-loop

thermal corrections to the effective potential discussed in the next section.

– 5 –
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2.2.1 NF = 3

The NF = 3 case is representative of models with a massless quark field charged as bifun-

damental under SU(3)QCD and a confining SU(Ñ), as shown in table 1. Models in ref. [25]

and [30] have a confining exotic color (gauge) group with an SU(3)L × SU(3)R (global)

chiral symmetry. The SU(3) flavor symmetry is explicitly broken by QCD. The effects of

this are captured by adding the ξ-term to the linear sigma model:

Vξ(Σ) ⊃ ξ
[
Tr
(
T aΣΣ†T a

)
− Tr

(
T aΣT aΣ†

)
− Tr

(
ΣT aΣ†T a

)
+ Tr

(
ΣT aT aΣ†

)]
, (2.9)

where T a are the SU(3) generators. We find upon minimizing the potential that

fΣ =

√
3
2

(
µΣ +

√
µ2

Σ + 4m2
Σ(κ+ 3λ)

)
κ+ 3λ

. (2.10)

The masses of the η′ and the pion are

m2
η′ =

3µΣ

2(κ+ 3λ)

(
µΣ −

√
4m2

Σ(κ+ 3λ) + µ2
Σ

)
, m2

πa = 3ξ . (2.11)

These fields are pseudo-Goldstone bosons associated with the SU(NF )A×U(1)A symmetries

spontaneously broken by the chiral condensate. The η′ gets its mass from the anomalous

U(1)A breaking. In the linear sigma model, the µΣ-term breaks U(1)A and so mη′ should

be proportional to µΣ.

The octet pions get their mass from interactions with QCD, and so their mass should

be proportional to ξ. Given that we know ξ is generated by a quadratically divergent effect,

we can use (2.6) to estimate ξ ∼ 3 α
4πΛ2.

The masses of the heavy bound states are

m2
ϕ = 2m2

Σ +
1

2
µΣ

µΣ +
√

4m2
Σ (κ+ 3λ) + µ2

Σ

κ+ 3λ

m2
Xa =

2m2
Σ (κ+ 3λ) + µΣ (2κ+ 3λ)

(
µΣ +

√
4m2

Σ (κ+ 3λ) + µ2
Σ

)
(κ+ 3λ)2 + 3ξ . (2.12)

The heavy states have masses proportional to m2
Σ. They are held together by the binding

energy from the confining gauge group and should have masses near the confinement scale

m2
Σ ∼ Λ2.

2.2.2 NF = 4

The NF = 4 case we examine is given in table 2. This is representative of models in which

the exotic confining group requires a second independent massless field to independently

rotate away the θ-angle of the confining SU(Ñ) group. Examples of axion models that

have this flavor structure near exotic confinement are ref. [21] and Model I of ref. [30].

QCD explicitly breaks the SU(4) flavor symmetry. The effects of this are captured in

the addition of the ξ-term to the linear sigma model:

Vξ(Σ) = ξ
(

TrQaLΣΣ†QaL − TrQaLΣQaRΣ† − TrΣQaRΣ†QaL + TrΣQaRQ
a
RΣ†

)
(2.13)

– 6 –
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SU(3)QCD SU(Ñ)

ψ � �

χ 1 �

Table 2. The massless quark content that gives an approximate SU(4)L×SU(4)R chiral symmetry

broken by the chiral condensate. Interactions with QCD explicitly break the SU(4) flavor symmetry.

where QaL = QaR ≡ Qa is a 4×4 matrix with the top left 3×3 submatrix given by SU(3)QCD

generators:

Qa =

(
T a 0

0 0

)
(2.14)

and the fourth row and column filled with zeroes. Σij ∼ 〈Ψ̄RjΨLi〉, where the flavor

multiplet Ψi = (ψi, χ) contains three ψi quarks and one χ. Since only ψ is charged under

QCD, the explicit symmetry breaking effects of the ξ-term should only effect the bound

states containing ψ quarks.

We know that when SU(4) → SU(3) × U(1), fields in the Adjoint representation of

SU(4) break as

15→ 1 + 3 + 3̄ + 8 (2.15)

where the 15 is representation of the πa of SU(4), the 1 field is η′χ, and the 3, 3̄, 8 fields are

the QCD-charged pions. Even when the SU(4) → SU(3) breaking does not happen, this

breaking pattern gives us a hint as to which representations of SU(3) are living inside a

representation of SU(4). Given (2.6), we expect that πa contains mass eigenstates

m2(π8) ≈ 9αc
4π

Λ2 (2.16)

m2(π3) ≈ αc
π

Λ2 , (2.17)

where π8 are the color octet pions and π3 are the color triplet pions.

We find upon minimizing the potential that

f2
Σ =

8m2
Σ

κ+ 4λ− µΣ
. (2.18)

The η′ and the pion masses are

m2
η′ψ

=
4m2

ΣµΣ

κ+ 4λ− µΣ
, m2

η′χ
= 0 (2.19)

m2
π8

= 3ξ , m2
π3

=
4

3
ξ . (2.20)

The pions π3 and π8 have masses proportional to ξ. The mass of the QCD-colored pions

are given by the QCD’s quadratically divergent contribution to the pion self energy, (2.16)

and (2.17). Using this, we can estimate ξ ∼ 3αc
4π Λ2.

– 7 –
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The η′χ and η′ψ are the singlet pseudoscalars that couple to the confining group’s GG̃.

The confinement dynamics that break U(1)A, namely, the instanton effects, are described

by the µΣ-term of the linear sigma model. Since both η′χ and η′ψ couple identically to GG̃,

these instantons can only give mass to one eigenstate. This explains the spectrum. The η′ψ
mass is proportional to µΣ since its mass corresponds to explicit U(1)A breaking. Then the

linear sigma model predicts the light eigenstate mη′χ = 0. The η′χ is not exactly massless,

but obtains its mass via mixing with the SM pion below QCD confinement.

The mass of the heavy bound states associated with the unbroken generators, Xa and

ϕ are:

m2
ϕ = 2m2

Σ , m2
X1

= 2m2
Σ

κ+ µΣ

κ+ 4λ− µΣ
(2.21)

m2
X8

= 2m2
Σ

κ+ µΣ

κ+ 4λ− µΣ
+ 3ξ , mX3 = 2m2

Σ

κ+ µΣ

κ+ 4λ− µΣ
+

4

3
ξ (2.22)

Because the 15 Xa
R are no longer degenerate, the mass eigenstates have been renamed

X1, X3, X8 for the particles charged as singlets, triplets, and octets under QCD, respec-

tively. All the heavy states have masses proportional to m2
Σ. They are held together

by the binding energy from the confining gauge group and should have masses near the

confinement scale m2
Σ ∼ Λ2.

The light state η′χ will be present at QCD confinement and will couple anomalously

to QCD’s field strength tensor through triangle diagram involving ψ quarks. Thus, the η′χ
is also a dynamical axion, and without any additional mass sources will mix with the SM

pions and yield an invisible axion with the typical relationship mafa ∼ mπfπ characteristic

of invisible axion models [46–50].

Ref. [30] provides an example model where additional mass contributions to the axion

potential raise the η′χ mass. This model is thus a heavy axion model with an NF = 4 flavor

symmetry at SU(Ñ) confinement.

The new mass contributions come from small-sized instantons in the UV theory that

couple only to χ and not to ψ. In this analysis, the effect is captured by adding a µSSI-term

to the linear sigma model:

V (Σ) ⊃ µSSITr
(

PχΣPχΣ†Pχ

)
, (2.23)

where

Pχ =

(
03×3 0

0 1

)
(2.24)

picks out only the χ component of Ψi = (ψi, χ). This µSSI-term should account for mass

contributions to any state that contains a χ quark, and so will affect both η′ψ and η′χ,6

raising the lightest mass eigenstate.

6Despite their names, η′χ and η′ψ are both combinations of ψ and χ quarks. The η′ψ is associated with

14×4 and the η′χ is associated with the T (15) generator of SU(4).
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Including this new µSSI-term, we find upon minimizing the potential that

f2
Σ =

8m2
Σ − 2µSSI

κ+ 4λ− µΣ
. (2.25)

The η′ and the pion masses are

m2
η′ψ

=

(
4m2

Σ − µSSI

)
µΣ

κ+ 4λ− µΣ
, m2

η′χ
=

1

2
µSSI (2.26)

m2
π8

= 3ξ +
1

4
µSSI , m2

π3
=

4

3
ξ +

1

4
µSSI . (2.27)

Note that now both mass eigenstates contain µSSI contributions, and so depending on the

strength of the SSI instantons interacting with the χ field, the lightest dynamical axion

can be made heavy.

The masses of the heavy bound states associated with the unbroken generators, X and

ϕ are now

m2
ϕ = 2m2

Σ −
1

2
µSSI (2.28)

m2
X1

=
2m2

Σ (κ+ µΣ) + µSSI (2λ− µΣ)

κ+ 4λ− µΣ
(2.29)

m2
X8

=
2m2

Σ (κ+ µΣ)− 1
4µSSI (3κ+ 4λ+ µΣ)

κ+ 4λ− µΣ
+ 3ξ (2.30)

mX3 =
2m2

Σ (κ+ µΣ)− 1
4µSSI (3κ+ 4λ+ µΣ)

κ+ 4λ− µΣ
+

4

3
ξ , (2.31)

where the µSSI provides an additional mass source, though all heavy bound states still

contain m2
Σ ∼ Λ2 contributions as well.

3 Gravitational waves from a chiral phase transition

In this section we study the finite-temperature one-loop effective potential generated by the

scalar mesons, and explore the parameter space leading to a first-order phase transition.

The gravitational spectrum of the phase transition is then derived for two distinct cases,

which differ in the number of light fermions: NF = 3 and NF = 4.

3.1 One loop effective potential at finite temperature

At one loop, we consider the following daisy-resummed thermal corrections to the poten-

tials (2.1), (2.9) and (2.13),7

V (Σ, T ) = V (Σ) + Vχ(Σ) + VT 6=0, (3.1)

VT 6=0 =
∑
i

T 4

2π2
niJB

(
m2
i + Πi

T 2

)
, (3.2)

JB(m2) =

∫ ∞
0

dxx2 log
(

1− e−
√
x2+m2

)
. (3.3)

7An alternative (non-perturbative) approach is the dimensionally reduced effective theory [51, 52].
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Here Σ is the linear sigma field (2.3). We consider the zero temperature (Coleman-

Weinberg) contribution to the potential to be a redefinition of the parameters in our zero

temperature potential (2.1), and do not add it explicitly. The chiral phase transition de-

scribes the condensation of the diagonal combination ϕ. Therefore, the relevant thermal

corrections are by all scalar states that couple to ϕ: mi are their thermal, field-dependent

masses and ni are their multiplicities. For NF = 3, the field dependent thermal masses mi

are given by,

m2
ϕ + Πϕ =

1

6

(
ϕ
(

3κϕ+ 9λϕ− 2
√

6µΣ

)
− 6m2

Σ + T 2(3κ+ 5λ)
)

m2
η′ + Πη′ =

1

6

(
ϕ
(
κϕ+ 3λϕ+ 2

√
6µΣ

)
− 6m2

Σ + T 2(3κ+ 5λ)
)

m2
X + ΠX =

1

6

(
3κϕ2 + 3λϕ2 +

√
6µΣϕ− 6m2

Σ − 18ξ + T 2(3κ+ 5λ)
)

m2
π + Ππ =

1

6

(
κϕ2 + 3λϕ2 −

√
6µΣϕ− 6m2

Σ − 18ξ + T 2(3κ+ 5λ)
)
, (3.4)

(as also found in [35]), and for NF = 4, they are given by

m2
ϕ + Πϕ =

1

24

(
9κϕ2 + 36λϕ2 − 9µΣϕ

2 + 6µSSI − 24m2
Σ + 2T 2(8κ+ 17λ)

)
m2
η′ + Πη′ =

1

8

(
ϕ2(κ+ 4λ+ 3µΣ) + 2µSSI

)
−m2

Σ +
1

12
T 2(8κ+ 17λ)

m2
X8

+ ΠX8 =
1

8
ϕ2(3κ+ 4λ+ µΣ)−m2

Σ − 3ξ +
1

12
T 2(8κ+ 17λ)

m2
X3

+ ΠX3 =
1

24

(
9κϕ2 + 12λϕ2 + 3µΣϕ

2 − 24m2
Σ − 32ξ + 2T 2(8κ+ 17λ)

)
m2
π8

+ Ππ8 =
1

8
ϕ2(κ+ 4λ− µΣ)−m2

Σ − 3ξ +
1

12
T 2(8κ+ 17λ)

m2
π3

+ Ππ3 =
1

24

(
3κϕ2 + 12λϕ2 − 3µΣϕ

2 − 24m2
Σ − 32ξ + 2T 2(8κ+ 17λ)

)
m2
η′ψ

+ Πη′ψ
=

1

24

(
3ϕ2(3κ+ 4λ+ µΣ) + 18µSSI − 24m2

Σ + 2T 2(8κ+ 17λ)
)

m2
η′χ

+ Πη′χ =
1

24

(
3ϕ2(κ+ 4λ− µΣ) + 18µSSI − 24m2

Σ + 2T 2(8κ+ 17λ)
)
. (3.5)

As a result of the spurion analysis described in the previous section, the masses of the

X and the π mesons are no longer degenerate in NF = 4 case, although the thermal

contributions to the spectrum remain degenerate. We show an example of a benchmark

for the resulting thermal potential in the NF = 4 case in figure 1.

3.1.1 The µΣ term during the phase transition

The determinant interaction (µΣ detΣ + h.c.) in the potential (2.1) is known to be gen-

erated by instanton interactions [19]. It is therefore reasonable to assume that the term

is proportional to the strength of instanton effects [11]. The temperature scaling of this

quantity at large temperatures (and small gauge couplings) is well approximated by the

dilute instanton gas approximation (DGA), as large-scale instantons are suppressed [53].

However, as T → Tc and αS → 1 (near the confinement scale), large-scale instantons are no
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Figure 1. Thermal potential for a benchmark with NF = 4. At zero temperature, the barrier

disappears, while at high temperature, the global vacuum has vanishing vacuum expectation value

〈ϕ〉 = 0.

longer suppressed. At low temperatures and strong coupling the instantons can therefore

not be considered well-separated, and the DGA is no longer a good approximation. How

the instanton density scales during and after the confinement phase transition is currently

an open question.

A related, well studied quantity is the topological susceptibility,

χ(T ) = ∂2
θF (θ, T ) =

∫
dρ

ρ5
d(ρ, T ) (3.6)

where F (θ, T ) is the θ-dependent free energy and where d(ρ, T ) is the instanton density

as a function of instanton size ρ and temperature. The finite temperature behavior of

the topological susceptibility χ(T ) is of interest to the lattice community as well as the

axion and dark matter communities, because the misalignment production of light fields

depends sensitively on its behavior at finite temperature (see e.g. [54, 55]). The DGA

can be used to compute χ(T ) at high temperatures, which results in χ(T ) ∼ T−8 (we

include a brief review of this calculation in appendix A). Lattice simulations agree with

this prediction above T & 1.5Tc, and indicate a flattening off of the temperature evolution

around T ∼ Tc [54]. Motivated by these results, we will use dµΣ/dT = 0 for TN < Tc in the

following, but alert the reader that this issue should be revisited if further lattice results

become available. A strong temperature dependence of the parameter µΣ would mean a

larger nucleation rate than calculated below, and an overall decrease of the gravitational

wave amplitude.

3.2 Gravitational wave spectra

In the linear sigma model detailed above, the dynamics of the phase transition are captured

by the diagonal field ϕ, which has vaccuum expectation value ϕ = 0 at high temperatures,

and ϕ = fΣ after the transition. As is well known, the tunneling between the two vacua
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of this field is described by the scalar bounce ϕc(r, T ), a spherically symmetric classical

solution to the Euclidean equations of motion [56].

∂2ϕ

∂r2
+

2

r

∂ϕ

∂r
− ∂V (ϕ, T )

∂ϕ
= 0 (3.7)

We use a combination of a shooting algorithm and a finite difference technique to solve

this equation at different temperatures, using the 1-loop thermal potential described in

the previous section. From this solution, the thermal parameters of the phase transition

are derived.

Firstly, the nucleation temperature TN is conventionally defined as the temperature

for which a particular volume fraction is in the new phase. We will use,

p(tN )t4N =

(
Mp

TN

)4( 45

16π3g∗

)2

e−SE/TN = 1 (3.8)

where p(t) is the nucleation probability per unit time per unit volume, tN is the nucleation

time, and SE is the Euclidean action evaluated at the bounce solution ϕc(r, TN ). We

have assumed radiation domination to relate tN and TN . Secondly, the nucleation rate is

captured by the parameter β (conventionally normalized to the Hubble rate), and can also

be related to the bounce action,

β

H
∼ T

d(SE/T )

dT

∣∣∣∣
T=TN

. (3.9)

Then, importantly, the latent heat can be defined by,

α =
L
ρN
∼ 1

ρN

(
∆V − T

4
∆
dV

dT

)∣∣∣∣
T=TN

, (3.10)

where the symbol ∆ indicates that the quantity is to be evaluated on either side of the

wall (with a relative sign), and where ρN = π2g∗T 4
N/30 is the equilibrium energy density

at TN , assuming radiation domination.

As was also argued in [36], it is likely that the chiral phase transition does not exhibit

runaway behavior: that is, the bubble walls do not keep accelerating until the bubbles

collide. The field ϕ couples to several other bosonic degrees of freedom which will result

in friction on the bubble wall. For a non-runaway transition, then, the gravitational wave

spectrum resulting from colliding acoustic waves in the plasma is expected to dominate.

The thermal parameters can then be used to find predictions for this gravitational wave

spectrum [1, 57],8

Ωswh
2 = 8.5× 10−6 κ2

fα
2 vw

(
100

g∗

)1/3( β
H

)−1

×
(
f

fsw

)3

 7

4 + 3
(

f
fsw

)2


7/2

(3.11)

fsw = 8.9
( zp

10

) 1

vw

(
β

H

)(
TN

100 GeV

)( g∗
100

)1/6
µHz , (3.12)

8For strongly supercooled transitions, these spectra have to be modified to reflect that the sound waves

do not last longer than a Hubble time [58, 59].
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Here zp is a simulation derived factor, which we take to be zp = 5 in the following [57]. For

vw → 1, the efficiency parameter is well approximated by [60],

κf ∼
α

0.73 + 0.083
√
α+ α

(3.13)

3.2.1 NF = 3

Here we discuss the thermal parameters of the NF = 3 phase transition and the resulting

gravitational wave spectrum. We will express our results as a function of the ratio of

physical masses mη′/mϕ. For NF = 3, this ratio is given in terms of parameters of the

linear sigma model by,

mη′

mϕ
=
√

3

√
1

x+ 1
<
√

3 (3.14)

x =
4m2

Σ(κ+ 3λ)

µΣ

(
µΣ +

√
µ2

Σ + 4m2
Σ(κ+ 3λ)

) . (3.15)

Here the inequality is derived from the mass spectrum (2.11); realness of the physical

masses implies κ + 3λ > 0 and µ2
Σ ≥ 0 in the linear sigma model.9 As we will see below,

the upper bound on the ratio mη′/mϕ has a nontrivial implication for the gravitational

wave spectrum from this class of chiral phase transitions.

We perform the bounce calculation described in the previous subsection, with the

one-loop thermal potential described in section 3.1, for 50 parameter points. We use

parameters for which the ratio (3.14) lies in the range mη′/mϕ = [1,
√

3], and the meson

mass limits evade the constraints described in section 2.2: mη′/GeV = [103, 2 × 104];

mπ/GeV = [8 × 102, 104]. We use (mX −mπ)/GeV = [2 × 102, 2 × 104], recognizing that

mX > mπ for any choice of parameters, cf. (2.11).

We plot our results in the figure 2, along with projected constraints from various

future gravitational wave experiments. The limits plotted here are for power-law spec-

tra, for which the signals in different frequency domains are correlated [69]. The most

sensitive experiment in this observational window is the Big Bang observer (BBO), a pro-

posed fourth-generation space based interferometer experiment, in a hexagram configura-

tion [61–63]. The Deci-Hertz Interferometer Gravitational Wave Observatory (DECIGO)

is a space-based Fabry-Perot interferometer which was proposed as early as 2001 [64, 70].

B-DECIGO [65] is the scaled-down version of DECIGO (the B stands for “basic”). Finally,

AION and MAGIS are proposed experiments which apply the recently proposed atomic

interferometery technique [66–68].

It is clear from the right panel of figure 2 that the gravitational wave predictions from

this model will not be probed by any currently proposed gravitational wave experiments.

This result can be primarily explained by the small latent heat released in this transition,

compared to the large radiation energy density at the time of bubble nucleation. “Dark”

QCD models, which do not couple to the Standard Model (and as such evade the experi-

mental constraints described in section 2.2) may feature phase transitions at lower scales.

Such models may therefore in principle predict larger gravitational wave amplitudes.

9A weaker constraint comes from (2.10), κ+ 3λ > −µ2
Σ/4m

2
Σ.
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Figure 2. Thermal parameters (left) and gravitational wave signatures (right) of a chiral phase

transition with NF = 3 and g∗ = 114, for the benchmarks described in the text. For clarity,

the peaks of the spectra are indicated with a point. The experimental projections for the Big

Bang Observer (BBO) [61–63], Fabry-Perot DECIGO (original proposal) [64], B-DECIGO (scaled-

down version) [65], and MAGIS-AION (space-born) [66–68] are plotted. It is seen that the latent

heat parameter α is typically larger, and the rate parameter β/H is typically smaller for larger

ratio mη′/mϕ, associated with a stronger gravitational wave signature (the panels use the same

color scaling).

Although the signal is not observable, one can still make a few interesting observations.

From the left panel of figure 2, it is seen that the latent heat parameter α and the nucleation

rate parameter β correlate positively and negatively with the ratio of masses mη′/mϕ

respectively. These correlations are also true for the ratio fΣ/Tc (the ratio of the value of

the VEV to the temperature at which both phases are degenerate - sometimes referred to as

the strength of the transition). Since the mass of the dynamical axion mη′ is determined in

part by instanton effects as described in the previous subsection, this correlation motivates

further study of this parameter at low temperatures.

3.2.2 NF = 4

For NF = 4, we may again express the ratio of physical (zero temperature) masses in terms

of parameters of the linear sigma model,

mη′

mϕ
=

√
2

√
µΣ

κ+ 4λ− µΣ
(3.16)

It is seen that in this case, the ratio is not bounded from above. For NF = 4, we will study

a larger range, mη′/mϕ = [1, 10], noting that a large mass ratio is a natural expectation of

models such as [30].

We repeat the calculation described in the previous subsection, for 50 parameter points

as before. We choose parameters such that the meson masses are in agreement with

experimental constraints, mη′/GeV = [103, 2× 104]; mπ/GeV = [8× 102, 104]; mX/GeV =

[8 × 102, 104]; and mη′ψ
/GeV = [8 × 102, 104]. As explained in section 2.2, the light axion

field η′ψ is subject to weaker constraints. Here we will use mη′ψ
/GeV = [1, 103].
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Figure 3. Thermal parameters (left) and gravitational wave signatures (right) of a chiral phase

transition with NF = 4 and g∗ = 120, for the benchmarks described in the text. As for NF = 3, it

is seen that the latent heat parameter α is typically larger, and the rate parameter β/H is typically

smaller for larger ratio mη′/mϕ, associated with a stronger gravitational wave signature (the left

and right panels use the same color scaling).

We plot the results in figure 3. In contrast to the NF = 3 case, we note that the

predicted gravitational wave spectrum of the NF = 4 case may be observed at future

interferometer experiments, in line with the naive expectation from the behavior observed

in the previous subsection, and the larger ratio mη′/mϕ = [1, 10].10 In particular, for

ratios mη′/mϕ � 7, the gravitational wave signal may be detected by atom-interferometers

AION and MAGIS. From the left plane of figure 3, we note that the latent heat released by

transitions with larger ratio mη′/mϕ is larger, while the predicted nucleation rate is smaller.

The result is interesting, in particular in light of the consideration in subsection 3.1.1.

The realization of the large mass ratio relies crucially on the value of the parameter µΣ

at the nucleation temperature, and thus on the explicit breaking of the U(1)A symmetry.

As such, further study of the finite temperature behavior of the instanton density are

well-motivated.

4 Discussion

This paper has discussed the gravitational wave signatures of models of dynamical axions

and confinement at the TeV scale. The order of the confinement phase transition relies on

the number of light fermions at the confinement scale. An analytic argument based on an

expansion in ε = 4− d [11] implies that phase transitions with NF ≥ 3 are first order, and

therefore feature a gravitational wave spectrum.

Using the linear sigma model, we studied the cases NF = 3 and NF = 4. The gravita-

tional wave predictions of these models are plotted in figures 2 and 3 respectively. We note

10This
mη′
mϕ

upper value estimate comes from the fact that (assuming large separations of scales µSSI and

Λ) the η′ gets its mass from confinement and therefore m2
η′ ∼ Λ4

f2 , where f is the chiral symmetry breaking

scale and is estimated to be Λ ≤ 4πf . Then m2
η′ ≤ (4π)2 Λ2 and since mϕ ∼ Λ, then

mη′
mϕ

≤ 10.

– 15 –



J
H
E
P
0
7
(
2
0
1
9
)
1
4
6

that the predictions of the first model evade experimental detection at the presently pro-

posed gravitational wave observatories. For NF = 4, however, the signals may be observable

at the Big Bang Observer (BBO) [61–63], (B-)DECIGO [64, 65], and the MAGIS-AION

atom interferometers [66–68].

An interesting result is that the amplitude of the gravitational wave spectrum depends

on the ratio of the mass of the dynamical axion mη′ , to the mass of the order parameter of

the phase transition, the scalar ϕ. In particular, the latent heat released in the transition

(conventionally captured in the parameter α), and the nucleation rate (β/H) correlate

with mη′/mϕ positively and negatively respectively. In some models, a large ratio may be

a natural prediction [30].

The importance of the ratio mη′/mϕ suggests interesting questions for future research,

in particular about the origin of the µΣ parameter in the linear sigma model. This term

constitutes an explicit breaking of the global U(1)A symmetry. The determinental inter-

action originates from instanton dynamics, which is known to have a strong temperature

dependence at large temperature. The behavior of this parameter at the confinement scale

should be investigated further to allow for more detailed studies of the phase transition.

The analysis in this paper leaves open the question of phase transitions in models

with NF > 4, such as the recently proposed high-scale color confinement model [71]. The

determinant operator is irrelevant for NF > 4, and the strength of the phase transition

in the linear sigma model may instead correlate with a further explicit breaking, or the

generation of the η′ mass in such scenarios. The fact that the mass dimension of µΣ depends

on NF , while the gravitational wave detection prospects also depend strongly on µΣ means

studying chiral phase transitions for different values NF may be interesting. At NF � 3,

a conformal window is known to exist, though its exact location is the topic of ongoing

research [72–74].

Our study of gravitational wave signatures shows a sizable hierarchy between the scalar

ϕ and pseudo-scalar η′ is preferred for detection. At the same time, these are TeV-range

states which can be searched for at colliders. We used current limits on the colored states

to guide our parameter search, but these colored states would also induce loop-level con-

tributions to couplings of the ϕ and η′ to gluons and hence could be looked for at the

LHC via dijet signatures [75, 76]. One can envision a future situation where a signature

in gravitational waves is found, and that would guide searches for two correlated states in

dijets at colliders. Further angular analysis of the dijet final state could also allow us to

determine the CP properties of these states, and robustly support the origin of the gravi-

tational wave signature as manifestation of a dynamical axion explanation of the QCD CP

problem. This connection between gravitational wave signatures and collider searches is

an area that we plan to develop further.

Note added. While this paper was in its final stages, [36] appeared on the arXiv. Al-

though the focus of the current work is different, the analysis overlaps partially with the

analysis in [36]. To this extent, the works are qualitatively consistent, though different

benchmarks and more recent lattice results were used here.
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A Dilute instanton gas approximation

This appendix is meant as a brief review of the dilute instanton approximation (DGA) at

finite temperature. In the DGA, the θ-dependent free energy is given by

F (θ, T ) = −
∫
dρ

ρ5
d(ρ, T )eiθ (A.1)

where d(ρ, T ) is the dimensionless instanton density (ρ is the instanton size). The finite

temperature behavior of the density is given by [53],

d(ρ, T ) = d(ρ, 0) exp

(
−12A(λ)

(
Nc −NF

6
+ 1

)
− 1

3
λ2(2Nc +NF )

)
(A.2)

with λ = πρT and

A(λ) = c1

(
1

c2λ−3/2 + 1

)8

− 1

12
log

((
λ

3

)2

+ 1

)
.

Here d(ρ, 0) is the (dimensionless) zero temperature instanton density - however, this quan-

tity depends on the renormalization scale µ which may be set equal to 1/ρ or to T . The

topological susceptibility in the DGA is found from

χ(T ) = ∂2
θF (θ, T ) =

∫
dρ

ρ5
d(ρ, T ) (A.3)

For NF = 3, the quantity we are interested in may be approximated by,

µΣ ∼ f6

∫
dρ ρ4d(ρ, T ) (A.4)

using dimensional analysis and Σ ∼ q̄q/f2.

The topological susceptibility and (A.4) in the DGA approximation are plotted in

figure 4. It is seen that for high temperatures, the slope approximates T−8 as is known.

However, this approximation is no longer trusted in the regime in which the PT takes place.

Lattice studies in the regime T < Tc are inconclusive, though it is generally expected that

at very low temperatures χ(T ) ∼ T−n where 0 . n� 8.
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Figure 4. Topological susceptibility in the DGA for NF = 3 and Λ = 3 TeV confinement scale.

The dashed gray lines are plotted for reference only, and have slope T−8 (left) and T−16 (right).
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