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1 Introduction

Several recent papers following [1] have explored the connection between (multi-loop) scat-

tering amplitudes in planar N = 4 super-Yang-Mills (SYM) theory and cluster algebras, a

subject of great interest to mathematicians. This line of research has two closely related

branches: (1) investigating purely mathematical questions having to do with the classi-

fication of functions with certain cluster algebraic properties, i.e. “how rare are special
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functions of the type we see in SYM theory?”, and (2) exploiting these mathematical prop-

erties, together with physical input as needed, to carry out calculations of new, previously

intractable amplitudes, i.e. “how far can we get by exploiting the special properties of

cluster algebras?”.

The most basic aspect of the observed connection, supported by all evidence available

to date, is that n-point scattering amplitudes in SYM theory have singularities only at

points in Confn(P3) (the space of massless n-point kinematics modulo dual conformal in-

variance) where some cluster coordinate of the associated Gr(4, n) cluster algebra vanishes.

More specifically, all known multi-loop amplitudes may be expressed as linear combinations

of generalized polylogarithm functions written in the symbol alphabet consisting of such

cluster coordinates. We expect this to be true to all loop order for all MHV and NMHV

amplitudes.

Deeper connections to the underlying cluster algebra have been found for the two-loop

MHV remainder functions R
(2)
n . The algebra of generalized polylogarithm functions modulo

products admits a cobracket δ satisfying δ2 = 0, giving it the structure of a Lie coalgebra [2].

It has been observed that δR
(2)
n has a very rigid connection to the Poisson structure on

the kinematic domain Confn(P3). Specifically, the (2, 2) component of δR
(2)
n can always be

written as a linear combination of Li2(−xi)∧Li2(−xj) for pairs of cluster coordinates having

Poisson bracket {log xi, log xj} = 0, while the (3, 1) component can always be written as

a linear combination of Li3(−xi) ∧ log(xj) for pairs having {log xi, log xj} = ±1. These

mathematical properties are tightly constraining: it has been argued in [3] that, when

combined with a few physical constraints, they uniquely determine the (2, 2) component

of δR
(2)
n for all n.

It is an interesting open problem to determine whether (and, if so, precisely how) the

structure of more general amplitudes may be dictated by the underlying Poisson structure

on Confn(P3). This is a difficult question to address because data on multi-loop amplitudes

is very hard to come by — beyond the two-loop MHV amplitudes, explicit results for

complete amplitudes at fixed loop order are available only for n = 6 [4–10] (in addition,

the symbol of the two-loop n = 7 NMHV amplitude has been computed in [11], and that

of the three-loop n = 7 MHV amplitude in [12]). With only a handful of results available it

may be difficult to identify a pattern which might let one tease out the underlying structure.

Moreover, accidental simplifications may occur at small n which can obscure the general

structure. (For example, the (2, 2) component of δR
(2)
6 is identically zero [13].) It is known

that the (3, 3) component of δR
(3)
6 is not expressible in terms of cluster X -coordinates [14],

but there could be some more deeply hidden structure in this amplitude.

The primary goal of this paper is to further explore the taxonomy of two-loop cluster

functions, as defined in [15], for n = 6, 7. We are particularly interested in the interplay

between various mathematically natural but physically obscure conditions that certain

functions can satisfy (such as the tight cluster constraints satisfied by all two-loop MHV

amplitudes, mentioned above) and physically natural constraints, such as the requirement

that amplitudes can only have physical branch points on the principal sheet (the so-called

“first-entry condition” [16]). In previous work including [3] it has been remarked that the

mathematical and physical constraints on MHV amplitudes seem almost orthogonal. One
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of our goals here is to explore this question quantitatively by fully classifying the dimensions

of function spaces satisfying various properties.

We begin in section 2 with a lightning review to set some notation and terminology. In

sections 3 and 4 respectively we exhaustively analyze the spaces of cluster functions on the

Gr(4, 6) and Gr(4, 7) cluster algebras respectively of relevance to n = 6, 7-point amplitudes

in planar SYM theory.

2 Review and notation

A kinematic configuration of n massless on-shell particles, with a cyclic order (which comes

naturally in gauge theories when one looks at planar scattering amplitudes), can be pa-

rameterized in terms of n momentum twistors [17], Zi ∈ P3, i = 1, . . . , n. The dual

conformal symmetry of planar n-point amplitudes in SYM theory further implies that they

are functions not on (P3)n but on the smaller space Confn(P3) ∼= Gr(4, n)/(C∗)n−1 [1].

Viewing each Zi as a four-component vector of homogeneous coordinates, the Plücker

coordinates are defined by 〈ijkl〉 ≡ det(ZiZjZkZl). Functions on Confn(P3) may be written

in terms of ratios of Plücker coordinates such as

〈ijkl〉〈abcd〉
〈ijcd〉〈abkl〉

, (2.1)

or more generally in terms of ratios of homogeneous polynomials in Plücker coordinates

having total weight zero under rescaling any of the Zi.

Such objects form the building blocks for the Gr(4, n) Grassmannian cluster alge-

bra [18, 19], which is the algebra generated by certain preferred sets of coordinates on

Gr(4, n). These coordinates come in two related varieties: the A-coordinates, which con-

sist of the Plücker coordinates and certain homogeneous polynomials in them, and the

X -coordinates [20], which consist of certain scale-invariant ratios of A-coordinates.

In this paper we focus on the cases n = 6, 7, for which the corresponding cluster alge-

bras have respectively 15, 49 A-coordinates and 15, 385 X -coordinates.1 The reader may

find these coordinates tabulated in [1]. Of course, the X -coordinates are not algebraically

independent since the dimension of Confn(P3) is only 3(n− 5). A “cluster” is a particular

choice of 3(n− 5) cluster X -coordinates in terms of which all others may be determined by

a simple set of rational transformations called mutations.

A still mysterious but apparently important role is played by the fact that Confn(P3)

admits a natural Poisson structure, which it inherits from the Grassmannian [18]. A

characteristic feature of cluster coordinates is that within each cluster, the X -coordinates

are log-canonical with respect to this Poisson structure, i.e.

{log xi, log xj} = Bij , i, j = 1, . . . , 3(n− 5) , (2.2)

where B is an antisymmetric integer-valued matrix (which for n = 6, 7 only takes the values

0,±1).

1In some applications it is sensible to count x and 1/x separately, in which case these numbers would

be 30, 770.
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We expect all six- and seven-point L-loop scattering amplitudes in planar SYM theory

to be (generalized) polylogarithm functions of uniform transcendental weight 2L whose

symbols may be written in terms of the Gr(4, n) cluster coordinates. For the purpose of

writing a symbol alphabet the relevant question is not how many coordinates are alge-

braically independent, but how many are multiplicatively independent — we say that a

finite collection {y1, . . . , ym} is multiplicatively independent if there is no collection of in-

tegers {n1, . . . , nm} such that
∏
yni
i = 1, i.e. if the collection {log y1, . . . , log ym} is linearly

independent over Z.

As mentioned above there are respectively 15 (385) cluster X -coordinates xi for n = 6

(n = 7), but the corresponding sets of log xi only span spaces of dimension 9 (42). Choosing

bases for these spaces provides a collection of 9 (42) multiplicatively independent ratios to

serve as symbol alphabets for building cluster polylogarithm functions.

2.1 The Gr(4,6) cluster algebra

For six-point amplitudes the relevant cluster algebra is Gr(4, 6), which is isomorphic to the

A3 cluster algebra. Its 15 cluster A-coordinates are just the Plücker coordinates 〈ijkl〉.
This algebra has 15 X -coordinates. In the notation of [15] these are named vi, x

±
i for

i = 1, 2, 3 and ei for i = 1, . . . , 6.

The reader may find explicit formulas for these as ratios of Plücker coordinates in [15].

Since one of the goals of this paper is to make contact with the work of Dixon et al. we

will instead provide this information via the connection to the variables u, v, w, yu, yv, yw
used in [4–10].

The three-dimensional kinematic configuration space Conf6(P3) may be parameterized

in terms of the three coordinates

yu =
〈1236〉〈1345〉〈2456〉
〈1235〉〈1246〉〈3456〉

, yv =
〈1235〉〈1456〉〈2346〉
〈1234〉〈1356〉〈2456〉

, yw =
〈1246〉〈1356〉〈2345〉
〈1256〉〈1345〉〈2346〉

.

(2.3)

Note that a cyclic rotation Zi → Zi+1 maps

yu → 1/yv , yv → 1/yw , yw → 1/yu , (2.4)

while reflection Zi → Z1−i (all indices are understood to be cyclic modulo 6) takes

yu → yv , yv → yu , yw → yw . (2.5)

The spacetime parity operator acts on momentum twistors as2

Zi →Wi = ∗(Zi−1 ∧ Zi ∧ Zi+1) , (2.6)

which transforms the cross-ratios defined in (2.3) according to

yu → 1/yu , yv → 1/yv , yw → 1/yw . (2.7)

2The notation means that Wi spans the one-dimensional subspace orthogonal to the 3-plane spanned by

Zi−1, Zi, Zi+1 in C4.
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It is a curious accident that for n = 6 spacetime parity reversal is equivalent on Confn(P3)

to an element (namely, shift-by-three) of the cyclic group.

Three other variables used by Dixon et al. may be defined in terms of these via

u =
yu(1−yv)(1−yw)

(1−yuyv)(1−yuyw)
, v =

yv(1−yu)(1−yw)

(1−yuyv)(1−yvyw)
, w =

yw(1−yu)(1−yv)

(1−yuyw)(1−yvyw)
. (2.8)

Central to our investigations is the Poisson structure on Conf6(P3), which may be expressed

in terms of the y variables as

{log yu, log yv} = {log yv, log yw} = {log yw, log yu} =
(1−yu)(1−yv)(1−yw)

1−yuyvyw
. (2.9)

It is invariant under the full cyclic group (and hence, it is parity symmetric) but antisym-

metric under reflection.

In terms of these variables, the cluster X -coordinates may be expressed as

v1 =
1− v
v

, v2 =
1− w
w

, v3 =
1− u
u

,

x+1 =
yv(1− yuyw)

1− yv
, x+2 =

yw(1− yuyv)

1− yw
, x+3 =

yu(1− yvyw)

1− yu
,

x−1 =
1− yuyw

yuyw(1− yv)
, x−2 =

1− yuyv
yuyv(1− yw)

, x−3 =
1− yvyw

yvyw(1− yu)
, (2.10)

e1 =
1− yv

yv(1− yu)
, e2 =

yv(1− yw)

1− yv
, e3 =

1− yu
yu(1− yw)

,

e4 =
yu(1− yv)

1− yu
, e5 =

1− yw
yw(1− yv)

, e6 =
yw(1− yu)

1− yw
.

Note that under a cyclic shift Zi → Zi+1 we have

vi → vi+1 , x±i → x∓i+1 , ei → ei+1 , (2.11)

while under parity the vi are invariant and

x±i → x∓i , ei → ei+3 . (2.12)

Of particular importance are pairs x1, x2 of distinct X -coordinates with simple Poisson

brackets. By “simple” we mean specifically that {log x1, log x2} is either 0 or ±1. There

are three pairs with Poisson bracket zero,

{log x+i , log x−i } = 0 , (2.13)

and 30 pairs with Poisson bracket +1,

{log ei, log ei+4} = {log x±i+1, log vi} = {log vi+1, log x±i } = {log x±i+1, log ei} = 1 (2.14)

together with their cyclic images, for 6+6+6+12 = 30 pairs. The remaining 72 pairs have

“complicated” Poisson brackets (specifically, non-integer-valued; see for example (2.9)).
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2.2 The Gr(4,7) cluster algebra

For seven-point amplitudes the relevant cluster is algebra is Gr(4, 7), which is isomorphic to

the E6 algebra. The 49 cluster A-coordinates consist of the 35 Plücker coordinates 〈ijkl〉
together with 14 homogeneous polynomials denoted by 〈1(23)(45)(67)〉, 〈2(13)(45)(67)〉
(and their cyclic images), where

〈i(i−1, i+1)(j, j+1)(k, k+1)〉 = 〈i−1 i j j+1〉〈i i+1 k k+1〉 − 〈i−1 i k k+1〉〈i i+1 j j+1〉 .
(2.15)

One can build from these 49 A-coordinates a total of 385 cluster X -coordinates (or 770 if

we count their multiplicative inverses). These are tabulated on pages 40–41 of [1]. Out of
1
2 · 385 · 384 = 73920 pairs of X -coordinates, 2520 have Poisson bracket ±1 while 833 have

Poisson bracket zero.

2.3 The cobracket and Bloch groups

We recall that the algebra A of generalized polylogarithm functions admits a coproduct

giving it the structure of a Hopf algebra [2]. When we work with the quotient space L
of polylogarithm functions modulo products of functions of lower weight, the coproduct

descends onto the quotient space to a cobracket δ which satisfies δ2 = 0. We review here

only the barest essentials, and refer the reader to [1, 15] for additional details.

The cobracket of a weight-4 function has two components,

δL4 ∈ (B3 ⊗ C∗)⊕ (B2 ∧B2) , (2.16)

where the Bloch group Bk is, for our purposes, the free abelian group generated by functions

of the form {x}k ≡ −Lik(−x), where Lik is the classical polylogarithm function and x is a

function on Confn(P3) which is rational in Plücker coordinates.

The fact that δ2 = 0 and that δ has trivial cohomology means that if a ∈ B3⊗C∗ and

b ∈ B2 ∧ B2, then there exists a function f whose cobracket components are a ⊕ b if and

only if δ31(a) + δ22(b) = 0. As explained in [15], this condition can be used to explicitly

enumerate cluster functions, at least on algebras of finite type. For such algebras B3 ⊗C∗

and B2 ∧ B2 are finite dimensional vector spaces on which δ acts linearly, so the space of

cluster A-functions is simply the kernel of δ.

At weight 4 a general polylogarithm can be expressed in terms of the classical functions

Lik if and only if its B2 ∧B2 cobracket component vanishes. We will often be interested in

counting the number of non-classical functions, since the classical ones (which correspond

to solutions of δ31(a) = 0) are trivial to enumerate. To answer this question we compute

the dimension of the subspace of B2 ∧ B2 such that the equation δ31(a) + δ22(b) = 0 is

solvable for some a ∈ B3 ⊗ C∗.
One final piece of terminology concerns the interplay between the Poisson structure

on the Grassmannian cluster algebras and the cobracket of polylogarithm functions. We

recall that two cluster X -coordinates x, y have {log x, log y} ∈ Z only if there exists a cluster

containing either x or 1/x, and either y or 1/y. As reviewed in [1], the combinatorics of

mutations is encoded in a graph called the (generalized) Stasheff polytope associated to the
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algebra. We therefore say that a function has “Stasheff local” B2∧B2 if it can be expressed

as a linear combination of terms of the form {x}2 ∧ {y}2 for pairs having integer Poisson

bracket (for Gr(4, 6) and Gr(4, 7), this integer will always be in the set {−1, 0,+1}).

3 The cluster structure of hexagon functions at weight 4

3.1 Setup

In this section we consider cluster functions on the A3
∼= Gr(4, 6) cluster algebra. The term

“cluster A-function” introduced in [15] refers, in the present application, to an integrable

symbol written in the 9-letter alphabet of cluster coordinates (specifically, this means any

multiplicatively independent set of X -coordinates; or equivalently, homogeneous ratios of

A-coordinates) on Gr(4, 6).

Any linear combination of cluster A-functions with the property that only the three

variables u, v, w appear in the first-entry of the symbol, reflecting the physically allowed

branch points for a scattering amplitude [16], is called a “physical function” or, following

the terminology of [6], a “hexagon function”. These have been studied through high weight

in the series of papers [4–10], but we restrict our analysis to weight 4 as our aim is to explore

connections between the cobrackets and the cluster Poisson structure of these functions.

Let Ak denote the vector space of all weight-k cluster A-functions. Such functions are

easy to count for any Am type cluster algebra (see [21, 22]); for A3 we have the generating

function

fA3(t) = 1 +

∞∑
k=1

tk dim(Ak) =
1

1− 2t

1

1− 3t

1

1− 4t
, (3.1)

so that

dim(Ak) = 9, 55, 285, 1351, . . . k = 1, 2, 3, 4, . . . . (3.2)

Let Lk denote the quotient of Ak by products of functions of lower weight. The number

of such functions can be computed by taking the plethystic logarithm of the generating

function fA3(t) (see for example [23]), which gives

dim(Lk) = 9, 10, 30, 81, . . . k = 1, 2, 3, 4, . . . . (3.3)

Finally we denote by Bk the subspace of Lk generated by the classical polylogarithms (we

do not yet restrict their arguments to be cluster X -coordinates). We have

dim(Bk) = 10, 30, 45, . . . k = 2, 3, 4, . . . . (3.4)

For k < 4 the agreement with (3.3) reflects the fact that all such generalized polyloga-

rithms can be expressed in terms of the classical functions; for higher k these numbers

can be obtained by choosing a basis for Lk and computing dim ker δ as described in the

previous section.
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3.2 The non-classical functions

Beginning at k = 4 we can distinguish between classical and non-classical functions. At

weight k = 4, the “non-classicalness” of a function is completely characterized by its B2∧B2

cobracket component (see for example [1]). Since B2 has dimension 10 according to (3.4),

B2 ∧ B2 evidently has dimension 45. However, a random element of this vector space is

not guaranteed to be the B2 ∧B2 cobracket component of any cluster A-function — there

is a nontrivial integrability constraint.

In fact, by comparing (3.4) to (3.3) we see that there are 81 functions in all, minus

45 classical functions, for a total of 36 non-classical functions. We conclude that in the

45-dimensional space B2 ∧ B2 spanned by objects of the form {x}2 ∧ {y}2, for cluster

coordinates x and y, only the linear combinations lying in a particular 36-dimensional

subspace correspond to cobracket components of actual cluster A-functions.3 We will

shortly characterize this 36-dimensional space completely.

Let us write PB0 to denote the subspace of B2 ∧ B2 spanned by objects of the form

{x}2 ∧ {y}2 for pairs having Poisson bracket {log x, log y} = 0. In what follows we will

for example say that a function “lives in PB0” if its B2 ∧B2 cobracket component can be

expressed in terms of such pairs. Similarly, let PB1 be the subspace spanned by pairs having

Poisson bracket 1, and let us also use the shorthand PB∗ = B2 ∧ B2, meaning that the

Poisson bracket can be anything. We found in (2.13) and (2.14) that there are respectively

3, 30 pairs with Poisson bracket 0, 1. It is simple to check that the corresponding elements

are linearly independent in B2 ∧ B2, so we have that dimPB0 = 3 and dimPB1 = 30,

while of course dimPB∗ = dimB2 ∧B2 = 45.

With this notation in hand let us now summarize our findings on the 36 non-classical

cluster A-functions at weight four, which we find fall into two broad groups:

(A) 6 of these functions are the “A2 cluster functions” introduced in [15]. There is one

such function for each A2 subalgebra of A3; these subalgebras and the associated functions

are represented visually in equation (4.3) of that paper. These six functions have additional

“cluster structure”: their B3 ⊗ C∗ cobracket components can be expressed entirely in

terms of cluster X -coordinates — this means that they are “cluster X -functions” in the

terminology of [15]. General elements of this six-dimensional space are not Stasheff local

— their B2 ∧B2 cobracket components are not expressible in terms of pairs of coordinates

with Poisson bracket 0,±1. Only one particular linear combination of these 6 — the one

called the A3 function in [15]—has a nice B2 ∧B2, in fact lying inside PB0. The B2 ∧B2

cobracket component of this A3 function is

3∑
i=1

{x+i }2 ∧ {x
−
i }2 . (3.5)

This quantity is parity-odd so it cannot possibly appear in the two-loop six-point MHV

remainder function, which is parity-even. This “explains” why the hypothesis that two-

3Linear combinations which fall outside this 36-dimensional subspace are certainly integrable [24], but

they integrate to functions with symbols involving letters which are not cluster coordinates, for example

differences of X -coordinates xi − xj , which does not in general factor into a product of cluster coordinates.

Hence they are not cluster A-functions.
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loop MHV remainder functions must live in PB0, which we know to be true for all n [3],

implies that the case n = 6 must be classical.

(B) The remaining 30 functions are sort of the opposite: no linear combination of these

30 has a B3 ⊗ C∗ content which can be expressed entirely in terms of X -coordinates, so

none of them are cluster X -functions. On the other hand, all of them are Stasheff local

— they all have “nice” B2 ∧ B2, in fact they span exactly the 30-dimensional subspace

PB1 ⊂ B2 ∧B2.

3.3 The physical (hexagon) functions

Dixon et al. find that there are precisely 15 functions at weight 4 (modulo products of

functions of lower weight) satisfying the first-entry condition, which they call hexagon

functions. Let us put aside 9 which are purely classical and focus on the two types of

functions named Ω2 and F1 in [6].

(A) The function F1 is parity-odd and comes in three cyclic permutations (i.e., i→ i+2

and i→ i+4). These functions are rather interesting; each of them has a B2∧B2 coproduct

component given by (3.5) plus additional terms which cannot be expressed in terms of pairs

having simple Poisson bracket. Since (3.5) is invariant under i → i+2, we can throw out

these terms by taking the difference between any two pairs of the three permutations of F1.

Indeed such linear combinations have appeared in the literature, as in (B.18) and (B.20)

of [6] which define the function Ṽ by

8Ṽ = −F1(u, v, w) + F1(w, u, v) + products of lower-weight functions. (3.6)

Hence only two of the three distinct cyclic permutations of Ṽ are linearly independent.

(B) Next we look at the parity-even function Ω2 which also comes in three cyclic

permutations. At the level of B2 ∧ B2, where we can ignore all terms involving only

classical polylogarithms, the function Ω2 is equivalent (modulo an overall multiplicative

factor) to the function called V by Dixon et al.; see for example (7.1) through (7.3) of [4].

In that paper it was also observed that the three cyclic permutations of this function add

up to a purely classical function, so the three different permutations of V span only a

two-dimensional subset of B2 ∧B2.

To summarize, we find that the subspace of B2 ∧ B2 spanned by physical (hexagon)

functions has dimension 5. Two dimensions are spanned by the parity-even functions

of type V , while three dimensions are spanned by the parity-odd functions of type F1.

Although a generic vector in the three-dimensional parity-odd subspace has terms with

“bad” Poisson brackets, there is something especially nice about the subspace spanned by

the permutations of V and Ṽ together. To see this we exhibit here a formula for their

cobracket components, which we find are most simply packaged in the formula

δ|2,2(V + Ṽ ) =
1

2
{v2}2 ∧ {x−1 }2 −

1

2
{v1}2 ∧ {x−3 }2 −

1

2
{x+1 }2 ∧ {v3}2 +

1

2
{x+2 }2 ∧ {v1}2.

(3.7)

Since V , Ṽ have parity even and odd, respectively, δ|2,2(V − Ṽ ) is given by the same

formula but with x± → x∓. We now see that each term in (3.7) involves only the PB1
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pairs listed in (2.14)! Moreover, it is trivial to check directly from (3.7) and the cyclic

transformations (2.11) that the six functions V , Ṽ altogether span only a four-dimensional

subspace of PB1.

3.4 Summary

The results of this section can be summarized in the following classification of weight-4

cluster functions on A3
∼= Gr(4, 6):

There are a total of 81 irreducible weight-four cluster A-functions

�

45 classical, 10 of which are physical

�

36 non-classical, 5 of which are physical

(three permutations of F1 and two of Ω2)

�

30 PB1 functions, 4 of which are physical

(two permutations each of V, Ṽ )

�

6 A2 functions; these are all of the cluster X -functions

�

1 PB0 function, the A3 function

(as mentioned above, this is F1 plus terms in PB∗)

�

5 PB∗ functions

Let us emphasize that these numbers count only irreducible functions, and that starting

from the third line they moreover count functions modulo the classical function Li4 (i.e.,

the numbers refer to dimensions of subspaces of B2 ∧ B2). When we say that a function

is physical modulo additional terms, we mean that it is possible to choose the additional

terms to render the function physical.

3.5 The two-loop hexagon MHV amplitude

Let us now comment on the relevance of these functions to the two-loop six-point MHV

remainder function R
(2)
6 , which was found to be expressible in terms of the classical poly-

logarithm functions Lik in [13] (a fact that we “explained” below (3.5)). In fact, this

amplitude is even more special because it is a cluster X -function, which means that it can

be expressed in entirely in terms of the Lik(−x); the Lik(1 +x) and Lik(1 + 1/x) functions,

whose B3⊗C∗ cobracket components are not expressible in terms of cluster X -coordinates,

are not needed [1].

Above we tabulated our finding that (modulo products of lower-weight functions) there

are only 10 physical and classical polylogarithms at weight four. In this space we now

search for functions whose coproducts are expressible entirely in terms of the Lik(−x).

We find that there is a unique linear combination that is invariant under the discrete

symmetries (parity and dihedral invariance) that MHV amplitudes must possess. That

linear combination is proportional to the two-loop MHV remainder function

R
(2)MHV
6 =

3∑
i=1

[
Li4(−x+i ) + Li4(−x−i )− 1

2
Li4(−vi)

]
+ products of lower-weight functions,

(3.8)
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in agreement with the known result [13]. (This argument, of course, does not fix the

overall coefficient.) Of course, in this case it is very well known that the product terms

are also completely fixed by simple considerations, but our focus in this paper is on the

leading term.

3.6 The two-loop hexagon NMHV amplitude

The n = 6 NMHV two-loop ratio function is given by [4]

P(2)
6,NMHV = [23456][V (u, v, w) + Ṽ (yu, yv, yw)] + cyclic (3.9)

where [23456] is the R-invariant

[abcde] =
δ4 (χa〈bcde〉+ cyclic)

〈abcd〉〈bcde〉〈cdea〉〈deab〉〈eabc〉
(3.10)

and V , Ṽ are the two generalized polylogarithm functions of uniform transcendental weight

four reviewed in section 3.3 above. These two functions were computed explicitly in [4]

(see also [21] for a different presentation of these functions). The B2∧B2 component of the

cobracket of this amplitude was computed in (3.7), where it was found to be expressible

entirely in terms of pairs living in PB1.
4

The NMHV ratio function provides us (at the level of B2 ∧ B2) with a total of four

linearly independent non-classical functions of weight 4 (as reviewed above, each of V and

Ṽ comes in three cyclic permutations, but the cyclic sum of each is separately zero inside

B2 ∧ B2). We see from the summary in section 3.4 that precisely 5 functions of this type

exist. Only four linear combinations of them, however, actually appear in the amplitude

— these are precisely the four linear combinations which live in PB1! The one additional

non-classical weight-4 hexagon function which exists but does not appear in the amplitude,

F1 by itself, has terms with “bad” Poisson brackets (i.e., non-Stasheff local terms) in its

B2 ∧B2 content.

4 The cluster structure of heptagon functions at weight 4

4.1 Setup

In this section the term “cluster function” refers to an integrable symbol written in the 42-

letter alphabet of cluster coordinates on Gr(4, 7). Any linear combination of such symbols

with the property that only the Plücker coordinates of the form 〈i i+1 j j+1〉 appear in the

first entry of the symbol, reflecting the physically allowed branch points for a scattering

amplitude, is called (the symbol of) a “physical function” or a “heptagon function” follow-

ing the terminology of [12] where they have been studied through weight six. The analysis

here, where we aim to make finer statements about the connection to the Poisson bracket

of the cluster algebra, is again restricted to weight 4, of relevance to two-loop amplitudes.

Let Ak denote the vector space of all weight-k functions. In contrast to the Am cluster

algebras and the example shown in (3.1), we do not know of any generating function which

4This observation was first made by C. Vergu [14].
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counts the number of cluster functions for the E6 algebra. These may be tabulated through

weight 3 by explicit enumeration, but at higher weight these numbers must be computed

by analyzing the integrability constraint. This boils down to a linear algebra problem,

since counting the number of cluster functions at weight k is the same as finding how many

linear combinations of the 42k weight-k symbols satisfy the integrability constraint. (This

calculation can be rendered more manageable by imposing integrability at the level of the

cobracket rather than at the level of the symbol.) We have carried this out at k = 4 to

find that

dim(Ak) = 42, 1035, 19536, 312578, . . . k = 1, 2, 3, 4, . . . . (4.1)

Let Lk denote the quotient of Ak by products of functions of lower weight. As in (3.3)

taking the plethystic logarithm [23] gives

dim(Lk) = 42, 132, 748, 4193, . . . k = 1, 2, 3, 4, . . . . (4.2)

Finally we denote by Bk the subspace of Lk generated by the classical polylogarithms (we

do not yet restrict their arguments to be cluster X -coordinates). We have

dim(Bk) = 132, 748, 1155, . . . k = 2, 3, 4, . . . . (4.3)

As mentioned before, agreement of these numbers with (4.2) is guaranteed for k < 4, and

we obtained the value 1155 for k = 4 by computing dim ker δ as described in section 2.

Before we turn to weight 4, a minor interesting comment about k = 3 is in order.

It is simple to write down classical cluster functions of the form Lik(−x), Lik(1 + x) and

Lik(1 + 1/x) for any weight k, where x runs over the set of 385 X -coordinates. For k = 3,

this set of functions is overcomplete due to the identity

Li3(−x) + Li3(1 + x) + Li3(1 + 1/x) = 0 mod products of lower-weight functions. (4.4)

Among the 385 functions of type Li3(−x) there are exactly 22 additional linear relations.

These were discovered in [1], where they were called D4 identities since the simplest mani-

festation of this identity occurs for the D4 algebra. Altogether then these identities account

for the 3×385−385−22 = 748 linearly independent weight-3 cluster A-functions tabulated

in (4.2).

4.2 The non-classical functions

Let us now repeat the analysis done in the beginning of section 3.2 for the E6 algebra.

Since B2 has dimension 132, B2 ∧ B2 has dimension 8646. We again use the notation

PB0, PB1, and PB∗ = B2 ∧B2 to denote the subspaces spanned by elements of the form

{x}2 ∧ {y}2 for pairs x, y having Poisson bracket 0, ±1, or “anything.” We find that PB0

has dimension 455 and PB1 has dimension 2520.

A quick glance at (4.2) and (4.3) reveals that there are 4193−1155 = 3038 non-classical

cluster functions at weight k = 4. We find that these fall into three groups:

(A) First, there are the A2 functions. We recall from (for example) [1] that E6 has 1071

A2 subalgebras, so one can construct 1071 A2 functions according to the definition
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given in [15], but only 448 of these are linearly independent inside B2 ∧ B2.
5 These

functions are moreover cluster X -functions: their B3⊗C∗ cobracket components can

be expressed entirely in terms of cluster X -coordinates, but their B2 ∧B2 content is,

in general, not Stasheff local — not expressible in terms of pairs with Poisson bracket

0,±1.

There are no linear combinations of these 448 functions which live in PB1 — these are

covered in (B) just ahead — but we find that 195 linear combinations live in PB0. This

195-dimensional space is spanned by the set of A3 functions associated to the various A3

subalgebras of E6.

(B) There are 2520 functions which span the 2520-dimensional subspace PB1 ⊂ B2 ∧B2.

We found the same phenomenon in the six-point case discussed in the previous sec-

tion. There we furthermore found that no linear combination of these PB1 functions

had a B3⊗C∗ component that could be expressed entirely in terms of X -coordinates.

We have not repeated this analysis for the 2520 seven-point functions; the computa-

tion seems formidable.

(C) There are an additional 3038 − 448 − 2520 = 70 functions which we can tabulate

explicitly (at least at the level of their cobrackets), but seem to have no nice charac-

terization.

4.3 The physical (heptagon) functions

It was found in [12] that there are precisely 1288 functions at weight 4 satisfying the first-

entry condition, which are called physical, or heptagon functions. We have computed the

B2 ∧ B2 cobracket of each of them, and found that there are only 126 non-zero linear

combinations. This means that there are 1162 classical heptagon functions and 126 non-

classical heptagon functions at weight 4. We have found that these 126 heptagon functions

fall into three types:

(A) A total of 105 of these functions live in PB0; they come in 15 families related by

cyclic permutations.

(B) A total of 14 of these functions live in PB1; they come in 2 families related by cyclic

permutations.

(C) There is one remaining family of 7 functions related by cyclic permutations. No linear

combination of these is Stasheff local (i.e., lives within the union of PB0 and PB1).

5This result was first obtained in the undergraduate thesis of A. Scherlis.
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4.4 Summary

The results of this section can be summarized in the following classification of weight-4

cluster functions on E6
∼= Gr(4, 7):

There are a total of 4193 irreducible weight-four cluster A-functions

�

1155 classical, 770 of which are physical

�

3038 non-classical, 126 of which are physical

�

2520 PB1 functions, 105 of which are physical

�

448 A2 functions; these are all of the cluster X -functions

�

195 PB0 function, 14 of which are physical

�

253 PB∗ functions

�

70 other PB∗ functions

Again let us emphasize that these numbers count only irreducible functions, and that

starting from the third line they moreover count functions modulo the classical function

Li4 (i.e., the numbers refer to dimensions of subspaces of B2 ∧ B2). When we say that

a function is physical modulo additional terms, we mean that it is possible to choose the

additional terms to render the function physical.

4.5 The two-loop heptagon MHV amplitude

The symbol of the two-loop seven-point MHV remainder function R
(2)
7 was computed

in [25], and its cobracket was computed in [1], where it was observed to be a cluster

X -function living in PB0. An analytic formula for R
(2)
7 was obtained in [26] and checked

against the earlier numerical results of [27].

If we start from the hypothesis that R
(2)
7 should be a cluster X -function living in PB0,

then we see from the above chart that there are only 14 physical functions with these

properties. It was shown in [3] that only one linear combination of these has the dihedral

symmetry required of the amplitude, is well-defined in the collinear limit, and satisfies the

“last-entry” condition [25] required by supersymmetry.

In fact these constraints, while all true, are vastly stronger than necessary to pin down

R
(2)
7 : in [12] it was found that the symbol of R

(2)
7 is the unique weight-4 heptagon function

(up to an overall multiplicative factor) which is well-defined in all i+1 ‖ i collinear limits!

4.6 The two-loop heptagon NMHV amplitude

The symbol of the seven-point 2-loop NMHV ratio function P(2)
7,NMHV was first computed

in [11]. It may be expressed as a linear combination of the 21 seven-point NMHV R-

invariants (of which 15 are linearly independent), with coefficients that have uniform tran-

scendentality weight 4. Due to the linear relations between R-invariants there is some

freedom in how to represent the amplitude (i.e., one can shift terms from one transcenden-

tal function to another by adding zero to the amplitude in various ways).

Despite this freedom, we find that it impossible to write the B2 ∧B2 cobracket of this

amplitude in a Stasheff local manner, i.e. in terms of {x}2 ∧ {y}2 for pairs x, y having
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Poisson bracket 0,±1. The local terms having “good” Poisson brackets may be expressed

(in one particular representation of the amplitude) as

δ22P(2)
7,NMHV|“good” = (f12R12 + f13R13 + f14R14) + cyclic, (4.5)

where the quantities f12, f13 and f13 are presented explicitly in the appendix, and Rij is

the R-invariant whose arguments are 1234567 (in that order) but with i and j omitted —

this is the same as the notation used in [4]. Meanwhile the “bad” terms are given by:

δ22P(2)
7,NMHV|“bad” = (R25 −R26 +R37 −R47)B1 + cyclic (4.6)

in terms of a single element B1 ∈ B2 ∧ B2 (also given in the appendix) which is not

expressible solely in terms of pairs having Poisson bracket zero or one.

In fact we can point our finger directly at the “offending” function corresponding to

B1 in the summary presented at the end of section 4.4. There we found that of the 126

non-classical weight-4 heptagon functions, 105 live in PB1 while 14 live in PB0, leaving

127− 105− 14 = 7 unaccounted for. These other seven functions have B2 ∧ B2 cobracket

components given exactly by B1 in its seven cyclic arrangements.

5 Conclusion

In this paper we have studied in detail the taxonomy of weight-4 cluster functions on

the cluster algebras relevant for 6- and seven-point amplitudes in planar SYM theory. In

particular we have counted the numbers of linearly independent functions satisfying various

mathematical constraints on their cobrackets, and the physical “first-entry” constraint

which specifies the locations where amplitudes are permitted to have branch points on the

principal sheet. These results are summarized in sections 3.4 and 4.4.

For n = 6 the story is very simple: there is no non-classical weight-4 generalized

polylogarithm function which is consistent with the discrete symmetries of the MHV am-

plitude and whose B2 ∧B2 cobracket component is expressible in terms of pairs of cluster

X -coordinates having Poisson bracket 0. This “explains” why the two-loop six-point MHV

remainder function “must be” expressible in terms of classical polylogarithms [13].

Meanwhile, there are precisely 4 linearly independent non-classical functions which

satisfy the first-entry condition and are Stasheff local (they have B2∧B2 cobracket compo-

nents are expressible in terms of pairs of cluster X -coordinates having Poisson bracket 1).

These are precisely the (non-classical parts of the) 4 independent functions which appear

in the two-loop six-point NMHV ratio function [4].

For n = 7, as has already been observed in [3, 12], the cobracket (indeed, the whole

symbol) of the two-loop MHV amplitude is uniquely determined by a simple list of mathe-

matical and physical constraints. However the story for the two-loop NMHV ratio function

is a little more complicated. We find that the cobracket of this amplitude is not expressible

in a Stasheff local manner (that means, in terms of pairs having Poisson bracket 0,±1). It

would be very interesting to learn if there is some other question one may ask about the

cluster structure of this amplitude, to which a more affirmative answer may be given. We
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expect to be the case since it is known that there is a cluster structure at the level of the

integrand (aspects of which have been explored in [28, 29]), of which some echo ought to

remain for integrated amplitudes.

One of our results might be of more mathematical than physical interest. For both the

A3 and E6 cluster algebras, we find that for any pair of X -coordinates with Poisson bracket

{log x, log y} = 1, there exists a weight-4 cluster A-function (that is, an integrable symbol

whose letters are drawn from the alphabet of cluster coordinates) whose B2∧B2 cobracket

component is {x}2 ∧ {y}2. It would be interesting to learn if there is a mathematical

explanation for this fact, and whether it is valid for more general cluster algebras (in

particular, for ones of infinite type). In contrast, pairs of X -coordinates having Poisson

bracket 0 are rarely integrable in this manner; the two-loop MHV amplitudes of planar

SYM theory remarkably provide functions of this relatively rare type.

In the introduction we mentioned that in previous work including [3] it has been

remarked that the mathematical and physical constraints on MHV amplitudes seem almost

orthogonal. This is both good and bad. On the one hand it is good to discover a short list

of simple criteria which uniquely, or almost uniquely, determine an amplitude of interest

— this is the core goal of the S-matrix program. On the other hand it is bad when there

is no known formalism which simultaneously manifests both types of constraints. We do

not yet know of any way, besides explicit enumeration, to actually identify and write down

functions satisfying both the physical and mathematical we expect amplitudes to possess.

Explicit results for higher loop planar SYM amplitudes remain, at least for the moment,

difficult needles to find.
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A Two-loop heptagon NMHV coproduct data

In the first three subsections we list the Stasheff local contributions to the B2∧B2 cobracket

component of the two-loop heptagon NMHV ratio function, in terms of the quantities f12,

f13, and f14 appearing in (4.5). Specifically, these contain all terms of the form {x}2∧{y}2
for pairs x, y having Poisson bracket 0,±1. The additional “bad” contributions to the

cobracket are shown in (4.6) and given explicitly in the fourth subsection.
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A.1 f13

This function is cyclically invariant and lives entirely in PB1. We find

δ22f13 =
1

7

({
〈1367〉〈2347〉
〈1237〉〈3467〉

}
2
∧
{
〈1367〉〈2347〉〈4567〉
〈1467〉〈2367〉〈3457〉

}
2

−
{
〈1247〉〈1256〉
〈1245〉〈1267〉

}
2
∧
{
〈1245〉〈1567〉
〈1257〉〈1456〉

}
2

+
{
〈1256〉〈2345〉
〈1235〉〈2456〉

}
2
∧
({
〈1236〉〈1245〉
〈1234〉〈1256〉

}
2
−
{
〈1235〉〈1567〉〈2456〉
〈1257〉〈1456〉〈2356〉

}
2

)
+
{
〈1247〉〈1345〉
〈1234〉〈1457〉

}
2
∧
({
〈1345〉〈1467〉
〈1347〉〈1456〉

}
2
−
{
〈1245〉〈1467〉
〈1247〉〈1456〉

}
2

)
+

({
〈1247〉〈1345〉〈1567〉
〈1257〉〈1347〉〈1456〉

}
2
−
{
〈1247〉〈1256〉〈1345〉
〈1234〉〈1257〉〈1456〉

}
2

)
∧
({
− 〈1267〉〈1345〉
〈1(27)(34)(56)〉

}
2

+
{
− 〈1237〉〈1456〉
〈1(27)(34)(56)〉

}
2

)
+

({
〈1247〉〈1256〉〈1346〉
〈1234〉〈1267〉〈1456〉

}
2
−
{
〈1237〉〈1345〉〈1567〉
〈1257〉〈1347〉〈1356〉

}
2

)
∧
{
− 〈1234〉〈1567〉
〈1(27)(34)(56)〉

}
2

)
+ cyclic.

A.2 f12

If we first define the quantity X1 by

X1 =
{
〈1367〉〈2347〉
〈1237〉〈3467〉

}
2
∧
{
〈1267〉〈3467〉
〈1467〉〈2367〉

}
2

+
{
〈1467〉〈2347〉
〈1247〉〈3467〉

}
2
∧
{
〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

−
{
〈1247〉〈1345〉
〈1234〉〈1457〉

}
2
∧
{
〈1245〉〈3457〉
〈1457〉〈2345〉

}
2
−
{
〈1457〉〈2347〉
〈1247〉〈3457〉

}
2
∧
{
〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

+
{
〈1256〉〈2345〉
〈1235〉〈2456〉

}
2
∧
{
〈1236〉〈1245〉〈2567〉
〈1235〉〈1267〉〈2456〉

}
2
−
{
〈1267〉〈2356〉
〈1236〉〈2567〉

}
2
∧
{
〈1236〉〈2345〉〈2567〉
〈1235〉〈2367〉〈2456〉

}
2

+

({
〈1234〉〈1467〉〈3457〉
〈1247〉〈1345〉〈3467〉

}
2
−
{
〈1245〉〈1467〉〈3457〉
〈1247〉〈1345〉〈4567〉

}
2

)
∧
{
− 〈1467〉〈2345〉
〈4(12)(35)(67)〉

}
2

+
{
〈1467〉〈2367〉〈2457〉
〈1267〉〈2347〉〈4567〉

}
2
∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2

−
{
〈1467〉〈2367〉〈3457〉
〈1367〉〈2347〉〈4567〉

}
2
∧
{
− 〈1267〉〈3457〉
〈7(16)(23)(45)〉

}
2

+ 2
{
〈1245〉〈2467〉〈3457〉
〈1247〉〈2345〉〈4567〉

}
2
∧
{
− 〈1234〉〈4567〉
〈4(12)(35)(67)〉

}
2

and X2, . . . , X7 by taking i→ i+ 1, then we find

δ22f12 =
1

7
(3,−4, 3,−4, 3,−4, 3) · (X1, X2, X3, X4, X5, X6, X7)

+
{
〈1237〉〈1246〉
〈1234〉〈1267〉

}
2
∧
({
〈1246〉〈1345〉
〈1234〉〈1456〉

}
2

+
{
〈1234〉〈1467〉〈3456〉
〈1246〉〈1345〉〈3467〉

}
2

+
{
〈1467〉〈3456〉
〈1346〉〈4567〉

}
2

+
{
〈1246〉〈1345〉〈4567〉
〈1245〉〈1467〉〈3456〉

}
2

)
+
{
〈1457〉〈3456〉
〈1345〉〈4567〉

}
2
∧
({
〈1234〉〈1457〉
〈1247〉〈1345〉

}
2

+
{
〈1234〉〈1267〉〈1457〉
〈1237〉〈1245〉〈1467〉

}
2

+
{
〈1237〉〈1467〉
〈1267〉〈1347〉

}
2

+
{
〈1237〉〈1345〉〈1467〉
〈1234〉〈1367〉〈1457〉

}
2
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+
{
〈1257〉〈1456〉
〈1245〉〈1567〉

}
2

)
−
{
〈1256〉〈2345〉
〈1235〉〈2456〉

}
2
∧
{
〈2567〉〈3456〉
〈2356〉〈4567〉

}
2

+
{
〈1267〉〈2356〉
〈1236〉〈2567〉

}
2

∧
{
〈1236〉〈2345〉〈3567〉
〈1235〉〈2367〉〈3456〉

}
2
−
{
〈1247〉〈1345〉
〈1234〉〈1457〉

}
2
∧
{
〈1247〉〈1567〉〈3457〉
〈1257〉〈1347〉〈4567〉

}
2

+

({
〈1247〉〈1256〉〈1345〉
〈1234〉〈1257〉〈1456〉

}
2

+
{
〈1257〉〈1347〉〈1456〉
〈1247〉〈1345〉〈1567〉

}
2

)
∧
{
− 〈1247〉〈1567〉〈3456〉
〈4567〉〈1(27)(34)(56)〉

}
2

+

({
〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2
−
{
〈1235〉〈1267〉〈2456〉
〈1236〉〈1245〉〈2567〉

}
2

)
∧
{
− 〈1236〉〈2345〉〈4567〉
〈3456〉〈2(13)(45)(67)〉

}
2

+
{
〈1467〉〈3457〉
〈1347〉〈4567〉

}
2
∧
({
〈1237〉〈1467〉
〈1267〉〈1347〉

}
2
−
{
〈1267〉〈1347〉〈4567〉
〈1247〉〈1567〉〈3467〉

}
2

)
+
{
〈2367〉〈3456〉
〈2346〉〈3567〉

}
2

∧
({
〈1234〉〈2367〉
〈1237〉〈2346〉

}
2

+
{
〈1234〉〈2367〉〈3456〉
〈1236〉〈2345〉〈3467〉

}
2

)
+

4

7

({
〈1257〉〈1456〉〈2356〉
〈1235〉〈1567〉〈2456〉

}
2

∧
{
− 〈1235〉〈4567〉
〈5(17)(23)(46)〉

}
2

+
{
〈1357〉〈1456〉〈2356〉
〈1235〉〈1567〉〈3456〉

}
2
∧
{
− 〈1567〉〈2345〉
〈5(17)(23)(46)〉

}
2

+
{
〈1247〉〈1256〉〈1345〉
〈1234〉〈1257〉〈1456〉

}
2
∧
{
− 〈1237〉〈1456〉
〈1(27)(34)(56)〉

}
2
−
{
〈1367〉〈2347〉〈3456〉
〈1347〉〈2346〉〈3567〉

}
2

∧
{
− 〈1367〉〈2345〉
〈3(17)(24)(56)〉

}
2

)
− 3

7

({
〈1367〉〈1457〉〈2347〉
〈1237〉〈1467〉〈3457〉

}
2
∧
{
− 〈1267〉〈3457〉
〈7(16)(23)(45)〉

}
2

+
{
〈1236〉〈2567〉〈3467〉
〈1267〉〈2346〉〈3567〉

}
2
∧
{
− 〈1567〉〈2346〉
〈6(12)(34)(57)〉

}
2

+
{
〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

+ ∧
{
− 〈1234〉〈2567〉
〈2(13)(45)(67)〉

}
2

+
{
〈1245〉〈1467〉〈3457〉
〈1247〉〈1345〉〈4567〉

}
2
∧
{
− 〈1247〉〈3456〉
〈4(12)(35)(67)〉

}
2

)
+

({
〈1235〉〈2367〉〈4567〉
〈2567〉〈3(12)(45)(67)〉

}
2
−
{
− 〈1237〉〈2345〉〈4567〉
〈3457〉〈2(13)(45)(67)〉

}
2

+
4

7

{
〈1235〉〈2367〉〈2457〉
〈1237〉〈2345〉〈2567〉

}
2

)
∧
{
− 〈1267〉〈2345〉
〈2(13)(45)(67)〉

}
2

+

({
〈1237〉〈1345〉〈4567〉
〈3457〉〈1(23)(45)(67)〉

}
2
−
{
〈1236〉〈1345〉〈4567〉
〈3456〉〈1(23)(45)(67)〉

}
2

−
{
〈1237〉〈1456〉
〈1(23)(45)(67)〉

}
2

)
∧
{
〈1267〉〈1345〉
〈1(23)(45)(67)〉

}
2

+
{
− 〈1234〉〈1567〉
〈1(27)(34)(56)〉

}
2

∧
({
− 〈1237〉〈1567〉〈3456〉
〈3567〉〈1(27)(34)(56)〉

}
2
−
{
〈1257〉〈1347〉〈3456〉
〈1345〉〈7(12)(34)(56)〉

}
2

+
3

7

{
〈1247〉〈1256〉〈1346〉
〈1234〉〈1267〉〈1456〉

}
2

)
+
{
〈1237〉〈3456〉
〈3(12)(45)(67)〉

}
2
∧
({

〈1267〉〈1345〉〈3467〉
〈1467〉〈3(12)(45)(67)〉

}
2

+
{
〈1234〉〈1367〉〈4567〉
〈1467〉〈3(12)(45)(67)〉

}
2

−
{
〈1234〉〈1267〉〈1345〉〈4567〉
〈1245〉〈1467〉〈3(12)(45)(67)〉

}
2

)
+

({
〈1234〉〈1267〉〈3457〉〈4567〉
〈1247〉〈3467〉〈5(12)(34)(67)〉

}
2

+
{
− 〈1234〉〈1267〉〈3456〉
〈1236〉〈4(12)(35)(67)〉

}
2
−
{
〈4567〉〈3(12)(45)(67)〉
〈3467〉〈5(12)(34)(67)〉

}
2
− 3

7

{
〈1245〉〈2467〉〈3457〉
〈1247〉〈2345〉〈4567〉

}
2

−
{
− 〈1247〉〈3456〉
〈4(12)(35)(67)〉

}
2

)
∧
{
− 〈1234〉〈4567〉
〈4(12)(35)(67)〉

}
2

+

({
〈1234〉〈1267〉〈3456〉〈3567〉
〈1236〉〈3467〉〈5(12)(34)(67)〉

}
2

+
{
− 〈1234〉〈1267〉〈3567〉
〈1237〉〈6(12)(34)(57)〉

}
2

+
{
〈3467〉〈5(12)(34)(67)〉
〈3456〉〈7(12)(34)(56)〉

}
2
− 3

7

{
〈1246〉〈2567〉〈3467〉
〈1267〉〈2346〉〈4567〉

}
2

)
∧
{
− 〈1267〉〈3456〉
〈6(12)(34)(57)〉

}
2

+

({
− 〈1267〉〈3457〉
〈7(16)(23)(45)〉

}
2

+
4

7

{
〈1367〉〈1457〉〈2357〉
〈1237〉〈1567〉〈3457〉

}
2
−
{
〈1467〉〈2367〉〈3457〉
〈1367〉〈2347〉〈4567〉

}
2

)
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∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2

+

({
− 〈1234〉〈3567〉
〈3(17)(24)(56)〉

}
2
− 3

7

{
〈1347〉〈1356〉〈2346〉
〈1234〉〈1367〉〈3456〉

}
2

+
{
〈1367〉〈2347〉〈3456〉
〈1347〉〈2346〉〈3567〉

}
2

)
∧
{
− 〈1237〉〈3456〉
〈3(17)(24)(56)〉

}
2
.

A.3 f14

This function lives entirely in PB1. If we first define the quantity

Y =
{
〈2347〉〈2356〉
〈2345〉〈2367〉

}
2
∧
{
〈2346〉〈3567〉
〈2367〉〈3456〉

}
2

+
{
〈1367〉〈2347〉
〈1237〉〈3467〉

}
2
∧
{
〈2347〉〈3567〉
〈2367〉〈3457〉

}
2

+
{
〈1257〉〈1456〉
〈1245〉〈1567〉

}
2
∧
{
〈1257〉〈1456〉〈2345〉
〈1235〉〈1457〉〈2456〉

}
2
−
{
〈1367〉〈1457〉〈2347〉
〈1237〉〈1467〉〈3457〉

}
2
∧
{
〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

−
{
〈1237〉〈2356〉
〈1235〉〈2367〉

}
2
∧
{
〈1236〉〈2567〉
〈1267〉〈2356〉

}
2
−
{
〈1256〉〈2345〉
〈1235〉〈2456〉

}
2
∧
{
〈1235〉〈2567〉
〈1257〉〈2356〉

}
2

+
{
〈1257〉〈1456〉〈2345〉
〈1235〉〈1457〉〈2456〉

}
2
∧
{
− 〈1235〉〈4567〉
〈5(17)(23)(46)〉

}
2

−
{
〈1257〉〈1456〉〈2356〉
〈1235〉〈1567〉〈2456〉

}
2
∧
{
− 〈1235〉〈4567〉
〈5(17)(23)(46)〉

}
2

+
{
〈1235〉〈2367〉〈2457〉
〈1237〉〈2345〉〈2567〉

}
2
∧
{
− 〈1267〉〈2345〉
〈2(13)(45)(67)〉

}
2

−
{
〈1367〉〈1457〉〈2347〉
〈1237〉〈1467〉〈3457〉

}
2
∧
{
− 〈1567〉〈2347〉
〈7(16)(23)(45)〉

}
2

+
{
〈1357〉〈2347〉〈2356〉
〈1237〉〈2345〉〈3567〉

}
2
∧
{
− 〈1237〉〈3456〉
〈3(17)(24)(56)〉

}
2

−
{
〈1467〉〈2367〉〈3457〉
〈1367〉〈2347〉〈4567〉

}
2
∧
{
− 〈1567〉〈2347〉
〈7(16)(23)(45)〉

}
2

then we find

δ22f14 =
2

7
(Y + cyclic)− 2Y +

({
〈1257〉〈1456〉
〈1245〉〈1567〉

}
2
−
{
〈1267〉〈2356〉
〈1236〉〈2567〉

}
2
−
{
〈1257〉〈2456〉
〈1245〉〈2567〉

}
2

+
{
〈1235〉〈1267〉〈2456〉
〈1236〉〈1245〉〈2567〉

}
2

)
∧
{
〈1256〉〈2345〉
〈1235〉〈2456〉

}
2

+
{
〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

∧
({
〈1267〉〈2356〉
〈1236〉〈2567〉

}
2
−
{
− 〈1267〉〈2345〉
〈2(13)(45)(67)〉

}
2

)
+

({
〈1235〉〈2367〉〈2456〉
〈1236〉〈2345〉〈2567〉

}
2

+
{
〈1236〉〈1245〉〈2567〉
〈1235〉〈1267〉〈2456〉

}
2

)
∧
{
− 〈1237〉〈2456〉
〈2(13)(45)(67)〉

}
2
−
{
〈1367〉〈1457〉〈2357〉
〈1237〉〈1567〉〈3457〉

}
2

∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2
−
{
〈1367〉〈2347〉〈3456〉
〈1347〉〈2346〉〈3567〉

}
2
∧
{
− 〈1237〉〈3456〉
〈3(17)(24)(56)〉

}
2

+

({
〈1367〉〈2347〉〈2356〉
〈1237〉〈2346〉〈3567〉

}
2

+
{
〈1347〉〈2346〉〈3567〉
〈1367〉〈2347〉〈3456〉

}
2

)
∧
{
− 〈1367〉〈2345〉
〈3(17)(24)(56)〉

}
2

−
{
〈2346〉〈3567〉
〈2367〉〈3456〉

}
2
∧
{
〈1237〉〈2346〉〈3567〉
〈1367〉〈2347〉〈2356〉

}
2
−
({
〈1457〉〈2456〉
〈1245〉〈4567〉

}
2

+
{
〈1567〉〈2456〉
〈1256〉〈4567〉

}
2

)
∧
{
〈1257〉〈1456〉
〈1245〉〈1567〉

}
2
−
{
〈1457〉〈2357〉〈2456〉
〈1257〉〈2345〉〈4567〉

}
2
∧
{
− 〈1567〉〈2345〉
〈5(17)(23)(46)〉

}
2

−
({
〈1567〉〈2357〉〈2456〉
〈1257〉〈2356〉〈4567〉

}
2

+
{
〈1567〉〈2357〉〈3456〉
〈1357〉〈2356〉〈4567〉

}
2

)
∧
{
− 〈1567〉〈2345〉
〈5(17)(23)(46)〉

}
2

+

({
〈1347〉〈1567〉
〈1367〉〈1457〉

}
2

+
{
〈1567〉〈3467〉
〈1367〉〈4567〉

}
2

)
∧
{
〈1467〉〈3457〉
〈1347〉〈4567〉

}
2
−
({
〈1347〉〈2346〉〈3567〉
〈1367〉〈2347〉〈3456〉

}
2
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−
{
〈2346〉〈3567〉
〈2367〉〈3456〉

}
2

+
{
〈1347〉〈3567〉
〈1367〉〈3457〉

}
2
−
{
〈1347〉〈4567〉
〈1467〉〈3457〉

}
2

)
∧
{
〈1237〉〈3467〉
〈1367〉〈2347〉

}
2

+

({
〈1237〉〈1467〉〈3457〉
〈1367〉〈1457〉〈2347〉

}
2

+
{
〈1567〉〈2367〉〈2457〉
〈1267〉〈2357〉〈4567〉

}
2

+
{
〈1567〉〈2367〉〈3457〉
〈1367〉〈2357〉〈4567〉

}
2

+
{
〈1367〉〈2347〉〈4567〉
〈1467〉〈2367〉〈3457〉

}
2

)
∧
{
− 〈1237〉〈4567〉
〈7(16)(23)(45)〉

}
2
.

A.4 B1

Here we display the non-Stasheff local contributions to the B2 ∧B2 coproduct component

of the two-loop seven-point NMHV ratio function (4.6). Exceptionally in this formula we

make use of the cross-ratios aij defined in equation (2.1) of [12]. We find that

B1 = (a12 ∧ a16) ∧ (a12 ∧ a61) + (a12 ∧ a16) ∧ (a17 ∧ a61)− (a12 ∧ a23) ∧ (a12 ∧ a61)
− (a12 ∧ a23) ∧ (a17 ∧ a61)− (a12 ∧ a32) ∧ (a12 ∧ a61)− (a12 ∧ a32) ∧ (a17 ∧ a61)
− (a12 ∧ a61) ∧ (a13 ∧ a16) + (a12 ∧ a61) ∧ (a13 ∧ a23) + (a12 ∧ a61) ∧ (a13 ∧ a32)
− (a12 ∧ a61) ∧ (a16 ∧ a23)− (a12 ∧ a61) ∧ (a16 ∧ a32) + (a13 ∧ a16) ∧ (a17 ∧ a61)
− (a13 ∧ a23) ∧ (a17 ∧ a61)− (a13 ∧ a32) ∧ (a17 ∧ a61) + (a16 ∧ a23) ∧ (a17 ∧ a61)
+ (a16 ∧ a32) ∧ (a17 ∧ a61)

where we follow the slight abuse of notation explained in [15] of writing B1 not explicitly as

an element of B2 ∧B2, but rather by writing the result of the iterated coproduct acting on

B1 according to {a}2∧{b}2 7→ (a∧(1+a))∧(b∧(1+b)) and then expanding all multiplicative

terms out using the usual symbol rules. In other words, the above formula represents the

symbol of the function B1 antisymmetrized according to a⊗ b⊗ c⊗ d 7→ (a ∧ b) ∧ (c ∧ d).
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