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1 Introduction

Many exciting theoretical results have been obtained through studies of quantum effects

around black holes. Among them the most intriguing one is the discovery of the Hawking

radiation [1], that is, a black hole is semi-classically a thermodynamic object having a

finite temperature. This, however, led to the so-called information loss paradox [2]. A

possible resolution within the semi-classical approach is the black hole complementarity [3].

However, there are arguments against it [4–10]. This means that one should departure from

the semi-classical approximation and give up either unitarity or semi-classical gravity (for

alternative interpretations, see [11]).

Here, before asking these fundamental questions of quantum gravity, we study black

holes in the semi-classical approximation more carefully, in the hope that a better under-

standing of the nature of semi-classical black holes may give us more insight into the nature

of fully quantum black holes. More specifically, we consider the role of non-perturbative ef-

fects, i.e., quantum transitions that involve a change in the geometry of spacetime, around

black holes [12–15].

In the path integral formulation, quantum and/or thermal transitions are described by

the sum over all possible configurations that satisfy appropriate boundary conditions. In

the Euclidean path integral approach, both quantum and thermal transitions are treated

on the same footing. In this formulation, the largest contribution comes from stationary

points of the action, i.e., classical solutions to the Euclidean equations of motion. These

configurations are called instantons.

In the absence of gravity, a thermal transition is dominated by O(3) symmetric in-

stantons that satisfy periodicity in the Euclidean time, say β, which corresponds to the

temperature T = 1/β of the system [16, 17]. In the high temperature limit, β → 0, only

static solutions are allowed, i.e., they become translational invariant in the Euclidean time
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direction [18]. For generic temperature, there may be plural instanton solutions, which

may or may not be static. On the other hand, in the zero temperature limit, β → ∞, only

a pure quantum vacuum transition is possible, and it is dominated by instantons with an

enhanced symmetry O(4).

We assume these properties are still true in the presence of gravity.1 Although there is

no rigorous proof, there exist a few reasonable arguments and pieces of evidence supporting

this assumption. See e.g., [19, 20]. Namely, at the semi-classical level, it is assumed that the

path integral may be performed over all possible geometries with the Euclidean signature,

and it will be dominated by classical solutions to the Euclidean field equations [21], which

in particular may include non-trivial changes in the geometry.

In this paper, we consider thermal transitions of an anti-de Sitter (AdS) spacetime

with a black hole, i.e., a black hole spacetime with a negative vacuum energy. The reason

for considering such a spacetime is that the negative vacuum energy warps the spacetime

in such a way that it effectively makes the space a bounded box so that canonical thermal

equilibrium may be realized, unlike the case of asymptotic flat spacetimes where there

exists no canonical equilibrium.

Thermodynamics for a system with a black hole in thermal equilibrium with radiation

was studied in a pioneering work by Hawking and Page [22]. They found that for a given

temperature above a critical temperature there are two possible black hole solutions. The

smaller black hole is unstable and can either tunnel to a bigger stable one or decay into

radiation. Below the critical temperature no black hole solution is possible; this is known as

the Hawking-Page phase transition. Interestingly, invoking the AdS/CFT correspondence,

Witten showed that the Hawking-Page phase transition from a black hole to pure AdS

corresponds to a deconfinement/confinement thermal phase transition in gauge theory [23].

In our case, among all possible end states to which transitions may occur, we focus

on those having a static O(3) symmetric thin-shell where the value of the vacuum energy

inside the shell is different from the initial vacuum energy. This may be regarded as a

simplified toy model for a scalar field theory with two potential minima; one lower than the

other. Hence the transitions we consider may be regarded as the formation of spherically

symmetric bubbles with lower vacuum energy by thermal activation, i.e., analogous to

spharelons. A similar situation was studied previously by Garriga and Megevand [24, 25]

in de Sitter space instead of AdS space and transitions to spacetimes with a black hole

instead of those from such spacetimes.

Our initial spacetime may be considered either as a system in canonical equilibrium

with temperature given by that of the initial black hole or the one in micro-canonical

equilibrium with a fixed mass at infinity. In both cases, we assume that the effects of

thermal bath outside the black hole may be ignored.

1There is an issue about the meaning of the temperature in systems with gravity particularly in the

case where there is a positive vacuum energy, i.e., in de Sitter background. If the initial state is a de Sitter

vacuum with its curvature radius H−1, its Euclidean version has a periodicity of 2π/H which corresponds

to the temperature T = H/2π. This is known as the Gibbons-Hawking temperature. Thus pure quantum

fluctuations in de Sitter space may be interpreted as thermal ones. However, since instantons describing

transitions to states with lower vacuum energy are O(4) symmetric in contrast to the case of thermal

instantons in flat space which are only O(3) symmetric, it is not clear at all if this thermal interpretation

of de Sitter space can be justified.
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In the case of canonical equilibrium, possible final states will be either with or without

a black hole. Let β be the periodicity corresponding to the initial state. If the final

state contains a black hole, its temperature will be different from the initial black hole

temperature. Then the corresponding instanton will have a conical singularity at the

horizon, since the periodicity of the final black hole required by its regularity will not

match β. But since the time scale for the system to reach thermal equilibrium would be

extremely long for a large, semi-classical black hole, it is physically reasonable to assume

that the temperature of the final state is the same as the initial temperature right after

the transition. Therefore, we assume such instantons with a cusp do contribute to the

transition. If the final state has no black hole, the instanton will be a pure static AdS

instanton with the Euclidean time periodically identified with the period β. This is an

interesting case which describes a complete evaporation of the initial black hole by thermal

transition. We find that this is possible for a finite range of the parameter space. As

one would naturally suspect, this case is found to be closely related to the Hawking-

Page transition. We find the complete evaporation occurs in the regime of small black

hole masses, and the transition probability is very similar to that of the Hawking-Page

transition.

In the case of microcanonical equilibrium, we fix the total mass of the system to beM+.

In this case, the instanton will have a cusp because the initial and final black hole masses

are definitely different. It then turns out that the probability of tunneling is essentially the

same as the canonical case if we identify the temperature with the black hole temperature.

This paper is organized as follows. In section 2, we study static shells in a Schwarzschild-

AdS system and we explore the parameter space. In section 3, we discuss the Euclidean

manifold and calculate its nucleation probability in the canonical and microcanonical en-

semble. Finally, in section 4, we summarize and discuss future topics.

2 Static shell in Schwarzschild-AdS

As we argued in the introduction, thermal activation is described by a periodic solution in

the Euclidean manifold. The simplest instanton and the one that exist for all temperatures

is a static shell. Before getting into details, let us briefly explain our set up. We start

with an initial black hole with mass M+ and we study its decay channels through thermal

activation, i.e., static shell instantons, to a lower mass black hole M− plus a thin-shell in

a deeper AdS space. Thus, in this section, we derive the necessary conditions for having a

static thin-shell solution and study the parameter range.

2.1 Junction conditions

Let us start by joining two Schwarzschild-AdS spacetimes at a certain radius r∗. The ansatz

for the metric outside (+) and inside (−) is given by

ds2± = −f±(r)dt
2
± +

1

f±(r)
dr2 + r2dΩ2 (2.1)
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where

f±(r) = 1− 2GM±
r

+
r2

ℓ2±
(2.2)

and M± are the mass parameters of each region, we assume2 M+ ≥ M− and ℓ± is the

AdS length scale. These metrics have an horizon at f±(r±) = 0. Note that the junction is

always at r∗ > r+ > r−.

Now we place a shell made of matter fields at the junction r∗, where the induced metric

is given by

ds2 = −dτ2 + r2∗dΩ
2. (2.3)

Continuity of the metric at r∗ requires

√

f+(r∗)
dt+
dτ

=
√

f−(r∗)
dt−
dτ

= 1 , (2.4)

and the jump in the extrinsic curvature is associated to the presence of the matter field,

that is [26]

ǫ−
√

f−(r∗)− ǫ+
√

f+(r∗) = 4πGσr∗, (2.5)

where ǫ± = sign(dt±/dτ) denote the outward normal direction of the shell and σ is the

surface energy density of the matter field. We choose that our matter field has an equation

of state equals to −1, and therefore the conservation of the energy requires σ to be a

constant. In addition, the fact that the shell is static imposes that eq. (2.5) must be satisfied

for an infinitesimal displacement away from r∗. This leads us to a second condition, that is

ǫ− f ′
−(r∗)

√

f−(r∗)
− ǫ+ f ′

+(r∗)
√

f+(r∗)
= 8πGσ, (2.6)

where the prime denotes a derivative with respect to r, i.e., f ′ ≡ ∂f/∂r.

It should be noted that the number of parameters in our set up is six, that isM±, ℓ±, σ,

and r∗. However, only three combinations of them are relevant to determine the dynamics

of the shell. In practice though, a theoretical model will provide us with ℓ+, ℓ−, and σ, so

that our free parameters are M+, M−, and r∗. After solving eqs. (2.5) and (2.6) we end

up with only one free parameter, for example M− is completely determined by M+ given

certain theoretical parameters, i.e., M− = M−(M+, ℓ±, σ). We devote this subsection to

find implicit solutions which although algebraically involved lead to interesting parameter

ranges. For convenience we introduce new dimensionless variables which greatly simplify

the analysis. These are given by

∆ ≡ ℓ+
8πGσ

(

1

ℓ2−
− 1

ℓ2+
− (4πGσ)2

)

, D ≡ 1

4πGσℓ+

M+ −M−
M+

, (2.7)

z∗ ≡
√

3

2

r∗
ℓ+

sign(∆)
√

∆2 − 1 , (2.8)

2In fact, there are solutions for the case M− > M+, if the AdS potential well inside is deep enough. This

case resembles that of refs. [24, 25], where the cosmological constant decay into a black hole. However, we

are interested in the evaporation of black holes, thus we assume M+ ≥ M−.
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where ∆2 > 1 so that V (r → ∞) → −∞. In order to have a clear understanding of these

new variables, let us note that z∗ might be understood as a rescaled r∗. On the other

hand, D weights a rescaled relative difference between masses, in our case D > 0. Note

that the sign of ∆ is entirely due to the combination between brackets, which is completely

determined by given theoretical parameters.

With these definitions, we can recast eqs. (2.5) and (2.6), after squaring twice, in the

potential form respectively as

V (z∗) = 1− c1
z∗

− c2
z4∗

− 2

3
z2∗ = 0 and V ′(z∗) = 0 , (2.9)

where

c1 = sign(∆)
2GM+

ℓ+

√

3

2

√

∆2 − 1 (1 + ∆D) , (2.10)

c2 =
9

4

(

GM+

ℓ+

)2

D2
(

∆2 − 1
)2

. (2.11)

In this form, it is clear that the number of parameters that determine the dynamics is

three, i.e., c1, c2, and z∗. On the other hand, the sign of the extrinsic curvature can be

found by squaring eq. (2.5) once, which yields

ǫ+ = sign

[

D +∆
ℓ+

GM+

(

r∗
ℓ+

)3
]

. (2.12)

One can find an analytic solution to the position of the shell by solving eqs. (2.5)

and (2.6) at the same time, that is

z−2
∗ = 1 + 2

(

1 + sign (c1)

√

1 +
8D2(∆2 − 1)

(1 + ∆D)2

)−1

, (2.13)

from which we can readily extract bounds on z∗, i.e.,

1/2 < z2∗ < 1 (c1 > 0) , (2.14)

1 < z2∗ (c1 < 0) . (2.15)

Once the position of the shell is known, we can solve for GM+/ℓ+ and D in terms of z∗
which yields

GM+

ℓ+
= sign (∆)

2
√
2

3
√
3

z∗√
∆2 − 1

(

1− z2∗ − z∗

√

∆2

∆2 − 1

√

z2∗ − 1/2

)

, (2.16)

D =
2
√
2

3
√
3

ℓ+
GM+

z2∗
∆2 − 1

√

z2∗ − 1/2 . (2.17)

One may see this system as follows. Given a certain M+, ℓ+, ℓ−, and σ, one finds the

position of the shell r∗ and the mass of the inside black hole M−. In the new variables,

given GM+/ℓ+ and ∆, one finds z∗ and D. Recall that the allowed parameter region must

satisfy ∆2 > 1. In the following subsection, we further reduce the parameter space.
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Figure 1. Left: z∗ in terms of GM+/ℓ+ after solving eq. (2.16) for different values of ∆. Note

that in general GM+/ℓ+ < 1 except when ∆ ∼ 1. Right: parameter D in terms of GM+/ℓ+ after

solving eq. (2.17) for different values of ∆. We can see that there is a maximum mass cut-off.
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Figure 2. Left: the special case M− = 0. It yields a relation between σ and M+ in units of ℓ+ for

a particular value of ∆. Right: maximum and minimum mass for which the transition is possible

in blue and orange respectively. The region in between these two surfaces is the allowed parameter

region. Note that they never cross, as it should be.

2.2 Parameter space

Now we study further the parameter region. First of all, we are interested in solutions

where the outward normal direction does not change sign through the shell, i.e., ǫ+ = 1,

and therefore the causal structure is given by figures 3 and 4 (see the next subsection).

Interestingly, this excludes the region where ∆ < 0. Using the solutions for D, that is

plugging eq. (2.17) into eq. (2.12), one gets

ǫ+ = sign

[

√

z2∗ − 1/2 + ∆
z∗√

∆2 − 1

]

. (2.18)

A quick look at the behavior of this function with respect to z∗ tells us that ǫ+ = sign (∆),

which obviously implies ∆ > 0. Note that the region c1 < 0 is now excluded. We show

numerical solutions for various values of ∆ in figures 1 and 2.
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Now that our parameter region has been reduced, we can use the foregoing results to

place bounds on the mass of the initial black hole. The minimum of z∗, i.e. z
2
min = 1/2,

is realized when D = 0, i.e. M+ = M−, and yields the maximum of M+ which allows

the transition under study. Such maximum mass is determined by a set of theoretical

parameters and it is given by

GMmax
+

ℓ+

∣

∣

∣

∣

M+=M−

=
1

3
√
3

1√
∆2 − 1

. (2.19)

Note that the limit ∆ → ∞ corresponds to ℓ+ → ∞ and thus GMmax
+ →

8πGσ
3
√
3

(

ℓ−2
− − (4πGσ)2

)

. On the other hand, the minimum value for the outside mass is

given by the total evaporation of the black hole, that is M− = 0. In that case, we have

that
GMmin

+

ℓ+

∣

∣

∣

∣

M−=0

=
2
√
2

3
√
3
4πGσℓ+

z2max

∆2 − 1

√

z2max − 1/2 , (2.20)

where

z−2
max = 1 + 2

(

1 +

√

1 + 8 (∆2 − 1) (4πGσℓ+ +∆)−2

)−1

(2.21)

is the maximum value of z∗ for a given set of theoretical parameters. Note that as expected,

for a fixed theoretical parameters, the lower the mass of the black hole inside the shell the

larger the radius of the shell as the difference in energy has to be compensated by increasing

the volume of the true vacuum. It is also worth noting that only in the limit3 ∆ → 1 the

transition is possible for GM+/ℓ+ > 1.

To summarize, there is a static shell solution provided that the initial mass of the black

hole lies between Mmax
+ (M− = M+) ≥ M+ ≥ Mmin

+ (M− = 0) given a set of theoretical

parameters that satisfy ∆ > 1 which implies

4πGσℓ+ <
ℓ+
ℓ−

− 1 . (2.22)

We show the allowed parameter range in figure 2. Let us note that this parameter

range is also useful in the case of dynamical shells. We can understand the static shell as

the limit where the quantum tunneling ceases to exist. Let us call c1,s and c2,s the values

of the coefficients of the potential for a static shell, i.e. our solutions to V (z∗) = V ′(z∗) = 0

where z∗ is the position of the maximum of the potential. In the general case, quantum

tunneling is possible whenever the coefficients c1 and c2 yield V (z∗) > 0. This is achieved

for c1 < c1,s and c2 > c2,s. Thus, any model in that parameter region presents a dynamical

shell with barrier penetration. Note that this may not cover all the possibilities since we

imposed ǫ± = 1 at z∗.

3 Euclidean manifold and nucleation probability

We showed that in general there are solutions to a static shell if the initial black hole

mass lies between a certain mass range determined by the theoretical parameters. In the

3The exact limit ∆ = 1 is excluded since the potential would no longer have a maximum at a finite radius.
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Figure 3. Schematic diagram of the bubble nucleation when the internal mass is non-zero. After

the nucleation of the static shell any small perturbation would cause it to either expand or collapse.

Left: the shells in both sides expand. Right: the shell in one side collapses while the other expands.

We used absorptive AdS boundary conditions for simplicity.

Figure 4. Schematic diagram of the bubble nucleation when the internal mass is zero. The dashed

line refers to r = 0 in AdS. We emphasize that after the nucleation the two resulting AdS spaces

disconnect. After the nucleation the shell may collapse or expand due to a small perturbation. Left:

the shells in both sides expand. Right: the shell in one side collapses while the other expands. We

used again absorptive AdS boundary conditions for simplicity.

Lorentzian signature, this solution corresponds to an unstable static shell at a constant

radius. The nucleation configuration is given by analytic continuation of the instanton

solution from Euclidean to Lorentzian signatures. A small perturbation at the nucleation

will cause the critical shell to either collapse or expand.

We can classify two general cases. When M− > 0, the internal geometry is a pe-

riodically identified Schwarzschild-AdS with a lower mass and deeper AdS (see figures 3

and 5). This might include a conical deficit at the horizon in the Euclidean manifold (see

next subsection). A special case corresponds to M− = 0, where the internal geometry

is a periodically identified AdS (see figure 6). It is interesting to note that such special

case contains a topology change. Now, since the shell is periodic in the Euclidean time, a

– 8 –
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tE

r
rh

θ
r

rh

Figure 5. Euclidean manifold for Schwarzschild(-AdS). Light/dark blue respectively refers to

outside/inside the shell. Left: Euclidean time vs radius plane embedded in a higher dimension.

The cusp can be smoothed out by a suitable choice of euclidean period. Right: angular vs radius

plane with one angular coordinate suppressed. We can see the well-know Schwarzschild throat.

tE

r

r=0

θ
r

r=0

Figure 6. Euclidean manifold for thermal AdS. Light/dark blue respectively refers to out-

side/inside the shell. Left: Euclidean time vs radius plane embedded in a higher dimension. The

manifold reaches r = 0 which is similar to flat space. Right: angular vs radius plane with one

angular coordinate suppressed. There is no throat connecting both sides but they are connected

through the Euclidean time.

constant time slice crosses two times the constant radius solution, e.g., the nucleation time

slice. This is interpreted as a pair creation of two shells separated by the Einstein-Rosen

bridge. In the case where M− = 0, the two shells are created in two disconnected pure

AdS spaces, most likely due to a pinching of the Schwarzschild throat.

After the nucleation, each shell might either collapse or expand depending on quantum

fluctuations of for example a scalar field. If one of them eventually falls into the black hole,

then this process is similar to a thin-shell tunneling from inside to outside the event horizon;

originally motivated by Hartle and Hawking [27] to explain Hawking radiation.
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3.1 Euclidean action and canonical ensemble

Let us discuss in more detail the Euclidean manifold, the presence of the cusp and the

nucleation probability. We start from an initial AdS black hole within the mass that

allows a static shell solution. We further assume that the initial black hole is in thermal

equilibrium with radiation. Thus, the initial temperature of the system is given by the

temperature of the initial black hole. For simplicity, we work under the approximation

that radiation makes negligible contribution [22].

After the nucleation the temperature of the bath need not coincide with the tem-

perature of the resulting black hole and therefore, strictly speaking, the system is not

in thermodynamical equilibrium. Nevertheless, we can still consider that the system is

in equilibrium if the black hole evaporation and absorption time scales are large enough.

Let us recall that for radiation they are respectively given by tev ≈ 1071
(

M
M⊙

)3
s and

tabs ≈ tev

(

TBH

Trad

)4
s. Thus, as long as the black hole is large enough, i.e., solar mass, and

the temperature of the bath is smaller than that of the black hole, thermodynamical equi-

librium is a good approximation. Needless to say, the total evaporation of the black hole,

i.e. when M− = 0, does not suffer from this problem.

Thermodynamics of a system in thermal equilibrium at a given temperature is de-

scribed in the canonical ensemble. In thermal QFT, the Helmholtz free energy is given by

the Euclidean action. Then, as usual, the nucleation rate is given by

Γ ∝ e−B, (3.1)

where B is the action difference between the initial and final states, i.e.,

B = SE (Final)− SE (Initial) , (3.2)

where we integrate over a period in the Euclidean manifold. The Euclidean action is

given by

SE = − 1

16π

∫

±
d4x

√
g

(

R+
6

ℓ2±

)

+ σ

∫

shell
d3x

√
h

+
1

8π

∫

shell
d3x

√

h+K+ − 1

8π

∫

shell
d3x

√

h−K− .

(3.3)

Using the equations of motion, integrating and regularizing [22, 28, 29], i.e., we subtract a

periodically identified AdS background with equal period at a fiducial boundary, we get

SE =
1

2

(

βin
r3∗
ℓ2−

− βout
r3∗
ℓ2+

− βin
r3−
ℓ2−

− 4πβ∗σr
2
∗ + βoutM+

)

+ Icusp , (3.4)

where βin/out refer to the period inside and outside of the shell and β∗ is the period on the

shell. Note that if period inside does not match with the temperature of the black hole,

then we have to take into account the conical defect. For the moment, let us assume that

we need to consider the cusp and show later that it is mandatory. To proceed, recall that

the periods are related by the continuity of the metric, i.e.,
√

f−(r∗)βin =
√

f+(r∗)βout = β∗ . (3.5)
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Now, using eq. (2.6) we arrive at

SE = −βin
2

(

r3−
ℓ2−

+M−

)

+ βoutM+ + Icusp . (3.6)

The contribution from the cusp can be easily understood as follows [28, 29]. Consider

a two dimensional space with an angular deficit, i.e., a cone, where the line element is given

by ds2 = dr2 + r2dφ2 with φ → φ + 2πα. Then one smooths out the cusp by introducing

a small circle of radius ǫ with a regular geometry inside and take the limit ǫ → 0. This

can be modeled by introducing a new function ds2 = dr2 + A(r)2dφ2 with a jump in the

first derivative, where ∂rA(ǫ) = α and ∂rA(0) = 1. The Ricci scalar is R = −2∂2
rA/A and

therefore after integration we find
∫

d2x
√−gR = −4π (∂rA(ǫ)− ∂rA(0)) = 4π (1− α). In

four-dimensions, we have to add the area of the extra dimensions to the integral which gives

Icusp = − 1

16π

∫

ǫ
d4x

√
−gR = −πr2− (1− α) . (3.7)

The factor α is related to the difference in periods, that is

α = βin/β− , (3.8)

where β− = 4π/f ′
−(r−) = 4πr−/(1 + 3r2−/ℓ

2
−) is the temperature associated to the black

hole horizon with M− and ℓ−. Plugging this into the action, we find that the free energy

is given by

SE = β+M+ − πr2− , (3.9)

where we set βout = β+ since the initial state is a black hole in thermal equilibrium. Again

β+ = 4π/f ′
+(r+) is the temperature associated to the black hole horizon with parameters

M+ and ℓ+. This result coincide with the results of reference [28, 29]. For the initial

system, we should replace πr2− with πr2+, thus obtaining the well known free energy for

AdS black holes [22]. It should be noted that in the final state eq.(3.9) the temperature

β+ is fixed by the thermal bath and, therefore, it is independent of the black hole mass.

So far, we have assumed that in general we might encounter a cusp in the Euclidean

manifold. Let us show that this is the case. It is easy to see that the condition to have a

final smooth manifold is that the period inside the shell coincides with the final black hole

temperature, i.e. βin = β−. For example, such is the case of the Hawking-Page transition.

However, they considered that ℓ− = ℓ+ which is excluded in our set up since it implies

∆ < 0. For this reason, we need to consider the tunneling to a deeper AdS.

It is easy to guess that the condition βin = β− might not be fulfilled in general from

the following. Take eq. (3.5) with βout = β+ and βin = β−. Let us remind the reader that

βout = β+ is fixed by the initial thermal equilibrium. Then the question is whether the

condition on βin is compatible with the parameters determined by the junction conditions,

that is

βin
β+

=

√

f+(r∗)

f−(r∗)
?
=

β−
β+

=
f ′
+(r+)

f ′
−(r−)

. (3.10)

where we used the definition of temperature in the last step. Note the behavior of the

left hand side in eq.(3.10) is completely different from that in the right hand side. Thus,

– 11 –
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Figure 7. Ratio βin/β+ (continuous lines), where βin is the temperature inside the shell, and

β−/β+ (dashed lines), where β− is the temperature of the inside black hole horizon, as a function

of the initial black hole mass. We plotted it for ℓ+ = 3ℓ− and we let ∆, i.e. 4πGσℓ+, vary. Notice

that the lines never intersect, therefore βin 6= β− in general. For the light blue line, i.e. ∆ = 100,

one check that βin − β− > 10−5β+. Obviously, β− = 0 when M− = 0.

the equality could be satisfied only by a very particular set of parameters. In fact, we

numerically show in figure 7 that the βin = β− condition is not satisfied at all for a wide

range of parameters. Let us note that the only parameter we fixed in figure 7 is the ratio

between AdS lenght scales, i.e. ℓ+/ℓ−. Varying this ratio does not seem to affect the general

behavior of the curves. Therefore, we must consider the presence of a cusp if one wants to

allow this decay channel.

As a result, using eq. (3.9), the tunneling probability in the canonical ensemble is

given by

Sf
E − Si

E =
1

4G
(A+ −A−) , (3.11)

which only depends on the difference of areas of the initial and final black holes (this is

also consistent with a diffent approach [30–34]). We show in figure 8 the behavior of the

tunneling probability in terms of the initial mass of the black hole in units of G = 1.

The allowed region falls between the maximum mass (lower pink line) and minimum mass

(upper green line). As expected, the complete evaporation is the most suppressed channel.

For completeness, we compare our results with the probability of the Hawking-Page phase

transition to radiation. Note that in terms of probability this two processes are similar.

3.2 Microcanonical ensemble

In practice, thermal equilibrium for a black hole system is an extremely long state to

achieve. A more realistic set up is to consider transitions with a fixed energy. Therefore,

we need to consider the microcanonical ensemble. It is known that the canonical and the

– 12 –
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Figure 8. Difference of action in units of G = 1 for ℓ+ = 10000 as a function of M+. On the

left we plot various inside AdS lenght scale, i.e. ℓ− = 800 , 1000 , 1200, and on the right we change

the surface energy density, that is 4πσ = (15 , 10 , 5)× 10−5. In green and pink we show the upper

and lower bound for the outside mass respectively. The probability for the Hawking page phase

transition, i.e. the black hole decay to radiation, is plotted in orange. Note that all parameters can

be rescaled with M and then the action must be multiplied by a factor 4M2.

microcanonical ensembles are related by an inverse Laplace transformation [22], that is

N(E) =
1

2πi

∫ i∞

−i∞
Z(β)eβEdβ =

1

2πi

∫ i∞

−i∞
exp (βE − SE(β)) dβ . (3.12)

Where Z(β) and N(E) are the canonical and microcanonical partition functions respec-

tively. In the usual case, the temperature of the system depends on the mass of the black

hole and the integral is calculated using the steepest-descent approximation [22]. However,

recall that in our case, the temperature in the final state is fixed by the thermal bath and

therefore it is completely unrelated to the mass of the final black hole. Thus if we assume

that radiation does not backreact on the geometry we have that

N(E) =
eπr

2
−

2π

∫ ∞

−∞
eβ(E−M+)dβ = eπr

2
−δ (E −M+) , (3.13)

where we used that SE(β) = βGM+ − πr2− and that M+ and r− do not depend on the

temperature. That is, the number of states of the system is proportional to the area of the

black hole. Therefore, transition to a lower mass black hole is suppressed by the difference

in the number of states, i.e., it is suppressed by exponential of the difference in entropies.

This results coincides with the canonical ensemble and gives more support to consider such

transition.

4 Conclusions

We have considered thermal activation around AdS black holes. The nucleation of thin-

shell bubbles out of a thermal bath is mediated by a static shell instanton and therefore

trivially periodic in the Euclidean time. We built static shell solutions and we studied their
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parameter space. We have found that for a given set of theoretical parameters, that is the

vacuum and shell energy densities, there is a static shell solution if the initial black hole

lies within a certain mass range determined by the theoretical parameters. In particular, if

there exists a solution for a given theoretical parameters then there is always the solution

where the black hole completely evaporates.

Later, we assumed that the periodicity in the Euclidean time is given by a thermal

bath, fixed by the thermal equilibrium between the initial black hole and radiation. We

have shown that in general by fixing the initial temperature, we had to consider the presence

of a conical deficit at the horizon due to the lack of solution with equal temperature. The

presence of such a cusp can be dealt with a smoothing regularization scheme and the

Euclidean action simply coincides with the usual result. However, let us stress that the

crucial difference is that the temperature of the final system is not related to the final

black hole mass. Then, we have discussed the nucleation probability in the canonical and

microcanonical ensembles and we have shown that it depends on the difference of areas

from the initial to the final black hole. The case of the complete evaporation of the black

hole has a probability very close to the Hawking-Page phase transition.

After a pair nucleation of shells over the Einstein-Rosen bridge, each shell will either

collapse or expand most likely due to quantum fluctuations along the Euclidean manifold.

Will the two shells be entangled? In addition, this looks similar to a particle tunneling

from inside to outside the horizon. Can this be further generalized to various thermal

phenomena around the black hole? We leave them for future work.

Let us finish by pointing out some important remarks. First, as mentioned in the

introduction the fact that we start with a system in thermal equilibrium might obscure

its relation with the information loss paradox. However, as we have shown there exists

in general solutions for which the black hole completely evaporates. How the shell carries

the information or how the information is recovered is an interesting point which is far

from the scope of this paper. In addition to this, a realistic system would not be perfectly

thermalized (hence, information would be still there), but it could be well approximated by

a quasi-thermalized system. Then what will be the implication of these thermal activations?

This would be an interesting question for a future work.

Second, in a more realistic set up, the cusp at the horizon should be regularized by

some other field around the black hole to account for the angular deficit, e.g., a string.

This regularization should not affect the main results of this paper, which is that the black

hole could evaporate completely. We leave for future work how this instanton mediates a

transition where there is a conical deficit (or a topological change for the case of a complete

evaporation) in the final Euclidean manifold.
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