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1 Introduction

Sum rules for spectral densities in any quantum field theory provide important data of the

theory. The sum rule relates a weighted integral of the spectral density over frequencies to

one point functions of the theory. They result because of the analyticity of the correspond-

ing Greens function together with the short distance as well as the long distance behaviour
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of the theory. Thus sum rules provide useful constraints on spectral densities. For instance

real time finite temperature retarded correlators are difficult to obtain from lattice calcu-

lations in QCD. However one point functions are considerably easier to obtain. This has

led to a systematic study of the sum rules which constrain the spectral densities of the

stress tensor in QCD [1–5]. Similarly there are sum rules studied in condensed matter like

the Ferrell-Golver-Tinkham sum rule which is satisfied by the current-current correlator in

a BCS superconductor [6, 7] or the sum rule for momentum distribution in angle resolved

photon emission [8].

Schematically the sum rules we will focus on have the structure∫ ∞
−∞

dω

ωn
ρ(ω) ∝ 〈One point functions〉,

ρ(ω) = ImGR(ω), (1.1)

where GR(ω) is the retarded Green’s function at finite temperature and zero momentum.

As we have mentioned, sum rules are the result of the analytic properties of the Green’s

function in the upper half plane which in turn follows from causality. Although sum rules

primarily relate two point functions to one point functions, we will see that they contain

information about the three point functions also. This information will be contained in the

proportionality constant in (1.1).

In order to emphasise the usefulness of such rules, let us recall how such sum rules

are used to determine transport properties of quark gluon plasma from the lattice. Here

one postulates the form of the spectral density and then fits the parameters involved in

the postulated form of the spectral density from lattice data [9–13]. Since sum rules are

constraints satisfied by the spectral density, they restrict the class of the postulated form

for the spectral density. For example the simplest Lorentzian anstaz for the spectral density
ω

ω2+Γ2 is disallowed using the shear sum rules in QCD [3].

All the above properties make sum rules an important object of interest in quantum

field theories. In this paper we will derive sum rules corresponding to the spectral density of

the retarded correlator of the Txy component of the stress tensor for an arbitrary conformal

field theories in d ≥ 3 dimensions. This sum rule is usually referred to as the shear sum

rule. In the context of conformal field theories, sum rules can be used to find conditions

under which a certain conformal field theory admits a gravity dual. To illustrate this, we

use the shear sum rule to find a necessary condition under which given conformal field

theory admits a gravity dual. This condition is independent of the equality of central

charges a = c which is known in the literature. Sum rules together with causality can be

used to find constraints both for conformal field theories as well as putative gravity duals.

We will obtain these constraints in section 4 of this paper.

The investigation of sum rules in conformal field theories and its relation with holog-

raphy was first done in [3]. For N = 4 supersymmetric Yang-Mills theory at finite temper-

ature the shear sum rule is given by

1

π

∫ ∞
−∞

dω

ω
[ρ(ω)− ρT=0(ω)] =

2

5
ε, (1.2)
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where

ρ(ω) = ImGR(ω), (1.3)

is the spectral density corresponding to the retarded shear correlator defined in position

space by

GR(t, ~x) = iθ(t)〈[Txy(t, ~x), Txy(0)]〉. (1.4)

The expectation value is taken in the theory held at finite temperature T and ε in (1.2) is

the energy density in the theory. The authors proposed the relation (1.2) from field theory

arguments and then verified it using a holographic computation of the Greens function in

the AdS5 black hole background. The subsequent works mainly focused on the holographic

derivation of the sum rules. In [14] the shear sum rule was derived in holography by

considering a black hole in AdSd+1 dimensions. Modifications to the holographic shear

sum rules in presence of chemical potential has been obtained in [15]. This was done

by considering charged blacks holes in gravitational duals of the M2, D3 and M5-brane

backgrounds. The sum rules were modified due to expectation values of operators in

addition to the stress tensor due to the presence of chemical potentials Similar phenomenon

was investigated for sum rules corresponding to current correlators and other holographic

models in [16–19]. More recently the general structure of the shear sum rule for a conformal

field theory in general dimensions was discussed in [20].

In this paper we derive the shear sum rule for an arbitrary conformal field theory in

d ≥ 3 dimensions using the general properties of conformal field theories. We consider the

theory at finite temperature and at zero chemical potential. We assume that the theory

is such that at finite temperature, it is only the stress tensor that acquires a non-zero

expectation value. Our main result for the shear sum rule is stated as

lim
ε→0+

1

π

∫ ∞
−∞

δρ(ω)dω

ω − iε
=

(
(−1 + d)d

2(1 + d)
+

(3− d)t2
2(−1 + d)

+

(
2 + 3d− d2

)
t4

(−1 + d)(1 + d)2

)
P,

ρ(z) = ImGR(ω),

GR(t, x) = iθ(t)[Txy(t, x), Txy(0)],

δρ(ω) = ρ(ω)− ρ(ω)T=0. (1.5)

Here P refers to the pressure of the theory and t2, t4 are the linearly independent parameters

introduced by Hofman and Maldacena [21]. They carry the information of the three point

function of the stress tensor and can be written in terms of the constants a, b, c of [22].1

Note that pressure can be written in terms of the energy density ε = (d− 1)P .

An immediate check on our sum rule is to apply it for theories which admit a two

derivative gravity dual. From (1.5) we see that for these theories the sum rules reduces to

lim
ε→0+

1

π

∫ ∞
−∞

δρ(ω)dω

ω − iε
=
d(d− 1)P

2(d+ 1)
. (1.6)

1See equation (4.2) relating t2, t2 and a, b, c.
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This is because t2 = t4 = 0 for these theories. We verify this property by first explicitly

using the data of the 3 point functions of stress tensors evaluated in [23]. We then perform

another check by evaluating the Greens function directly in the AdSd+1 black hole following

the methods developed in [15]. Thus a necessary but not sufficient condition for a theory

to admit a 2 derivative gravity dual is that the shear sum rule given in (1.5) is satisfied.

Positivity of energy flux [21] or equivalently causality, constrains the parameters t2, t4.

These constraints were obtained in d dimensions by [24, 25] and are stated in (4.2). Using

these constraints we obtain bounds on the shear sum rule for an arbitrary conformal field

theory in d dimensions. We also apply the sum rules for specific theories in d = 3, 4, 6.

We see that for the M2-brane theory, ABJM theory, N = 4 Yang-Mills and the M5-brane

theory, the coefficient involved in the sum rule is not renormalized as expected. For large N

Chern-Simons theory coupled to fundamental fermions we evaluate the coefficient involved

in the sum rule as a function of the t’ Hooft coupling. We see that the bounds for the sum

rule are saturated for the theory of free fermions and free bosons. As a simple application

of the sum rule on obtaining constraints on theories involving higher derivatives, we obtain

the bounds on the coefficient of Gauss-Bonnet gravity in arbitrary dimensions from the

sum rule.

Finally we study the high frequency behavior of the spectral density in the vector

and the scalar channels. That is we examine the spectral density corresponding to the

correlator 〈TtxTxz〉 and 〈TttTtt〉 respectively. We observe that the high frequency behavior

is determined by Hofman-Maldacena coefficients corresponding to these channels.

The organization of the paper is as follows. In section 2 we present a general analysis

of the shear sum rule we are interested in. Then we demonstrate that the high frequency

behavior of the shear correlator is determined by the Hofman-Maldacena coefficient in the

scalar channel and finally determine the sum rule. In section 3 we perform a consistency

check on the sum rule using holography. We determine the sum rule using the evaluation

of the three point function of the stress tensor in AdSd+1 and then compare it against the

direct evaluation of the sum rule from a black hole in AdSd+1 and show agreement. In

section 4 we re-write the sum rule in the Hofman-Maldacena variables t2, t4 and obtain

bounds on the sum rule using causality. In section 5 we discuss applications of the sum

rule for well known theories in dimensions d = 3, 4, 6. In section 6 we study the high

frequency behavior of the retarded Greens function in the vector and the sound channel and

demonstrate that that it is determined by Hofman-Maldacena coefficients in the respective

channels. Section 7 contains the conclusions. Appendix A deals with the computation of

the Fourier transform of the OPE coefficients in the three channels. Appendix B lists some

integrals relevant for performing the Fourier transform. Finally appendix C reviews the

evaluation of the three point function of the stress tensor in Chern-Simons vector models

in the large N limit.

2 The shear sum rule in conformal field theories

In this section we present the derivation of the sum rule in the shear channel for conformal

field theories in dimensions d > 2. The derivation of spectral sum rules rely on the analytical
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properties of the Greens function in the complex ω plane. Consider a function G(ω) which

is holomorphic in the upper half plane including the real axis. For the present, let us

assume that the function has the following convergence property in the upper half plane

lim
ω→i∞

G(ω) ∼ 1

|ω|m
, m > 0 (2.1)

Then using Cauchy’s theorem it can be shown that2

G(0) = lim
ε→0+

∫ ∞
−∞

dω

π

ρ(ω)

ω − iε
, (2.2)

where ρ(ω) = ImG(ω). We will restrict our attention to the retarded correlator of the Txy
component of the stress tensor in d > 2 dimensions.

GR(t, x) = iθ(t)〈[Txy(t, x), Txy(0)]〉, (2.3)

where the expectation value is taken in the theory held at finite temperature T . The

Fourier transform is defined by

GR(ω, p) =

∫
ddxeiωt−ip.~xGR(t, x). (2.4)

We will be interested in the sum rule for the spectral function at p = 0, defined as

ρ(ω) = ImGR(ω, 0). (2.5)

Let us now examine if each of the assumptions involved in deriving the sum rule

is satisfied for the retarded correlator. The physical reason why the retarded correlator

is analytic in the upper half plane is causality. It is easy to see this from the inverse

Fourier transform

GR(t) =

∫
dω

2π
e−iωtGR(ω). (2.6)

For t < 0 and only when GR(ω) is holomorphic, the contour can be closed in the upper

half plane resulting in GR(t < 0) = 0 which is a requirement for the retarded correlator.

Now for conformal field theories the property (2.1) is not satisfied. As we will see below

the retarded correlator diverges as limω→∞GR(ω) ∼ ωd. However we can still define a

regularized Greens function δGR which satisfies the property (2.1) for which we can apply

Cauchy’s theorem and obtain

δGR(0) = lim
ε→0+

∫
dω

π

δρ(ω)

ω − iε
, (2.7)

where δρ(ω) = Im(δGR(ω)). The precise definition of the regularization of course depends

on the details of the high frequency behaviour.

Thus the thing we need to do for the derivation of the sum rule is to examine the high

frequency behavior of the shear correlator in the upper half plane. For this we continue

2See [15]) for example.
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GR(ω) into the upper half plane using the following relation between the retarded correlator

and the Euclidean correlator which can be proved from the definition of these correlators3

GR(i2πnT ) = GE(2πnT ). (2.8)

Here GE is the Euclidean time ordered correlator and 2πnT is the Matsubara frequency.

This relation provides a distinguished analytic continuation

GR(iω) = GE(ω). (2.9)

We need the behavior of the retarded Greens function as ω →∞. Consider the Euclidean

correlator in position space. For time intervals δt� β = 1
T , the operator product expansion

(OPE) of the stress tensor offer a good asymptotic expansion. Therefore for ω � T , we

can replace the Euclidean correlator by its OPE. This allows us to obtain the asymptotic

behaviour of the GR(iω) as ω →∞. To conclude, the strategy is to write down the leading

terms of the Euclidean OPE of the stress tensor and then Fourier transform each of these

terms to frequency space to obtain the large ω behavior. Such an analysis has been used

earlier in [3, 20, 27].

Let us first use the OPE of the stress tensor in the Euclidean two point function. Using

the result of [22] we obtain

〈Txy(s)Txy(0)〉 ∼ CT
Ixy,xy(s)

s2d
+ Âxyxyαβ(s)〈Tαβ(0)〉+ · · · (2.10)

Here the OPE has been sandwiched between thermal states. s refers to the position in d

dimensions and CT is a constant which determines the normalization of the 2 point function

of the stress tensor. By dimensional analysis, the tensor structure Iµνρσ is dimensionless,

while the Âµνρσ scales like 1/sd. From this scaling property it is easy to conclude that the

following integral scales as∫
ddxeiωtCT

Ixy,xy(x)

|x2d|
≡ I ∼ ωd log(

ω

Λ
), (2.11)

where Λ is a cut off in the integration.4 As we will soon see, we will not need the details

of this divergent term. Lets examine the second term∫ ∞
−∞

ddxeiωtÂxyxyαβ(x)〈Tαβ〉 ≡ J ∼ ω0âαβ〈Tαβ〉, (2.12)

where âαβ are O(1) coefficients. For the thermal vacuum, the one point functions 〈Tαβ〉
can be written in terms of the energy density and the pressure. Thus these terms also

contributes in the ω →∞ limit We assume that there are no other operators of conformal

dimensions ∆ ≤ d which gain expectation value in the thermal vacuum. The rest of the

terms in the OPE (2.10) involve operators of dimensions ∆ > d whose terms are suppressed

in the ω →∞ limit as O(1/ω∆−d).

3See for example [26] for a proof.
4We choose this branch cut to lie in the lower half ω plane which ensures that the correlator is holomorphic

in the upper half plane.
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Thus we need to regularize the retarded Greens function by subtracting I and J
defined in (2.11) and (2.12). From examining I, we see that it is identical to the Fourier

transform of the retarded Greens function at zero temperature.5 Therefore we define the

regularized Greens function as

δGR(ω) = GR(ω)|T −GR(ω)|T=0 − J . (2.13)

Now this definition ensures that when ω → i∞, the regularized Greens function behaves as

lim
ω→i∞

δGR(ω) ∼ O(
1

ω∆−d ), (2.14)

and we can apply Cauchy’s theorem to obtain the sum rule

lim
ε→0+

∫ ∞
−∞

dω

π

δρ(ω)

ω − iε
= δGR(0), (2.15)

= GR(0)|T −GR(0)|T=0 − J .

Now let us assume hydrodynamic behaviour of the theory at small wavelengths. This

implies that we can identify the zero frequency behaviour of the retarded Greens function

with pressure6

GR(0)|T = P. (2.16)

Also we have the property

GR(0)|T=0 = 0, (2.17)

which arises from fact that zero temperature retarded Greens function vanish, since the

pressure vanishes at zero temperature in a conformal field theory. Combining (2.16)

and (2.17) we obtain the sum rule

lim
ε→0+

∫ ∞
−∞

dω

π

δρ(ω)

ω − iε
= P − J , (2.18)

where

δρ(ω) = ImGR(ω)|T − ImGR(ω)|T=0, (2.19)

= ρ(ω)T − ρ(ω)|T=0.

This is because J will turn out to be real and will not contribute to the spectral density.

It is important to note the origin of the 2 terms in the r.h.s. of the sum rule (2.18). The

first term is due to the long wave length hydrodynamic behavior of the theory, while the

2nd term is due to the short distance behavior of the theory and results from the OPE.

5Note that though the OPE is in Euclidean space, we are examining the limit ω → i∞ of retarded greens

function using the relation (2.9).
6We define 〈Txy〉 = − 1√

g
∂ lnZ
∂gxy

, this along with the constitutive relation for the stress tensor from

hydrodynamics leads to GR(0)|T = P . Note that in general, it is important to obtain the zero frequency

behaviour from hydrodynamics. Naive use of the analytical continuation from Euclidean Greens function

at zero frequency could miss delta function contributions at which occur at non-zero values of chemical

potentials. We thank Zohar Komargodski for raising this issue.
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2.1 High frequency behavior and Hofman-Maldacena coefficient

In this section we will evaluate J for an arbitrary conformal field theory in d dimensions.

Lets recall its definition

J (ω, p = pz) =

∫
ddxeiωt−ipzÂxyxyxyαβ(x)〈Tαβ〉, (2.20)

where we have also introduced momentum p = pz along the direction orthogonal to x, y

in the Fourier transform. In the end we will set p = 0, or equivalently expand the J at

ω → ∞ and extract the constant term. The only components of the expectation value of

the stress tensor which are non-zero are given by

〈Ttt〉 = εE , 〈Tij〉 = Pδij , i, j = 2 · · · d. (2.21)

The subscript in εE reminds us that that this is the energy density in the Euclidean theory

We have εE = −ε where ε is the energy density in the Minkowski theory. Also recall that

from conformal invariance we have the relation

ε = (d− 1)P. (2.22)

Finally the tensor structure Âµνρσ(s) is given by [22]

ÂµνρσαβCT =
(d− 2)

d+ 2
(4a+ 2b− c)H1

αβµνρσ(s) +
1

d
(da+ b− c)H2

αβµνρσ(s)

−d(d− 2)a− (d− 2)b− 2c

d(d+ 2)
(H2

µνρσαβ(s) +H2
ρσµναβ(s))

+
2da+ 2b− c
d(d− 2)

H3
αβµνρσ(s)− 2(d− 2)a− b− c

d(d− 2)
H4
αβµνρσ(s)

−2((d− 2)a− c)
d(d− 2)

(2H3
µνρσαβ(s))

+
((d− 2)(2a+ b)− dc)

d(d2 − 4)
(H4

µνρσαβ +H4
ρσµναβ)(s)

+(Ch5
µνρσαβ +D(δµνh

3
ρσαβ + δρσh

3
µναβ))Sdδ

d(s),

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8, (2.23)

where CT , C are functions of the parameters a, b, c which determine the three point function

of the stress tensor in the conformal field theory and are given by

CT =
8π

d
2

Γ(d2)

(d− 2)(d+ 3)a− 2b− (d+ 1)c

d(d+ 2)
, (2.24)

C =
(d− 2)(2a+ b)− dc

d(d+ 2)
, Sd =

2π
d
2

Γ(d2)
.

The detailed evaluation of the Fourier transform to obtain J is tedious and is provided

in appendix A.1. For some intuition we will present the Fourier transform of the term I4,

– 8 –
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note that we only need the diagonal entries α = β.

I4(s) =
2da+ 2b− c
d(d− 2)

H3
αβxyxy(s), H3

αβxyxy(s) =

(
∂α∂β −

1

d
δαβ∂

2

)
1

(t2 + ~r2)
d−2
2

,

I4(ω, p) =
2da+ 2b− c
d(d− 2)

H3
αβxyxy(ω, p). (2.25)

Performing the Fourier transform we obtain

d−1∑
i=1

H3
iixyxy(ω, p) =

4πd/2
(
dω2 − p2 − ω2

)
dΓ
(
d
2 − 1

)
(p2 + ω2)

= −H3
ttxyxy(ω, p). (2.26)

Including the coefficients obtained from the expectation value of the stress tensor we obtain

Î4(ω, p) =
(2ad+ 2b− c)
d(d− 2)

(
4πd/2

(
dω2 − p2 − ω2

)
dΓ
(
d
2 − 1

)
(p2 + ω2)

)
(P − εE). (2.27)

At the end we need to take Î4(ω, 0) as the contribution to J (ω, 0). Similarly we need to

perform the Fourier transform for each of the terms I1, · · · I7 in (2.23). Let us briefly indi-

cate the procedure involved in performing the Fourier transform. We first parametrize the

spatial directions in terms of polar co-ordinates and then perform the angular integrations.

We then perform the radial integration and finally the integration over time t. In each

of the integrals involved, we have verified that that interchange of the order of the time

and the radial integrations does not affect the results. The details of each of the Fourier

transform is given in the appendix A.1. Thus sum of all these terms are given by

7∑
l=1

Îl(ω, 0) =
(1− d)(a(d(d+ 4)− 4) + d(2b− c))

2 (−a (d2 + d− 6) + 2b+ cd+ c)
P. (2.28)

Here we have used εE = −(d − 1)P to write all terms in terms of the pressure. At

this point we observe that the term in (2.28) is proportional to the Hofman-Maldacena

coefficient obtained by examining positivity of energy flux in the spin zero channel [21].7

More precisely for arbitrary dimensions d we obtain the relation

7∑
l=1

Îl(ω, 0) = 2(1− d)PaT,0, (2.29)

where aT,0 is defined in equation (2.16) of [28] and is given by

aT,0 =
1

4

a(d(d+ 4)− 4) + d(2b− c)
−a (d2 + d− 6) + 2b+ cd+ c

. (2.30)

Note that [28]8 were examining the kinematic regime of space like momenta, while we

are examining the situation at vanishing spatial momenta but non-zero frequency which

7We refer to the combination of the stress tensor OPE coefficients which occur in specifically in various

channels ‘Hofman-Maldacena coefficients’, though the OPE’s themselves where known earlier by [22].
8See [29] for earlier work in this direction.
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is relevant for the sum rule. Here we are examining the expectation value of the stress

tensor in a thermal state while [28] looked at the expectation value in a single particle. It

is interesting that for both these situations we obtain the Hofman-Maldacena coefficient.

Finally note 2.23 is a contact term in position space responsible for ensuring the conformal

Ward identity [22]. Its Fourier transform is given by

Î8(ω, p) =
((2a+ b)(−2 + d)− cd)P

−2b− c(1 + d) + a (−6 + d+ d2)
. (2.31)

Summing all the individual contributions in J we obtain

J =
(1− d)P (a(d(d+ 4)− 4) + d(2b− c))

2 (−a (d2 + d− 6) + 2b+ cd+ c)
+

((2a+ b)(−2 + d)− cd)P

−2b− c(1 + d) + a (−6 + d+ d2)
.

(2.32)

We are now in a position to evaluate P −J and write down the sum rule of conformal field

theories in arbitrary dimensions

lim
ε→0+

∫ ∞
−∞

dω

π

δρ(ω)

ω − iε
= δG(0),

=

(
2c+ d(c+ 2bd− cd) + a

(
8 + d

(
−6 + d+ d2

)))
P

2(2b+ c+ cd)− 2a (−6 + d+ d2)
. (2.33)

Let us now discuss the important assumption used in arriving at the above sum

rule (2.33). As mentioned around equation (2.12) we have assumed that no other operator

of dimensions ∆ ≤ d gains expectation value in the thermal vaccum. This assumption

holds true for theories which admit a pure AdSd+1 dual, for example N = 4 Yang-Mills.

However if one turns on chemical potential for R-charges in such theories, other marginal

operators are turned and and the sum rule is corrected. Such corrections modify the r.h.s.

of the sum rule and have been derived holographically in [15] for the shear sum rule and [16]

for sum rules obeyed by current correlators. But, there are also situations in which relevant

operators can be turned on, for example for the quantum Ising model in 2+1 dimensions.9

In such situations one needs to subtract the expectation value of the corresponding opera-

tor multiplied by its OPE coefficient in the integrand which occurs in the l.h.s. of the sum

rule [20].10 Such a situation was also encountered holographically in [16] for the case of M2

branes at finite R-charge. Thus these situations will necessitate the inclusion of additional

terms in the sum rule. However the term in the r.h.s. found in (2.33) will not be modified.

We would also like to emphasise though the general structure of the term in the r.h.s. can

be argued by scaling and the OPE, we have related the constant in front the pressure term

to the data of the conformal field theory.

Let us now briefly discuss the possible modifications of the sum rule for non conformal

field theories of which QCD is a relevant example. In the derivation of the sum rule, there

are two terms that contribute to the r.h.s. J and GR(0)|T = P in (2.18). The coefficient of

9We thank William Witczak-Krempa for bringing this model to our attention and for correspondence

which brought out these points.
10See equation (12) of [20].
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the expectation value of the stress energy tensor in J just depends on the OPE coefficients

of the theory at high energy. Therefore in a theory like QCD which is asymptotically

free and conformal at high energies, these coefficients can be evaluated perturbatively.

However the infrared term GR(0)|T = P is much more difficult to obtain and rely on the

hydrodynamic behaviour of the theory. Further more in all our manipulations especially

in evaluating the one point function of the stress energy tensor we have used the relation

ε = (d−1)P which is true only in conformal field theories. Also note that these expectation

values depend on coupling and are evaluated at low energies of the theory. Thus taking

these inputs in one can evaluate sum rules for non-conformal field theories. QCD is an

example where such sum rules have been evaluated [3]. Here one can see in the analysis,11

the coefficient J is evaluated perturbatively. However, there are other possible marginal

operators that can gain expectation values in the thermal vacuum eg. TrF 2. These in

principle depend on ε − 3P and have not yet been carefully evaluated.12 Therefore in

conclusion, the term involving the high energy there point function J in the sum rule can

be obtained using a perturbative analysis, however there are usually other terms that are

sensitive to the non-conformal nature of the theory and one needs to analyse them carefully.

3 Check from holography

In this section we evaluate the δGR(0), the r.h.s. of the sum rule in (2.33) in holography.

We do this in two different ways. First we use the values of the parameters a, b, c obtained

by evaluating the three point function of stress tensor from AdSd+1 in [23] and determine

δGR(0). We then evaluate δGR(0) more directly by considering a black hole in AdSd+1

and evaluating the retarded Green’s function. In both cases the answer reduces to

δGR(0) =
d

2(d+ 1)
ε. (3.1)

This provides a consistency check within holography of the sum rule in (2.33).

3.1 δGR(0) using the 3-point function of stress tensor

The parameters a, b, c which determine the three point function of stress tensor evaluated

in AdSd+1 are usually given in terms of A,B, C which are linearly related to a, b, c [23, 30]

a =
A
8
, b =

B − 2A
8

, c =
C
2
. (3.2)

The three parameters A,B and C in general AdSd+1 upto the overall Newton’s constant in

d+ 1 dimensions are given by [23]13

A = 3∆da1, B = ∆d(2a1 + a2 − 2a3)

C = ∆d(2a4 + a5). (3.3)

11See equation (37) of [3].
12The sum rule for the bulk channel in QCD has also been evaluated in [3]. Here too the high energy

contribution can be determined from a perturbative calculation.
13See equations (3.24), (3.26) of [23].
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where,

∆d =
dΓ (d)

2πd(d− 1)2
, a1 =

4d3

3− 3d
,

a2 = −
4
(
6 + d

(
−4− 6d+ 3d3

))
3(−1 + d)

, a3 = − 2(6 + d(−7 + d(−6 + 5d)))

3(−1 + d)
,

a4 =
1

3

(
−1 +

1

−1 + d
+ 4d− 3d3

)
, a5 =

1

3

(
5 +

1

−1 + d
− 5d

)
. (3.4)

Now using (3.3) we find the parameters determining the three point function of the stress

tensor are given by

a = − d4π−dΓ[d]

4(−1 + d)3
,

b = −
d
(
1 + (−3 + d)d2

)
π−dΓ(1 + d)

4(−1 + d)3
,

c =
d3(1− 2(−1 + d)d)π−dΓ(d)

4(−1 + d)3
. (3.5)

Finally substituting these values into the coefficient δGR(0) of the sum rule given in (2.33)

we obtain

δGR(0) =

(
2c+ d(c+ 2bd− cd) + a

(
8 + d

(
−6 + d+ d2

)))
P

2(2b+ c+ cd)− 2a (−6 + d+ d2)
,

=
(−1 + d)dP

2(1 + d)
,

=
dε

2(d+ 1)
. (3.6)

Thus the relatively complicated rational expression in terms of a, b, c reduces to a simple

expression which just depends on the dimension d.

3.2 δGR(0) from the AdSd+1 black hole

In this section we evaluate δGR(0) directly by studying the retarded Green’s function in

the AdSd+1 black hole background. This method was originally used for obtaining the

holographic sum rule in d = 4 dimensions in [3] and then further in [14–16] for other

dimensions and more general situations. We will follow the systematic approach developed

in [15]. The geometry dual to a conformal field theory in d dimensions at finite temperature

T is given by the Schwarzschild black hole in AdSd+1 at the Hawking temperature T . The

metric and the Hawking temperature is given by14

ds2 =
dr2

r2f(r)
+ r2(−f(r)2dt2 + dx2

1 · · ·+ dx2
d−1), (3.7)

f(r) = 1−
(
r+

r

)d
, T =

dr+

4πr
.

14See for example in [31].
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r+ is the radius of the Horizon and for convenience we have set the radius of AdSd+1 to

unity. The retarded shear correlator is obtained by consider the fluctuation δgxy of the

metric which is dual to the stress tensor Txy. Let us define the fluctuation as

δgxy = r2φ(r)eiωτ . (3.8)

This perturbation obeys the equation of motion of a massless scalar in the background,

which is given by

d2φ

dr2
+

(
d− 1

r
+
F ′

F

)
dφ

dr
+
ω2

F 2
φ = 0, (3.9)

F = r2f(r). (3.10)

The retarded Greens function is obtained by imposing in going boundary conditions at

the horizon r+ and obtaining the solution to φ at the boundary r → ∞ [32]. The Greens

function is given by

GRxy,xy(ω, T ) = Ĝ(ω, T ) +Gcounter(ω, T ) +Gcontact(T ),

Ĝ(ω, T ) =
−1

2κ2
lim
r→∞

Frd−1φ′

φ
, (3.11)

where κ is the gravitational coupling constant. Gcounter(ω) are the counter terms which

are necessary to remove the log(r) divergences. These are independent of the temperature

and are identical to the counter terms one needs at T = 0. Hence they cancel on con-

sidering δGR(ω). Now the contact term in the Greens function arises from the frequency

independent term in the effective action and is given by

Gcontact(T ) = P. (3.12)

Thus on considering δGR(0), both the counter term as well as the contact term cancel.

The counter terms cancel since they are temperature independent, while the contact term

cancels because at zero frequency we have ĜR(0, T ) = P . The terms which contribute to

δGR(0) arise from the temperature dependent terms which are finite in the high frequency

ω → i∞ limit of ĜR(0, T ). This leads us to study the function Ĝ(ω, T ) as ω → ∞. It is

convenient to introduce the variables

iλ =
ω

r+
, y =

λr+

r
. (3.13)

In these variables we are examining the limit λ→∞. The equation for φ becomes,

d2φ

dy2
− 1

f(y)y

(
d− 1 +

yd

λd

)
dφ

dy
− φ

f2(y)
= 0, (3.14)

where,

f(y) = 1− yd

λd
. (3.15)
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Expanding the differential equation (3.14) as a a power series in λ we obtain

d2φ

dy2
−
(
d− 1

y
+
dyd−1

λd
+ · · ·

)
dφ

dy
−
(

1 +
2yd

λd
+ · · ·

)
φ = 0. (3.16)

It is easy to see that the leading equation in λ is the equation of the minimally coupled

scalar in pure AdSd+1, the sub-leading terms in λ account for the presence of the black

hole. Lets us solve for the function gR(ω) perturbatively in 1
λ . We define

g =
φ′(y)

φ(y)
=
∞∑
n=0

gn
λnd

. (3.17)

Substituting the expansion for g in (3.16) and matching terms order by order in 1
λ we

obtain the following equations for the leading terms.

g′0 − g2
0 −

d− 1

y
g0 − 1 = 0,

g′1 +

(
2g0 −

d− 1

y

)
g1 − dg0y

d−1 − 2yd = 0. (3.18)

Note that that equation for the zeroth order term g0 is identical to that obtained in the

pure AdSd+1 background. The two solutions to g0, given by,

g
(1)
0 = −

K d−2
2

(y)

K d
2
(y)

, g
(2)
0 = −

I d−2
2

(y)

I d
2
(y)

. (3.19)

Now the second solution corresponds to the solution of φ which diverges at the origin

y → ∞. Therefore in the strict λ → ∞ we must discard the second solution. In [15], it

has been shown in detail that the second solution does not contribute to the finite term

as λ→∞. Thus we look for the expansion of the first solution, substituting this solution

into the second equation we obtain g
(1)
1

g
(1)
1 =

1

yK d
2
(y)2

∫ y

0
(2yd + g0dy

d−1)yK d
2
(y) +

C

yK d
2
(y)2

, (3.20)

where the term containing the arbitrary constant C is the homogeneous solution. We set

this constant to zero since the presence of C makes g
(1)
1 grow exponentially at y →∞ and

thus alters the boundary condition set by g
(0)
1 . Therefore we have

g
(1)
1 =

1

yK d
2
(y)2

∫ y

0
(−dydK d

2
(y)K d−2

2
(y) + 2yd+1K d

2
(y)2),

=
dyd−1

2
+
yd+1

d+ 1

(
1−

K d+2
2

(y)2

K d
2
(y)2

)
. (3.21)

Here we have integrated each of the terms in the integrand by parts and then we use

relations for the derivatives of the Bessel functions. Now to obtain the retarded Greens

function we need the behavior of g(1) close to the boundary y → 0, which is given by

lim
y→0

g
(1)
1 (y) = −d(d− 1)

2(1 + d)
yd−1 +

(2 + d)

2 + d− d2
yd+1 +O(yd+3). (3.22)
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Now substituting the expansion (3.17) into the definition of the Greens function we obtain

lim
λ→∞

Ĝ(ω, T ) =
rd+
2κ2

lim
y→0

(
λd

yd−1
g

(1)
0 −

d(d− 1)

2(d+ 1)

)
+O

(
1

λd

)
, (3.23)

where we have used the change of variables in (3.13) from r to y. Note that the leading

term is proportional to (λr+)d = (−iω)d and therefore independent of temperature. This

term will be present also in pure AdSd+1 and therefore will cancel on considering δGR(ω).

Thus the finite term in the high frequency limit in addition to the contact term that one

needs to subtract to regularize the Greens function is the second term in (3.23). As we

have argued before the contact term is independent of the frequency and will cancel since

GR(0) = P . Using all these inputs we have

δGR(0) =
rd+
2κ2

d(d− 1)

2(d+ 1)
. (3.24)

We can now rewrite this expression in terms for the field theory variables using the relation

for pressure [31]

P =
rd+
2κ2

. (3.25)

This results in

δGR(0) =
d(d− 1)

2(d+ 1)
P =

d

2(d+ 1)
ε. (3.26)

The above result for the holographic shear sum rule was first derived in [14]. The expression

for δGR(0) in (3.26) coincides with the evaluation of δGR(0) in the previous section given

in (3.6), which used the input from the three point function of the stress tensor evaluated

holographically. However the evaluation of δGR(0) in this section did not rely on the

explicit expression given in given in (2.33) in terms of the parameters of the three point

function a, b, c and therefore provides a consistency check for the general sum rule derived

in (2.33).

4 Sum rule, Hofman-Maldacena variables, causality bounds

The sum rule in (2.33) is a ratio of a linear combination of the constants a, b, c which

determine the three point function. The variables t2, t4 which were used to characterize

the positive of energy flux [21] were also related to the ratios of linear combinations of the

constants a, b, c. In d dimensions, this relation is given by [25]

t2 = 2
(d+ 1)

d

((d− 2)(d+ 2)(d+ 1)A+ 3d2B − 4d(2d+ 1)C)
((d− 1)(d+ 2)A− 2B − 4(d+ 1)C)

,

t4 = −(d+ 1)

d

((d+ 2)(2d2 − 3d− 3)A+ 2d2(d+ 2)B − 4d(d+ 1)(d+ 2)C)
((d− 1)(d+ 2)A− 2B − 4(d+ 1)C)

, (4.1)

where A,B, C are linearly related to a, b, c by (3.2). Thus we have

t2 =
2(1 + d)(−d(c− 3bd+ 2cd) + a(−1 + d)(4 + d(8 + d)))

d (−2b− c(1 + d) + a (−6 + d+ d2))
,

t4 =
(1 + d)(2 + d)

(
d(c− 2bd+ cd) + 3a

(
1 + d− 2d2

))
d (−2b− c(1 + d) + a (−6 + d+ d2))

. (4.2)
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We can use (4.2) and re-write δGR(0) in terms of t2, t4 which results in

δGR(0) =

(
(−1 + d)d

2(1 + d)
+

(3− d)t2
2(−1 + d)

+

(
2 + 3d− d2

)
t4

(−1 + d)(1 + d)2

)
P. (4.3)

In this form of the sum rule and from the result of the previous section, it is immediately

clear that for d > 3 theories which admit a holographic dual of Einstein gravity in AdSd+1

lie at the origin in the t2, t4, i.e. at t2 = t4 = 0. However as expected for d = 3, we have

only one condition t4 = 0. This reflects the fact that there are only 2 independent parity

even constants which determine the three point function of the stress tensor in d = 3 [22]

as opposed to 3 for d > 3. Therefore the fact that we obtained that the coefficient of t2
vanishes in d = 3 is a consistency check on our derivation of the sum rule.

We have seen that evaluation of the sum rule in a 2 derivative theory of gravity reduces

to (3.26). This implies that that a necessary condition for any conformal field theory to

admit a Einstein gravity dual is that the shear sum rule must satisfy (3.26). It is interesting

to examine if this necessary condition on the sum rule for Einstein gravity dual, that is

δGR(0) =
d(d− 1)

2(d+ 1)
P, (4.4)

is independent of the necessary constraint of the equality of the â = ĉ central charges for

d = 4.15 The equality of these central charges result in [21],.

â

ĉ
=

9a− 2b− 10c

3(14a− 2b− 5c)
= 1. (4.5)

This implies that we have the relation

33a− 4b− 5c = 0. (4.6)

We have assumed that 14a − 2b − 5c 6= 0. Now let us examine constraint given by the

condition (4.4) for d = 4. We obtain the linear relation

− 244a+ 68b− 55c = 0. (4.7)

which is independent of (4.6).

Finally let us examine the implications of the positivity of energy flux [21]constraints

on the sum rule. These constraints have been recently shown to be related to causality and

unitarity of the conformal field theory [28, 33, 34]. For conformal field theories in d > 3

dimensions, positivity of energy implies the following bounds on the parameters t2, t4 [24]

1− 1

d− 1
t2 −

2

(d+ 1)(d− 1)
t4 ≥ 0, (4.8)

1− 1

d− 1
t2 −

2

(d+ 1)(d− 1)
t4 +

1

2
t2 ≥ 0,

1− 1

d− 1
t2 −

2

(d+ 1)(d− 1)
t4 +

d− 2

d− 1
(t2 + t4) ≥ 0.
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Figure 1. The allowed domain for t2 and t4 in d = 4 conformal field theories.

These bounds imply that conformal field theories which obey the positivity of energy/

causality constraints lie in the region bounded by 3 lines in the t2, t4 plane. For d = 4, this

region is shown as the shaded triangle in 1. Now given these inequalities in (4.8) we can

obtain bounds on the function δGR(0) given in (4.3). The possible extrema of δGR(0) will

lie on the 3 vertices. This leads us to the following bounds on the sum rule

1

2
P ≤ δGR(0) ≤ d

2
P. (4.9)

Thus the sum rule for any conformal field theory in d > 3 obeying the Causality bounds is

constrained to lie between P
2 and and d

2P .

For d = 3, ignoring the parity odd term in the three point function of the stress tensor

found by [35], it can be seen that the first inequality holds reduces to an equality [28].

Therefore we obtain

t2 = 2− t4
2
. (4.10)

The remaining two inequalities reduce to

− 4 ≤ t4 ≤ 4. (4.11)

This implies that the sum rule for parity even conformal field theories in d = 3 is constrained

to lie between
P

2
≤ δGR(0) ≤ P. (4.12)

5 Applications

The parameters a, b and c completely specifies the three point function of the stress tensor

in a conformal field theory. In this section we will evaluate δGR(0) using the expression

in (2.33) for well studied examples of conformal field theories in d = 3, 4, 6 dimensions.

15We denote these central charges as â, ĉ to distinguish them from the constants a, c.
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All the theories that we consider here except that of Chern-Simons theory coupled to

fundamental fermions have gravitational duals and are supersymmetric. We will show that

for the supersymmetric theories considered here which admit a gravity dual, the coefficient

in δGR(0) evaluated at at weak coupling of these theories agrees precisely with that in

gravity. This strongly suggests that the sum rule is not renormalized for these theories.

5.1 d = 3

Substituting for d = 3 in the sum rule (2.33) we find that it takes the form

δGR(0) =
P (−13a− 9b+ 2c)

6a− 2(b+ 2c)
. (5.1)

Free conformal field theories in d = 3 consist of ns real bosons and nf Dirac fermions. The

contribution of these fields to the constants a, b, c are given by [22]

a =
27ns

4096π3
, b = −

9(8nf + 9ns)

4096π3
, c = −

9(16nf + ns)

4096π3
. (5.2)

A well studied example of a theory in d = 3 which admits AdS4 as its gravity dual is that

of the M2-brane. While the theory of interacting multiple M2-branes is not known, the

field content of a single M2-brane is known to consist of 8 real scalars, and 8 Majorana

fermions which are equivalent to 4 Dirac fermions. The contribution of this field content

to a, b, c is given by

a =
27

8(4π)3
, b =

−117

8(4π)3
, c =

−81

8(4π)3
. (5.3)

Evaluating the sum rule we obtain

δGR(0)|M2 =
3P

4
. (5.4)

This value for the sum rule precisely agrees with that obtained in gravity for d = 3 given

in (3.26).

Another theory which admits AdS4 as its gravity dual is the ABJM theory [36]. The

values of a, b, c for the interacting theory is not known. However at weak coupling, the

theory consists of 3 sets of 8 real scalars with N2 internal components and 3 sets of 4 Dirac

fermions with N2 internal components.16 Thus the values of a, b, c for the ABJM theory

is 3N2 times that of the M2-brane given in (5.3). The sum rule (5.1) is given by the ratio

of these constants and remains the same as that of the M2-brane. Thus for the ABJM

theory, the sum rule at weak coupling agrees precisely with the result at strong coupling.

δGR(0)|ABJM =
3P

4
. (5.5)

16The U(N)×U(N) Chern-Simons field is not dynamical.
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Large N Chern-Simons vector theories. Recent work of [37–40] have shown that

the planar limit of U(N) Chern-Simons theories at level k coupled to fermions or bosons

in the fundamental representation are solvable in the large N limit. Let us first restrict to

the case of the fermionic theory. Using the analysis of [41], it can be seen that the three

point function of the stress tensor of the interacting theory can be written as

〈TTT 〉int fermion = ns(f)〈TTT 〉free boson + nf (f)〈TTT 〉free fermion + γ(f)〈TTT 〉parity odd,

(5.6)

where

ns(f) = 2N
sin θ

θ
sin2 θ

2
, nf (f) = 2N

sin θ

θ
cos2 θ

2
, (5.7)

c(f) = N
sin2 θ

θ
, θ =

Nf

k
.

The f in the brackets refers to the fact that the theory consists of fundamental fermions

and a summary of the derivation of this result is given in appendix C. The parity odd term

does not play any role in the shear channel. Therefore we can treat the theory as a theory

of ns(f) free real scalars and nf (f) free real fermions and therfore
nf (f)

2 complex fermions.

Evaluating the parameters a, b, c using (5.2) we obtain

a =
27N sin2

(
θ
2

)
sin(θ)

2048π3θ
, (5.8)

b =
9N sin(θ)(5 cos(θ)− 13)

4096π3θ
,

c = −9N sin(θ)(7 cos(θ) + 9)

4096π3θ
. (5.9)

Using these values in the sum rule (5.1) we obtain

δGR(0) = −1

4
P (cos θ − 3). (5.10)

First note that the causality bounds for the sum rule given in (4.12) is satisfied as θ is

dialled from θ = 0, cos θ = 1 the theory of free fermions to θ = π, cos θ = −1. At θ = π,

the theory of free bosons. Another interesting observation from this result for the sum rule

is that at cos θ = 0, the result for the sum rule agrees with that obtained from Einstein’s

theory in AdS4. The is because the theory at this point , effectively consists of nf free

complex fermions and ns real scalars with ns
nf

= 2. In fact it can be seen that for any theory

which satisfies ns
nf

= 2 the sum rule agrees with that in gravity. The M2-brane theory as

well as the ABJM theory and other related theory which admit a gravity dual satisfies the

condition ns/nf = 2. It will be interesting to study if there is any simplification for the

dual higher spin Vasiliev theory at θ = π
2 .

5.2 d = 4

In d = 4 The sum rule in (2.33) takes the following form for d = 4.

δGR(0) =
P (5c− 16(2a+ b))

14a− 2b− 5c
. (5.11)
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The values of a, b, c for a theory consisting of free ns real scalars, nf Dirac fermions and

nv vectors is given by

a =
1

27π6
(ns − 54nv), b = − 1

54π6
(8ns + 27nf ), (5.12)

c = − 1

27π6
(ns + 27(nf + 8nv)).

Consider the case of N = 4 super Yang-Mills which consists of 6 real scalars, 4 Majorana

fermions which is equivalent to 2 Dirac fermions and 1 vector each in the adjoint represen-

tation of the gauge group SU(Nc). Substituting these values for ns, nf and nv in to (5.12)

we obtain

a = − 16

9π6
(N2

c − 1), b = − 17

9π6
(N2

c − 1), c = − 92

9π6
(N2

c − 1). (5.13)

With these values the sum rule (5.11) reduces to

δGR(0) =
6P

5
. (5.14)

which precisely agrees with the gravity result (3.26) for d = 4. This result that the sum rule

at weak coupling for N = 4 Yang-Mills agrees with that in gravity was also observed by [3].

As another consistency check for the bounds on the sum rule we have obtained in (4.9)

let us examine the case of free SU(N) Yang-Mills in d = 4. The r.h.s. of the shear sum

rule was evaluated in [3] and was shown to be 2P which saturates the upper bound bound

in d = 4.

5.3 d = 6

In d = 6, the free conformal field theories consist of ns real scalars, nf Dirac fermions and

nt, rank 2-forms. In such a theory, the values of a, b, c are given by

a =
27(−250nt + ns)

125π9
, (5.15)

b = −
18(125(6nt + nf ) + 9ns)

125π9
,

c = −
9 (125(96nt + 8nf ) + 16ns)

250π9
.

The contribution of real scalars and Dirac fermions to the constants a, b, c can be obtained

from [22], while the contribution of self dual tensors has been evaluated in [25]. The sum

rule in d = 6 takes the form,

δGR(0) = −2P (56a+ 18b− 7c)

36a− 2b− 7c
. (5.16)

The most studied theory in d = 6 is that of the M5 brane which admits a holographic

dual. While the theory of multiple M5-branes is not known, we can consider the theory of

a single M5-brane whose field content consists of the (2, 0) tensor multiplet which is made
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up of a single self dual tensor nt = 1/2, 2 Weyl fermions which is equivalent to a single

Dirac fermion and 5 real scalars. Using this field content we obtain

a = − 2592

100π9
, b = − 7848

100π9
, c = −25488

100π9
. (5.17)

Substituting these values into the sum rule (5.16) we obtain

δGR(0) =
15P

7
. (5.18)

Again, the agrees with the result from gravity for d = 6 given in (3.26).

5.4 Gauss bonnet gravity

As a simple consistency check, we will now verify that the general bounds derived for the

sum rule in (4.9) is consistent with the existing bound on the coefficient of the coupling

of the Gauss-Bonnet term in AdSd+1 with d ≥ 4. Bounds for the Gauss-Bonnet coupling

λGB were obtained in [25] using the causality bounds of Maldacena and Hofman given in

in (4.8). From the analysis of [25] we obtain

t4 = 0

t2 =
4f∞λGB

1− 2f∞λGB

(d)(d− 1)

(d− 2)(d− 3)
(5.19)

where,

f∞ =
1−
√

1− 4λGB

2λGB
(5.20)

Now causality bounds in (4.8) restrict the Gauss-Bonnet term to lie within

−(3d+ 2)(d− 2)

4(d+ 2)2
≤ λGB ≤

(d− 2)(d− 3)(d2 − d+ 6)

4(d2 − 3d+ 6)2
(5.21)

Let us verify that within this window of the Gauss-Bonnet coupling, the bound for the sum

rule in 4.9 is satisfied. Substituting the values of t2, t4 for Gauss-Bonnet gravity in (4.3)

we obtain

δG(0) =

d(d− 1)

2(d+ 1)
+ d

(
1− 1√

1−4λGB

)
(d− 2)

P (5.22)

The bounds on the Gauss-Bonnet coupling in (5.21) imply that(
1

2
+

1

d+ 1

)
P ≤ δGGB(0) ≤

(
d

2
− d− 1

2(d+ 1)

)
P (5.23)

It is easy to see that this is within the general bound derived for the sum rule in (4.9).

This result therefore serves as a minor consistency check on the coefficient of t2 in (4.3)

since t4 is vanishing in Gauss-Bonnet gravity.
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6 Retarded Greens function in other channels

In this section we study the high frequency behavior of the Greens function in the vector

and the sound channels. We will Fourier transform the OPE in these channels and obtain

the finite term. After factorizing the appropriate tensor structure in these channels we

show that the finite term in these channels contains the Hofman-Maldacena coefficients

aT,1 =
1

8

d(b(2− 3d) + 2cd− a(−8 + d(6 + d)))P

(−(2b+ c+ cd) + a (−6 + d+ d2))
, (6.1)

aT,2 = − 1

32

(4a+ 2b− c)(−2 + d)d

(−2b− c(1 + d) + a (−6 + d+ d2))
.

6.1 The vector channel

The Greens function and its Fourier in this channel is defined by the correlator

GR;V (t, x) = iθ(t)〈[Txt, Txz]〉, (6.2)

GR;V (ω, pz) =

∫
ddxeiωt−ipz .ziθ(t)〈[Txt, Txz]〉.

As argued in the case of the shear channel, the high frequencybehavior of this Greens can be

obtained by studying the OPE of the stress tensors in these channels. In the appendix A.2

we have evaluated the Fourier transform of the OPE coefficient Âxtxzαβ(ω, pz)〈Tαβ〉. The

result is given by

Âxτxz(ω, pz) = − pzω

(p2
z + ω2)

G2(ω, pz), (6.3)

where

G2(ω, pz) = −δGR(0) + aT,1
8dp2

z

ω2 + p2
z

P. (6.4)

δGR(0) is the r.h.s. of the shear sum rule defined in (2.33) and aT,1 is the Hofman-Maldacena

coefficient in the vector channel defined as

aT,1 =
1

8

b(2− 3d) + 2cd− a(−8 + d(6 + d))

−(2b+ c+ cd) + a (−6 + d+ d2)
. (6.5)

It is indeed interesting that both the r.h.s. of the shear sum rule as well as the 2nd Hofman-

Maldacena coefficient appears in the high frequencybehavior in this channel. Further more

note from (6.4), that starting from the term ( pzω )2, the expansion of G2(ω, pz) is entirely

determined by the Hofman-Maldacena coefficient aT,1. Expressed in terms of t2 and t4,

this takes the form:

G2(ω, pz) = −δGR(0) +

(
−4(d− 3)t2

(d2 − 1)
+

16t4
(d− 1)(d+ 1)2

− 8

(d+ 1)

)
dp2

z

p2
z + ω2

P (6.6)

For d = 3, we see that the expression is independent of t2.
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For theories with a gravity dual, this becomes

G2(ω, pz) = −d
(

d− 1

2(d+ 1)
+

8

d+ 1

p2
z

p2
z + ω2

)
P, (6.7)

which agrees with the supersymmetric examples we considered in section 5. For parity odd

Chern-Simons theory coupled to fundamental matter, we expect an additional contribution

from the parity-odd term in the three-point function of the stress tensor.

6.2 The sound channel

We now examine the sound channel in which the retarded Greens function and its Fourier

transform is defined by

GR;S(t, x) = iθ(t)〈[Ttt, Ttt]〉 (6.8)

GR;S(ω, pz) =

∫
ddxeiωt−ipzziθ(t)〈[Ttt, Ttt]〉

The momentum is along any spatial direction. Again we can resort to the OPE to study the

high frequency behavior. In the appendix (A.3) we Fourier transform the OPE coefficient

corresponding to this channel and obtain

Âttttαβ(ω, pz)〈Tαβ〉 =
p4
z

(p2
z + ω2)2

G3(ω, pz). (6.9)

The function G3(ω, pz) admits an expansion which is given by

G3(ω, pz) =

(
F1

(
ω

pz

)4

+ F2

(
ω

pz

)2

+ F3 + aT,2
64(pzω )2

1 + (pzω )2

)
P. (6.10)

Here F1, F2, F3 are ratios of linear functions of the constants a, b, c. They can be written in

the variables t2, t4. However what is interesting is that again starting from the term ( pzω )2

the entire expansion is determined by aT,2, the Hofman-Maldacena coefficient in the tensor

channel which is given by

aT,2 = − 1

32

(4a+ 2b− c)(−2 + d)d

(−2b− c(1 + d) + a (−6 + d+ d2))
. (6.11)

While the expressions for F1, F2, F3 in terms of a, b, c or t2, t3 in arbitrary dimensions

are fairly lengthy, we can present them for theories in d = 3, d = 4 and d = 6 with a

gravitational dual. We note that, while aT,2 is independent of t2 for d = 3, some of the

remaining terms in the expression are not independent of t2 for d = 3.

For d = 3, we set t2 = 2 and t4 = 0, and obtain:

G3

∣∣∣
d→3

=

(
32

3
π − 151

18

)
ω4

p4
z

P +

(
64

3
π − 115

12

)
ω2

p2
z

P +

(
32πP

3
− P

36

)
+

3p2
zP

8(ω2 + p2
z)

(6.12)
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For d = 4 and d = 6, we set t2 = t4 = 0, and obtain:

G3

∣∣∣
d→4

=

(
6π2 − 527

10

)
ω4

p4
z

P +

(
12π2 − 3401

60

)
ω2

p2
z

P +

(
6π2 − 131

60

)
P +

16p2
zP

45(ω2 + p2
z)

G3

∣∣∣
d→6

=

(
10

3
π3 − 8552

63

)
ω4

p4
z

P +

(
20

3
π3 − 15046

105

)
ω2

p2
z

P +

(
10π3

3
− 1598

315

)
P

+
48p2

zP

175(ω2 + p2
z)

(6.13)

These results agree with the supersymmetric examples of section 5.

7 Conclusions

We have derived the shear sum rule obeyed by conformal field theories in dimensions d > 0.

Assuming analyticity in the frequency plane, the sum rule holds when there are no operators

of dimension ∆ ≤ d gain expectation value in the thermal vacuum. The r.h.s. of the sum

rule is determined by constants a, b, c of the three point function of the stress tensor, these

can be written in terms of the Hofman-Maldacena variables t2, t4. We showed that for

theories that admit a dual description in terms of Einstein gravity in AdSd, the r.h.s. of

the sum rule reduces to d
2(d+1)ε. We have also determined bounds on the sum rule using

the causality constraints on t2, t4. One interesting observation in the derivation of the sum

rule is that the high frequency expansion of the Greens function in the shear channel is

determined by the Hofman-Maldacena coefficient aT,0 given in (2.30).

The shear sum rule given in (4.3) was cross checked by evaluating the retarded Greens

function by considering a minimally coupled scalar in AdSd+1. As one can see, this analysis

only tests the coefficient independent of t2, t4 in the sum rule. Note that the vanishing of

the coefficient of t2 for d = 3 in (4.3) is consistent with the fact that that there is only

2 independent parameters determining the three point function of stress tensor in d = 3.

Finally the fact that for Gauss-Bonnet gravity we have shown that the shear sum rule

lies within the general bounds predicted in (4.9) is also a minor consistency check on the

coefficient of t2 since t4 is vanishing in Gauss-Bonnet gravity. However it will be useful to

directly check both the coefficient of t2 and t4 by evaluating the retarded Greens function

in higher derivative theories of gravity. We hope to report on this in the near future.

We have also studied the high frequency expansion of the retarded Greens function in

the vector and sound channels. We observed that again in these channels, the high fre-

quency expansion is determined by Hofman-Maldacena coefficients aT,1, aT,2 given in (6.1)

for the vector and sound channels respectively. It will be interesting to cast this observation

as sum rules in these channels and perform similar consistency checks using holography as

done in this paper for the shear channel. The observation of the appearance of Hofman-

Maldacena coefficients in the OPE of stress tensors have also been made in [28] in the

kinematic regime tuned to study deep inelastic scattering. Here the OPE is taken on an

one particle state of the theory. It will be interesting to relate this to the study done in

this paper where the OPE is taken in the thermal vacuum.
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Finally this work points out that interesting and useful constraints on the spectral

density can be obtained using conformal invariance and causality. It will be rewarding to

explore this direction further.
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A Fourier transform of the OPE

This appendix consists of 3 sub-sections each of which provides the details of the Fourier

transform of the tensor structure of the coefficient Âµνρσαβ of the OPE of the stress tensor

in d > 2 dimensions given in (2.23). Section A.1 deals with the Fourier transform in the

shear channel. Here the indices involved in the OPE of the two stress tensors are spatial

and orthogonal to each other, the OPE considered is 〈TxyTxy〉. Section A.2 evaluates the

Fourier transform in the vector channel where there is one spatial index common in the

stress tensor and one time direction in of the stress tensor. This OPE channel is given by

〈TxtTxz〉. Finally in section A.3 we evaluate the Fourier transform in the sound channel

given by 〈TttTtt〉. In all these channels, the momentum will be taken in the z direction

which is orthogonal to the x, y direction. However our results for the Fourier transform

can be easily extended to momenta in all directions, since we have performed the basic

integrals required in section B with momenta turned on in all directions.

A.1 The shear channel

Let us consider the OPE coefficient Âxyxyαβ . We will finally require only the coefficients

α = β, since we take expectation values in the thermal vacuum. From [22], this tensor

structure is given by

ÂµνρσαβCT =
(d− 2)

d+ 2
(4a+ 2b− c)H1

αβµνρσ(s) +
1

d
(da+ b− c)H2

αβµνρσ(s)

−d(d− 2)a− (d− 2)b− 2c

d(d+ 2)
(H2

µνρσαβ(s) +H2
ρσµναβ(s))

+
2da+ 2b− c
d(d− 2)

H3
αβµνρσ(s)− 2(d− 2)a− b− c

d(d− 2)
H4
αβµνρσ(s)

−2((d− 2)a− c)
d(d− 2)

(H3
µνρσαβ(s) +H3

ρσµναβ(s))
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+
((d− 2)(2a+ b)− dc)

d(d2 − 4)
(H4

µνρσαβ +H4
ρσµναβ)(s)

+(Ch5
µνρσαβ +D(δµνh

3
ρσαβ + δρσh

3
µναβ))Sdδ

d(s),

= I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8, (A.1)

where,

H1
αβxyxy(s) =

(
∂α∂β −

1

d
δαβ∂

2

)(
x2y2

(t2 + x2 + y2 + z2 + x2
1 + · · ·+ x2

d−4)
d+2
2

)
,

H2
αβxyxy(s) = (∂2

x + ∂2
y)

1

(t2 + r2)
d−2
2

(
sαsβ
t2 + r2

− 1

d
δαβ

)
,

H3
αβxyxy(s) =

(
∂α∂β −

1

d
δαβ∂

2

)
1

(t2 + r2)
d−2
2

,

H4
αβxyxy(s) =

((
2δαxδβy −

2

d
δαβ

)
∂2
y +

(
2δαyδβy −

2

d
δαβ

)
∂2
x

)
1

(t2 + r2)
d−2
2

,

H3
xyxyαβ(s) = (δxαδyβ + δyαδxβ)∂x∂y

1

(t2 + r2)
d−2
2

,

H4
xyxyαβ(s) =

(
2δyα∂y∂β + 2δxα∂x∂β −

2

d
δαβ(∂2

y + ∂2
x)

)
1

(t2 + r2)
d−2
2

,

h5
xyxyαβ = 2δyαδyβ + 2δxαδxβ −

4

d
δαβ ,

CT =
8π

d
2

Γ(d2)

(d− 2)(d+ 3)a− 2b− (d+ 1)c

d(d+ 2)
,

C =
(d− 2)(2a+ b)− dc

d(d+ 2)
, Sd =

2π
d
2

Γ(d2)
. (A.2)

To Fourier transform these tensor structures, we will first Fourier transform the tensor

structures on which the derivatives act. For example for H1(s) defined in (A.2) we will

Fourier transform the expression in the curved brackets and then the action of the deriva-

tives is obtained by inserting the appropriate momenta. We consider each of the terms Ii
with i = 1 · · · 8 individually. For the moment, let us restrict our case for d > 3. This is

because we can find 2 directions x, y perpendicular to the momentum direction z. How-

ever the as we will discuss towards the end of this section we have verified that the final

expression for the sum rule for d = 3 is a natural extrapolation of the result for d > 3 to

d = 3.

Fourier transform: I1.

I1(s) =
d− 2

d+ 2
(4a+ 2b− c)H1

αβxyxy(s)〈Tαβ(0)〉,

Î1(ω, p) =
d− 2

d+ 2
(4a+ 2b− c)H1

αβxyxy(ω, p)〈Tαβ(0), 〉
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d−1∑
i=1

H1
iixyxy(ω, p = pz) =

[
(d− 1)

(
p2 + ω2

)
d

− p2

]

×
∫
ddxe−ipz−iωt

(
x2y2

(t2 + x2 + y2 + z2 + x2
1 + · · ·+ x2

d−4)
d+2
2

)
,

=
πd/2

(
dω2 − p2 − ω2

)
dΓ
(
d
2 + 1

)
(p2 + ω2)

. (A.3)

Here to perform the Fourier transform we have used the integral of type 3 derived in

section B.6. Similarly the Fourier transform for the time component is given by

H1
ttxyxy(ω, p) = −

πd/2
(
dω2 − p2 − ω2

)
dΓ
(
d
2 + 1

)
(p2 + ω2)

. (A.4)

Thus combining these expressions along with the expectation value of the stress tensor in

the thermal vacuum we obtain

I1(ω, p) =
(d− 2)(4a+ 2b− c)

d+ 2

πd/2
(
dω2 − p2 − ω2

)
dΓ
(
d
2 + 1

)
(p2 + ω2)

(P − εE). (A.5)

Fourier transform: I2.

I2(s) =
1

d
(da+ b− c)H2

αβxyxy(s)〈Tαβ(0)〉 (A.6)

, Î2(ω, ~p) =
1

d
(da+ b− c)H2

αβxyxy(ω, ~p)〈Tαβ(0)〉,

H2
αβxyxy(ω, ~p) = (−p2

x − p2
y)

∫
ddxe−i~p·~r−iωt

1

(t2 + r2)
d−2
2

(
sαsβ
t2 + ~r 2

− 1

d
δαβ

)
,

d−1∑
i=1

H2
iixyxy(ω, ~p) =

(
−p2

x − p2
y

)(2πd/2
(
(d− 3)

(
~p 2
)

+ (d− 1)ω2
)

Γ
(
d
2

)
(~p 2 + ω2)2

−
(d− 1)

(
4πd/2

)
d
(
Γ
(
d
2 − 1

)
(~p 2 + ω2)

)).
Here ~p refers to all the spatial directions of the momentum, similarly ~r refers to the spatial

co-ordinate. The Fourier transform has been performed using (B.3) and (B.5) Now it is

clear that on taking the limit px, py → 0, the above expression vanishes.

lim
px,py→0

d−1∑
i=1

H2
iixyxy(ω, ~p) = 0. (A.7)

Similarly it can be shown that

lim
px,py→0

H2
ttxyxy(ω, ~p) = 0. (A.8)

Therefore we obtain

I2(ω, p = pz) = 0. (A.9)
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Fourier transform: I3.

I3(s) = −2
d(d− 2)a− (d− 2)b− 2c

d(d+ 2)
H2
xyxyαβ(s)〈Tαβ(0)〉,

Î3(ω, ~p) = −2
d(d− 2)a− (d− 2)b− 2c

d(d+ 2)
H2
xyxyαβ(ω, ~p)〈Tαβ(0)〉,

H2
xyxyxx(s) = H2

xyxyyy(s) =

(
2− 4

d

)
∂x∂y

xy

(t2 + r2)
d
2

,

H2
xyxyzz(s) +

d−1∑
i=4

H2
xyxyii(s) = −4(d− 3)

d
∂x∂y

xy

(t2 + r2)
d
2

. (A.10)

Using these inputs and the result for the Fourier transform we obtain

d−1∑
i=1

H2
xyxyii(ω, ~p) =

16πd/2(pxpy)
2

dΓ
(
d
2

)
(ω2 + ~p 2)2 . (A.11)

Thus taking the limit we obtain

lim
px,py→0

d−1∑
i=1

H2
xyxyii(ω, ~p) = 0. (A.12)

Similarly we have

lim
px,py→0

H2
xyxytt(ω, ~p) = 0. (A.13)

Therefore we conclude that the contribution of Î3 vanishes.

Î3(ω, p = pz) = 0. (A.14)

Fourier transform I4.

I4(s) =
2da+ 2b− c
d(d− 2)

H3
αβxyxy(s),

Î4(ω, p) =
2da+ 2b− c
d(d− 2)

H3
αβxyxy(ω, p),

d−1∑
i=1

H3
iixyxy(ω, p = pz) =

4πd/2
(
dω2 − p2 − ω2

)
dΓ
(
d
2 − 1

)
(p2 + ω2)

. (A.15)

Similarly we have

H3
ttxyxy(ω, p) = −

4πd/2
(
dω2 − p2 − ω2

)
dΓ
(
d
2 − 1

)
(p2 + ω2)

. (A.16)

Therefore combining these tensor structures along with the expectation value of the stress

tensor we obtain

Î4(ω, p = pz) =
(2ad+ 2b− c)
d(d− 2)

4πd/2
(
dω2 − p2 − ω2

)
dΓ
(
d
2 − 1

)
(p2 + ω2)

(P − εE). (A.17)
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Fourier transform: I5.

I5(s) = −2(d− 2)a− b− c
d(d− 2)

H4
αβxyxy(s)〈Tαβ〉,

Î5(ω, p) = −2(d− 2)a− b− c
d(d− 2)

H4
αβxyxy(ω, p)〈Tαβ〉. (A.18)

Now the tensor structure H4
αβxyxy is given by

H4
αβxyxy(s) =

[(
2δαxδβy −

2

d
δαβ

)
∂2
y +

(
2δαyδβy −

2

d
δαβ

)
∂2
x

]
1

(t2 + r2)
d−2
2

. (A.19)

Due to the presence of the external derivatives ∂2
x, ∂

2
y , the Fourier transform of this tensor

structure will have these derivatives replaced by p2
x, p

2
y respectively. Thus in the limit

px, py → 0, the Fourier transform vanishes and we obtain

H4
iixyxy(ω, p = pz) = H4

ttxyxy(ω, p = pz) = 0. (A.20)

Therefore we conclude

Î5(ω, p = pz) = 0. (A.21)

Fourier transform: I6.

I6(s) = −2((d− 2)a− c)
d(d− 2)

2H3
xyxyαβ(s)〈Tαβ〉,

H3
xyxyαβ(s) = (δxαδyβ + δyαδxβ)∂x∂y

1

(t2 + r2)
d−2
2

. (A.22)

Again from the tensor structure of H3
xyxyαβ , it is clear that its Fourier transform will be

proportional to pxpy. Therefore in the limit px, py → 0, it vanishes. Thus we have

H3
xyxyii(ω, p = pz) = H3

xyxytt(ω, p = pz) = 0. (A.23)

This implies

Î6(ω, p = pz) = 0. (A.24)

Fourier transform: I7.

I7(s) = 2
((d− 2)(2a+ b)− dc)

d(d2 − 4)
(H4

xyxyαβ)(s)〈Tαβ〉,

H4
xyxyαβ(s) =

(
2δyα∂y∂β + 2δxα∂x∂β −

2

d
δαβ(∂2

y + ∂2
x)

)
1

(t2 + r2)
d−2
2

. (A.25)

It is clear from the tensor structure of H4
xyxyαβ , that terms in the Fourier transform will

always be proportional to px or py. Therfore we have

H4
xyxyii(ω, p = pz) = H4

xyxytt(ω, p = pz) = 0. (A.26)

This allows us to conclude that the contribution

Î7(ω, p = pz) = 0. (A.27)
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Fourier transform: I8. The Fourier transform of the contact term I8 leads to a constant

in momentum. This is given by

I8(s) = Ch5
xyxyαβSdδ

d(s),

h5
xyxyαβ = 2δyαδyβ + 2δxαδxβ −

4

d
δαβ . (A.28)

Performing this Fourier transform and also including the expectation value of the stress

tensor we obtain

Î8(ω, p) =
(d− 2)(2a+ b)− dc

d2(d+ 2)

8πd/2

Γ[d/2]
(P − εE). (A.29)

Summing up the contributions. Let us first sum up the contributions Î1, · · · Î7, that

is all the terms excluding the contribution from the contact term Î8. This leads to

7∑
i=1

Î(ω, p = pz) =
P
(
p2 − (d− 1)ω2

)
(a(d(d+ 4)− 4) + d(2b− c))

2 (p2 + ω2) (−a (d2 + d− 6) + 2b+ cd+ c)
. (A.30)

Here we have replaced the Euclidean energy εE = −(d − 1)P . Now note that this can be

written as
7∑
i=1

Î(ω, p) = 2aT,0
(p2 − (d− 1)ω2

p2 + ω2
P, (A.31)

where cT,0 is the Hofman-Maldacena coefficient in the scalar channel given in equation

(2.16) of [28].

Though our analysis here has been for d > 3, we can carry out the same steps for

d = 3, with momentum say in the y direction. Now the values of Fourier transforms

Î1, Î2, Î4, Î5, Î7 are non-zero while Î3, Î6 vanish However on summing up their contributions

we obtain the result
7∑
i=1

Îi(ω, 0) =
17a+ 6b− 3c

6a− 2(b+ 2c)
P. (A.32)

This is indeed the same result as that obtained by taking the p→ 0 limit of the expression

in (A.30) with d = 3.

A.2 The vector channel

We now study the Fourier transform in the vector channel. We examine the various tensor

structures corresponding to the TxtTxz OPE with momentum along the pz directions. Such

a kinematic configuration is possible for all d ≥ 3 dimensions.

Fourier transform: I1.

I1(s) =
(d− 2)(4a+ 2b− c)

(d+ 2)
H1
αβxtxz(s)〈Tαβ(0)〉, (A.33)

H1
αβxtxz(s) =

(
∂α∂β −

1

d
δαβ∂

2

)(
x2tz

(t2 + ~r 2)
d+2
2

)
.
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Using the result in (B.10) we obtain for the Fourier transform

d−1∑
i=1

H1
iixtxz(ω, ~p) =

(
−~p 2 +

(d− 1)

d
(ω2 + ~p 2)

)(
−

2πd/2pzω
(
~p 2 + ω2 − 4p2

x

)
(~p 2 + ω2)3 Γ

[
1 + d

2

] )
.

(A.34)

Now taking the limit of all momenta to vanish except pz we obtain

d−1∑
i=1

H1
iixtxz(ω, p = pz) = −

2
(
πd/2pzω

(
dω2 − p2

z − ω2
))

dΓ
(
d
2 + 1

)
(ω2 + p2

z)
2 . (A.35)

Similarly for the time component we obtain

H1
ttxtxz(ω, p = pz) =

2
(
πd/2pzω

(
dω2 − p2

z − ω2
))

dΓ
(
d
2 + 1

)
(ω2 + p2

z)
2 . (A.36)

Using these results and substituting the values of the expectation value of the stress tensor

we obtain

Î1(ω, pz) =
(d− 2)(4a+ 2b− c)

d+ 2

2
(
πd/2pzω

(
dω2 − p2

z − ω2
))

dΓ
(
d
2 + 1

)
(ω2 + p2

z)
2 (−P + εE). (A.37)

Fourier transform: I2.

I2(s) =
1

d
(da+ b− c)H2

αβxtxz(s)〈Tαβ(0)〉,

H2
αβxtxz(s) = (∂z∂t)

1

(t2 + r2)
d−2
2

(
sαsβ
t2 + r2

− 1

d
δαβ

)
. (A.38)

We can use the result in (B.5) to carry out the Fourier transform. When all momenta

except pz is set to zero we obtain

d−1∑
i=1

H2
iixtxz(ω, p = pz) =

2πd/2pzω
(
p2
z − (−1 + d)ω2

)
(p2
z + ω2)2 Γ

[
1 + d

2

] . (A.39)

Similarly for the time component we obtain

H2
ttxtxz(ω, p = pz) = −

2πd/2pzω
(
p2
z − (−1 + d)ω2

)
(p2
z + ω2)2 Γ

[
1 + d

2

] . (A.40)

We can now substitute these expressions along with the expectation value of the stress

tensor to obtain the Fourier transform

Î2(ω, p = pz) =
(da+ b− c)

d

(
2πd/2pzω

(
p2
z − (−1 + d)ω2

)
(p2
z + ω2)2 Γ

[
1 + d

2

] )
(P − εE). (A.41)
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Fourier transform: I3.

I3(s) = −d(d− 2)a− (d− 2)b− 2c

d(d+ 2)
(H2

xtxzαβ(s) +H2
xzxtαβ(s))〈Tαβ(0)〉. (A.42)

Now the tensor structures in I3 are given by

H2
xtxzαβ(s) =

(
δxα∂z∂β + δxβ∂z∂α + δzβ∂x∂α + δzα∂x∂β −

4

d
δαβ∂x∂z

)
xt

(t2 + r2)
d
2

,

H2
xzxtαβ(s) =

(
δxα∂t∂β + δxβ∂t∂α + δtα∂x∂β + δtβ∂x∂α −

4

d
δαβ∂x∂t

)
xz

(t2 + r2)
d
2

. (A.43)

We can use (B.8) to Fourier transfrom these tensor structures. However it is easy to see

that all of the terms which occur in the Fourier transform are proportional to momenta

orthogonal to pz. Therefore they all vanish when only pz is turned on which implies

H2
xtxzαα(ω, p = pz) = H2

xzxtαβ(ω, p = pz) = 0. (A.44)

Therefore we obtain

Î3(ω, p = pz) = 0. (A.45)

Fourier transform: I4.

I4(s) =
2da+ 2b− c

d
H3
αβxtxz(s)〈Tαβ〉,

H3
αβxtxz(s) = h3

xtxz

(
∂α∂β −

1

d
δαβ∂

2

)
1

(t2 + r2)
d−2
2

. (A.46)

Now h3 is defined as

h3
µνρσ = δµρδνσ + δµσδνρ −

2

d
δµνδρσ. (A.47)

Therefore the component h3
xtxz = 0, which leads to to conclude

Î4(ω, pz) = 0. (A.48)

Fourier transform: I5.

I5(s) = −2(d− 2)a− b− c
d(d− 2)

H4
αβxtxz(s)〈Tαβ〉,

H4
αβxtxz(s) =

((
2δαxδβx −

2

d
δαβ

)
∂z∂t

)
1

(t2 + r2)
d−2
2

. (A.49)

The Fourier transform can be done using the result in (B.7)

d−1∑
i=1

H4
iixtxz(ω, pz) =

∫
ddxe−iωt−ipzz

(
2

d

)
∂z∂t

1

(t2 + r2)
d−2
2

,

= −
8
(
πd/2pzω

)
d (p2

z + ω2) Γ
[
−1 + d

2

] . (A.50)
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Similarly we have

H4
ttxtxz(ω, pz) =

8πd/2pzω

d (p2
z + ω2) Γ

[
−1 + d

2

] . (A.51)

Using these results along with the expectation values of the stress tensor we obtain

Î5(ω, pz) =
−(2(d− 2)a− b− c)

d(d− 2)

(
8
(
πd/2pzω

)
d (p2

z + ω2) Γ
[
−1 + d

2

]) (−P + εE). (A.52)

Fourier transform: I6.

I6(s) = −2((d− 2)a− c)
d(d− 2)

(H3
xtxzαβ(s) +H3

xzxtαβ(s)〈Tαβ〉,

H3
xtxzαβ(s) = h3

xzαβ∂x∂t
1

(t2 + r2)
d−2
2

,

H3
xzxtαβ(s) = h3

xtαβ∂x∂z
1

(t2 + r2)
d−2
2

. (A.53)

From the definition of h3 in (A.47) it is clear for that for α = β, the above components of

h3 vanish. Thus we obtain

Î6(ω, pz) = 0. (A.54)

Fourier transform: I7.

I7(s) =
((d− 2)(2a+ b)− dc)

d(d2 − 4)
(H4

xtxzαβ +H4
xzxtαβ)(s)〈Tαβ〉. (A.55)

The tensor structures involved in I7 are given by

H4
xzxtαβ(s) =

(
δzα∂t∂β + δzβ∂t∂α −

2

d
δαβ(∂z∂t)

)
1

(t2 + r2)
d−2
2

,

H4
xtxzαβ(s) =

(
δtα∂z∂β + δtβ∂z∂α −

2

d
δαβ(∂z∂t)

)
1

(t2 + r2)
d−2
2

. (A.56)

Now we can Fourier transform these tensors using the result (B.7)

d−1∑
i=1

H4
xtxzii(ω, pz) =

8(−1 + d)πd/2pzω

d (p2
z + ω2) Γ

[
1
2(−2 + d)

] ,
H4
xtxztt(ω, pz) = −

8
(
(−1 + d)πd/2pzω

)
d (p2

z + ω2) Γ
[

1
2(−2 + d)

] ,
d−1∑
i=1

H4
xzxtii(ω, p) = −

8
(
πd/2pzω

)
d (p2

z + ω2) Γ
[

1
2(−2 + d)

] ,
H4
xzxttt(ω, p) =

8πd/2pzω

d (p2
z + ω2) Γ

[
1
2(−2 + d)

] . (A.57)

Now using these results for the Fourier transforms as well as the expectation value of the

stress tensor we obtain

Î7(ω, pz) =
(d− 2)(2a+ b)− dc

d(d2 − 4)

(
8(−2 + d)πd/2pzω

d (p2
z + ω2) Γ

[
1
2(−2 + d)

]) (P − εE). (A.58)
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Fourier transform: I8. Finally the contribution from the contact term reduces to

I8(s) = Ch5
xtxzαβS3δ

3(s),

h5
xtxzαβ = δtαδzβ −

4

d
δαβh

3
xtxz. (A.59)

Using the definition of h3 in (A.47) we see that h5
xtxzαα vanishes. Thus we obtain

Î8(ω, pz) = 0 (A.60)

Summing up the contributions. Summing up all the contributions we obtain

Âxτxz(ω, pz) =
8∑
i=1

Îi(ω, pz), (A.61)

= − pzω

(p2
z + ω2)

G2(ω, pz),

where

G2(ω, pz) = −δGR(0) + aT,1
8dp2

z

ω2 + p2
z

P. (A.62)

δGR(0) is the r.h.s. of the sum rule defined in (2.33) and aT,1 is the Hofman-Maldacena

coefficient in the vector channel defined as

aT,1 =
1

8

b(2− 3d) + 2cd− a(−8 + d(6 + d))

−(2b+ c+ cd) + a (−6 + d+ d2)
. (A.63)

A.3 The sound channel

In this part of the appendix we perform the Fourier transform of the OPE coefficient in

the sound channel by the considering the TttTtt OPE. We examine all the structures which

occur in the coefficients Âttttαβ〈Tαβ〉 term by term and then sum them together. We choose

momentum to be along pz.

Fourier transform: I1.

I1(s) =
(d− 2)(4a+ 2b− c)

(d+ 2)
H1
αβtttt(s)〈Tαβ(0)〉,

H1
αβtttt(s) =

(
∂α∂β −

1

d
δαβ∂

2

)[(
t2

t2 + ~r 2
− 1

d

)2
1

(t2 + ~r2)
d−2
2

]
. (A.64)

We can use integrals of the type in (B.10) to obtain

d−1∑
i=1

H1
iitttt(ω, pz) = −

4πd/2
[
p2
z − (−1 + d)ω2

] [
(−1+d)p4

z − 2(1 + d)p2
zω

2 + (−1+d)ω4
]

d3 (p2
z + ω2)3 Γ

[
d
2

] .

(A.65)

Similarly one finds

H1
ttttt(ω, pz) = −

d−1∑
i=1

H1
iitttt(ω, pz). (A.66)
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Using these results together with the expectation value of the stress tensor we obtain

Î1(ω, pz) =
(d− 2)

d+ 2
(4a+ 2b− c) (A.67)

×

(
4πd/2

[
p2
z − (−1 + d)ω2

] [
(−1 + d)p4

z − 2(1 + d)p2
zω

2 + (−1 + d)ω4
]

d3 (p2
z + ω2)3 Γ

[
d
2

] )
×(−P + εE).

Fourier transform: I2.

I2(s) =
1

d
(da+ b− c)H2

αβtttt(s)〈Tαβ(0)〉,

H2
αβtttt(s) =

((
4− 8

d

)
∂2
t +

4

d2
∂2

)
1

(t2 + r2)
d−2
2

(
sαsβ
t2 + r2

− 1

d
δαβ

)
. (A.68)

Now using the result in (B.5) to perform the Fourier transform we obtain

d−1∑
i=1

H2
iitttt(ω, p = pz) =

16πd/2
(
p2
z − (−1 + d)ω2

) (
p2
z + (−1 + d)2ω2

)
d3 (p2

z + ω2)2 Γ
[
d
2

] . (A.69)

Similarly we obtain

H2
tttttt(ω, p = pz) = −

d−1∑
i=1

H2
iitttt(ω, p = pz). (A.70)

Then substituting these Fourier transforms and taking the expectation value of the stress

tensor we obtain

Î2(ω, p = pz) =
(da+ b− c)

d

(
16πd/2

(
p2
z − (−1 + d)ω2

) (
p2
z + (−1 + d)2ω2

)
d3 (p2

z + ω2)2 Γ
[
d
2

] )
(P − εE).

(A.71)

Fourier transform: I3.

I3(s) = −2
d(d− 2)a− (d− 2)b− 2c

d(d+ 2)
H2
ttttαβ(s)〈Tαβ(0)〉, (A.72)

H2
ttttαβ(s) =

(
2δtα∂t∂β+2δtβ∂t∂α−

4

d
∂α∂β−

4

d
δαβ∂

2
t +

4

d2
∂2

)
1

(t2 + r2)
d−2
2

(
t2

t2 + r2
− 1

d

)
.

Using the result for the Fourier transform in (B.5) we obtain

d−1∑
i=1

H2
ttttii(ω, pz) =

8πd/2
(
p2
z + ω2 − dω2

) (
p2
z + ω2 − 2dω2 + d2ω2

)
d2 (p2

z + ω2)2 Γ
[
1 + d

2

] ,

H2
tttttt(ω, pz) = −

d−1∑
i=1

H2
ttttii(ω, pz). (A.73)
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Substituting these Fourier transforms and taking the expectation values of the stress tensor

we obtain

Î3(ω, pz) = −2
(d(d− 2)a− (d− 2)b− 2c)

d(d+ 2)
× (A.74)

×

(
8
(
πd/2

(
p2
z + ω2 − dω2

) (
p2
z + ω2 − 2dω2 + d2ω2

))
d2 (p2

z + ω2)2 Γ
[
1 + d

2

] )
(P − εE).

Fourier transform: I4.

I4(s) =
2da+ 2b− c

d
H3
αβtttt(s)〈Tαβ〉,

H3
αβtttt(s) = h3

tttt

(
∂α∂β −

1

d
δαβ∂

2

)
1

(t2 + r2)
d−2
2

. (A.75)

Using (B.3) for the Fourier transform we obtain

d−1∑
i=1

H3
iitttt(ω, pz) =

8(−1 + d)πd/2
(
−p2

z + (−1 + d)ω2
)

d2 (p2
z + ω2) Γ

[
−1 + d

2

] ,

H3
tttttt(ω, pz) = −

d−1∑
i=1

H3
iitttt(ω, pz). (A.76)

Finally substituting the expectation values of the stress tensor we obtain

Î4(ω, pz) =
(2da+ 2b− c)
d(d− 2)

(
8(−1 + d)πd/2

(
−p2

z + (−1 + d)ω2
)

d2 (p2
z + ω2) Γ

[
−1 + d

2

] )
(P − εE). (A.77)

Fourier transform: I5.

I5(s) = −2(d− 2)a− b− c
d(d− 2)

H4
αβtttt(s)〈Tαβ , 〉 (A.78)

H4
αβtttt(s) =

(
4h3

αβtt∂
2
t −

8

d
h3
αβλt∂λ∂t +

8

d2

(
∂α∂β −

1

d
δαβ∂

2

))
1

(t2 + r2)
d−2
2

.

We can Fourier transform using (B.3) and we obtain

d−1∑
i=1

H4
iitttt(ω, pz) = −

32
(
πd/2

(
p2
z − (−1 + d)3ω2

))
d3 (p2

z + ω2) Γ
[
−1 + d

2

] ,

H4
tttttt(ω, pz) = −

d−1∑
i=1

H4
iitttt(ω, pz). (A.79)

Using these results for the transforms along with the expectation values of the stress tensor

we obtain

Î5(ω, p) =
−(2(d− 2)a− b− c)

d(d− 2)

(
32πd/2

(
p2
z − (−1 + d)3ω2

)
d3 (p2

z + ω2) Γ
[
−1 + d

2

] )
(−P + εE). (A.80)
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Fourier transform: I6.

I6(s) = −4((d− 2)a− c)
d(d− 2)

H3
ttttαβ(s)〈Tαβ〉,

H3
ttttαβ(s) = h3

ttαβ

(
∂2
t −

1

d
∂2

)
1

(t2 + r2)
d−2
2

. (A.81)

The Fourier transform is done by using (B.3).

d−1∑
i=1

H3
ttttii(ω, pz) = −

8(−1 + d)πd/2
(
p2
z − (−1 + d)ω2

)
d2 (p2

z + ω2) Γ
[
−1 + d

2

] ,

H3
tttttt(ω, pz) = −

d−1∑
i=1

H3
ttttii(ω, pz). (A.82)

Substituting the Fourier transform along with the expectation value of the stress tensor

we obtain

Î6(ω, pz) = −4
((d− 2)a− c)
d(d− 2)

(
8(−1 + d)πd/2

(
p2
z − (−1 + d)ω2

)
d2 (p2

z + ω2) Γ
[
−1 + d

2

] )
(−P + εE). (A.83)

Fourier transform: I7.

Î7(ω, pz) =
2((d− 2)(2a+ b)− dc)

d(d2 − 4)
(H4

ttttαβ)(s)Tαβ ,

H4
ttttαβ(s) =

(
2h3

tttα∂t∂β + 2h3
tttβ∂t∂α −

2

d
(h3
ttλα∂λ∂β + h3

ttλβ∂λ∂α)− 2

d
δαβ(2h3

ttλt∂λ∂t)

− 8

d2
δαβ

(
∂2
t −

1

d
∂2

))
1

(t2 + r2)
d−2
2

. (A.84)

The Fourier transform is performed using (B.3)

d−1∑
i=1

H4
ttttii(ω, pz) = −

32πd/2
(
p2
z − (−1 + d)3ω2

)
d3 (p2

z + ω2) Γ
[
−1 + d

2

] ,

H4
tttttt(ω, pz) = −

d−1∑
i=1

H4
ttttii(ω, pz). (A.85)

Using the results for the Fourier transform along with the expectation value of the stress

tensor we obtain

Î7(ω, pz) = 2
((d− 2)(2a+ b)− dc)

d(d− 2)

(
32πd/2

(
p2
z − (−1 + d)3ω2

)
d3 (p2

z + ω2) Γ
[
−1 + d

2

] )
(−P + εE). (A.86)

Fourier transform: I8. Finally we Fourier transform the contact term which is given by

I8(s) = (Ch5
ttttαβ +D(2h3

ttαβ))Sdδ
d(s)〈Tαβ〉,

C =
(d− 2)(2a+ b)− dc

d(d+ 2)
, D =

8(−2b− c(1 + d) + a(−2 + d)(3 + d))πd/2

d2(2 + d)Γ
[
d
2

] ,

h5
ttttαβ = 8δtαδtβ −

8

d
h3
ttαβ −

8

d2
δαβ −

4

d

(
2− 2

d

)
δαβ . (A.87)
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The Fourier transform is trivial to perform and keeping track of the tensor structures along

with the expectation value of the stress tensor we obtain

I8(ω, pz) =
2πd/2

Γ
[
d
2

] [4D(1− d
d

)
+ C

(
−8 +

24

d
− 16

d2

)]
(P − εE) (A.88)

Summing up the contributions. We now sum up all the contributions in the sound

channel of the term Âttttαβ(ω, pz)〈Tαβ〉 in the OPE. We can write The sum can be orga-

nized as

Âttttαβ(ω, pz)〈Tαβ〉 =
8∑
i=1

Î8(ω, pz), (A.89)

=
p4
z

(p2
z + ω2)2

G3(ω, pz).

The function G3(ω, pz) admits an Laurent expansion in ( pzω )2 which is given by

G3(ω, pz) =

(
F1

(
ω

pz

)4

+ F2

(
ω

pz

)2

+ F3 + aT,2
64(pzω )2

1 + (pzω )2

)
P. (A.90)

Here F1, F2, F3 are ratios of linear functions of the constants a, b, c. They can be written in

the variables t2, t4. However starting from the term ( pzω )2 the entire expansion is determined

by aT,2, the Hofman-Maldacena coefficient in the tensor channel which is given by

aT,2 = − 1

32

(4a+ 2b− c)(−2 + d)d

(−2b− c(1 + d) + a (−6 + d+ d2))
. (A.91)

B Integrals

In this section we will evaluate the generic integrals that at are required to obtain the

Fourier transform of the tensor structures that occur in the OPE coefficient Âµνρσαβ .

The Fourier transforms are done with momentum turned on in arbitrary directions. To

perform the transform we first convert the integral to polar coordinates in the spatial d−1

directions. After performing the angular integrals with integrate the radial direction and

the time direction. We have verified that the result is independent of the order of the

integrations.

Type 1.

F.T

[
∂2
x

1

(t2 + r2)
d−2
2

]
=

∫
ddx exp[−i~p · ~r − iωt](−p2

x)
1

(t2 + r2)
d−2
2

, (B.1)

= (−p2
x)

∫
drdt
√
πrd−2Γ

(
d

2
− 1

)
e−itω

(
r2 + t2

)1− d
2

× 2π
d
2
−1

Γ
(
d
2 − 1

) 0F̃1

(
;
d− 1

2
;−1

4
p2r2

)
.
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Here 0F̃1(; b, z) is the regularized hypergeometric function defined as

0F̃1(; b, z) =
∞∑
k=0

zk

Γ(b+ k)k!
. (B.2)

Now performing the radial and the time integrations we obtain

F.T

[
∂2
x

1

(t2 + r2)
d−2
2

]
= (−p2

x)
4πd/2

Γ
(
d
2 − 1

)
(ω2 + p2)

. (B.3)

Similarly we have the Fourier transforms

F.T

[
∂2
i

1

(t2 + r2)
d−2
2

]
= (−p2

i )
4πd/2

Γ
(
d
2 − 1

)
(ω2 + p2)

, (B.4)

F.T

[
∂2
t

1

(t2 + r2)
d−2
2

]
= (−ω2)

4πd/2

Γ
(
d
2 − 1

)
(ω2 + p2)

.

Note here and in the rest of this appendix p2 = ~p 2.

Type 2.

F.T

[
r2

(t2 + r2)
d
2

]
=

∫
ddx exp[−i~p · ~r − iωt]

(
r2

(t2 + r2)
d
2

)
,

=

∫
drdt
√
πrdΓ

(
d

2
− 1

)
e−itω

(
r2 + t2

)− d
2

×0F̃1

(
;
d− 1

2
;−1

4
p2r2

)(
2π

d
2
−1

Γ
(
d
2 − 1

)),
=

2πd/2
(
(d− 3)p2 + (d− 1)ω2

)
Γ
(
d
2

)
(ω2 + p2)2 . (B.5)

F.T

[
t2

(t2 + r2)
d
2

]
=

2πd/2
(
−ω2 + p2

)
Γ
(
d
2

)
(ω2 + p2)2 .

Type 3.

F.T

[
x2y2

(t2 + r2)
d+2
2

]
=

∫
ddx(∂px∂py)

2 exp[−i~p · ~r − iωt]
(

1

(t2 + r2)
d+2
2

)
, (B.6)

=
2

5−d
2 πd−1

Γ
(
d
2 + 1

)
Γ
(
d
2 − 1

) ∫ drdt(∂px∂py)
2(r2)

d−5
4 |ω|

d+1
2

×K d+1
2

(|ω| r) 0F̃1

(
;
d− 1

2
;−1

4
p2r2

)
,

=
πd/2

(
ω4 + (p2−p2

x−p2
y)
(
p2−p2

x−p2
y+2ω2

)
− p4

x + 6p2
xp

2
y − p4

y

)
Γ
(
d
2 + 1

)
(ω2 + p2)3 .
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Type 4. In this section we are interested in finding the Fourier transform of the integrals

of the type ∂α∂β
1

(t2+r2)
d−2
2

.

F.T

[
∂z∂t

1

(t2 + r2)
d−2
2

]
=

∫
ddx exp[−i~p · ~r − iωt](−pzω)

1

(t2 + r2)
d−2
2

,

= (−pzω)
2π

d−1
2

Γ
(
d
2 − 1

) ∫ drdtrd−2e−itω
(
r2 + t2

)1− d
2

× 0F̃1

(
;
d− 1

2
;−1

4
p2r2

)
,

= (−pzω)
4πd/2

Γ
(
d
2 − 1

)
(ω2 + p2)

. (B.7)

Type 5. In this section we will evaluate integral of the type
sαsβ
sd

F.T

[
xt

(t2 + r2)
d
2

]
=

∫
ddx(i∂px) exp[−i~p · ~r − iωt]

(
t

(t2 + r2)
d
2

)
,

= 2π
d−1
2

∫
dr(i∂px)

∫
dtte−itωr−2+d

(
r2 + t2

)−d/2
× 0F̃1

(
;
d− 1

2
;−1

4
p2r2

)
,

= − 4πd/2pxω(
p2
i + p2

x + p2
y + p2

z + ω2
)2

Γ
[
d
2

] . (B.8)

F.T

[
zt

(t2 + r2)
d
2

]
= − 4πd/2pzω(

p2
i + p2

x + p2
y + p2

z + ω2
)2

Γ
[
d
2

] . (B.9)

Type 6.

F.T

[
x2tz

(t2 + r2)
d+2
2

]
=

∫
ddx(−i∂2

px∂pz) exp[−i~p · ~r − iωt]

(
t

(t2 + r2)
d+2
2

)
,

= 2π
d−1
2

∫
dr(−i∂2

px∂pz)dte
−itωr−2+dt

(
r2 + t2

)−1− d
2

× 0F̃1

(
;
d− 1

2
;−1

4
p2r2

)
,

= −
2πd/2pzω

(
p2 − 4p2

x + ω2
)

(p2 + ω2)3 Γ
[
1 + d

2

] . (B.10)

C Evaluating 〈TTT 〉 in CS vector models

U(N) or O(N) Chern-Simons (CS) gauge fields coupled to matter in the fundamental

representation [37, 38] are a class of 3-dimensional conformal field theories that are exactly

solvable in the large N limit. Let us focus our attention on theories where the matter is a

single fundamental fermion or a single fundamental boson, which are the most well-studied.
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That these non-supersymmetric field theories are conformal follows from the fact that

the Chern-Simons level k must be quantized to integer or half-integer values depending on

the theory, and therefore cannot run. This means that, although the ’t Hooft coupling,

λ = N
k is an effectively continuous parameter in the large N limit, it also cannot run. CS

theory coupled fundamental fermions contains no other adjustable classically relevant or

marginal couplings that can run (other than a mass term for the fermion, which can always

tuned to zero in perturbation theory) and is therefore conformal in perturbation theory.

CS theory coupled to fundamental bosons has the possibility of a classical φ6 coupling,

however, because this is a triple-trace interaction (φ†φ)3 it must also be conformal to all

orders in λ in the large N limit, as one can check in perturbation theory.

One can also couple CS fields to critical bosons, or “critical” fermions (i.e., the Gross-

Neveu model). We then find a bosonization duality where CS gauge theory at small λ

coupled to non-critical fermions, is equivalent to CS theory at large λ coupled to critical

bosons; and vice-versa for critical fermions, described in [39].

In the large N limit, the planar 〈TTT 〉 correlation function to all orders in λ was shown

to be uniquely determined by the slightly-broken higher spin symmetry of the theory in [41].

In principle, it is also possible to directly calculate the planar correlator to all orders in λ

by summing up the planar Feynman diagrams in lightcone gauge, following [39, 40], though

to our knowledge that calculation has not yet explicitly appeared in the literature.

C.1 Analysis based on slightly-broken higher spin symmetry

Let us briefly review how the calculation of [41] proceeds, for the case of CS theory coupled

to fundamental fermions.

We define “single-trace” operators in the theory to be those operators obtained by

contracting a single fundamental index with an anti-fundamental index. The single-trace

primary operators consist of a scalar j̃0 ∼ ψ̄ψ, with scaling dimension 2, and an infinite

tower of twist-one operators, that take the schematic form js ∼ ψ̄γ∂s−1ψ, one for each

spin s ≥ 1. Following [41], we restrict our attention further to theories containing only

even spin currents, i.e., CS theory with O(N) gauge group. (Because of the many indices

involved it is convenient adopt the convention that all free indices are in a particular null

direction direction, so j4 ≡ (j4)−−−−, in lightcone coordinates.)

We assume our two-point functions are normalized so 〈jsjs〉 ∼ Ñ , where Ñ is a large

parameter proportional to N .

In the free theory, all the higher spin currents are conserved. In the interacting theory,

the divergence of the higher spin currents is restricted by conformal invariance and rep-

resentation theory. In particular, the divergence of j4, ∂ · j4 = ∂µ(j4)µ−−− must take the

following form

∂ · j4 = a1

(
(∂−j̃0)j2 −

2

5
j̃0∂−j2

)
. (C.1)

where a1 ∼ λ̃/Ñ can be thought of as defining a coupling constant.
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Inserting ∂ · j4 into a three point function and integrating around each operator gives,∫
d3x〈∂ · j4(x)js1(x1)js2(x2)js3(x3)〉

= 〈[Q4, js1(x1)js2(x2)js3(x3)]〉 (C.2)

= 〈[Q4, js1(x1)]js2(x2)js3(x3)〉+ 〈js1(x1)[Q4, js2(x2)]js3(x3)〉
+〈js1(x1)js2(x2)[Q4, js3(x3)]〉.

where Q4 ∼
∫
d2xj4 is the conserved charge associated with the (almost) conserved cur-

rent j4.

The action of the almost conserved charge on js is restricted conformal invariance to

be of the form,

[Q4, js] =
s+3∑
s′=0

cs,s′∂
s−s′+3js′ , (C.3)

where the coefficients cs,s′ are a priori unknown constants. Inserting equation (C.3) into

the r.h.s. of equation (C.2) gives a sum of three point functions.

Conformal invariance also restricts the three-point function of the currents in three-

dimensions to be of the form:

〈js1(x1)js2(x2)js3(x3)〉
= αs1,s2,s3〈js1(x1)js2(x2)js3(x3)〉free boson + βs1,s2,s3〈js1(x1)js2(x2)js3(x3)〉free fermion

+ γs1,s2,s3〈js1(x1)js2(x2)js3(x3)〉parity odd,

(C.4)

where the αs1,s2,s3 , βs1,s2,s3 and γs1,s2,s3 are unknown coefficients that depend on λ̃. Here

the subscript “free fermion” denotes the three point function in the theory of a single real

Majorana fermion, the subscript “free boson” denotes the three point function in the theory

of a single real boson, and “parity odd” denotes a parity-odd structure that is unique to

three dimensions [35], (and may not be exactly conserved). Two-point functions must be

of the form 〈js(x)js(0)〉 = Ñns
x2s−
x2s+2 , where ns are also unknown constants.

We thus have several unknown constants: cs,s′ , αs1,s2,s3 , βs1,s2,s3 , γs1,s2,s3 , and ns. We

can fix some of these unknown constants by choosing a convention for the normalization

of the currents. To determine the remaining unknown constants, [41] observes that we can

also write the l.h.s. of the first line of equation (C.2) as follows using equation (C.1):

〈∂ · j4(x)js1(x1)js2(x2)js3(x3)〉 = a1〈
(
∂−j̃0j2 −

2

5
j̃0∂−j2

)
js1(x1)js2(x2)js3(x3)〉. (C.5)

Each term on the r.h.s. of this equation factorizes in the large Ñ limit. For example, if

s1 = s2 = s3 = 2, this equation becomes:

〈∂ · j4(x)j2(x1)j2(x2)j2(x3)〉

= a1

(
∂−〈j̃0(x)j2(x1)j2(x2)〉〈j2(x)j2(x3)〉 − 2

5
〈j̃0(x)j2(x1)j2(x2)〉∂−〈j2(x)j2(x3)〉

)
+ permutations of x1, x2, x3.

(C.6)
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Inserting equation (C.5) on the l.h.s. of (C.2), and using the known expressions for the

three-allowed forms for the conformally invariant three-point functions, we can obtain an

infinite number of equations (for each choice of spins, we get several equations, roughly one

for each choice of points x1, x2, x3, since the action of J4 does not commute with conformal

transformations) relating the unknown constants listed above. When si 6= 0, 2 the r.h.s. of

equation (C.5) is zero to leading order in Ñ , and no integral is required, so solving these

equations is relatively straightforward. When one of the spins is zero or 2, then one must

carefully regulate the integral over x.

These equations have a two-parameter family of solutions, which are denoted by λ̃ and

Ñ in [41], and one can determine the coefficients of three point functions, in particular

α222 and β222 to all orders in λ̃ and leading order in 1/Ñ .

C.2 Summary of results

Using these results and translating the parameters λ̃ and Ñ to N and k, with λ = N
k , the

three point function of the stress tensor in U(N) Chern-Simons theory coupled to funda-

mental Dirac fermions, in terms of λ defined using dimensional reduction regularization so

that |λf | ≤ 1 is:

〈TTT 〉int fermion = ns(f)〈TTT 〉free boson + nf (f)〈TTT 〉free fermion + γ(f)〈TTT 〉parity odd,

(C.7)

with

ns(f) = 2N
sin θ

θ
sin2 (θ/2) , (C.8)

nf (f) = 2N
sin θ

θ
cos2 (θ/2) , (C.9)

γ(f) = N
sin2 θ

θ
. (C.10)

where θ = πλ.

In the U(N) theory coupled to fundamental bosons (non-critical), with ’t Hooft cou-

pling λ the three point function is:

〈TTT 〉int boson = ns(b)〈TTT 〉free boson + nf (b)〈TTT 〉free fermion + γ(b)〈TTT 〉parity odd,

(C.11)

with

ns(b) = 2N
sin θ

θ
cos2 (θ/2) , (C.12)

nf (b) = 2N
sin θ

θ
sin2 (θ/2) , (C.13)

γ(b) = N
sin2 θ

θ
. (C.14)

where θ = πλ.

The two point function of the stress tensor in both theories is

〈TT 〉 = 2N
sin θ

θ
〈TT 〉free boson. (C.15)

and 〈TT 〉free boson = 〈TT 〉free fermion.
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