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1 Introduction

Invigorated by [1], the methods from the conformal bootstrap have led, over recent years, to

significative progress in the understanding of conformal field theories in dimensions higher

than two. The conformal bootstrap program consists in the study of conformal field theory

from consistency conditions, namely, the structure of the operator algebra and crossing

symmetry, unitarity and symmetries of the theory. This has led to a wide spectrum of

results for the CFT data, both numeric as well as analytic.

An interesting question is which conformal field theories admit a holographic dual,

and for those who do, how does the geometry emerge from the CFT. Conformal bootstrap

methods were used in [2] in order to argue that any conformal field theory with a large N

expansion and a parametrically large gap in the spectrum of anomalous dimensions admits

a dual local bulk theory. This was further developed in [4–8, 11, 12, 14] . In the simplest

set-up it is assumed that the spectrum at N = ∞ contains a single-trace scalar operator

of dimension ∆, and double trace operators of dimension ∆n,` = 2∆ + 2n + `, while any

other single trace operators have a parametrically large dimension ∼ ∆gap. The authors
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then consider the four point correlator of the single trace operator and construct solutions

consistent with crossing symmetry and the structure of the OPE to order 1/N2. These

solutions are then shown to be in one to one correspondence with local interactions in a

scalar effective field theory in the bulk.

A CFT that satisfies the conditions above is N = 4 SYM. In N = 4 SCFT the stress

energy tensor sits in a half-BPS multiplet, whose superconformal primary is a single trace

operator O20′ of dimension two. The crossing relation for the four-point correlator can

be expressed as a relation for the intermediate unprotected operators present in the OPE

O20′ ×O20′ , see [3]. At N =∞ the spectrum of unprotected operators contains towers of

double trace operators as described above. Furthermore at large λ = g2N all unprotected

single trace operators acquire a large scaling dimension. While this theory has a well

known gravity dual, it is an interesting question how much of the structure of this dual

theory can be recovered purely from CFT considerations. In [4] we applied the ideas of [2]

to N = 4 SYM and constructed four-point correlators consistent with crossing symmetry

and the structure of the OPE at order 1/N2. In this case, the solutions must contain the

supergravity term. In addition, crossing allows for a tower of solutions again in one to one

correspondence with interactions in a bulk effective field theory.

Consider a generic bulk effective field theory of a massless scalar field in AdSd+1

S =

∫
dd+1x

√
−g
(
−∂µϕ∂µϕ+ µ1ϕ

4 + µ2 (∂µϕ∂
µϕ)2 + · · ·

)
(1.1)

As already mentioned, each interaction term corresponds to a solution to the crossing

conditions of the CFT at order 1/N2. Furthermore, each term will lead to a contribution,

proportional to µ1, µ2, etc, to the anomalous dimensions of double trace operators:

∆n,` = 2∆ + 2n+ `+
1

N2
γn,` (1.2)

From the point of view of an AdS effective field theory the coefficients µ1, µ2, etc are not un-

constrained. On one hand, non-renormalizable interactions are expected to be suppressed

by an extra scale, which should correspond to ∆gap, and the precise power of ∆gap should

follow from dimensional analysis, see [7, 8]. On the other hand causality constraints enforce

a specific sign for some of the couplings. For instance, unless µ2 ≥ 0 the effective theory

cannot be UV-completed, see [9]. This constraint will then lead to a corresponding con-

straint for the sign of the contribution to the anomalous dimension γn,` proportional to µ2.

From the point of view of the CFT, however, the coefficient in front of each solution

to the crossing equations (and its sign), is unconstrained. In [4] it was shown that the

constraints arising from the point of view of effective field theory, together with the con-

straints from causality obtained in [9], lead to either a negative or suppressed correction

to the anomalous dimension of twist four operators, in the regime of large λ. This is

consistent with the numeric bounds found in [3]. Furthermore, it was also seen that the

constraints arising from causality alone did not necessarily imply a negative contribution

to the anomalous dimension of all twist four operators.

At any extent, a purely CFT handle of the coefficients µ1, µ2, etc, is hard to achieve.

Part of the problem is that in the approaches of [2] and [4] the constraints of crossing
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symmetry are implemented, but the constraints of unitarity are lost at order 1/N2.1 In a

beautiful paper, Hartman and collaborators have analysed causality constraints in confor-

mal field theories [10]. In particular, they have shown that µ2 ≥ 0 also follows from CFT

considerations. This in turn leads to the correct sign for the anomalous dimensions of twist

four, spin two, double trace operators.

In this paper we make the following simple observation. In the treatment [4], it was

assumed that the dimension of all unprotected single trace operators was very large. In

N = 4 SYM this will happen for large λ. In the present paper we relax this assumption

and assume that single trace operators arise in the OPE O20′×O20′ at order 1/N2. Due to

unitarity such new contributions appear with a definite positive sign. We find it convenient

to work in Mellin space [11–13], with the correlator given by

A(u, v) ∼
∫

Γ2(x+ 2)Γ2(y + 2)Γ2(−x− y)M(x, y)u−xv−ydxdy (1.3)

The presence of a new intermediate operator of twist τ in the direct channel leads to extra

single-poles in the Mellin expression for the correlator

M(x, y) ∼ 1

x+ τ/2 + n
(1.4)

We consider non-polynomial solutions consistent with crossing symmetry and the correct

analytic structure of the Mellin representation. We then study the contribution from such

solutions to the anomalous dimensions of double trace twist four operators. We show that

for intermediate twist higher than four, τ > 4, the contribution is always negative. The

basic reason behind this is certain positivity condition for Mack polynomials. This in turn

leads to a positivity condition for a slice of the Mellin amplitude, in the regime in which

the twist of all unprotected single trace operators is higher than four:

M(x,−2,−x) =
∑

n=0,2,···
cnFn(x), cn ≥ 0. (1.5)

where Fn(x) are continuous Hahn polynomials. In constructing the non-polynomial solu-

tions for higher spin exchange there is always the ambiguity of adding regular polynomial

terms. These ambiguous terms may in principle spoil the positivity condition, however we

show that the same positivity condition follows if we assume the Mellin amplitude has the

correct Regge behaviour. This condition implies the anomalous dimension of double trace

twist four operators is always negative and explains the numeric results observed in [3].

We then consider the limit of very large τ . We show that in this limit the solutions

corresponding to the exchange of single trace scalar operators give rise to the tower of

polynomial solutions considered in [4], with higher and higher order terms suppressed by

powers of τ . The structure of this expansion exactly agrees with the structure proposed

in [4] based on effective field theory. In addition, the overall signs are fixed, such that

the contribution to the dimension of twist-four double trace operators is negative. Similar

1Certain progress can be made by resorting to the concept of perturbative unitarity, see [8].

– 3 –



J
H
E
P
0
7
(
2
0
1
7
)
0
4
4

conclusions can be drawn for the exchange of operators with spin, assuming the polynomial

ambiguities do not spoil the large twist limit.

It is instructive to consider the flat space limit of the Mellin amplitude. Causality

constraints impose certain positivity conditions for the forward limit of the flat space S-

matrix [9]. These constraints have a very similar form to the positivity constraints for

the Mellin amplitude mentioned above. Finally, we consider the large n behaviour of

γn,`. The spectrum of operators should be such that in the flat space limit the Virasoro-

Shapiro amplitude is recovered. This result can be used to write down the leading large n

behaviour of γn,` to all orders in 1/
√
λ. A generic growth in γn,` leads to a divergence in

the Lorentzian correlator. This divergence signals the locality of the bulk theory. By using

the above behaviour for γn,` a leading order expression for such divergence is given.

This paper is organised as follows. In section two we consider a family of solutions

consistent with crossing symmetry and the exchange of single trace operators. We show

that these solutions lead to a negative contribution to the anomalous dimension of twist

four operators in a specific regime. The reason behind this is certain positivity property

for Mack polynomials that lead to a positivity condition for a slice of the Mellin amplitude.

We then show that the same condition follows from requiring the correct Regge behaviour.

In section three we consider several instructive limits of the Mellin amplitude and the

solutions of section two. Namely, the large twist limit of the non-polynomial solutions and

the flat space limit of the Mellin amplitude. Moreover, we study the large n behaviour

of the anomalous dimensions of double trace operators and the Lorentzian singularities

this leads to. We end with some conclusions and open problems. We defer some technical

details to the appendices.

2 Analytic solutions at large N and single trace operators

2.1 Generalities

In this paper we will consider a specific correlator in four-dimensional N = 4 SYM. In this

theory the stress tensor sits in a half-BPS multiplet, whose superconformal primary O20′

is a scalar operator of protected dimension two, which transforms in the 20′ of the SU(4)

R−symmetry group. Conformal invariance implies

〈O20′(x1)O20′(x2)O20′(x3)O20′(x4)〉 =
∑
R

G(R)(u, v)

x4
12x

4
34

(2.1)

where the sum runs over the six representations present in the tensor product 20′ × 20′

and we have introduced the standard cross ratios

u =
x2

12x
2
34

x2
13x

2
24

= zz̄, v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z̄). (2.2)

Superconformal Ward identities relate the contributions from different representations

G(R)(u, v) and allow us to write all contributions in terms of a single function G(u, v).
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The OPE O20′ × O20′ contains both, operators in long multiplets as well as operators in

(semi-)short multiplets [18, 19]. Consequently G(u, v) admits the decomposition

G(u, v) = Gshort(u, v) + Glong(u, v) (2.3)

where

Glong(u, v) =
∑
∆,`

a∆,`u
∆−`

2 g∆+4,`(u, v). (2.4)

The sum runs over unprotected superconformal primary operators, singlet of SU(4), with

even Lorentz spin ` and scaling dimension ∆. a∆,` denotes the square of the OPE coef-

ficients. The contribution from superconformal descendants is taken into account by the

superconformal blocks u
∆−`

2 g∆+4,`(u, v), with

g∆,`(u, v) =
2−`

z − z̄

(
z`+1k∆+`(z)k∆−`−2(z̄)− z̄`+1k∆+`(z̄)k∆−`−2(z)

)
(2.5)

where we have introduced kβ = 2F1(β/2, β/2, β; z). It is furthermore convenient to

decompose Glong(u, v) into its Born approximation (free theory), which we denote by

Glong
Born(u, v,N), plus a quantum contribution. The Born expression does not depend on

the coupling, is explicitly known and it admits an expansion around N =∞:

Glong
Born(u, v,N) = Glong,(0)

Born (u, v) +
1

N2
Glong,(1)

Born (u, v) + · · · (2.6)

while the quantum correction vanishes in the limit N =∞ and starts at order 1/N2. Hence

we write

Glong(u, v) = Glong,(0)
Born (u, v) +

1

N2
Glong,(1)

Born (u, v) +
1

N2

A(u, v)

v2
+ · · · (2.7)

Invariance of the full correlator under the exchange of any two operators leads to crossing

symmetry relations. Glong
Born(u, v,N) mixes with Gshort(u, v) while A(u, v) satisfies crossing

relations by itself:

A(u, v) = A(v, u), A(u, v) = v2A
(
u

v
,

1

v

)
(2.8)

At N = ∞ the space of intermediate states is spanned by double trace operators of the

schematic form On,` = O�n∂µ1 · · · ∂µ`O, of spin ` and dimension ∆n,` = 4 + 2n + `. The

leading term Glong,(0)
Born (u, v) fixes the OPE coefficients at leading order:

a
(0)
n,` =

π(1 + `)(6 + `+ 2n)Γ(3 + n)Γ(4 + `+ n)

27+`+4nΓ
(

5
2 + n

)
Γ
(

7
2 + `+ n

) . (2.9)

Next we would like to consider the correlator in a large N expansion and look for solutions

consistent with crossing symmetry and the OPE expansion to order 1/N2. The dimensions

and OPE coefficients of double trace operators admit an expansion

∆n,` = 4 + 2n+ `+
1

N2
γn,` + · · · , (2.10)

an,` = a
(0)
n,` +

1

N2
a

(1)
n,` + · · · . (2.11)
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The 1/N2 term Glong,(1)
Born (u, v) has a contribution which for small u behaves as

Glong,(1)
Born (u, v) = 16u

1− v2 + 2v log v

v(1− v)2
+ · · · (2.12)

however, for λ 6= 0 the CPW decomposition (2.4) does not contain operators of twist two.

Hence, there should be a corresponding term in A(u, v) which cancels this contribution.

This is given by the supergravity result Asugra(u, v) = −16u2v2D̄2422(u, v), where the

D̄-functions are defined for instance in [20, 21]. This leads to the following anomalous

dimension and correction to the OPE coefficients of the double trace operators

γsugra
n,` = −4(1 + n)(2 + n)(3 + n)(4 + n)

(1 + `)(6 + `+ 2n)
(2.13)

a
(1),sugra
n,` =

1

2

∂

∂n

(
a

(0)
n,`γ

sugra
n,`

)
(2.14)

In addition we can add any solution to the homogeneous crossing relations consistent with

the structure of the CPW decomposition. In order to proceed, we will assume that the

correlator at order 1/N2 admits a Mellin representation [11–13]

A(u, v) =
1

(2πi)2

∫
Γ2(x+ 2)Γ2(y + 2)Γ2(−x− y)M(x, y)u−xv−ydxdy (2.15)

where the integration contours are over the imaginary axis shifted by a small positive real

part. The crossing relations in Mellin space simply read

M(x, y) = M(y, x) = M(x,−2− x− y) (2.16)

It is convenient to introduce an extra variable z, such that x+ y + z = −2. Crossing sym-

metry then implies that the Mellin expression is completely symmetric under permutation

in the variables (x, y, z). In this language the supergravity solution corresponds to

Msugra(x, y, z) = − 16

(x+ 1)(y + 1)(z + 1)
(2.17)

The extra tower of solutions considered in [4] is simply given by completely symmetric

polynomials in the variables x, y, z. Note that the prefactor in the definition of the Mellin

expression contains poles at x = −2,−3, · · · , which correspond to the twist of double trace

operators. A polynomial solution M(x, y) will not add new poles but it will change the

residues of the poles corresponding to double twist operators, giving a contribution to their

anomalous dimension and OPE coefficients.

2.2 Single trace operators

When considering 1/N2 corrections to a four-point correlator, two things can happen. 1.-

The dimension and the OPE coefficients of the double trace operators acquire a correction

of order 1/N2; 2.- New, single trace, operators may appear in the OPE. The new operators

will enter with their classical dimension at leading order, since their OPE coefficient is

already of order 1/N2. In N = 4 SYM at large N and finite λ, both things happen.

– 6 –
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Let us assume that at order 1/N2 a new operator, of twist τ and spin `, arises in

the OPE of the two external operators, with corresponding OPE coefficient 1
N2aτ,`. An

important point is that due to unitarity

aτ,` > 0. (2.18)

A(u, v) should contain a term corresponding to the exchange of the new operator:

A(u, v) = aτ,`v
2uτ/2gτ+4,`(u, v) + · · · (2.19)

While the expression in Mellin space should possess a corresponding pole

Mτ,`(x, y) =
hτ,`(y)

(x+ τ/2)
+ · · · (2.20)

As shown in appendix B having a single pole (or a finite number of them) for generic, not

even integer τ , is not consistent with unitarity. More precisely, one needs to include the

tower of poles corresponding to the descendants of the new operator. At these poles

Mτ,`(x, y) =
h

(k)
τ,` (y)

(x+ τ/2 + k)
+ · · · (2.21)

The residues at the poles are fixed by the proper expression for the super conformal blocks

in Mellin space, given by

B∆,`(x, y, z) = ie−iπ∆(eiπ(`−2x+∆) − 1)
Γ(x− `+∆

2 − 2)Γ(x+ ∆−`
2 )

Γ2(x+ 2)
P

(`)
∆ (y, z) (2.22)

Where P
(`)
∆ (y, z) is a symmetric polynomial of degree `, defined in appendix A, and essen-

tially coincides with the Mack polynomial. Note that the second gamma function in the

numerator has poles at the locations

x = −∆− `
2
− k (2.23)

Corresponding to the primary operator plus all its descendants. Given (2.22) we find:

h
(k)
τ,` (y) = aτ,`

2(−1)k+1 sin(πτ)Γ(−`− k − τ − 2)

Γ(k + 1)Γ
(
−k − τ

2 + 2
)2 P

(`)
`+τ (y, z)

∣∣∣
x=−∆−`

2
−k

(2.24)

2.2.1 Single scalar primary

Let us start with the simplest example of a scalar primary operator of dimension δ. The

corresponding Mellin representation contains a pole:

Mδ(x, y) =
h

(0)
δ,0

x+ δ/2
+ · · · (2.25)

The minimal solution consistent with crossing symmetry and the pole structure is

M
(min)
δ (x, y) = h

(0)
δ,0

(
1

x+ δ/2
+

1

y + δ/2
+

1

z + δ/2

)
(2.26)

– 7 –



J
H
E
P
0
7
(
2
0
1
7
)
0
4
4

where recall x + y + z = −2. We are interested in computing the contribution from such

a solution to the anomalous dimension of twist four operators. Here we will follow a brute

force approach: we will compute the corresponding solution in space-time and then perform

a CPW expansion. Let us call the space time expression A
(min)
δ (u, v). We are interested in

the terms proportional to u2 log u in a small u expansion:

A
(min)
δ (u, v) = u2 log u h2(v) + · · · (2.27)

Plugging M
(min)
δ (x, y) into the Mellin integral we can express h2(v) as a sum over residues.

For a function f(y) without extra poles

h2(v) =
1

2πi

∫ i∞

−i∞
v−yf(y)Γ2(2 + y)dy (2.28)

=

∞∑
n=2

vn
(
f ′(−n)− f(−n) log(v) + 2f(−n)ψ(0)(n− 1)

)
Γ(n− 1)2

(2.29)

where ψ(0)(z) is the digamma function. In this case

f(y) = h
(0)
δ,0

2
(
δ(8− 3δ) + 4y2

)
Γ(2− y)2

(δ − 4) (δ2 − 4y2)
(2.30)

so that we need to add the contribution from the pole at y = −δ/2. The relevant sums

can be performed with some effort. The final answer is a complicated expression, involving

Lerch transcendents, but it admits an expansions around v = 1:

h2(v) = h
(0)
δ,0

∞∑
n=0

cn(1− v)n (2.31)

where the general coefficient can be written as follows:

cn = 144
Γ(n+ 2)

Γ(n+ 8)

(18− n)(n2 − 1)

δ − 4
+ qn(δ) (2.32)

+
δ3
(
δ2 − 4

)2
sin
(
πδ
2

) (
Γ
(
− δ

2

)
Γ
(
n+ δ

2

)
+ Γ

(
δ
2

)
Γ
(
n− δ

2

))
128πΓ(n+ 1)

ψ(1)

(
δ

2

)
(2.33)

with qn(δ) a polynomial in δ such that cn ∼ 1
δ for large δ. Note that this fixes the polynomial

uniquely.

Having computed the solution in space time we can perform the CPW decomposition:

h2(v) =
1

2

∑
`

γ0,`a
(0)
0,`g

coll
4+`,`(v) (2.34)

where the collinear conformal block gcoll
4+`,`(v) is the small u limit of the full block. For

instance, for spin zero we find:

γ0,0 = aδ

((
5δ5

16
+

5δ4

16
− 55δ3

24
− 5δ2

2
+

19δ

6
− 18

7(δ − 4)
+ 5

)
Γ(δ + 4)

Γ
(
2− δ

2

)2
Γ
(
δ
2 + 2

)4
+

5 2δ+3(cos(πδ)− 1)Γ
(
δ+5

2

)
ψ(1)

(
δ
2

)
π5/2Γ

(
δ
2 + 2

) )
(2.35)
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Figure 1. Contribution to the anomalous dimension γ0,0 from the symmetric exchange of a scalar

primary, in units of aδ.

where we have rewritten the coefficient h
(0)
δ,0 in terms of the OPE coefficient aδ. It is

instructive to study γ0,0 as a function of δ, see figure 1. We observe something very

interesting. While the contribution to γ0,0 can be positive for δ < 4, it is always negative for

δ > 4. In order to draw this conclusion we used the fact that aδ is positive due to unitarity.

One can also compute the contributions to γ0,` for ` = 2, 4, · · · , although the results

are very lengthy to be reproduced here, and we have not managed to find a closed form

expression. From the explicit results one observes that the correction to γ0,` for ` > 0 is

always negative. An interesting limit is that of large spin. The simplest way to compute

it is along the lines of [24, 25]. Given the analytic structure of the Mellin amplitude the

space time expression contains a term

A(u, v)

v2
∼ h(0)

δ,0v
δ/2−2u2 log u. (2.36)

For δ < 4 this gives a divergence, which can be reproduced only with the correct behaviour

for γ0,` at large `. We obtain

γ0,` = −3aδ
Γ(4 + δ)

Γ2
(
2− δ

2

)
Γ2
(
2 + δ

2

) 1

`δ
+ · · · (2.37)

This precisely agrees with the results of [24, 25], upon specific shifts corresponding to the

fact that we are dealing with superconformal blocks.

As already mentioned, a Mellin amplitude with a finite number of generic poles is not

consistent with unitarity. Hence, it is important to extend the computation above in order

to include the whole tower of descendants.

2.2.2 Full and general exchange

In the following we will generalise the previous computation to intermediate operators

with spin, and including the whole tower of descendants. As a consequence of unitarity,

we will see that the sign of the contributions to the anomalous dimensions of twist four

– 9 –
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operators has a definite sign, as for the simple model above. We propose the following

Mellin representation given the exchange of an operator of spin ` and twist τ :

M (`)
τ (x, y) = aτ,`

∑
k=0,1,···

α
(`)
k

(
P

(`)
`+τ (y, z)

x+ τ/2 + k
+

P
(`)
`+τ (x, z)

y + τ/2 + k
+

P
(`)
`+τ (x, y)

z + τ/2 + k

)
+R`−1(x, y, z)

(2.38)

where α
(`)
k must be adjusted such as to obtain the correct contribution in space-time:

α
(`)
k =

2(−1)k+1 sin(πτ)Γ(−k − τ − 2− `)
Γ(k + 1)Γ

(
−k − τ

2 + 2
)2 (2.39)

and aτ,` is the positive OPE coefficient of the single trace operator. R`−1(x, y, z) is a

completely symmetric polynomial of degree `−1 which cannot be fixed simply by requiring

the correct analytic structure.2 Note that each of the three pieces in parentheses has the

same poles and residues as the conformal block but differs by regular terms.This operation

was also considered in [14], it corresponds to the exchange of a particle in AdS and it

leads to a polynomially bounded Mellin expression (while the conformal block is not). In

addition, we have the ambiguity of adding a symmetric polynomial R`−1(x, y, z) of degree

`− 1. In the following discussion we will set this polynomial to zero. We will come back to

this issue later, but note that in the case of a scalar exchange there is no such ambiguity.

The solution can be written as the sum of three pieces (corresponding to exchanges in

the s, t, u channels).

M (`)
τ (x, y) = aτ,`

(
Q(`)
τ (x; y, z) +Q(`)

τ (y; z, x) +Q(`)
τ (z;x, y)

)
(2.40)

For each spin, the above sum can be performed explicitly. For instance, for the exchange

of a scalar operator plus all its tower of descendants we obtain

Q(0)
τ (x; y, z) =

2Γ(τ + 4) 3F2

(
τ
2 − 1, τ2 − 1, x+ τ

2 ;x+ τ
2 + 1, τ + 3; 1

)
Γ
(

4−τ
2

)2
Γ
(
τ+4

2

)4
(τ + 2x)

(2.41)

and similar expressions for operators with higher spin. We would like to compute the

contribution from such a solution to the anomalous dimension of twist four operators.

Finding analytic expressions in this case is harder than before, so that we find it convenient

to follow an alternative route. It can be shown, see e.g. [23], that given a Mellin amplitude

M(x, y), without poles at x = −2, the contribution to the anomalous dimension of twist

four operators is given by

γ0,` = − 1

a0
0,`

1

2πi

√
πΓ(`+ 7)

25+`Γ(`+ 7/2)Γ(`+ 4)

∫
dyΓ2(y + 2)Γ2(2− y)M(−2, y)F`(y) (2.42)

where the contour of integration runs along the imaginary axis and

F`(y) =
(4`)

2

Γ(`+ 1)
3F2(−`, `+ 7, y + 2; 4, 4; 1) (2.43)

2There are several ways to understand the degree of this polynomial. See [30] for a related discussion.
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Figure 2. Contribution to the anomalous dimension γ0,0 and γ0,2 from the exchange of an inter-

mediate operator of spin zero, in units of the positive OPE coefficient. The behaviour of γ0,` with

` > 0 is very similar to γ0,2.

Figure 3. Contribution to the anomalous dimension γ0,0, γ0,2 and γ0,4 from the exchange of an

intermediate operator of spin two, in units of the positive OPE coefficient.

is a special case of the continuous Hahn polynomial, see [30]. We can then plug the solutions

in Mellin space and compute, numerically, the corresponding contribution to the anomalous

dimension of twist four operators of different spin. Figures 2 and 3 show the results for

intermediate single trace operators of spin zero and two.

The results can be summarised as follows. A new single-trace operator of twist higher

than four always leads to a negative contribution to the anomalous dimension of twist-four

operators. When exchanging an operator of spin j only the contribution to γ0,j can be

positive, provided the twist of the operator is smaller than four.

2.3 Positivity constraints for the Mellin amplitude

As we have seen above, when considering a new single-trace operator entering at order 1/N2

in the CPW decomposition, the contribution to the anomalous dimensions of double trace

operators of leading twist has a definite sign. This is related to certain positivity properties

of Mack polynomials P
(`)
τ (y, z). It is simpler to consider the s−channel contribution from

the exchange of an operator of twist τ and spin `.3 In this case, the relevant polynomial is

P
(`)
τ (y,−y), since only the pole at x = −2 contributes. The contribution to the anomalous

3Including the other two channels does not change the sign of the contribution to the anomalous dimen-

sion of double trace operators.
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dimension γ0,j is proportional to

γ0,j ∼
∫
dyΓ2(y + 2)Γ2(2− y)Fj(y)P

(`)
`+τ (y,−y) (2.44)

where the polynomials Fj(y) have been introduced in (2.43). It can be explicitly checked

that for τ = 4 the Mack polynomials P
(`)
`+τ (y,−y) reduce precisely to Fj(y), up to a pro-

portionality factor. For τ ≥ 4 the following positivity condition can be verified:∫
dyΓ2(y + 2)Γ2(2− y)Fj(y)P

(`)
`+τ (y,−y) ≥ 0, for τ ≥ 4 (2.45)

while the equality is satisfied for τ = 4 and j < `. On the other hand, the above integral

is identically zero for j > `. An equivalent formulation of the above positivity condition is

the statement that Mack polynomials P
(`)
`+τ (y,−y) admit a decomposition:

P
(`)
`+τ (y,−y) =

∑̀
j=0

cj(τ)Fj(y) (2.46)

where cj(τ) ≥ 0 for τ ≥ 4. Let us assume we are in a regime in which the twist of all single

trace unprotected operators is higher than four. The Mellin expression is a meromorphic

function with single poles corresponding to exchanged operators. The above discussion

suggests that the Mellin transform admits an analogous decomposition. More precisely:

M(−2, y,−y) =
∑

n=0,2,···
cnFn(y) (2.47)

where cn ≥ 0. This would lead to a negative anomalous dimension for all twist four double

trace operators. Since the Mellin amplitude is symmetric under exchange of the Mellin

variables, this can also be written as

M(x,−2,−x) =
∑

n=0,2,···
cnFn(x), cn ≥ 0. (2.48)

For instance, one can explicitly check that this holds for the supergravity term. An im-

portant comment is in order. The relations that have led to (2.48) have been shown for

the case of a scalar exchange. In the case of intermediate operators with spin we have

set certain ambiguous polynomial to zero, which could, in principle spoil the positivity

properties.4 Assuming this does not happen, we can propose a slightly stronger result. Let

us call τmin
` the minimum twist for single-trace operators of spin `. If we are in a regime

in which τmin
` > 4 for all ` ≥ `∗, then (2.48) holds with c`∗ , c`∗+1, · · · positive. This will

lead to negative γextra
0,` for ` ≥ `∗. In the following we will argue that the same positivity

condition (2.48), together with its stronger version, follows from different considerations.

4Note however, that the contribution to the anomalous dimension of twist four operators of spin higher

or equal than that of the exchanged operator will not be affected.
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2.4 Positivity property from Regge behaviour

In all the examples studied so far we have verified the positivity condition (2.48) for the

Mellin amplitude. Let us see how this condition arises under general mild assumptions.5

Assume the Mellin amplitude M(x, y, z) displays Regge behaviour for fixed y and large x.

More precisely, let us assume that for a fixed large enough y, M(x, y, z) goes to zero for

large x. It then follows that M(x, y, z) for that value of y is given by a sum over poles with

the correct residues.

M(x, y,−2− y − x) =
∑
τ,`

aτ,`
∑
k

α
(`)
k

(
P

(`)
`+τ (y,−2− y + τ/2)

x+ τ/2 + k
+
P

(`)
`+τ (−2− y + τ/2, y)

−2− x− y + τ/2 + k

)
(2.49)

where the sum runs over intermediate single-trace operators (we have subtracted the super-

gravity contribution), with positive OPE coefficients aτ,`. Note that this expression does

not have any ambiguities. Next, we ask how large does y have to be. From the discussion

above, it follows that the first pole for y is at y = −τmin/2, where τmin is the twist of the

single-trace operator with minimal twist. Let us first assume we are in a regime in which

τmin > 4. Then (2.49) should also hold for y = −2.6 In this case we can write

M(x,−2,−x) =
∑
τ,`

aτ,`
∑
k

α
(`)
k

(
P

(`)
`+τ (−2, τ/2)

x+ τ/2 + k
+
P

(`)
`+τ (τ/2,−2)

−x+ τ/2 + k

)
(2.50)

One can explicitly check that the combination α
(`)
k P

(`)
`+τ (−2, τ/2) is non-negative. Further-

more, the coefficients aτ,` are positive due to unitarity. Finally, the combination

1

x+ τ/2 + k
+

1

−x+ τ/2 + k
(2.51)

admits a decomposition in terms of continuous Hahn polynomials with positive coefficients.

Assuming that the spectrum is such that the sum over τ and ` converges, the positivity

condition (2.48) then follows. The stronger version of the positivity condition can be

understood as follows. Let us assume we are in a regime in which τmin
` > 4 for ` = 2, 4, · · ·

but τmin
0 < 4. In this case, the Mellin amplitude at y = −2 will not fall at infinity, but

tend to a constant. This extra constant term may affect the sign of c0 in (2.48), but it

will not affect the others. If we now assume that also τmin
2 < 4, then we will have an extra

constant plus a quadratic term in x at infinity. This may affect the sign of c0, c2 but not

the others. And so on.

2.4.1 Consequences for the spectrum of N = 4 SYM

Let us focus our attention in twist four double trace operators. Their scaling dimension at

order 1/N2 is given by

∆0,` = 4 + `− 1

N2

96

(`+ 1)(`+ 6)
+

1

N2
γextra

0,` (2.52)

5We would like to thank J. Penedones for his suggestion to look into the Regge behaviour in relation

with this problem.
6The Regge trajectory is defined by τmin

` , so that this behaviour holds for y > −τmin
0 /2 in our conventions.
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where we have included the supergravity result and γextra
0,` corresponds to the contribution

from the rest of the solution to the crossing relations. In a regime in which the twist of

all single-trace operators is higher than four, we obtained the positivity condition (2.48).

This will lead to negative γextra
0,` . Furthermore, in a regime in which τmin

` > 4 for all ` ≥ `∗,
then (2.48) holds with c`∗ , c`∗+1, · · · positive. This will lead to negative γextra

0,` for ` ≥ `∗.
What are the consequences for the spectrum of leading twist operators? Let us focus

in a given spin. If τmin
` is smaller than four, then this will be the minimal twist for that

spin. If, on the other hand, τmin
` > 4, then the minimal twist will be given by ∆0,`−`, with

∆0,` given above. Since we have argued that γextra
0,` is always negative, then 4− 1

N2
96

(`+1)(`+6)

provides an upper bound for the minimal twist. This exactly agrees with the numerical

bounds observed in [3].

3 Limiting cases

3.1 Operators with large dimension

In order to make contact with the results of [2, 4] we would like to consider a limit in which

the dimension of the unprotected single trace operators becomes very large. In N = 4

SYM this happens for large λ. Hence, we would like to consider the solutions constructed

in the previous section, and study them as τ becomes very large, for finite values of the

Mellin variables (x, y, z). This limit is very similar to the flat space limit studied in [11],

although in that limit the Mellin variables are also large. As in that case, the limit is a

bit subtle, and one is to perform the sum over descendants before taking the limit. Let us

consider the partial terms

Q(`)
τ (x; y, z) =

∑
k=0,1,···

α
(`)
k

P
(`)
`+τ (y, z)

x+ τ/2 + k
(3.1)

In order to proceed, we note that for large τ , the leading contribution comes from the

region k = ξτ2, with finite ξ. In that limit the sum over k becomes a integral:∑
k

→ τ2

∫ ∞
0

dξ (3.2)

Given the explicit expression for α
(`)
k in (2.39) we can perform the expansion.7 We obtain

Q(`)
τ (x; y, z) =

4(cos(πτ)− 1)

π

P
(`)
`+τ (y, z)

τ4`

∫ ∞
0

e
− 1

4ξ

ξ2`+7

(
− 1

4τ12
+

(4(4`+ 9)ξ − 1)

32ξ2τ13
+ · · ·

)
dξ

(3.3)

The integral over ξ is convergent and can be performed order by order in 1/τ . The large

τ behaviour of Mack polynomials is given by

P
(`)
`+τ (y, z) =

16

π2
4ττ ` + · · · , (3.4)

7It is convenient to transform α
(`)
k into an equivalent expression, where Γ−functions contain only τ with

positive sign. This can be easily done with the help of the Euler’s reflection formula Γ(1−z)Γ(z) sin(πz) = π.
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Let us focus in the scalar exchange, with ` = 0. At each order in 1/τ the final result for

the symmetrized solution is a polynomial in the symmetric variables:

σ2 = x2 + y2 + z2 (3.5)

σ3 = x3 + y3 + z3 (3.6)

In terms of these the large τ expansion takes the following form

M (0)
τ (x, y) =

âτ
τ12

(
(1 + · · · ) +

σ2

τ4
(224 + · · · ) +

σ3

τ6
(−7168 + · · · ) + · · ·

)
(3.7)

where we have introduced

âτ =
5 32 214 (1− cos(πτ)) Γ(τ + 3)Γ(τ + 4)

π2Γ4
(
τ
2 + 2

) aτ,0 (3.8)

In the picture of [2, 4] it was assumed that single trace operators acquire a very large twist

τ ∼ ∆gap. In this case the relative coefficients in the expansion (3.7) exactly agree with

the ones in [4]. In that paper this behaviour was argued from the point of view of effective

field theories and dimensional analysis, following the discussion in [7, 8].

Let us now focus in the overall coefficient âτ . First note that the prefactor in the

definition of (3.8) grows exponentially:

Γ(τ + 3)Γ(τ + 4)

Γ4
(
τ
2 + 2

) ∼ 22τ (3.9)

We expect aτ,0 to decay exponentially for large τ , so that âτ has a power law behaviour. In-

deed, it has been argued in [26] that convergence of the OPE puts bounds on the behaviour

of OPE coefficients at large dimensions. While it would be interesting to understand the

behaviour of âτ for large τ in general, one can analyse the problem at tree-level. In that

case τ = 4, 6, · · · and the OPE coefficients behave as:

a
(0)
τ,` ∼ 2−2τ (3.10)

with the expected exponential behaviour. Furthermore, in [29, 30], it was argued that

the structure constant for two protected operators of dimension two and one unprotected

operator of large twist τ at large N is given by:

aτ,0 ∼ λ3/22−2τ csc2(πτ/2) (3.11)

In addition to the expected exponential behaviour, note that the poles present in the factor

csc2(πτ/2) cancel neatly against the zeroes in âτ . In the limit of large dimension we obtain

âτ
τ12
∼ λ3/2

τ12
(3.12)

For large λ we have τ = ∆gap ∼ λ1/4, so that

âτ
τ12
∼ λ−3/2 (3.13)
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which is exactly the expected result! In order to recover the results of our previous paper,

it would be interesting to prove the scaling (3.11) from a purely CFT perspective. In any

case, our analysis suggests that the polynomial solutions considered in [4] may be seen as

remnants of the non-polynomial solutions corresponding to single trace operators, when the

operators become very massive. Finally, note that from this analysis the sign in front of the

above series is fixed, and such as to ensure that the contribution to the anomalous dimension

of leading twist operators (in this case four) is always negative. The same analysis can be

carried out for intermediate operators with spin. Disregarding the ambiguous polynomial

R`−1(x, y, z), the large twist behaviour is exactly as expected, with the correct signs as to

give a negative contribution to the anomalous dimension of leading twist operators.

3.2 Flat space limit and relation to causality

There is a very simple relation between the Mellin representation for a large N CFT

correlator and the S-matrix of the bulk dual theory in the flat space limit [11]. Given the

Mellin amplitude M(x, y, z) the flat space S-matrix in our conventions is given by

T (s, t, u) = −2 lim
λ→∞

λ3/2

∮
dα

2πi

e−α

α6
M

(√
λs

α
,

√
λt

α
,

√
λu

α

)
(3.14)

For instance, the supergravity term leads to the following contribution

Tsugra(s, t, u) =
16

stu
. (3.15)

Next, we can consider the flat space limit of an s−channel exchange:

M (`)
τ (x, y, z)

∣∣∣
s−channel

=
∑

k=0,1,···
α

(`)
k

P
(`)
`+τ (y, z)

x+ τ/2 + k
(3.16)

As λ becomes large the twist of the single trace operator scales as τ ∼ λ1/4 so that the flat

space limit corresponds to large τ with the Mellin variables scaling as x, y, z ∼ τ2. In this

limit the Mack polynomials reduce to the Harmonic functions on S3 and we obtain

M

(√
λs

α
,

√
λt

α
,

√
λu

α

)∣∣∣∣∣
s−channel

∼ sin((`+ 1)θ)

sin θ
× (3.17)

×

(√
λ

τ2α

)`−Γ(6 + `) + 4Γ(7 + `)

√
λs

τ2α
− 16Γ(8 + `)

(√
λs

τ2α

)2

+ · · ·

 (3.18)

The first factor arises from the corresponding limit of the Mack polynomial. We have

introduced the scattering angle t/u = 1−cos θ
1+cos θ . Performing the contour integral we obtain

T (s, t, u) ∼ sin((`+ 1)θ)

sin θ

1

s+m2
(3.19)

where m2 = τ2/(4
√
λ). This is the correct flat space propagator for a particle of mass m

and spin `. Notice that the overall coefficient we have suppressed is positive. The precise

flat space limit of the non-polynomial solutions will depend, in general, on the polynomials

R`−1(x, y, z).8 The full Mellin amplitude at order 1/N2 should be such that its flat space

8Although the degree of this polynomial is smaller than `, the overall coefficients may scale with τ .
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limit reproduces the Virasoro Shapiro amplitude:

T (s, t, u) = TV S(s, t, u) =
16

stu

Γ(1− s/4)

Γ(1 + s/4)

Γ(1− t/4)

Γ(1 + t/4)

Γ(1− u/4)

Γ(1 + u/4)
(3.20)

where recall s+ t+ u = 0. From our discussion in section 3.1, we expect that in the large

λ limit the Mellin expression reduces to the supergravity term plus a series of completely

symmetric polynomial terms suppressed by powers of 1/λ:

M(x, y, z) = − 16

(x+ 1)(y + 1)(z + 1)
+
p(0)

λ3/2
+
p(2)(x, y, z)

λ5/2
+ · · · (3.21)

This expansion, with the appropriate signs, is consistent with the Virasoro Shapiro am-

plitude. Finally, let us add that the proper flat space limit fixes the leading term of each

polynomial p(i)(x, y, z), see [23] where this exercise was performed. It would be interesting

to see what else can be said about sub-leading terms.

One may ask whether the polynomials R`−1(x, y, z) may be set to zero and we can

obtain the full Mellin transform at order 1/N2 as the sum of the non-polynomial solutions

presented above. It turns out that these polynomials are necessary for consistency with

the flat space limit.9

Relation to causality. Causality constraints on effective field theories were studied

in [9]. It was determined that the S-matrix of a low energy effective field theory should

satisfy certain positivity constraints if the theory has a consistent UV completion. More

precisely, in the forward limit t→ 0 the regular part of the S-matrix has an expansion

T (s, 0,−s) = α+ βs2 + γs4 + · · · (3.22)

where all the coefficients α, β, · · · are non-negative. This can be checked for the flat space

limit of the solutions considered above. Indeed, in the forward limit θ → 0 the correspond-

ing S-matrix reduces to

T (s, 0,−s) ∼ 1

s+m2
+

1

−s+m2
+

1

m2
=

3

m2
+

2s2

m6
+ · · · (3.23)

with only positive coefficients. Hence, the flat space limit of the non-polynomial solutions

constructed above, assuming R`−1(x, y, z) = 0, is consistent with the causality constraints

of [9].10 The same is true for the Virasoro-Shapiro amplitude.

Let us now consider the flat space limit, eq. (3.14), in the forward limit, for a general

Mellin amplitude. After substracting the supergravity contribution (which is not regular

in the forward limit), the relevant Mellin amplitude will have an expansion:

M

(√
λs

α
, 0,−

√
λs

α

)
= c0 + c1

λs2

α2
+ c2

λ2s4

α4
+ · · · (3.24)

9J. Penedones, private communication.
10The reason for this is obvious, since in the flat space limit we simply recover a sum of propagators in

the three channels, with positive coefficient.
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where the coefficients ci depend on λ, and only the leading term survives in the flat space

limit. Consistency with causality then implies that all the coefficients ci are positive at

leading order in λ. This condition has exactly the same form as (2.48)! Actually, it follows

from (2.48): the Hahn polynomials have positive coefficients, and in the flat space limit

only the leading term from each polynomial will survive. On the other hand (2.48) is also

valid for finite (but sufficiently large) λ.

3.3 Large n limit

Before concluding, let us make a few remarks on the large n behaviour of γn,`. We are

interested in the limit n� 1 for finite `. This behaviour is controlled by the same harmonic

functions which arise in the flat space limit. Given the Mellin representation M(x, y, z)

the leading large n behaviour of the anomalous dimension γn,` is given by

γn,` =
1

n(`+ 1)

∮
dα

2πi

e−
n2

2
α

α6

∫ 2π

0

sin2 θ

π
P`(θ)M

(
2

α
,−1− cos θ

α
,−1 + cos θ

α

)
dθ (3.25)

This allows to compute the large n behaviour due to different terms. For instance, from

the supergravity contribution we get the following dependence:

γsugra
n,` = −2

n3

1 + `
+ · · · (3.26)

which can also be computed from the explicit answer. For the non-polynomial solutions

corresponding to the exchange of an operator of spin ` we obtain:

γτ,0n,` ∼ −n
7+2` (3.27)

where we have stressed the fact that the overall coefficient is negative and the twist of

the operator has been kept fixed in the limit. Note that the limit is insensitive to the

polynomials R`−1(x, y, z), but the addition of a higher order polynomial would spoil this

behaviour. Furthermore, note that the supergravity term is the solution consistent with

crossing symmetry and the structure of the CPW decomposition that leads to the smallest

growing with n for γn,`.

Having the expression (3.25) for the large n behaviour of γn,` in terms of an arbitrary

Mellin amplitude, we would like to compute the leading large n behaviour to all order in

1/
√
λ, in N = 4 SYM. As already mentioned, the Mellin amplitude should be such that

its flat space limit reproduces the Virasoro Shapiro amplitude. On the other hand, note

that the integral expression giving the flat space limit (3.14) is almost the same expression

which gives the leading large n contribution (3.25). Hence, the leading large n behaviour

can be directly written in terms of the Shapiro Virasoro amplitude! We obtain

γn,` =
λ−3/2n9

64(`+ 1)

∫ 2π

0

sin2 θ

π
P`(θ)TV S

(
n2

√
λ
,−1

2

n2

√
λ

(1− cos θ),−1

2

n2

√
λ

(1 + cos θ)

)
dθ

(3.28)

which is valid to all orders in 1/
√
λ. For instance, in the large λ limit only the leading

term contributes and we obtain

γsugra
n,` = − n3

4(`+ 1)

∫ 2π

0

sin2 θ

π
P`(θ)

4

1− cos2 θ
dθ = − 2n3

`+ 1
(3.29)
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which agrees with the large n behaviour of the supergravity result. For finite n2
√
λ

we see

this expression has poles at n2
√
λ

= 4, 8, · · · . Note that at these values the dimension 2∆+2n

agrees with twice the dimension of the Konishi operator. We expect these poles to be an

artifact of the large N expansion and the fact that we are considering only the leading

contribution at each order in 1/
√
λ. In any case, it is instructive to study the above

expression in the limit of large n2
√
λ

. We can avoid the poles by adding a small imaginary

part to n2
√
λ

. For large n2
√
λ

the integral over θ receives most of its contribution from the

saddle points at θ = 0 and θ = π. The final result is a slower growing with n than the

supergravity result. More precisely we obtain γn,` ∼ n2/ log1/2 n. It would be interesting

to understand this result further.

Lorentzian singularity. A growth in the anomalous dimensions of double trace oper-

ators, γn,` ∼ nκ, will generically lead to a singularity in the Lorentzian correlator at the

point z = z̄. Such singularities are a diagnostic of bulk locality [2, 15, 22] . More precisely

we introduce z = σeρ and z̄ = σe−ρ and take the limit ρ→ 0. The Euclidean correlator is

not singular in this limit. However, if we analytically continue to the Lorentzian regime, as

described in [2], and then take the limit ρ→ 0, a singularity arises. The simplest example

is that of a single conformal block. Let us consider

g2,0(z, z̄) =
log(1− z̄)− log(1− z)

z − z̄
(3.30)

clearly, this does not have a singularity at z = z̄. The analytic continuation to the

Lorentzian regime is explained for instance in appendix B to [15], see also [16, 17]. The

strategy is to place all the branch cuts of a given expression along the positive real axis

(which is already done for the expression at hand). Then along the analytic continuation z

does not cross any branch cuts while z̄ crosses all of them. In the example above this leads to

log(1− z) → log(1− z) (3.31)

log(1− z̄) → log(1− z̄) + 2πi (3.32)

so that after the analytic continuation we get a divergence 2πi
z−z̄ ∼ ρ−1. In addition to the

divergence for each conformal block there is an enhancement effect arising from the large

n behaviour of γn,`. This can be seen as follows. Under the analytic continuation each

conformal block acquires an extra phase:

u
∆−`

2 g∆+4,`(u, v)→ e−iπ∆u
∆−`

2 g∆+4,`(u, v) (3.33)

when summing over double trace operators all phases add up, since e−2πin = 1. Further-

more e−iπ∆n,` ∼ −iπ γn,`
N2 . The extra factor γn,` results in a enhanced divergence when

summing over n. The final divergence for the correlator takes the form11

A(z, z̄) ∼
∑
n,`

n2γn,`

2ρ sin2 θ
2

e−2inρ tan θ
2P`(θ) (3.34)

11The translation of the results of [2] to the case of superconformal blocks is straightforward, and the

divergence has exactly the same form.
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as ρ approaches zero. We have introduced σ = sin2 θ
2 . The sum over n generically enhances

the divergence. The leading divergence can be computed by approximating the sum by an

integral: ∑
n

nαe−βn ∼
∫ ∞

0
dnnαe−βn =

Γ(1 + α)

βα+1
(3.35)

For instance, the supergravity contribution will lead to a divergence ρ−7 while the non-

polynomial solutions corresponding to a scalar exchange will lead to a divergence ρ−11 and

so on. Note that the divergences are much more severe in N = 4 SYM than in standard

large N CFT.

Given the leading large n behaviour of the anomalous dimensions of double trace

operators to all orders in 1/
√
λ, eq. (3.25), we can write down the leading bulk-point

divergence to all orders in 1/
√
λ. This can be writen in terms of the Virasoro-Shapiro

amplitude and is given by

A(z, z̄)|div ∼
∑
n

2λ−3/2n11

ρ sin2 θ
2

TV S
(
n2

√
λ
,−1

2

n2

√
λ

(1− cos θ),−1

2

n2

√
λ

(1 + cos θ)

)
e−2inρ tan θ

2

(3.36)

This expression is not unexpected, since in general large N CFT’s the residue at the singu-

larity should be related by the flat space S-matrix [2]. Let us make the following interesting

remark. The divergence as ρ→ 0 is controlled by the terms with large n. For generic angles

this is controlled by the Virasoro-Shapiro amplitude at large momentum transfer and fixed

angle. In this regime the Virasoro-Shapiro amplitude is known to decay exponentially. As

a result, we do not get an enhanced divergence respect to the divergence of each individual

conformal blocks. This agrees with the expectation of [22]. Since γn,` does grow with n

(see discussion above) for large n2/
√
λ, this seems confusing. What happens is that for

a generic angle all spins contribute and their divergences cancel out. This is somewhat

similar to the chaotic phenomenon mentioned in [22].

4 Conclusions

In this paper we have considered the four-point correlator of the stress tensor multiplet in

N = 4 SYM. The contribution from intermediate operators in shortened supermultiplets

can be resummed exacly. As a result, the correlator can be written in terms of a single

non-trivial function G(u, v), which receives contributions from unprotected operators only.

We have analysed the crossing relations in the large N limit, to order 1/N2. In order to

do so it is convenient to work in Mellin space. The prefactor in the definition of the Mellin

amplitude authomatically includes the poles corresponding to double trace operators. At

large t’Hooft coupling λ the dimension of single trace operators is parametrically large and

the Mellin amplitude does not contain extra poles. The solutions reduce to the polynomial

solutions previously found.

In this paper we have focused in a regime in which the dimension of single trace

operators is finite. As a consequence they enter, at order 1/N2, as intermediate states

in the OPE of two external operators. This leads to a structure of simple poles in the
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Mellin amplitude, and we have considered solutions consistent with crossing and these

analytic properties. An important point is that the overall sign of these solutions is fixed

by unitarity. We then studied the contribution from such non-polynomial solutions to

the anomalous dimension of twist four operators, and have shown that the contribution is

always negative, provided the twist of the intermediate operators is larger than four. This

follows from certain positivity properties of Mack polynomials. This can be extended to a

positivity constraint for a slice of the Mellin amplitude (at order 1/N2). In doing so, we

have disregarded a polynomial ambiguity that arises when the exchanged particles are not

scalar. However, we have shown that the same positivity constraint follows from requiring

the correct Regge behaviour for the Mellin amplitude. This positivity condition explains

results observed from the numerical bootstrap.

It is instructive to consider the large twist limit of the non-polynomial solutions. On

one hand, it reproduces the series of polynomial solutions considered in [2, 4], with the

correct suppression factors of an effective field theory. On the other hand, it “predicts”

specific overall signs, which in the effective theory treatment were arbitrary. These signs are

such that the correction to the anomalous dimensions of twist four operators is negative.

For intermediate scalar operators the analysis can be done explicitly, while in the case of

intermediate operators with spin, one would need to assume that the polynomial terms do

not spoil these properties.

It is also instructive to consider the limit in which the Mellin amplitude reduces to the

S-matrix of the bulk dual theory in flat space, proposed by Penedones in [11]. We have

analysed this in the forward limit and found a connection between the positivity property

for the Mellin amplitude mentioned above, and positivity constrains derived from causality

in [9]. Furthermore, in this limit one should recover the full Virasoro Shapiro amplitude.

This has allowed us to write down the large n behaviour of γn,`, to all orders in 1/
√
λ and

the leading order bulk-point singularity, to all orders in 1/
√
λ. We have observed that for

finite λ the singularity of single conformal blocks is not enhanced.

There are several open problems that would be interesting to address. It would be

interesting to obtain similar positivity constraints for γn,` for generic n. It would be

interesting to understand better how to fix the polynomial ambiguities for the case of the

exchange of a single-trace operator with spin. Even assuming polynomial boundedness of

the Mellin amplitude, one can always add regular, polynomial terms without compromising

the analytic structure of the solutions. As already mentioned, consistency with the flat

space limit does require these polynomials. On the other hand, the positivity condition on

the Mellin transform was proven regardless of this ambiguity.

It would also be desirable to understand the convergence properties when summing

over an infinite number of single trace operators. In order to do this, one would like

to understand the weighted spectral density of single-trace operators, maybe along the

lines of [26]. Subtleties may occur when summing over an infinite number of intermediate

particles. It would be interesting to understand precisely which properties to require for the

Mellin amplitude at order 1/N2. In addition to an infinite number of poles at finite 1/
√
λ,

one expects a specific behaviour for large Mellin variables, e.g. arising from the correct

Regge behaviour. It may be simpler to propose a solution for the full Mellin amplitude
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at order 1/N2 (or even at finite N !), once all the conditions are specified, as opposed to

obtain it as the sum of infinite contributions.

The anomalous dimension of double trace operators γn,` for large n is related to certain

singularities in the correlator, after analytic continuation to the Lorentzian regime. We

have seen that for N = 4 SYM they take the form (3.36). It would be very interesting

to reproduce this singularity by alternative methods. For instance, it is known that the

double null limit u, v → 0 limit of this correlator is governed by the expectation value of

a Wilson loop [27]. This result can also be derived from crossing symmetry [28]. It would

be interesting to make a similar statement for the bulk-point singularity.

Finally, some of the ingredients of section three,e.g. the flat space limit of the Mellin am-

plitude leading to the Virasoro Shapiro amplitude, or the form of the OPE coefficient (3.11)

for a large twist intermediate single-trace operator, required an input from the dual bulk

theory. It would be interesting to recover these results from a purely CFT perspective.
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A Mack polynomials

The conformal blocks defined in the body of this paper depend on the Mack polynomials

P
(`)
∆ (y, z). These are symmetric polynomials of total degree ` and were defined for instance

in [31]. It is convenient to define them through a difference equation:(
4(2 + z)2t−y t

+
z + 4(y + 2)2t+y t

−
z + (∆ + 2x− `)(∆− 2x+ `+ 4)(t−y + t−z )

)
P

(`)
∆ (y, z) =

= 2(∆2 + 4∆ + `2 + 2`− 2y2 − 8yz − 16y − 2z2 − 16z − 16)P
(`)
∆ (y, z) (A.1)

where we have defined the translation operators t±y f(y) = f(y± 1) and t±z f(z) = f(z± 1).

This difference equation can be derived from the corresponding Casimir equation that the

conformal block satisfies in space-time. This difference equation fixes fully the polynomial

up to an overall normalisation factor. The normalisation factor can be fixed by requiring

the correct small u behaviour for the superconformal blocks. This leads to

P
(`)
∆

(
−2,

∆− `
2

)
= − 2−`−1 csc(π∆)Γ(`+ ∆ + 4)

Γ(−∆− 2)Γ
(

1
2(−`+ ∆ + 4)

)2
Γ
(

1
2(`+ ∆ + 4)

)2 (A.2)

Supplementing the above difference equation with this value fixes uniquely the polynomials.

In this paper we will be interested in the “flat-space” limit of the Mack polynomials. In

this limit we obtain:

P
(`)
`+τ (τ2y, τ2z) =

16× 4τ+`τ4`

π2
P`(θ)ρ

` + · · · (A.3)

– 22 –



J
H
E
P
0
7
(
2
0
1
7
)
0
4
4

where we have introduced y = ρ(1 − cos θ) and z = ρ(1 + cos θ). P`(θ) are related to the

Legendre polynomials and are given by

P`(θ) =
sin(`+ 1)θ

sin θ
(A.4)

These functions are orthonormal with respect to the following measure:∫ 2π

0

sin2 θ

π
dθP`(θ)P`′(θ) = δ`,`′ (A.5)

B Single poles vs unitarity

In this appendix we briefly show that the presence of a single generic pole in the Mellin

amplitude:

Mδ(x) ∼ 1

x+ δ/2
(B.1)

is not consistent with unitarity. Indeed, such a contribution corresponds to a primary

scalar operator of dimension δ, so that in space time:

Aδ(u, v) = v2uδ/2gδ+4,0(u, v) + · · · (B.2)

where we have assumed (by unitarity) that the corresponding OPE coefficient is positive,

and we have normalised it to be one. However, descendants of that primary will lead to

additional poles, which in order to be canceled require the exchange of scalar primaries

with higher twist. In order to cancel all the poles except the first one, we need:

Aδ(u, v) = v2
∞∑
n=0

αnu
δ/2+ngδ+4+2n,0(u, v) (B.3)

where

αn =

√
π(−1)nΓ

(
δ+5

2

)
2−δ−4n−2(δ + 2n+ 2)Γ

(
n+ δ

2 + 2
)2

Γ(n+ δ + 2)

Γ
(
δ
2 + 2

)3
Γ(n+ 1)Γ

(
n+ δ

2 + 3
2

)
Γ
(
n+ δ

2 + 5
2

) (B.4)

for generic, not even, δ these are new operators and hence they should appear with a

positive OPE coefficient, but we see that half the coefficients are actually negative! so a

single pole is not consistent with unitarity. One may try to overcome this with a finite

number of poles. However, we have found that for any finite number of poles the positivity

condition for all OPE coefficients is too constraining. Hence we conclude that a finite

number of generic poles is not consistent with unitarity. A similar analysis can be carried

out for non scalar operators, but the analog of (B.3) is much more complicated.
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[23] V. Gonçalves, Four point function of N = 4 stress-tensor multiplet at strong coupling, JHEP

04 (2015) 150 [arXiv:1411.1675] [INSPIRE].

[24] Z. Komargodski and A. Zhiboedov, Convexity and liberation at large spin, JHEP 11 (2013)

140 [arXiv:1212.4103] [INSPIRE].

[25] A.L. Fitzpatrick, J. Kaplan, D. Poland and D. Simmons-Duffin, The analytic bootstrap and

AdS superhorizon locality, JHEP 12 (2013) 004 [arXiv:1212.3616] [INSPIRE].

[26] D. Pappadopulo, S. Rychkov, J. Espin and R. Rattazzi, OPE convergence in conformal field

theory, Phys. Rev. D 86 (2012) 105043 [arXiv:1208.6449] [INSPIRE].

[27] L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation

functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

[28] L.F. Alday and A. Bissi, Higher-spin correlators, JHEP 10 (2013) 202 [arXiv:1305.4604]

[INSPIRE].

[29] J.A. Minahan and R. Pereira, Three-point correlators from string amplitudes: mixing and

Regge spins, JHEP 04 (2015) 134 [arXiv:1410.4746] [INSPIRE].

[30] M.S. Costa, V. Goncalves and J. Penedones, Conformal Regge theory, JHEP 12 (2012) 091

[arXiv:1209.4355] [INSPIRE].

[31] G. Mack, D-independent representation of conformal field theories in D dimensions via

transformation to auxiliary dual resonance models. Scalar amplitudes, arXiv:0907.2407

[INSPIRE].

– 25 –

https://doi.org/10.1016/S0550-3213(99)00525-8
https://doi.org/10.1016/S0550-3213(99)00525-8
https://arxiv.org/abs/hep-th/9903196
https://inspirehep.net/search?p=find+EPRINT+hep-th/9903196
https://doi.org/10.1016/S0550-3213(03)00448-6
https://arxiv.org/abs/hep-th/0212116
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212116
https://doi.org/10.1007/JHEP01(2017)013
https://doi.org/10.1007/JHEP01(2017)013
https://arxiv.org/abs/1509.03612
https://inspirehep.net/search?p=find+EPRINT+arXiv:1509.03612
https://doi.org/10.1007/JHEP04(2015)150
https://doi.org/10.1007/JHEP04(2015)150
https://arxiv.org/abs/1411.1675
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1675
https://doi.org/10.1007/JHEP11(2013)140
https://doi.org/10.1007/JHEP11(2013)140
https://arxiv.org/abs/1212.4103
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4103
https://doi.org/10.1007/JHEP12(2013)004
https://arxiv.org/abs/1212.3616
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3616
https://doi.org/10.1103/PhysRevD.86.105043
https://arxiv.org/abs/1208.6449
https://inspirehep.net/search?p=find+EPRINT+arXiv:1208.6449
https://doi.org/10.1007/JHEP09(2011)123
https://arxiv.org/abs/1007.3243
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3243
https://doi.org/10.1007/JHEP10(2013)202
https://arxiv.org/abs/1305.4604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.4604
https://doi.org/10.1007/JHEP04(2015)134
https://arxiv.org/abs/1410.4746
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.4746
https://doi.org/10.1007/JHEP12(2012)091
https://arxiv.org/abs/1209.4355
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.4355
https://arxiv.org/abs/0907.2407
https://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2407

	Introduction
	Analytic solutions at large N and single trace operators
	Generalities
	Single trace operators
	Single scalar primary
	Full and general exchange

	Positivity constraints for the Mellin amplitude
	Positivity property from Regge behaviour
	Consequences for the spectrum of N=4 SYM


	Limiting cases
	Operators with large dimension
	Flat space limit and relation to causality
	Large n limit

	Conclusions
	Mack polynomials
	Single poles vs unitarity

