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1 Introduction and summary

In recent times the study of thermalisation in closed quantum systems has received a surge

of activity, see e.g. [1] for a review with more references. In general, a quantum system

perturbed out of equilibrium decoheres and proceeds towards ergodicity. On a large enough

time-scale, the system thermalises and is described by a mixed density matrix. However,

contrary to this expectation, there can be situations where a quantum system dynamically

reconstructs the initial state and keeps repeating this evolution, with or without damping.

This phenomenon is termed quantum revival.

In the context of AdS/CFT correspondence, such possible revival configurations pre-

sumably correspond to periodic or quasi-periodic dynamics resulting from gravity in an

asymptotically AdS space. In this paper, we discuss such configurations in two contexts,

namely, thin shells and solid balls especially when they oscillate. Oscillatory motion in

gravitational dynamics is not new. In global AdS space, a transient oscillatory motion of a

thick shell has been reported in [2, 3]. The thick shell leads to a collapse situation, forming

a black hole at late times. Non-transient or exactly periodic oscillatory configurations in

AdS space have been explored in [4–9]. A connection with quantum revivals has also been

proposed. Similar periodic configurations are also known to arise in other closely related

set-ups [10–14].
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It becomes clear from these studies that we need two ingredients for oscillatory dy-

namics in AdS. Firstly, we need to work in global AdS, and secondly, we need a non-

vanishing pressure (or another repulsive force) to sustain oscillations. The necessity of a

non-vanishing pressure is intuitive. To have an oscillation, one needs an interaction that

competes with the attraction of gravity. In earlier works, e.g. in [8, 15], oscillatory shells

have been explored, where the shell matter is described by a perfect fluid with a linear

equation of state. In the current paper, we also consider a polytropic equation of state

for the shell dynamics, and a non-vanishing pressure for the ball dynamics. In both cases,

we conclude that for a range of allowed parameter space, one obtains oscillatory motion.

Furthermore, reasonable energy conditions, such as the weak and null energy conditions

are obeyed by these configurations.

While a priori there is no reason to rule out such dynamics, it remains unclear to us

what the precise dual field theory descriptions are. One such possibility is certainly the

quantum revivals that have already been pointed out in the literature [9]. We only list a

few features here, and not attempt to elaborate on the identification. First, it is clear that

one point functions are all thermal as seen from the AdS boundary. Non-local observables,

however, do penetrate and capture the dynamical aspects of the geometry. Towards this we

explicitly calculate a two-point function in the geodesic approximation in oscillatory shell

backgrounds and demonstrate that the shell oscillation simply gets mapped to oscillations of

the correlation function, provided the two points are sufficiently separated at the boundary.

We expect a similar behaviour to appear in the oscillating ball dynamics, though, this

calculation is technically more involved. The technical complication for the ball dynamics

arises from a non-vanishing pressure. The ball itself is described by a simple FRW geometry,

and due to pressure matter leaks outside. The outside is therefore a Tolman-Oppenheimer-

Volkoff (TOV) type solution in AdS. This TOV geometry needs to be matched onto an AdS

Schwarzschild geometry. Thus, a two-point function in the dual field theory has essentially

three characteristic length-scales. The short-distance behaviour of the correlator is purely

thermal. The intermediate-distance behaviour of the correlator is determined by a geodesic

penetrating into the TOV region of the spacetime. Finally, the long-distance behaviour of

the correlator is dynamical since the corresponding geodesic probes the oscillating FRW

region. Thus, the UV modes of the field theory have a thermal behaviour, which crosses

over to a dynamical behaviour towards the IR. This qualitative picture is in accordance with

the top-down thermalisation picture of [16–19] in the context of AdS/CFT correspondence.

Another intriguing feature of the oscillatory configurations is that the dynamics is

confined between two radial scales. One does not immediately arrive at such a configuration

with a natural choice of boundary and initial conditions at the boundary of AdS. Thus,

while the presence of oscillations is rather ubiquitous, our analysis does not shed light on

how one prepares this state from the perspective of the boundary theory. However, given

the results of [9, 20], where a more direct numerical study exhibits similar periodic or

quasi-periodic dynamics arising from a set of initial and boundary conditions, we view the

above shortcoming as a limitation of our approach.

Given the existence of the oscillatory dynamics, there are various avenues to explore

further, for example, how additional parameters affect the oscillatory configurations? In
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particular, introducing a charge is potentially interesting since it can compete with gravita-

tional attraction. Perhaps with a non-vanishing charge, one can obtain oscillating solutions

in low pressure situations. We leave this for future investigations.

The rest of the paper is organised as follows. In section 2 we discuss the basic framework

of junction conditions and the details of the shell dynamics, including the study of two point

function in the geodesics approximation in oscillating shell backgrounds. In section 3 we

discuss oscillating FRW balls. Section 4 is devoted to a discussion of the various energy

conditions for the oscillating shell and oscillating ball configurations. Finally, certain details

on matching the FRW ball to a TOV-type solution are discussed in appendix A.

2 The oscillating shells

In this section we discuss oscillating shell configurations. In section 2.1 we start with a

brief review of the analysis of [8] and make some further observations. In section 2.2 we

compute the equal time two-point function in the geodesic approximation in oscillating

shell backgrounds.

2.1 Shell dynamics

We begin with the formalism to discuss the motion of the shell. The same formalism will

be useful later in studying the dynamics of a ball in the spirit of the Oppenheimer-Snyder

model.

Consider a spherically symmetric thin shell, evolving in a (d + 1)-dimensional back-

ground spacetime M. The shell divides the entire spacetime in two regions: an interior

(empty AdS) denoted by M− and an exterior (AdS Schwarzschild) denoted by M+. The

line elements in the two regions are given by

ds2
± = −f±(r)dt2± + f−1

± (r)dr2 + r2dΩ2
d−1, (2.1)

where f−(r) = 1 + r2 and f+(r) = 1 + r2− m
rd−2 . Here, we have set the AdS length to unity

and m is the mass parameter (proportional to the ADM mass) of the system.

The radial coordinate r is continuous across the shell, ensuring that the area of the (d−
1)-spheres agree on the two sides of the shell. In brief, we choose the following coordinate

patches: U+ ≡ {t+, r, θ1, . . . θd−1} ≡ {xµ+} on M+, and U− ≡ {t−, r, θ1, . . . θd−1} ≡ {xµ−}
on M−. Here µ ranges over all space-time directions. Clearly, Einstein equations (via

the junction conditions) impose non-trivial boundary conditions on U+ ∩ U−, thereby

determining the entire manifold covered by U+ ∪ U−.

We can choose an independent set of coordinates on the shell worldvolume

Ushell ≡ {τ, θ1, . . . , θd−1} ≡ {ya}.

In writing this equation, we have chosen a trivial embedding along the angular directions by

making use of the spherical symmetry of the problem. The coordinate τ is chosen to be the

proper time of a co-moving observer on the shell. The basis vectors on the tangent space of

the shell at any point can be pushed forward to spacetime vectors: espace−time ≡ ϕ∗ (eshell).

In explicit coordinates, this map takes the form ∂a = ∂xµ

∂ya ∂µ.
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Let the position of the shell be specified by

r = rs(τ) , t± = t±,s(τ). (2.2)

Then we get

∂τ = uµ∂µ = ṫ±,s ∂t± + ṙs∂r, (2.3)

∂θi = δµθi∂µ, i = 1, . . . , (d− 1). (2.4)

Here, the overhead dot denotes derivative w.r.t. τ , and uµ is the four velocity of the shell.

The four velocity is canonically normalised, uµuµ = −1, which yields,

ṫ±,s =

√
f±(rs) + ṙs

2

f±(rs)
=:

β±
f±(rs)

. (2.5)

Since the derivatives ṫ± do not match at the location of the shell, t+ is not continuously

related to t−. This will be carefully taken into account when we discuss spacelike geodesics

crossing the shell in the next subsection.

The induced metric on the shell is:

ds2
shell = habdy

adyb = −dτ2 + r2
sdΩ2

d−1. (2.6)

The unit normalised vector normal to the shell in ± coordinates is

nµ,± =
(
−ṙs, ṫ±,s, 0, 0

)
=⇒ nµ± =

(
f−1
± (rs)ṙs, f±(rs)ṫ±,s, 0, 0

)
. (2.7)

It satisfies uµnµ,± = 0 and nµ±nµ,± = 1. An overall (positive) sign choice has been made in

writing the above normal vector, so it points from M− to M+.

Einstein equations become a set of matching conditions on U+∩U−. These are known as

the Israel junction conditions [21]. For writing down these conditions, we need to evaluate

the extrinsic curvature and also assign a stress-tensor to the thin-shell matter field. The

extrinsic curvature, defined as Kab = eµaeνb∇µnν , has the following non-zero components,

Kττ,± = − β̇±
ṙs
, Kθ1θ1,± = β±rs, (2.8)

Kθiθi,± = (Kθ1θ1,±)
hθiθi
r2

s

, i 6= 1. (2.9)

Equivalently,

Kτ
τ,± =

β̇±
ṙs
, Kθi

θi,±
=
β±
rs
. (2.10)

For simplicity, we can take the stress-tensor of the thin-shell to be of the perfect fluid form,

Sab = diag(−σ, p, p, . . .︸ ︷︷ ︸
(d−1) terms

), (2.11)

where σ and p are the energy density and the pressure of the corresponding matter on the

shell, related via a suitable equation of state.
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The two Israel junction conditions are (i) continuity of metric across the shell, and (ii)

jump in the extrinsic curvature is related to the stress-tensor of the thin-shell,

[Kab]− hab [K] = −κSab, or [Ka
b] = −κ

(
Sab −

δabS

d− 1

)
, (2.12)

where κ = 8πGd, K ≡ habKab and S ≡ habSab are the traces of the corresponding tensors.

The bracket, denoted by [] represents the jump from M− to M+

[O] ≡ O+ −O− (2.13)

for some field O. This definition is tied to our convention of choosing the direction of the

normal vector in (2.7).

Together with (2.10) and (2.11), the junction conditions (2.12) become

[β]

rs
= − κσ

d− 1
, (2.14)

[β̇]

ṙs
= κ

(
p+ σ

d− 2

d− 1

)
. (2.15)

Since, f+ ≤ f−, we have β+ ≤ β−, and by virtue of (2.14), we conclude σ ≥ 0. The

inequality here is saturated for the trivial junction where the extrinsic curvature has no

jump, and the shell does not exist.

To make further progress, one needs to input an equation of state. A sufficiently

general choice is the polytropic equation of state: p = α
d−1σ

γ , where γ is the polytropic

exponent. The overall constant α fixes the normalization of e.g. the trace of the shell energy-

momentum tensor. With a polytropic equation of state, equation (2.15) takes the form,

[β̇]

ṙs
= − [β]

rs

(
ασγ−1 + d− 2

)
, (2.16)

which can be integrated using (2.14) to yield,

− [β] =

[
−(d− 1)γ−2

κγ−1
α r1−γ

s +Mr(d−2)(γ−1)
s

] 1
1−γ

, γ ∈ Z \ {1} , (2.17)

where M is a constant of motion.

It is also possible to obtain analytical solutions for equation (2.16) with non-integer

values1 of γ, however, those seem valid case-by-case and we were not able to obtain one

compact expression for all possible values of γ. The special case of γ = 1 can be worked

out separately, yielding,

[β] = −Mr2−d−α
s , (2.18)

where M is an integration constant.2 In this case we have a linear equation of state

p = α
d−1σ. There are two cases of special interest, α = 0 and α = 1. α = 0 corresponds to

1This is certainly of physical importance, see e.g., [22].
2For σ to be positive, the constant M in equation (2.18) needs to be positive, cf. (2.14). For the

polytropic equation of state, the relation between the integration constant M and σ is not direct. Since a

physical interpretation of M is not transparent, one can consider both positive and negative values of M

for the polytropic equation of state. In this paper we only consider M > 0.
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Figure 1. The two limiting cases within which oscillatory shell motion exists. We have chosen

α = 0.3, d = 3, m = 0.1, Mup/m = 0.38 (the top solid curve) and Mlow/m = 0.35 (the bottom

dashed curve).

pressure-less dust, and α = 1 corresponds to conformal matter for which the trace of the

energy-momentum tensor vanishes.

The total energy of the shell can be defined by

E = σΩd−1r
d−1
s . (2.19)

In general, the energy so defined is clearly not conserved as rs and σ change as the shell

moves. However, in the pressure-less case, using (2.14) one sees that E is a constant of

motion related to M by a proportionality factor.

We can recast the equations of motion of the shell as the motion of a particle in an

effective potential. This is achieved by substituting the definition β± =
√
f±(rs) + ṙs

2 in

equation (2.14). After some simplification we get,

ṙ2
s + Veff (rs) = 0, (2.20)

Veff (rs) = f− (rs)−
(d− 1)2

4σ2r2
s

[
f− (rs)− f+ (rs) +

σ2r2
s

(d− 1)2

]2

. (2.21)

In practice, one uses (2.14) to write σ as,

σ = − [β] (d− 1)

κrs
, (2.22)

and in turn uses (2.17) to substitute for [β] to obtain σ in terms of other parameters.

Substituting such an expression in (2.21), gives an equation for the dynamics of the shell in

terms of the paramters {d, α, γ, κ,m,M}. Of these, κ can be set to unity by an appropriate

choice a units. Therefore, the physics depends on parameters {d, α, γ,m,M}.
Note that for γ 6= 1, the two terms in (2.17) compete with each other, and define a

natural scale for the dynamics,

O

(
(d− 1)γ−2

κγ−1
α r1−γ

cross

)
= O

(
Mr(d−2)(γ−1)

cross

)
, (2.23)
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where rcross denotes the crossover scale which connects two different dynamical regimes,

described respectively by an r1−γ
s potential and the inverse of it. In general, with various

possibilities, the full dynamics is likely to be very rich and worth exploring. We focus only

on certain sub-classes in this paper.

Let us start by briefly reviewing the oscillatory solutions that are already discussed

in [8]. This corresponds to setting γ = 1. The effective potential can be rewritten as,

Veff = 1 + r2
s −

m2

4M2
r2α

s −
m

2
r2−d

s − M2

4
r−2(α+d−2)

s , (2.24)

where M is now the constant appearing in the first integral of motion in (2.18). To find

oscillatory shell dynamics, one can proceed as follows.

We impose Veff = 0 and ∂rsVeff = 0, to find algebraic solutions characterized by

{m (d, α, rs) ,M (d, α, rs)} . (2.25)

These values can be viewed as special cases, when two roots of the effective potential

coalesce. See figure 1. Evidently, if this is a local minimum, and the effective potential can

be lowered by tuning other parameters in the system, oscillatory shell dynamics will ensue.

Explicit expressions for m (d, α, rs) and M (d, α, rs) are given in reference [8]. For a fixed

value of mass m∗ less than a maximum value,

m∗ ≤ mmax(d, α), (2.26)

the equation

m∗ = m (d, α, rs) , (2.27)

yields two roots of rs, denoted by rup and rlow. The function M (d, α, rs) evaluated at these

two roots yield two values of M , denoted byMup andMlow. Choosing a value ofM such that

Mlow ≤M ≤Mup, (2.28)

for a suitably fixed value of m, the shell undergoes oscillatory motion. The function

mmax(d, α) is such that for fixed m the oscillatory solutions exist only beyond a criti-

cal non-zero value α = αcrit. For d = 4 we have explicitly checked that once we choose

an α > αcrit, the range (Mup −Mlow) increases with increasing α. For α < αcrit only

collapsing solutions exist.

One can also see that as α approaches one, the maximum mass for which oscillating

solutions exist, mmax, increases without bounds [8]. As m diverges, the upper turning point,

rup, diverges with it. This means that one can tune M such that in the limit that the shell

is made of conformal matter and is collapsing from infinity it can develop oscillations.

Let us comment on the typicality of such oscillatory configurations with a non-trivial

polytropic exponent. In principle, the above analysis can be carried out for any value of

γ. However, we only discuss explicitly the cases with γ = 2 and γ = 3, which is perhaps

sufficient for the generic story. The algebraic expressions associated with this analysis are

fairly involved and we refrain from presenting them explicitly. Instead, we summarise the

– 7 –
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Figure 2. The limiting cases within which oscillatory shell motion exists. The plot on the left

corresponds to γ = 2, α = −0.4, m = 0.94, M = 0.006 (dashed) and m = 0.1, M = 0.012

(solid). The plot on the right corresponds to γ = 3, α = −0.05, m = 0.5, M = 0.002 (dashed) and

m = 0.004, M = 0.026 (solid). The two plots indicate that increasing γ brings the two limiting

cases closer to each other.

generic finding in figure 2 in terms of the features of the effective potential. The main

features are as follows.

In producing figure 2, we have chosen a negative value of α for both γ = 2 and γ = 3.

It can be easily seen that as far as satisfying a reasonable energy condition is concerned,

negative values for α are allowed. For example, ensuring weak energy condition requires

σ ≥ 0 and σ + p ≥ 0. For positive σ and for γ = 1, the weak energy condition only

requires α ≥ −(d− 1). As another example, for γ = 3 weak energy condition only requires

α ≥ −d−1
σ2 , which leaves a window for choosing a negative value of α. For γ = 2, 3 we have

also observed that the upper turning point goes to infinity as M approaches zero.

Finally, for general integer values of γ, the oscillatory regime can be characterized by

a 3-tuple: (α,M,m). For a fixed value of α, both M and m need to be tuned to obtain

the potential well. In figure 2, we have shown the corresponding extremal cases, by tuning

both M and m to the respective values quoted in the figure caption. It is noteworthy that

we have not found an oscillatory configuration along the γ < 0 branch, assuming that both

m > 0 and M > 0.

To add further support to the existence of oscillatory configurations, we have also

explored a few non-integer values of γ. In particular, we here comment on the results that

one obtains for d = 3 and γ = 1
2 or γ = 3

2 . First of all, the analogue of relation (2.17) in

these cases yields,

− [β] =
1

16rs

(√
2rsα−M

)2
, γ =

1

2
, (2.29)

− [β] =
4M2rs(

rs ±
√

2Mα
)2 , γ =

3

2
. (2.30)

Using these relations, one can obtain the corresponding effective potentials. We find that

for γ = 1
2 , oscillatory configurations exist in the α < 0 branch; while, for γ = 3

2 , they exist

on both α > 0 and α < 0 branches, depending on the choice of the sign in the denominator

of (2.30).
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Let us now briefly comment on the holographic interpretation. Collapsing shells cor-

respond to states in the dual field theory that thermalise. However, it is important to note

that the very concept of thermalisation is often observable dependent, see e.g. the discus-

sions in [16, 17]. In systems that do thermalise, correlations over arbitrarily long distances

eventually settle to the corresponding thermal values. Thus, the dynamics terminates at

a particular thermalisation time, depending on the energy-scale at which one is probing.

The oscillatory configurations, in comparison, are quite unique. Let us say that for the

given set of parameters the dynamics of the shell is confined in the radial range r = r−s to

r = r+
s . Then, local observables, such as the expectation value of energy-momentum tensor,

do not exhibit any imprint of the oscillatory dynamics, and hence are indistinguishable from

usual thermal states. For any non-local boundary operator that probes bulk region r > r+
s ,

the system is always static and thermal. For any non-local boundary operator that probes

beyond this bulk region, the system never thermalizes. We numerically study spacelike

geodesics in the next subsection and demonstrate this explicitly. Thus, we have a dynamical

state, for which the thermalization time is either ttherm = 0 or ttherm = ∞. Presently, we

do not have a good understanding of the nature of this state in the dual field theory.

2.2 Geodesics in oscillating shells

To probe the oscillatory dynamics from the perspective of the boundary theory, we com-

pute the equal time two-point function of an operator of large conformal dimension in

the geodesic approximation. Such a two-point function via a saddle point approxima-

tion [23, 24] is:

〈O(~x)O(~x′)〉 ∼ e−2∆Σ(~x,~x′). (2.31)

Here O and ∆ are the operator and its conformal dimension, respectively. The length of the

bulk spacelike geodesic connecting the points (t, ~x) and (t, ~x′) is denoted by Σ (~x, ~x′). Our

goal here is to capture the imprint of the oscillatory dynamics on this correlation function.

We study geodesic lengths of spacelike geodesics anchored at a fixed value of boundary

angular separation, ∆ϕ. Since the shell expands and contracts periodically, the geodesics

experience varying conditions near the shell. This is expected to lead to an oscillatory evolu-

tion of the correlation function, which we verify by an explicit calculation. To calculate the

geodesics we follow [15]. A geodesic anchored at two points at the same time on the bound-

ary must have a turning point in the bulk. The turning point is characterized by vanishing

of the radial and temporal derivatives with respect to the proper length of the geodesic.

We impose these boundary conditions in the bulk at the turning point (t̄, r̄). Then we

integrate the geodesic equations towards the AdS boundary. The data at the turning point

map to the data at the boundary. The data we need to extract from such geodesics include

the angular separation, time at the boundary, and the geodesic length, denoted ∆ϕb, tb,Σ.

By varying (t̄, r̄) in the bulk and solving the geodesic equations, we generate a boundary

dataset (∆ϕb, tb,Σ).

– 9 –
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Figure 3. A typical behaviour of renormalised geodesic length for fixed ∆φ = 0.15 as a function of

time t+ when the shell undergoes oscillatory motion. The coordinate t+ is taken to be zero at the

beginning of an oscillation cycle, when the shell is at its lower turning point. Various parameters

are: ` = 1, d = 4, α = 0.992,m = 24.45, and the lower turning of the shell is taken to be at

r−s = 6.90. The rest of the parameters are fixed by these values. In our conventions the y axis is

1020 times e−L where L is the proper length of the geodesics.

Figure 4. Renormalised geodesic length for fixed ∆φ = 0.15 as a function time t+ with different

pressure on the shell. Parameter values are same as in figure 3 except α = 0.995. For different

values of α, while keeping the other parameters same, the location of the upper turning point r+s of

the shell changes. As a result the oscillation period is different. Geodesic lengths are also different.

The affinely parameterised spacelike geodesic equations can be easily integrated both

in the inside and outside regions to give the following first order equations:

f±t
′ = E±, (2.32)

r2φ′ = L± , (2.33)

(r′)2 = f±

(
1−

L2
±
r2

)
+ E2

±. (2.34)

In these equations prime denotes derivatives with respect to the proper distance σ along

the spacelike geodesic. Here E± and L± are the constants of motion. To ensure that the

geodesic smoothly crosses the shell, we need to match the constants of motion appropriately

on the two sides of the shell. To this end, we follow the treatment of [15, 25].

The idea is to construct a coordinate system that is sufficiently smooth in a neigh-

bourhood across the shell, and use it to transform quantities from the inside of the shell

– 10 –
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to the outside. The time coordinate for this coordinate system is chosen to be the proper

time of the shell τ . The spatial coordinate is naturally chosen to be the proper distance λ

away from the shell along spacelike geodesics normal to the shell. In terms of our inside

and outside regions, the coordinate transformations,

(t±, r, θi)→ (τ, λ, θi). (2.35)

do the work. Using these coordinates one arrives at the equations relating t′− to t′+ and

relating r′ from the inside to the outside region [25]3

dt−
dσ

∣∣∣∣
r=rs

=
dt+
dσ

∣∣∣∣
r=rs

βs−βs+ − ṙ2
s

f−
+
dr+

dσ

∣∣∣∣
r=rs

ṙs

f−f+
(βs+ − βs−), (2.36)

dr−
dσ

∣∣∣∣
r=rs

=
dt+
dσ

∣∣∣∣
r=rs

ṙs(βs+ − βs−) +
dr+

dσ

∣∣∣∣
r=rs

βs−βs+ − ṙ2
s

f+
, (2.37)

where βs± =
√
fs± + ṙ2

s . The inside and the outside derivatives of the continuous radial

coordinate r at the location of the shell are denoted as dr+
dσ

∣∣
r=rs

and dr−
dσ

∣∣
r=rs

. Note that we

only need to know the first derivatives of the ± coordinates with respect to the paramter

σ to match the geodesic across the shell. These conditions together with equations (2.32)–

(2.34) allow us to relate E+ to E−.

We solve equations (2.32)–(2.34) separately for the inside and the outside and match

them across the shell according to (2.36) and (2.37). We begin by integrating a geodesic

from its turning point (t̄, r̄) in the inside region. At the turning point,

t′ = 0, (2.38)

r′ = 0, (2.39)

which fixes the constants of motion to be,

E− = 0, (2.40)

L− = r̄. (2.41)

We integrate geodesic equations (2.32)–(2.34) up to the location of the shell rs with f = f−.

At this point, we switch to using the function f+. We also need to use the constants of

motion for the exterior. These are given by

E+ =

√
1− r̄2

r2
s

ṙs√
f−

(
√
f+ + ṙ2

s −
√
f− + ṙ2

s ), (2.42)

L+ = r̄, (2.43)

where E+ is deduced using (2.36) or (2.37) and the geodesic equations. Since the φ and the

r coordinates are continuous the conserved angular momentum does not change L+ = L−.

In figures 3 and 4 we have plotted the geodesic lengths for a fixed value of boundary

angular separation ∆ϕ as a function of the boundary time t+. The coordinate t+ is taken

3See section 2.2 and appendix B of [25] for details.

– 11 –



J
H
E
P
0
7
(
2
0
1
7
)
0
2
6

to be zero at the beginning of an oscillation cycle where rs = r−s . We can clearly see that

the geodesic length oscillates with a fixed period. The period precisely corresponds to

the period of the oscillation of the shell. Thus, the two-point function under study in the

oscillating shell background captures features of the oscillations.

We have chosen to plot geodesic lengths as a function of the time t+. One can straight-

forwardly relate t+ to the proper time of the shell τ or to t−. We did not find any qualitative

difference between the above graphs and the ones where the x-axis is taken to be proper

time τ on the shell. We want to emphasise that our aim is to illustrate the qualitative

behaviour of spacelike geodesics in oscillating shell backgrounds, as opposed to a detailed

numerical analysis of these equations. At the turning points ṙs vanishes, and naively there

are 1/0 type expressions encountered while doing numerical integrations. We regulate such

nuisances with a simple minded approach. For example, in the specific example of 1/ṙs,

instead of taking the integration from r = r−s we take it from r = r−s + ε with sufficiently

small epsilon (and check that our results to do not depend on epsilon).

3 The oscillating balls

In this section we consider the motion of a ball of matter of uniform density and pressure

under its own gravity. The case of pressure-less dust was studied by Oppenheimer and

Snyder [26]. In the context of the AdS/CFT correspondence, references [15, 27] studied

similar dynamical situation in AdS background. We consider non-vanishing pressure. We

are specifically interested in exploring the possibility of oscillatory motion of the ball.

3.1 Oscillating FRW solutions

The interior of a d-dimensional solid ball can be described by a Friedmann-Robertson-

Walker (FRW) metric with k = +1, i.e. positively curved t = constant slices,

ds2
− = −dt2 +R2(t)

(
dχ2 + sin2 χ dΩ2

d−1

)
, (3.1)

sourced by the perfect fluid stress-tensor

Tµν = (σ + p)uµuν + pgµν , uµ = (1, 0, . . . , 0), (3.2)

with an equation of state p = wσ. The radial and the time coordinates are denoted by χ

and t, respectively. The function R(t) is the scale factor.

Einstein equations give the Friedmann equation for the scale factor

1 +R2 + Ṙ2 =
2κσ

d(d− 1)
R2, (3.3)

where we have used the value of the cosmological constant Λ = −d(d−1)
2`2

and have set the

AdS length ` to unity. The conservation of the energy-momentum tensor gives

σR(w+1)d = constant. (3.4)
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Eliminating σ from the Friedmann equation (3.3) using the conservation equation (3.4) we

get,

1 +R2 + Ṙ2 =
2κσ0R

(w+1)d
0

d(d− 1)R(w+1)d−2
, (3.5)

where σ0 is the initial density of the collapsing matter and R0 is the initial scale factor.

We are interested in knowing if oscillatory solutions are possible to equation (3.5). In

order to explore this, we rewrite that equation as

Ṙ2 + Veff(R) = 0, (3.6)

with the effective potential

Veff(R) = 1 +R2 − c

Rβ
, (3.7)

where

c =
2κσ0

d(d− 1)
R

(w+1)d
0 , β = (w + 1)d− 2. (3.8)

For oscillatory dynamics, the effective potential (3.7) must develop a minimum in

between two roots of equation Veff(R) = 0. Let the roots be at R = R1 and R = R2 and

the minimum be at R = R∗ with R1 < R∗ < R2. Then,

Veff(R∗) < 0, V ′eff(R∗) = 0 and V ′′eff(R∗) > 0. (3.9)

It is straightforward to see that

V ′eff(R∗) = 0 =⇒ β = −2

c
R2+β
∗ . (3.10)

For physically reasonable initial parameters σ0 > 0 and R0 > 0, thus the parameter c is

positive. Equation (3.10) then implies that β < 0, i.e.,

w < −
(
d− 2

d

)
. (3.11)

The second derivative of the potential (3.7) at R = R∗ is

V ′′eff(R∗) = 2 (β + 2) . (3.12)

Requiring V ′′eff(R∗) > 0 gives β > −2 or equivalently w > −1. Thus, within the range

0 > β > −2, −1 < w < −
(
d− 2

d

)
, (3.13)

oscillatory ball dynamics is possible. Curiously the pressure p = wσ must always be nega-

tive. We analyse the issue of energy conditions in section 4. Next we comment on whether

such an oscillatory FRW solution can be matched to an appropriate exterior solution.
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3.2 Matching to an exterior star

In the Oppenheimer-Snyder (OS) model the FRW metric that describes the interior of a

collapsing star is matched to an empty Schwarzschild solution that describes the exterior of

the collapsing star. The FRW metric is supported only by uniform pressure-less dust. The

fact that such a smooth matching can be done is a remarkable fact about the OS model.

The pressure-less nature of the interior solution is an important ingredient. The OS model

has been generalised to AdS space, see e.g. [27].

Here we are interested in a generalisation of the OS model in AdS with non-zero pres-

sure. In particular, we are interested in knowing if an oscillatory solution of the previous

subsection can be taken to be the interior of an oscillating configuration in AdS. This

turns out to be a difficult problem to analyse. In appendix A we report some progress

on this problem. We construct a matched metric when the equation of state p = p(σ) is

arbitrary, and can be chosen independently for the interior and the exterior of the model.

The distinction between the interior and the exterior is as the two sides of a “shock wave”

across which the metric is continuous. We find that the pressure and energy density suffer

a discontinuity across the shock surface. Such shock waves are the counterparts of fluid dy-

namical shock waves on curved backgrounds. A detailed study of such systems was done by

Smoller and Temple [28], who also constructed a flat space generalisation of the OS model

with non-zero pressure. Our analysis in the appendix closely follows their construction.

When we demand that the extrinsic curvature also remains continuous (as in the

OS model, and in contrast to the thin-shell model), the set-up becomes over-constrained.

One way to achieve extrinsic curvature continuity is by not demanding an equation of

state for the interior or for the exterior solution. We can treat pressure and density as

independent dynamical variables, say for the interior solution. By doing so, one can fix

the pressure and density for the interior solution from the exterior solution. This strategy

has its shortcomings, but this is one way in which interior and exterior solutions can be

matched [28]. We illustrate how such a matching is to be done, from a given outside

solution to an appropriate inside solution. For our problem, however, the matching needs

to done the other way, i.e., given an FRW solution of the previous subsection, can we

find an appropriate exterior solution? Unfortunately, we do not know a full answer to

this question. Given the analysis of appendix A, it seems feasible that some exterior star

solution can be matched to a given interior solution, however, the precise details of such

an analysis are likely to be complicated and are left for future investigations.

4 Energy conditions

In this section we analyse various energy conditions for the above discussed oscillating

solutions.

4.1 Oscillating shells

In the case of oscillating shells one can consider two independent notions of energy condi-

tions. One is associated with the shell stress-energy tensor (2.11) and the other is associated
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with the Einstein tensor constructed from the induced metric (2.6). Interestingly, these

two turn out to have independent characters, as we discuss below.

Energy conditions with Sab. Since the surface stress tensor (2.11) is of the perfect fluid

form with σ and p given by (2.14), null energy condition is equivalent to the statement that

σ+p ≥ 0 and the weak energy condition is equivalent to the statement that σ ≥ 0, σ+p ≥ 0.

At the turning points of the oscillating shell where ṙs = 0, we have from equa-

tions (2.14),

σ =
d− 1

κrs

(√
1 + r2

s −
√

1 + r2
s −

m

rd−2
s

)
, (4.1)

σ+p =
rs+ (d−2)

2
m
rd−1
s
− V ′eff(rs)

2

κ
√

1 + r2
s − m

rd−2
s

−
rs−

V ′eff(rs)
2

κ
√

1+r2
s

+
1

κrs

(√
1+r2

s−
√

1+r2
s−

m

rd−2
s

)
. (4.2)

From these expressions it is clear that σ is positive definite, provided m > 0. The right hand

side of expression (4.2) is positive definite provided 2rs > V ′eff(rs). For a given configuration

(i.e., a given set of parameters), a straightforward numerical check can confirm if this is

indeed the case or not. For the cases we have checked, we found that both weak and null

energy conditions are satisfied at the turning points. We also found that for all the cases

that we have checked, σ+ p is positive for the entire motion of the oscillatory shells. Thus,

the null and weak energy conditions seem to be satisfied for the surface stress tensor all

along the oscillation of the shell.

Energy conditions with Gab. From the induced metric (2.6) we can define an effective

stress tensor κTab := Gab = Rab − 1
2gabR. This stress tensor turns out to be of the perfect

fluid form, which allows us to define an effective energy density and pressure. We find

σeff =
(d− 1)(d− 2)

2κr2
s

(1 + ṙ2
s ), peff = −(d− 2)

κ

(
r̈s

rs
+

(d− 3)(1 + ṙ2
s )

2r2
s

)
, (4.3)

as a result

σeff + peff =
(d− 2)

κr2
s

(1 + ṙ2
s − rsr̈s). (4.4)

At the bounce ṙ2
s = 0, therefore

σeff + peff =
(d− 2)

κr2
s

(1− rsr̈s). (4.5)

We note that σeff +peff > 0 at the bounce provided r̈s < r−1
s , i.e., if the bounce is sufficiently

‘gentle’. A very similar set of conditions were discussed in [29] in a different context. From

the definition of effective potential (2.20), we have r̈s = −1
2V
′

eff(rs). Therefore,

σeff =
(d− 1)(d− 2)

2κr2
s

(1− Veff(rs)), σeff + peff =
(d− 2)

κr2
s

(
1− Veff(rs) +

1

2
rsV

′
eff(rs)

)
.

(4.6)

The energy density σeff so defined is always positive. For a given set of parameters, one

can easily check numerically whether σeff + peff is positive or not. We find that for all the

cases that we have checked σeff + peff > 0 for oscillatory shells. Therefore, null and weak

energy conditions so defined also seem to be satisfied all along the motion of the shell.
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4.2 Oscillating balls

Now we discuss the energy conditions for the oscillating FRW metrics of section 3. The

energy density and pressure can be read off from the Einstein’s equations. We get

σ =
d(d− 1)

2κR2

(
1 +R2 + Ṙ2

)
, σ + p =

(d− 1)

κR2
(1 + Ṙ2 −RR̈). (4.7)

Using the effective potential we once again get expressions very similar to (4.6),

σ =
d(d− 1)

2κR2
(1 +R2 − Veff(R)), σ + p =

(d− 1)

κR2

(
1− Veff(R) +

1

2
RV ′eff(R)

)
. (4.8)

These expressions for the potential (3.7) become,

σ =
d(d− 1)c

2κRβ+2
, σ + p =

(d− 1)(β + 2)c

κRβ+2
. (4.9)

A requirement for oscillations is precisely β + 2 > 0, cf. (3.13). Therefore, we note that

both null and weak energy conditions are satisfied all along the motion of the ball. It is

intriguing (and perhaps counterintuitive) that negative pressure is needed to sustain these

oscillations. We note that with zero cosmological constant, accelerated expansion also

requires negative pressure precisely in the range (3.13).4
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A Oppenheimer-Snyder model with non-zero pressure in AdS

The OS model requires that the pressure of the collapsing star be identically zero. In this

appendix we construct a generalisation of the Oppenheimer-Snyder (OS) model in AdS

with non-zero pressure. We first construct a matched metric when the equation of state

p = p(σ) is arbitrary, and can be chosen independently for the interior and the exterior

of the model. The distinction between the interior and the exterior is as the two sides

of a “shock wave” across which the metric is continuous. When we demand that the

extrinsic curvature also remains continuous, the set-up becomes over-constrained. One

way to achieve extrinsic curvature continuity is by not demanding an equation of state for

the interior Friedmann-Robertson-Walker (FRW) solution. That is, to treat pressure and

density as independent dynamical variables. Doing this has its shortcoming, but this is

one way in which exterior solution can be matched to an interior solution with pressure.5

4We thank Jorge Rocha and Vitor Cardoso for this observation.
5Another approach could be to introduce a surface stress-tensor at the interface, as in the thin-shell

model. We do not pursue this idea here.
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We find that the pressure and energy density suffer a discontinuity across the shock

surface. Such “shock waves” are the counterparts of fluid dynamical shock waves on curved

backgrounds. A detailed study of such systems was done by Smoller and Temple [28], who

also constructed a flat space generalisation (i.e., with Λ = 0) of the OS model with non-

zero pressure. Our analysis below closely follows their construction. We work in four

spacetime dimensions. This appendix is a preliminary study, it serves to illustrate how

such a matching is to be done, from a given outside solution to an appropriate inside

solution. We do not address several physics issues e.g. energy conditions for the inside

solution, or if the matching can be done the other way — given an inside solution can it

be matched to an appropriate outside solution?

Interior solution: FRW in AdS. As in the OS model, the inside metric is taken to be

the Friedmann-Robertson-Walker (FRW) solution

ds2 = −dt2 +R2(t)

(
1

1− kr2
dr2 + r2dΩ2

)
, (A.1)

with the perfect fluid stress tensor source where p and σ only depend on time t. Einstein’s

equations give

σ̇ = −3
Ṙ

R
(p+ σ), (A.2)

Ṙ2 + k =
8π

3
σR2 − R2

`2
, (A.3)

R̈

R
= −4π

3
(σ + 3p)− 1

`2
. (A.4)

Equation (A.2) is equivalent to

d

dR
(σR3) = −3pR2. (A.5)

When pressure is zero this equation tells that the “mass” M = 4π
3 σR

3 contained inside the

star remains constant as the star evolves in time. With non-zero pressure we see that this

is not the case. There is exchange of matter between the interior and the exterior, which

needs to be carefully taken into account while matching the two solutions.

Exterior solution: TOV equations in AdS. The non-zero pressure for the interior

solution also requires non-zero pressure for the exterior solution. This is so, because in the

presence of pressure, matter can flow across the shock surface. Thus the exterior geometry

is a spherically symmetric “star” with non-zero pressure and energy density, as opposed to

the vacuum Schwarzschild solution in the OS model. Such configurations are described by

the Tolman-Oppenheimer-Volkoff (TOV) equations. Therefore, our next aim is to get the

TOV equations in AdS space. Let us start with the metric (see also [30])

ds̄2 = −B(r̄)dt̄2 +A(r̄)−1dr̄2 + r̄2dΩ2. (A.6)
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Typically this set-up is used for describing the “interior of a star” but in our case it describes

the “exterior of the ball”. It is supported by the perfect fluid stress tensor

T̄µν = p̄gµν + (p̄+ σ̄)ūµūν , (A.7)

with some equation of state

p̄ = p̄(σ̄), (A.8)

and where fluid is taken to be not moving, i.e.,

ūµ = (
√
B(r̄), 0, 0, 0). (A.9)

The above equations are all written in barred notation so that they can be distinguished

from the interior unbarred notation when we do the matching. We take the function A(r̄)

to be of the form

A(r̄) =

(
1− 2M(r̄)

r̄
+
r̄2

`2

)
, (A.10)

where we have set Newton’s constant and the speed of light to unity, but the AdS length

is kept explicitly for clarity. The function M(r̄) is so far undetermined. It is akin to the

ADM mass. Einstein’s equations in four-dimensions,

Rµν −
1

2
Rgµν −

3

`2
gµν = 8πT̄µν , (A.11)

give the following ordinary differential equations,

dM(r̄)

dr̄
= 4πr̄2σ̄, (A.12)

B′(r̄)

B(r̄)
= −2p̄′(r̄)

p̄+ σ̄
, (A.13)

−r̄2 d

dr̄
p̄ = M(r̄)σ̄

(
1+

p̄

σ̄

)(
1+

r̄3

M(r̄)

(
4πp̄+

1

`2

))(
1− 2M

r
+
r2

`2

)−1

. (A.14)

These equations are the generalisation of text book TOV equations with non-zero cosmo-

logical constant. In the limit ` → ∞ they reduce to the standard TOV equations, see

e.g. [31].

A slightly better presentation is possible if we work with the following variables [30]

B(r̄) = A(r̄)e2χ(r̄). (A.15)

Then the above equations simplify to

dM(r̄)

dr̄
= 4πr̄2σ̄, (A.16)

p′(r̄) = −1

2

B′(r̄)

B(r̄)
(p̄+ σ̄), (A.17)

χ′(r̄) = 4πr̄(p̄+ σ̄)A(r̄)−1. (A.18)
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Matching. We now do the matching and also find the matching surface. In order to do

so, we construct (t̄, r̄) coordinate system for the FRW metric. To make sure that the areas

of 2-spheres agree in the two coordinate systems at the matching surface, we must demand

r̄ = R(t)r. (A.19)

We first write FRW metric in (t, r̄) coordinates. From (A.19) we have

dr̄ = Rdr + Ṙrdt. (A.20)

Using this, the FRW metric (A.1) can be written in the (t, r̄) coordinates as

ds2 = −

{
1− Ṙ2r̄2

R2 − kr̄2

}
dt2 +

R2

R2 − kr̄2
dr̄2 − 2RṘr̄

R2 − kr̄2
dtdr̄ + r̄2dΩ2, (A.21)

which upon inserting (A.3) becomes

ds2 =
1

R2 − kr̄2

{
−R2

(
1− 8π

3
σR2r2 +

r2R2

`2

)
dt2 +R2dr̄2 − 2RṘr̄dr̄dt

}
+ r̄2dΩ2.

(A.22)

Our aim is to match the interior metric in (t̄, r̄) coordinates to the TOV metric (A.6).

TOV metric does not have any cross-term, therefore, we next define a mapping t = t(t̄, r̄)

to eliminate the cross term dr̄dt in metric (A.22).

It is notationally more convenient to consider the general metric of the form

ds̃2 = −C(t, r̄)dt2 +D(t, r̄)dr̄2 + 2E(t, r̄)dtdr̄. (A.23)

Consider a function ψ(t, r̄) that satisfies

∂r̄(ψC) + ∂t(ψE) = 0. (A.24)

The coordinate t̄ defined via

dt̄ = ψ(Cdt− Edr̄) (A.25)

is an exact differential and also eliminates the cross term in (A.23) to give

ds̃2 = −(ψ−2C−1)dt̄2 +

(
D +

E2

C

)
dr̄2. (A.26)

Applying this recipe to metric (A.22) and comparing dr̄2 term with TOV metric (A.6),

we obtain the equation of the shock surface

M(r̄) =
4π

3
σ(t)r̄3. (A.27)

This is an equation in the (t, r) coordinates, since r̄ = R(t)r.

The function ψ needs to be determined such that dt̄2 terms from the two sides also

match on the shock surface (A.27). This leads to the requirement

1

ψ2R2

1

(R2 − kr̄2)

(
1− 8π

3
σr̄2 +

r̄2

`2

)−1

= B(r̄) (A.28)
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on the shock surface.

The picture is as follows: the function ψ(t, r̄) is determined by the solution of the first

order linear partial differential equation (A.24) where

C =

(
1− 8π

3
σr̄2 +

r̄2

`2

)
R2, (A.29)

E = −RṘr̄, (A.30)

subject to the initial data (A.28) on the surface (A.27). If this problem can be solved, the

two metrics can be matched continuously.

Jump in density. From equation (A.12), we have that the mass function M(r̄) for the

TOV metric is given by

M(r̄0) =

∫ r̄0

0
4πσ̄(r̄)r̄2dr̄. (A.31)

In writing this equation we are imagining that the TOV metric is continued to r̄ values

less than that of the shock surface. The quantity M(r̄) represents the total mass that is

generating the TOV solution outside the shock wave. For a physically reasonable model of

a star dσ
dr̄ < 0, therefore,

M(r̄0) >
4π

3
σ̄(r̄0)r̄3

0. (A.32)

Compare this equation with (A.27). This allows us to conclude that at the shock surface

σ > σ̄, [σ] ≡ σ̄ − σ < 0, (A.33)

i.e., density inside is greater than the density outside.

Shock speed. Differentiating (A.27) with respect to t, we find the shock speed

˙̄r =
σ̇r̄

3[σ]
. (A.34)

Since [σ] < 0, the shock speed is negative if σ̇ > 0. We also note that σ̇ is indeed positive

for a collapsing situation as Ṙ < 0, cf. (A.2).

Continuity of extrinsic curvature. Smoller and Temple [28] also show that in the

present set-up, the continuity of the extrinsic curvature is equivalent to the statement that

the normal-normal component of the external stress-tensor has no jump,

[T ]µνnµnν = 0. (A.35)

Explicitly, we have for the inside

Tµνnµnν = p(n · n) + (p+ σ)(u · n)2, (A.36)

= p(n · n) + (p+ σ)n2
0, (A.37)
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where we have used the fact that uµ = (1, 0, 0, 0) for the FRW set-up. Similarly, we have

for the outside

T̄µν n̄µn̄ν = p̄(n̄ · n̄) + (p̄+ σ̄)(ū · n̄)2, (A.38)

= p̄(n̄ · n̄) +
1

B(r̄)
(p̄+ σ̄)n̄2

0. (A.39)

Therefore the jump condition (A.35) becomes

p̄(n̄ · n̄)− p(n · n) +
1

B(r̄)
(σ̄ + p̄)n̄2

0 − (σ + p)n2
0 = 0. (A.40)

We note that nµ and n̄µ are components of the same vector nµ. More explicitly, we write

the shock surface as

ϕ(t, r) = r − r(t) = 0. (A.41)

with the normal dϕ = nµdx
µ. This gives n0 = −ṙ. To obtain components in the barred

coordinates, we rewrite the shock surface as

ϕ(t̄, r̄) =
r̄

R(t(t̄, r̄))
− r(t(t̄, r̄)) = 0, (A.42)

which gives n̄0 = − ˙̄r
R
∂t
∂t̄ , where we have used the fact that r̄ = rR(t). Equation (A.25)

then yields,

n̄0 = −
˙̄r

ψCR
. (A.43)

Inserting equation (A.28) into expression (A.43) gives

n̄2
0 =

B

AR2
(1− kr2) ˙̄r2. (A.44)

Using these various elements, the jump condition (A.40) becomes,

(σ + p̄)ṙ2 − (σ̄ + p̄)
1− kr2

AR2
˙̄r2 + (p− p̄)1− kr2

R2
= 0. (A.45)

This equation is an additional constraint that must be satisfied on the shock surface.

It is a complicated relation between p, p̄, σ, σ̄, R on the shock surface r = r(t). In the OS

limit, where σ̄ = p̄ = 0 it reduces to

σṙ2 + p
1− kr2

R2
= 0. (A.46)

Under the assumption that grr of the FRW metric is positive, i.e., 1−kr2

R2 > 0 and σ > 0,

we conclude that the only way this constraint can be satisfied is when

p = 0, (A.47)

ṙ = 0. (A.48)

This means that the FRW interior must be pressure free and the shock surface is r =

constant, which are both features of the OS model.
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Inside solution, given the outside. Now it seems that we have an over-constrained

situation. Given an equation of state p̄ = p̄(σ̄), we can in principle integrate TOV equa-

tions to find the exterior solution on and outside the shock surface. For this solution to

be matched to an interior FRW solution, we need to know R(t), σ(t), and p(t). Given

an equation of state for the interior solution, we need to know only two functions, say,

R(t), σ(t). These two functions can be determined by the two Friedmann equations (A.2)–

(A.3). Then, how to ensure that the constraint (A.45) is satisfied? It seems that we have

three equations for two variables.

The picture that Smoller and Temple proposed for this problem is to view pressure in

the FRW metric as an independent dynamical variable, rather than fixed by an equation of

state. The idea then is to determine p from equation (A.2). Substituting this p in (A.45) to

get an equation only involving σ(t) and R(t). Solution of that equation together with (A.3)

completely specifies the FRW metric inside.

More explicitly, it proceeds as follows. Rewriting (A.2), we have

p = −σ − σ̇R

3Ṙ
. (A.49)

Using (A.34) into this equation we get

p = −σ̄ − [σ]
Rṙ

rṘ
, (A.50)

which gives the variable p(t) in terms of the unknowns R(t) and σ(t) on the shock surface

r(t). Substituting (A.50) in (A.45) gives the constraint equation (A.35) in its most useful

form,

αṙ2 + βṙ + γ = 0, (A.51)

with

α =
σ + p̄

1− kr2
− σ̄ + p̄

A
, (A.52)

β = −2Ṙr

AR
(σ̄ + p̄) +

1

r̄Ṙ
(σ − σ̄), (A.53)

γ = −

(
1 +

Ṙ2r2

A

)(
σ̄ + p̄

R2

)
. (A.54)

All functions appearing in (A.51) and (A.3) are expressed in terms of unknowns r(t)6

and R(t). The solution to these equations determines the shock surface and FRW scale

factor, and from these two quantities we know σ(t) via (A.27) and p(t) via (A.50). Hence

the full interior FRW metric is determined. The matched FRW solution is such that the

metric and the extrinsic curvature are continuous across the shock.

Shortcomings. As mentioned in the beginning of this discussion, a priori the above anal-

ysis does not ensure any physical condition for the interior solution. Since p(t) and σ(t)

are explicitly known at the end of the procedure, one can always check if it is physically

6Equivalently, σ(t), cf. (A.27).
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reasonable or not, i.e., whether some energy condition is satisfied or not. Moreover, the

way this construction is set-up, it allows us to match a given exterior TOV solution to

an appropriate interior FRW solution. It is not at all obvious if the logic can be imple-

mented the other way round, namely, given an FRW solution (possible oscillating), can one

find an appropriate TOV solution where the metric and extrinsic curvature are matched

continuously? We leave this investigation for future studies.

B The effective potential

In this section we explicitly write down the effective potential that we have studied through-

out the paper, for the purpose of reproducibility for the interested readers. The junction

conditions in (2.10), (2.11), along with the definition of β± in (2.5) can be rewritten in the

following form:

ṙ2
s + Veff (rs) = 0 , (B.1)

Veff (rs) = f− (rs)−
κ2

4 [β]2

(
f− (rs)− f+ (rs) +

[β]2

κ2

)2

. (B.2)

We consider a general polytropic equation of state of the form:

p =
α

d− 1
σγ , (B.3)

where p, σ are the pressure and energy density, respectively. The explicit expression for

[β], for integer values of γ 6= 1, is given by

− [β] =

[
−(d− 1)γ−2

κγ−1
α r1−γ

s +Mr(d−2)(γ−1)
s

] 1
1−γ

, (B.4)

in (d+ 1)-bulk dimensions, with an integration constant M . As we have also remarked in

the main text, it is possible to obtain the expression for [β] for non-integer values of γ as

well, such as the one written in (2.29), (2.30). Finally, the two functions f± are given by

f− (r) = 1 + r2 , f+ (r) = 1 + r2 − m

rd−2
. (B.5)

Now, with various values of the parameters in the problem, one can proceed to obtain and

analyze the various properties of the corresponding effective potential.

Open Access. This article is distributed under the terms of the Creative Commons
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