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1 Introduction

The study of finite-volume effects, besides a purely theoretical interest, is also motivated

by the need to correct results from lattice simulations. These are necessarily performed in

a volume of finite extent on which some form of boundary conditions are imposed. If one

chooses periodic boundary conditions, momenta are discretized and can not take continu-

ous values. To overcome such limitation twisted boundary conditions were proposed [1–4].

In this paper we study the effects of a finite cubic volume with twisted boundary condi-

tions on observables related to pseudoscalar mesons by applying chiral perturbation theory

(ChPT). As is well known ChPT is the low-energy effective field theory of QCD and can be

formulated in finite volume thereby providing a systematic tool to study finite-size effects

on observables calculated in lattice QCD.

The first analytical study of finite-volume effects with twisted boundary conditions

was published soon after the proposal to use these was made [4]. This relied on one-loop

ChPT. Further analytical calculations have been made also by other groups [5–8], and

more recent ones have appeared in the last few years [9, 10]. All these studies rely on

ChPT at one loop. In the case of periodic boundary conditions it has been shown that

the combined use of asymptotic formulae [11, 12] and ChPT is the most efficient way to

estimate higher orders in ChPT [13–15], with only tiny deviations from the results of a full

two-loop calculation [16].

Asymptotic formulae for twisted boundary conditions are not available in the literature

yet, so that all estimates of finite-volume effects have to rely on one-loop ChPT. The latter

estimates are known to suffer from large two-loop corrections [13, 14] (even though the

absolute size of finite-volume effects remains small). This paper fills this hole: its main

aim is the derivation and application of asymptotic formulae for finite-volume effects with

twisted boundary conditions for meson masses and decay constants. We also apply and

extend a suggestion by Häfeli [17] to use the Feynman-Hellmann theorem [18, 19] to derive

an asymptotic formula for the scalar form factor of the pion at zero momentum transfer.
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While for mesons most quantities have already been calculated at one loop in ChPT, we

provide here for completeness also expressions for finite-volume effects for masses, decay

constants and form factors. This gives us also the chance to discuss issues like the very

definition of masses and decay constants in the presence of twisted boundary conditions

— since this is subject to a certain degree of arbitrariness — and the role of chiral Ward

identities in finite volume. We also clarify the meaning of the Ward-Takahashi identity for

the electromagnetic current in finite volume and discuss its violation due to the breaking

of Lorentz invariance.

With the help of these asymptotic formulae we make a numerical analysis of finite-

volume effects which goes beyond one-loop ChPT. As in the case of periodic boundary

conditions, also here two-loop effects can be very sizable, whereas the effect of the twist

tends to be, for small twisting angles, which is the most relevant case, small. We trust that

the results presented here will allow a more reliable correction of finite-volume effects in

all lattice calculations using twisted boundary conditions.

This work is structured as follows. In section 2 we present ChPT in finite volume: we

give an overview of periodic boundary conditions and introduce the twisted ones. Section 3

focuses on finite-volume corrections at next-to-leading order. The corrections for masses,

decay constants, pseudoscalar coupling constants are recalculated and new results for pion

form factors are presented. We show that the corrections of the pion scalar form factor

satisfy the Feynman-Hellman theorem [18, 19]. In section 4 we derive asymptotic formulae

à la Lüscher for twisted boundary conditions. We sketch the steps necessary to generalize

the original derivation of Lüscher [11] and present asymptotic formulae for masses, decay

constants and pseudoscalar coupling constants. These are related via chiral Ward identities

as we will show below. We also derive asymptotic formulae for the pion scalar form factor

at zero momentum transfer relying on the Feynman-Hellmann theorem. In section 5 we

apply the asymptotic formulae in combination with ChPT. We use the chiral representation

at one loop to express the amplitudes entering the formulae and present results beyond

next-to-leading order. Section 6 contains the numerical analysis. Appendices give further

details on analytical aspects. Appendix A provides a list of useful results for the evaluation

of loop diagrams in finite volume. Appendix B is devoted to the (electromagnetic) gauge

symmetry in finite volume. Therein, we construct an effective theory for charged pions

which is invariant under gauge transformations and which reproduces results of section 2.

As the gauge symmetry is preserved, we show that the Ward-Takahashi identity [20, 21]

holds in finite volume if the momentum transfer is discrete. Finally appendix C collects

some long expressions related to results presented in section 5.

2 Chiral perturbation theory in finite volume

2.1 Chiral perturbation theory

QCD is the fundamental theory of the strong interaction [22, 23]. It describes the dynamics

of the strong interaction in terms of gluons and quarks. The Lagrangian can be written as

LQCD = q̄
(
i /D −M

)
q − 1

4
Gµν,aG

µν
a , (2.1)
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where Gµνa is the strength field tensor of gluon fields, q = q(x) represents the quark fields

arranged as a vector of flavor space and M is the matrix of the quark masses. If quark

masses are zero, LQCD exhibits a global chiral symmetry. It is well known that chiral

symmetry spontaneously breaks down and gives rise to Goldstone bosons which can be

identified with the lightest pseudoscalar mesons. For Nf = 3 quark flavors, the fields of

Goldstone bosons can be parametrized by a 3 × 3 unitary matrix,

U(x) = exp

(
i

Φ(x)

F0

)
with Φ(x) =


π0 + 1√

3
η

√
2π+

√
2K+

√
2π− −π0 + 1√

3
η
√

2K0

√
2K−

√
2K̄0 − 2√

3
η

 . (2.2)

The parameter F0 is the decay constant in the limit of zero masses.

The effective chiral Lagrangian can be ordered as a series in powers of momenta and

quark masses

Leff = L2 + L4 + . . . , (2.3)

where each quark mass counts as a momentum square, i.e. O(mf ) ∼ O(p2). At leading

order the effective Lagrangian consists of terms O(p2) and can be written as

L2 =
F 2

0

4
〈DµUD

µU † + χU † + Uχ†〉 . (2.4)

The angular brackets 〈 . 〉 denote the trace in flavor space and

DµU = ∂µU − i [vµ, U ]− i {aµ, U} , χ = 2B0(s+ i p), (2.5)

with B0 a parameter of the effective Lagrangian. We have introduced external fields vµ,

aµ, s, p as sources for the chiral Noether currents and quark scalar and pseudoscalar

bilinears. They also allow one to include electromagnetism, semileptonic weak interactions,

as well as an explicit breaking of chiral symmetry via quark masses. In particular, we work

in the isospin limit (where m̂ := mu = md) and include masses by setting s = M =

diag(m̂, m̂,ms).

At next-to-leading order (NLO) the effective Lagrangian consists of terms O(p4) and

can be compactly written as

L4 =
12∑
j=1

LjPj . (2.6)

The coupling constants Lj contain the so-called low-energy constants (LECs) and the

monomials Pj are contructed from U , vµ, aµ, s, p. Their explicit expressions are well

known and can be found, e.g. in [24].

2.2 Periodic boundary conditions

Numerical simulations of lattice QCD are by necessity performed in a volume of finite

extent. The volume is usually a spatial cubic box of the side length L on which boundary

– 3 –
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conditions are imposed. Mostly employed are periodic boundary conditions (PBC) which

require the periodicity of fields within the cubic box,

q(x+ Lêj) = q(x), j = 1, 2, 3. (2.7)

Here, êµj are unit Lorentz vectors pointing in the j-th spatial direction. In momentum space,

the periodicity of the fields corresponds to a discretization of the momenta. The spatial

components of momenta are discrete and read ~p = 2π~m/L, ~m ∈ Z3. As a consequence,

Lorentz invariance is broken. Still, the subgroup of spatial rotations of 90◦ (the so-called

cubic invariance) remains intact.

The momentum discretization also introduces a new scale in the theory: 1/L. To apply

ChPT one must consider momenta smaller than Λχ = 4πFπ — where Fπ is the pion decay

constant — and this provides the following quantitative condition [25]:

2π

L
� 4πFπ =⇒ L� 1

2Fπ
≈ 1 fm. (2.8)

In refs. [26–28] Gasser and Leutwyler showed how to apply ChPT in finite volume.

They proved that for large enough volume the effective chiral Lagrangian and the values of

LECs remain the same as in infinite volume. The most relevant change concerns the count-

ing scheme to be applied to the effective Lagrangian and the propagators. The counting

scheme has to take into account also 1/L together with momenta and quark masses, more-

over propagators are modified by the discrete momenta. For what concerns the counting,

there are two possible ones corresponding to different regimes:

MπL� 1 ε-regime,

MπL� 1 p-regime.
(2.9)

Since here we will work in the p-regime we do not discuss the ε-regime any further and

refer the reader to [27, 29–31] for more details about it.

In the p-regime, Mπ is larger than 1/L: a pion fits well inside the box and behaves

almost as if it were in infinite volume. Here, the counting scheme can be applied with

the additional rule 1/L ∼ O(p), see ref. [28]. The expressions for propagators are similar

to the infinite-volume ones, but integrals over spatial components must be replaced by

sums over discrete values. This makes propagators periodic and dependent on L. Physical

observables can be then calculated as in infinite volume: tree graphs produce exactly the

same contributions and just the loop diagrams generate a finite-volume dependence.

2.3 Twisted boundary conditions

A serious limitation of PBC is the momentum discretization which makes it difficult to ac-

cess very small, finite momenta without using huge volumes. Twisted boundary conditions

(TBC), see refs. [1–4], have been introduced to overcome this difficulty. They require that

fields are periodic up to a global symmetry transformation,

qT (x+ Lêj) = UjqT (x), j = 1, 2, 3. (2.10)

– 4 –
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Here, the subscript T indicates that fields satisfy TBC. The transformation Uj has to be a

symmetry of the action and as such depends on the form of the Lagrangian [4]. For QCD

with 3 light flavors one can consider

Uj = e−iLêjvϑ ∈ SU(3)V , (2.11)

where vµϑ = diag(ϑµu, ϑ
µ
d , ϑ

µ
s ) is a traceless matrix commuting withM. The Lorentz vectors,

ϑµf =

(
0
~ϑf

)
, f = u, d, s, (2.12)

are called twisting angles and their spatial components can be arbitrarily chosen. It is

convenient to redefine quark fields as periodic ones by means of

qT (x) = V(x)q(x), V(x) = e−ivϑx. (2.13)

The periodicity of q(x) follows from the condition (2.10). After this field redefinition the

twisting angles appear in the Lagrangian as a constant vector field,

LQCD = q̄T (x)
[
i /D −M

]
qT (x)− 1

4
Gµν,aG

µν
a

= q̄(x)
[
i
(
/D − i/vϑ

)
−M

]
q(x)− 1

4
Gµν,aG

µν
a .

(2.14)

The momentum of the flavor f is shifted by the corresponding twisting angle ϑµf , which is a

free parameter and can therefore be varied continuously. Note that one can either impose

the condition (2.10) and work with the original form of the Lagrangian or redefine quark

fields as periodic and introduce the twisting angles through the constant vector field vµϑ in

LQCD. The two approaches are equivalent.

Since they point in specific directions, twisting angles break various symmetries. In

particular cubic invariance in momentum space is broken. More generally, all symmetries

whose generators do not commute with vµϑ are broken. For three different twisting angles

these are: the vector symmetry SU(3)V and the isospin symmetry. Note that the third

isospin component I3, the strangeness S and the electric charge Qe are still conserved

quantities in this case. In addition, the symmetry Uj induces a new one: at each vertex the

sum of incoming and outgoing twisting angles is conserved and equal to zero, see ref. [4].

In the effective theory the condition (2.10) implies that the unitary matrix parametriz-

ing the fields of pseudoscalar mesons satisfies

UT (x+ Lêj) = UjUT (x)U†j , j = 1, 2, 3. (2.15)

Here, the repetition of j does not imply any sum and T specifies that fields satisfy TBC.

Through a field redefinition the unitary matrix can be made periodic,

U(x) = V†(x)UT (x)V(x), V(x) = e−ivϑx. (2.16)

The twisting angles enter the effective Lagrangian as a constant vector field vµϑ where each

derivative is replaced by ∂µ. 7→ ∂µ.− i
[
vµϑ , .

]
. At leading order the Lagrangian reads

L2 =
F 2

0

4
〈D̂µUD̂

µU † + χU † + Uχ†〉 , (2.17)

– 5 –
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with D̂µU := DµU − i[vµϑ , U ], and U(x) now satisfying periodic boundary conditions. The

commutator [vµϑ , U ] acts in different ways on the fields of pseudoscalar mesons. Pseudoscalar

mesons sitting in the diagonal of U commute with vµϑ and their momenta are unshifted.

Pseudoscalar mesons off the diagonal do not commute with vµϑ and their momenta are

shifted by the twisting angles,

ϑµ
π+ = ϑµu − ϑ

µ
d , ϑµ

π− = −ϑµ
π+ ,

ϑµ
K+ = ϑµu − ϑµs , ϑµ

K− = −ϑµ
K+ ,

ϑµ
K0 = ϑµd − ϑ

µ
s , ϑµ

K̄0 = −ϑµ
K0 .

(2.18)

Note that twisting angles reflect the flavor content of the particles. A pseudoscalar meson

with the flavor content qf q̄f ′ has the twisting angle ϑµqf q̄f ′ = (ϑqf − ϑqf ′ )
µ whereas its

antiparticle has a twisting angle of opposite sign.

As pointed out in ref. [4] twisting angles enter the expressions of external states and

modify internal propagators. As an example we consider charged pions (kaons have similar

expressions). The field redefinition (2.16) implies that the propagators read

∆π±,L(x) =
1

L3

∑
~k= 2π

L
~m

~m∈Z3

∫
R

dk0

(2π)

e−ikx

M2
π − (k + ϑπ±)2 − iε

. (2.19)

The propagators are still periodic but obey modified Klein-Gordon equations:1[
(∂ − iϑπ±)2 +M2

π

]
∆π±,L(x) = δ(4)(x). (2.20)

We observe that twisting angles shift the poles in the denominator of propagators. More-

over, the substitution k0 7→ −k0 and ~k 7→ −~k reverses the propagation direction and the

sign of twisting angles. Since antiparticles have twisting angles of opposite sign, we con-

clude that the propagation of a positive pion with ϑµ
π+ in the forward direction of space-time

is equivalent to a propagation of a negative pion with ϑµ
π− in the backward direction.

To close this section, we remark that TBC are a generalization of PBC. Setting all

twisting angles to zero, the condition (2.10) reduces to eq. (2.7), which means that by

taking this limit in a TBC calculation and comparing the results with those for PBC, one

gets a non-trivial — albeit partial — check.

3 Finite-volume corrections at NLO

3.1 Masses, decay constants and pseudoscalar coupling constants

In general, we define the corrections of an observable X as

δX =
∆X

X
, (3.1)

1Without the redefinition (2.16) propagators are expressed as in eq. (2.19) but twisting angles enter

the exponential function of the numerator. In that case, propagators are periodic up to a phase [e.g.

∆π±,L(x+ Lêj) = e−iLêjϑπ± ∆π±,L(x) for j = 1, 2, 3] and obey the usual Klein-Gordon equations.

– 6 –
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where ∆X := X(L) − X is the difference among the observable evaluated in finite and

in infinite volume. The corrections of masses and decay constants of pseudoscalar mesons

were first calculated in ChPT with TBC in ref. [4]. For what concerns the masses, before

giving explicit expressions for the finite-volume corrections, we need to define what we

mean by “mass” in the presence of TBC. Having introduced twisting angles and with them

a breaking of Lorentz symmetry, when we calculate the self-energy of a particle we will get

Lorentz non-invariant contributions proportional to the twisting angles. In general, the

self-energy of a meson P will have the form:

ΣP (L) = AP +BP (p+ ϑP )2 + 2(p+ ϑP )µ∆ϑµΣP . (3.2)

The equation which determines the mass is:

M2
P − (p+ ϑP )2 − ΣP (L) = 0 . (3.3)

Since the solutions of the equation do not lie on a constant p2 surface the mass would seem

to depend on the direction of the momentum pµ. A possible solution for this non-invariance

of the pole position can be obtained by completing the square and interpreting ∆ϑµΣP as a

renormalization of the twisting angle [7]:

M2
P −

[
AP − (1 +BP )∆ϑ̄2

ΣP

]
− (1 +BP )

(
p+ ϑP + ∆ϑ̄ΣP

)2
= 0 , (3.4)

where ∆ϑ̄µΣP := ∆ϑµΣP /(1 +BP ). The pole position is then given by:

(
p+ ϑP + ∆ϑ̄ΣP

)2
=
M2
P −AP

1 +BP
+ ∆ϑ̄2

ΣP
=: M2

P (L) , (3.5)

which is the mass definition we adopt, in agreement with refs. [4, 7]. In contrast, the

authors of ref. [10] adopt a mass definition which is momentum-dependent and treat the

terms proportional to ∆ϑµΣP as part of the finite-volume correction to the mass. We stress

that our choice of the mass definition is consistent with the idea to treat the twisting

angle as part of the momentum — which is the basic point of TBC. In general the mass is

defined as the energy of a particle at zero spatial momentum, which is what is measured

on the lattice. It appears therefore natural to take as definition of the mass the energy of a

particle at zero total momentum (kinetic + twisting angle). The interpretation of ∆ϑµΣP is

of course somewhat arbitrary. As we will see below, the fact that at NLO exactly the same

contribution also appears as an additive correction to FP (p+ ϑP )µ in the matrix element

of the axial current strongly suggests its interpretation as a renormalization of the twist.

The definition of mass given in eq. (3.5) then naturally follows.

Indeed a similar situation occurs for the decay constants: the matrix element of the

axial current is not just proportional to momentum, but there is an extra shift, defined

as follows:

〈0|AµP (0) |P (p+ ϑP )〉L = iFP (L)
(
p+ ϑP + ∆ϑ̄AP

)µ
. (3.6)

Here too we consider ∆ϑ̄µAP as a twisting-angle renormalization and not as part of the

finite-volume correction to the decay constant (again in agreement with refs. [4, 7] and in

contrast to ref. [10]).

– 7 –
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In our notation, the results at NLO read

δM2
π0 =

ξπ
2

[2 g1(λπ, ϑπ+)− g1(λπ)]− ξη
6

g1(λη),

δM2
π± =

ξπ
2

g1(λπ)− ξη
6

g1(λη),

δM2
K±(K0) =

ξη
3

g1(λη),

δM2
η = −ξπ

xπη
6

[g1(λπ) + 2 g1(λπ, ϑπ+)] +
ξK
2

(
1 +

xπη
3

)
[g1(λK , ϑK+) + g1(λK , ϑK0)]

− 2ξη
3

(
1− xπη

4

)
g1(λη), (3.7)

and

δFπ0 = −ξπ g1(λπ, ϑπ+)− ξK
4

[g1(λK , ϑK+) + g1(λK , ϑK0)] ,

δFπ± = −ξπ
2

[g1(λπ) + g1(λπ, ϑπ+)]− ξK
4

[g1(λK , ϑK+) + g1(λK , ϑK0)] ,

δFK± = −ξπ
8

[g1(λπ) + 2 g1(λπ, ϑπ+)]

− ξK
4

[2 g1(λK , ϑK+) + g1(λK , ϑK0)]− 3

8
ξη g1(λη),

δFK0 = −ξπ
8

[g1(λπ) + 2 g1(λπ, ϑπ+)]

− ξK
4

[g1(λK , ϑK+) + 2 g1(λK , ϑK0)]− 3

8
ξη g1(λη),

δFη = −3

4
ξK [g1(λK , ϑK+) + g1(λK , ϑK0)] .

(3.8)

Here, ξP =M2
P /(4πFπ)2, xPQ =M2

P /M
2
Q and λP =MPL for P,Q= π,K, η. The function

g1(λP , ϑ) is defined in eq. (A.4) for a generic twisting angle ϑµ=
( 0
~ϑ

)
. Setting ϑµ= 0 this

function reduces to g1(λP ) :=g1(λP , 0) which is the tadpole function for PBC, see e.g. [26].

The corrections decay exponentially in λP and depend on twisting angles through

phase factors. Note that twisting angles can change the overall sign. This is a consequence

of the breaking of the vector symmetry SU(3)V . For instance, mass corrections can turn

negative whereas corrections of decay constants can turn posistive depending on ϑµ
π+ , ϑµ

K+ ,

ϑµ
K0 . With an appropriate choice (or averaging over randomly chosen twisting angles) one

can even suppress the corrections as discussed e.g. for nucleons in ref. [9].

In addition, the evaluation of the corrections involves the terms which remormalize the

twisting angles. Such terms are not present for PBC and are generated by the breaking of

the cubic invariance, see ref. [7]. In our notation, they read

∆ϑµΣπ±
= ±

{
ξπ fµ1 (λπ, ϑπ+) +

ξK
2

[fµ1 (λK , ϑK+)− fµ1 (λK , ϑK0)]

}
,

∆ϑµΣK±
= ±

{
ξK
2

[2 fµ1 (λK , ϑK+) + fµ1 (λK , ϑK0)] +
ξπ
2

fµ1 (λπ, ϑπ+)

}
,

∆ϑµΣK0

∆ϑµΣK̄0

 = ±
{
ξK
2

[fµ1 (λK , ϑK+) + 2 fµ1 (λK , ϑK0)]− ξπ
2

fµ1 (λπ, ϑπ+)

}
.

(3.9)
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The function fµ1 (λP , ϑ) is defined in eq. (A.4). Note that extra terms emerge only in

the evaluation of corrections of charged pions and kaons. They are non-vanishing in the

directions where twisting angles are non-vanishing and disappear for ϑµ
π+ = ϑµ

K+ = ϑµ
K0 =

0. This intimately relates ∆ϑµΣπ±
, ∆ϑµΣK±

, ∆ϑµΣK0
to twisting angles.

Expressions for ∆ϑµAπ±
, ∆ϑµAK±

, ∆ϑµAK0
would also be needed to complete the formulae

at NLO, but at this order they exactly coincide with the extra terms of eq. (3.9).

The corrections of the pseudoscalar coupling constants were first calculated in ref. [10].

At NLO the results read

δGπ0 = −ξπ
2

g1(λπ)− ξK
4

[g1(λK , ϑK+) + g1(λK , ϑK0)]− ξη
6

g1(λη),

δGπ± = −ξπ
2

g1(λπ, ϑπ+)− ξK
4

[g1(λK , ϑK+) + g1(λK , ϑK0)]− ξη
6

g1(λη),

δGK± = −ξπ
8

[g1(λπ) + 2 g1(λπ, ϑπ+)]

− ξK
4

[2 g1(λK , ϑK+) + g1(λK , ϑK0)]− ξη
24

g1(λη),

δGK0 = −ξπ
8

[g1(λπ) + 2 g1(λπ, ϑπ+)]

− ξK
4

[g1(λK , ϑK+) + 2 g1(λK , ϑK0)]− ξη
24

g1(λη),

δGη = −ξπ
6

[g1(λπ) + 2 g1(λπ, ϑπ+)]

− ξK
12

[g1(λK , ϑK+) + g1(λK , ϑK0)]− ξη
2

g1(λη).

(3.10)

Note that δGπ0 (resp. δGη) correspond to ∆VGπ03/Gπ (resp. ∆VGη8/Gη) of ref. [10]. At

this order, no extra terms like eq. (3.9) appear. We show that these results can be obtained

with the mass definition [4, 7] relying on chiral Ward identities.

We just illustrate the case of charged pions. The relevant chiral Ward identities read

m̂ 〈0|P1∓i2(0)
∣∣π±(p+ ϑπ±)

〉
L

= (∂ − iϑπ±)µ 〈0|A
µ
1∓i2(0)

∣∣π±(p+ ϑπ±)
〉
L
. (3.11)

Here, the subscript L indicates that the matrix elements are evaluated in finite volume. The

operators are linear combinations of the pseudoscalar densities resp. axialvector currents:

P1±i2 = (P1 ± iP2)/
√

2 resp. Aµ1±i2 = (A1 ± iA2)µ/
√

2. The matrix elements on the left-

(resp. right-) hand side of the chiral Ward identities are proportional to the pseudoscalar

coupling (resp. decay) constants. Working out both sides and retaining terms up to

O(p6/F 3
π ) we have

m̂Gπ±(L) = (p+ ϑπ±)2 Fπ±(L) + 2Fπ(p+ ϑπ±)µ∆ϑµAπ±
. (3.12)

The mass definition [4, 7] implies that charged pions lie on the following mass shells,(
p+ ϑπ± + ∆ϑ̄Σπ±

)2
= M2

π±(L). (3.13)

Hence, the momentum squares on the right-hand side of eq. (3.12) value

(p+ ϑπ±)2 = M2
π±(L)− 2 (p+ ϑπ±)µ∆ϑµΣπ±

+O(p6/F 4
π ), (3.14)
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and — when multiplied with Fπ±(L) — produce contributions that exactly cancel 2Fπ(p+

ϑπ±)µ∆ϑµAπ±
as at NLO, ∆ϑµAπ±

coincide with ∆ϑµΣπ±
. Dividing by m̂Gπ = M2

πFπ we get

δGπ± = δM2
π± + δFπ± +O(ξ2

π). (3.15)

Thus, the corrections of pseudoscalar coupling constants are given by the sum of the correc-

tions of masses and decay constants.2 Inserting eqs. (3.7), (3.8) one finds the results (3.10).

3.2 Pion form factors

In infinite volume the pion form factors are defined by the matrix elements,

〈πb(p′)|S0 |πa(p)〉 = δab FS(q2),

〈πb(p′)|V µ
3 |πa(p)〉 = iεab3(p′ + p)µ FV (q2).

(3.16)

They depend on the square of the momentum transfer, q2 = (p′−p)2 and their expressions

are known in ChPT at NLO [32] and at NNLO [33]. At vanishing momentum transfer,

they satisfy the relations

FS(0) =
∂M2

π

∂m̂
and FV (0) = 1, (3.17)

which follow from the Feynman-Hellmann theorem [18, 19] and the Ward identity [34].

In finite volume the matrix elements of pion form factors receive additional corrections

that can be defined as

δΓabS =
〈πb|S0 |πa〉L − 〈πb|S0 |πa〉

〈πb|S0 |πa〉q2=0

,

i(∆ΓabV )µ = 〈πb|V µ
3 |πa〉L − 〈πb|V

µ
3 |πa〉 .

(3.18)

Here, L (resp. q2 = 0) indicates that matrix elements are evaluated in finite volume (resp.

in infinite volume at vanishing momentum transfer). These corrections still depend on

the momentum transfer. The twisting angles shift the momenta of charged pions but not

necessarily induces a continuous momentum transfer. If the incoming and outgoing pions

are the same, the twisting angles cancel out from the spatial components of the momentum

transfer and

~q =
(
′~p + ~ϑπ±

)
−
(
~p+ ~ϑπ±

)
=

2π

L
~l with ~l ∈ Z3. (3.19)

We use this fact to work out the matrix elements in finite volume and evaluate the correc-

tions. However, keep in mind that — depending on the kinematics chosen — the zeroth

component q0 may contain twisting angles of external pions and hence, vary continuously.

To study the pion form factors in finite volume we consider only Nf = 2 light flavors.

The corrections of masses, decay constants and pseudoscalar coupling constants can be

obtained from eqs. (3.7), (3.8), (3.10) discarding the contributions of the virtual eta meson

and kaons. Note that in this case, the extra terms read

∆ϑµΣπ±
= ±ξπ fµ1 (λπ, ϑπ+). (3.20)

2For the eta meson, there is an additional term that must be considered as the relevant chiral Ward

identity involves a matrix element with the pseudoscalar density P0.
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(a) Tadpole diagram. (b) Fish diagram.

Figure 1. Contributions to matrix elements of pion form factors at NLO. Single solid lines stand

for pions while double solid lines represent the scalar densities (or the vector currents). The spline

on the loop indicates that the propagator is in finite volume.

We first discuss the corrections of the matrix elements of the scalar form factor. At

NLO the corrections can be evaluated from the loop diagrams of figure 1. The tadpole dia-

gram generates corrections similar to those encountered before. The fish diagram generates

additional corrections which can be calculated with the Feynman parametrization (A.5).

Altogether, we find

δΓπ
0

S =
ξπ
2

{
2 g1(λπ, ϑπ+)− g1(λπ) +

∫ 1

0
dz
[
M2
π g2(λz, q) + 2

(
q2 −M2

π

)
g2(λz, q, ϑπ+)

]}
,

δΓπ
±
S =

ξπ
2

{
g1(λπ) +

∫ 1

0
dz
[(
q2 −M2

π

)
g2(λz, q) + q2 g2(λz, q, ϑπ+)

]}
+ Pµ∆Θµ

π± , (3.21)

with λz = λπ
√

1 + z(z − 1)q2/M2
π . The functions g2(λz, q, ϑ), g2(λz, q) := g2(λz, q, 0)

originate from the fish diagram and can be evaluated by means of the Poisson resummation

formula (A.2). Note that g2(λz, q, ϑ) is even in the second and third argument. This is a

consequence of the fact that the spatial components of the momentum transfer are discrete.

The last term in eq. (3.21) consists of the product among

Pµ =
(
p′ + ϑπ±

)µ
+ (p+ ϑπ±)µ ,

∆Θµ
π± = ±ξπ

∫ 1

0
dz [fµ2 (λz, q, ϑπ+) + qµ (1/2− z) g2(λz, q, ϑπ+)] .

(3.22)

The Lorentz vectors ∆Θµ
π± have non-vanishing components in the directions where both

ϑµ
π± and qµ are non-vanishing. They disappear for ϑµ

π± = 0. The function fµ2 (λz, q, ϑ) is

defined in eq. (A.7) and originates from the fish diagram. Note that as ~q is discrete, the

function fµ2 (λz, q, ϑ) is even in the second argument and odd in the third one.

The corrections of the matrix elements of the scalar form factor decay exponentially

in λπ = MπL and disappear for L → ∞. As a check we set ϑµ
π± = 0 and find the result

for PBC [17, 35]. In that case, the corrections are negative. For small twisting angles,

the corrections stay also negative as the dependence on twisting angles is roughly a phase

factor. They may turn positive for large twisting angles. Note that Pµ∆Θµ
π± depend

linearly on ϑµ
π± . This dependence increases δΓπ

±
S at large twisting angles. Thus, in order

to keep the corrections under control, it is important to employ small twisting angles, e.g.

|~ϑπ± | < π/L.

– 11 –
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At vanishing momentum transfer, the corrections reduce to

δΓπ
0

S

∣∣
q2=0

=
ξπ
2

{
2 g1(λπ, ϑπ+)− g1(λπ) +M2

π [g2(λπ)− 2 g2(λπ, ϑπ+)]
}
,

δΓπ
±
S

∣∣
q2=0

=
ξπ
2

[
g1(λπ)−M2

π g2(λπ)
]
± 2ξπ (p+ ϑπ±)µ fµ2 (λπ, ϑπ+).

(3.23)

The functions g2(λπ, ϑπ+) := g2(λπ, 0, ϑπ+), g2(λπ) := g2(λπ, 0, 0) and fµ2 (λπ, ϑπ+) :=

fµ2 (λπ, 0, ϑπ+) are defined in eq. (A.4). At vanishing momentum transfer the Feynman-

Hellman theorem [18, 19] relates the scalar form factor with the derivative of the pion

mass, see eq. (3.17). This relation can be extended to finite volume. However, one must

make some specification. As pointed out in ref. [32] the Feynman-Hellmann theorem states

that the expectation value 〈πb|S0 |πa〉q2=0 is related to the derivative of the energy level

describing the pion eigenstate. In finite volume the energy levels are additionally shifted

by twisting angles and by the corrections of self-energies:

E2
π±(L) = M2

π +
(
~p+ ~ϑπ±

)2
−∆Σπ± . (3.24)

Here, ∆Σπ± := Σπ±(L)−Σπ± just contain corrections in finite volume. Taking the deriva-

tive ∂m̂ = (∂M2
π/∂m̂) ∂M2

π
, and retaining only contributions in finite volume, we obtain

δΓπ
±
S

∣∣
q2=0

=
∂

M2
π

[−∆Σπ± ] . (3.25)

This relation extends the statement of the Feynman-Hellmann theorem in finite volume:

at q2 = 0 the corrections of the matrix elements of the scalar form factor are related with

the derivative of the self-energies with the respect to the mass. One can show that deriving

the expressions of the self-energies at NLO one obtains the expressions (3.23).

The corrections of the matrix elements of the vector form factor can be similarly

evaluated from the loop diagrams of figure 1. In this case, some attention must be paid as

the evaluation involves tensors in finite volume. At NLO we find

(∆Γπ
±
V )µ = Qeξπ

∫ 1

0
dz
{
Pµ
[

g1(λz, q, ϑπ+)− g1(λπ, ϑπ+)
]

+ 2Pν hµν2 (λz, q, ϑπ+)
}

−Qe
{
ξπ

∫ 1

0
dz qµ (1− 2z) [Pν fν2(λz, q, ϑπ+)]− 2∆ϑµΓπ±

+ q2∆Θµ
π±

}
.

(3.26)

Here, Qe = ±1 represents the electric charge of π± in elementary units and the functions

g1(λz, q, ϑ), hµν2 (λz, q, ϑ) are defined in eq. (A.7). At this order, ∆ϑµΓπ±
exactly coincide

with the extra terms of eq. (3.20).

The corrections of the matrix elements of the vector form factor decay exponentially

in λπ = MπL and disappear for L→∞. As a check we set ϑµ
π± = 0 and find the result for

PBC obtained by Häfeli [17]. This result differs from the expression published in ref. [36]

by a term proportional to qµ. We stress that such term contributes for PBC and only

disappears when the momentum transfer is zero, as well. In this sense, we disagree with

ref. [7] where it is claimed that the contribution Grot
FV disappears for vanishing twisting

angles. Actually, such contribution disappears when both the momentum transfer and the

– 12 –
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twisting angles are zero. In ref. [10] the corrections were calculated in SU(3) ChPT with

TBC. Their results coincide with eq. (3.26) if contributions of the virtual eta meson and

kaons are discarded. In general, the corrections roughly depend on twisting angles through

a phase factor. For small twisting angles the corrections stay negative (resp. positive) for

positive (resp. negative) pions. Note that in (3.26) there are terms linear in ϑµ
π± . This

increases the absolute value of (∆Γπ
±
V )µ at large twisting angles.

At vanishing momentum transfer the corrections reduce to

(∆Γπ
±
V )µ

q2=0
= Qe

{
4 ξπ(p+ ϑπ±)ν hµν2 (λπ, ϑπ+) + 2 ∆ϑµΓπ±

}
, (3.27)

and disappear only for L → ∞. Here, hµν2 (λπ, ϑπ+) := hµν2 (λπ, 0, ϑπ+), see eq. (A.4). Set-

ting ϑµ
π± = 0 the corrections (3.27) reduce to the result obtained for PBC [37]. In general,

the fact that (∆Γπ
±
V )µ

q2=0
differ from zero indicates that the (electromagnetic) gauge sym-

metry or Lorentz invariance are broken. In infinite volume, the vector form factor equals

unity at vanishing momentum transfer, see eq. (3.17). This result follows from the Ward

identity [34] which relies on both the gauge symmetry as well as Lorentz invariance and can

be derived from the Ward-Takahashi identity [20, 21]. The derivation implies a continuous

limit on the momentum transfer which in finite volume can not be taken due to the dis-

cretization of spatial components. This invalidates the Ward identity in finite volume. It

turns out that the corrections (3.27) are consequences of the breaking of Lorentz invariance.

In ref. [37] these considerations were presented for PBC. The authors demonstrated that

at vanishing momentum transfer the corrections respect the gauge symmetry and that the

Ward-Takahashi identity holds for PBC. In appendix B we generalize their derivations for

TBC. In particular, we construct an effective theory invariant under gauge transformations

which reproduces eq. (3.27) and we show that the Ward-Takahashi identity holds for TBC

as long as the spatial components of the transfer momentum are discrete.

4 Asymptotic formulae for TBC

Asymptotic formulae represent another method to estimate finite-volume corrections. They

relate the corrections of a given physical quantity to an integral of a specific amplitude,

evaluated in infinite volume. The method was introduced by Lüscher [38] and it has been

widely applied in combination with ChPT as it allows one to get a chiral order almost for

free at the price of neglecting exponentially suppressed contributions. Currently, there are

asymptotic formulae for pseudoscalar mesons [12–14, 39, 40], nucleons [15, 41–45] and heavy

mesons [15]. These formulae are valid in the p-regime and for PBC. Here, we generalize the

method to TBC and derive asymptotic formulae for small twisting angles estimating the

corrections for masses, decay constants, pseudoscalar coupling constants and scalar form

factors of pseudoscalar mesons.

4.1 Masses, decay constants and pseudoscalar coupling constants

4.1.1 Generalization of Lüscher’s derivation

The derivation of the asymptotic formulae for TBC can be led back to the original derivation

of Lüscher [11]. In the following we outline the necessary steps to generalize the Lüscher’s

derivation to TBC and refer the reader to his paper for details.
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In the first part of the proof, Lüscher showed by means of abstract graph theory

that, for a generic loop diagram contributing to the self-energy, the dominant corrections

are obtained if one takes all propagators in infinite volume but the ones of the lightest

particles (in this case, pions) are taken in finite volume.3 For TBC the propagators depend

also on twisting angles. In that case, the twisting angles flowing along internal lines of

a generic loop diagram add up to match the total external twisting angles entering the

diagram. The situation can be illustrated by the graph in figure 2. This is a consequence

of the conservation law pointed out in ref. [4]: at each vertex the sum of twisting angles is

conserved and equal zero. In position space the contribution J(D , L) of the diagram D

to the self-energy takes then the general form,

J(D , L) =
∑
[n]

J(D , n, L),

J(D , n, L) =
∏
v∈V ′

∫
R4

d4x(v)V
{

e−i(p+ϑP )[x(b)−x(a)]
∏
`∈L

Gπ
(
∆x` + Ln(`)

)
e−iLn(`)ϑ`

}
.

(4.1)

Here, xµ(v) is the space-time coordinates of the vertex v ∈ V ′ := V \ { b } and ∆xµ` is

the difference among the final and initial vertex of the line `. The quantity V is a product

of differential operators and generates the vertex functions of the diagram D . The pion

propagators Gπ
(
∆x` + Ln(`)

)
are in infinite volume and can be expressed, e.g., with the

heat kernel representation, see ref. [11]. For every line ` we have assigned an integer Lorentz

vector nµ(`) =
( 0
~n(`)

)
. Note that the summation over all possible sets of integers [n] for

all internal propagators is a well-defined operation also in the case of TBC. The term

[n] = [0] corresponds to the contribution in infinite volume with external momenta shifted

by ϑµP . Discarding this term one finds that |J(D , L)| is exponentially bound so that the

self-energy decays as O(e−
√

3λπ/2) at asymptotically large L. The dominant corrections of

the self-energy is then given by the contribution where for only one propagator |~n(`∗)| = 1

and all others |~n(` 6= `∗)| = 0. This is represented by the skeleton diagram of figure 3.

The second part of the derivation consists in showing that by modifying the integration

countour in the complex plane, the dominant corrections can be written as an integral of the

forward Pπ-scattering amplitude evaluated in Minkowski space and analytically continued

to complex values of its arguments. For TBC the pion propagators as well as the vertex

functions depend on twisting angles. Through an integration shift one can express the

dependence on twisting angles of virtual particles as a phase factor multiplying the vertex

functions. The dependence on external twisting angles may be worked out expanding the

vertex functions around small twisting angles. This is hardly a limitation since the main

goal of the introduction of TBC is precisely to be able to access small momenta, which

requires the use of small twisting angles. The first term of the expansion contributes

to the dominant corrections of masses whereas a part of the second term provides the

dominant contribution to the extra terms of the self-energy. The results are asymptotic

formulae which, in the case of the neutral pion and the eta meson are valid for arbitrary

twisting angles, and in the case of charged pions and kaons are valid for small external

twisting angles only. Note that similar argumentations can be extended to the derivation

of asymptotic formulae for decay constants and pseudoscalar coupling constants.

3This concerns only propagators which are contained in at least one loop, cfr. ref. [11].
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a b

ϑP ϑP

ϑℓ1

ϑℓN

ϑℓN−1

ϑℓ2

ϑℓN−2

ϑℓ3

ϑℓ4 ϑℓ5

Figure 2. Auxiliary graph for the sum of internal twisting angles. The endpoints of each line

correspond to vertices of the non-empty finite set V of the abstract graph G . Along the internal

lines `1, . . . , `N flow twisting angles ϑµ`1 , . . . , ϑ
µ
`N

. Along external lines flows the twisting angle ϑµP
of the particle P under consideration.

IP

Figure 3. Skeleton diagram contributing to asymptotic formulae for masses. Solid lines stand for

a generic pseudoscalar meson P and dashed lines for virtual pions. The spline indicates that the

pion propagator is in finite volume and accounts for integer vectors ~n ∈ Z3 with |~n| = 1. The blob

corresponds to the vertex functions defined by the one-particle irreducible part of the amputated

four-point function, see ref. [11].

4.1.2 Analytical results

From the generalization of the Lüscher’s derivation we obtain the following asymptotic

formulae for the masses of pseudoscalar mesons,

δMπ0 =
−1

2(4π)2λπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2Fπ0(iy, ϑπ+) +O(e−λ̄), (4.2a)

δMπ± =
−1

2(4π)2λπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

(
1 + y

Dπ±

Mπ

∂

∂y

)
Fπ±(iy, ϑπ+) +O(e−λ̄),

δMK±(K0) =
−1

2(4π)2λK

Mπ

MK

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

×
(

1 + y
DK±(K0)

MK

∂

∂y

)
FK±(K0)(iy, ϑπ+) +O(e−λ̄),

δMη =
−1

2(4π)2λη

Mπ

Mη

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2Fη(iy, ϑπ+) +O(e−λ̄). (4.2b)
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Here, we display the resummed version of the formulae for which λ̄ = M̄L with M̄ =

(
√

3 + 1)Mπ/
√

2, see refs. [14, 25]. Each symbol on the right-hand side refers to a quantity

in infinite volume. The amplitudes are all defined in similar way. For instance,

FK±(ν̃, ϑπ+) = TK±π0(0,−4MKν)

+ [TK±π+(0,−4MKν) + TK±π−(0,−4MKν)]eiL~n
~ϑπ+ ,

(4.3)

where ν = (s − u)/(4MK), ν̃ = ν/Mπ = iy and s, t, u are Mandelstam variables in

Minkowski space. The functions TK±π0(t, u−s), TK±π+(t, u−s), TK±π−(t, u−s) represent

the isospin components of the Kπ-scattering in the t-channel with zero isospin [14]:

T I=0
Kπ (t, u− s) = TK±π0(t, u− s) + TK±π+(t, u− s) + TK±π−(t, u− s). (4.4)

In general, the asymptotic formulae depend on twisting angles through the phase factor

exp(iL~n~ϑπ+) in the amplitudes. The formulae for δMπ± , δMK± , δMK0 additionally depend

on external twisting angles through

Dπ± =

√
M2
π + |~ϑπ± |2 −Mπ and DK±(K0) =

√
M2
K + |~ϑK±(K0)|2 −MK . (4.5)

We stress that the latter formulae are only valid for small external twisting angles. At

tree level the chiral representation of Fπ±(ν̃, ϑπ+) = −M2
π/F

2
π , FK±(K0)(ν̃, ϑπ+) = 0 does

not depend on twisting angles and if inserted in the asymptotic formulae provides the

results (3.7) obtained with ChPT at NLO. The formulae for δMπ0 , δMη are valid for

arbitrary twisting angles. Inserting the chiral representation at tree level of Fπ0(ν̃, ϑπ+) =

M2
π

(
1−2 eiL~n

~ϑπ+
)
/F 2

π and Fη(ν̃, ϑπ+) = M2
π

(
1 + 2eiL~n

~ϑπ+
)
/
(
3F 2

π

)
, one recovers the results

obtained with ChPT at NLO. While the asymptotic formulae are in principle valid up to

terms O(e−λ̄), at this chiral order they give the full result. Note that setting all twisting

angles to zero, the asymptotic formulae reduce to the formulae valid for PBC [14].

Along with the formulae for mass corrections, we also derive asymptotic formulae for

the extra terms breaking the Lorentz invariance of the self-energies. These formulae read

∆~ϑΣπ±
=
−Mπ

2(4π)2

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

y Gπ±(iy, ϑπ+) +O(e−λ̄),

∆~ϑΣK±(K0)
=
−1

2(4π)2

M2
π

MK

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

y GK±(K0)(iy, ϑπ+) +O(e−λ̄).

(4.6)

In that case, the amplitudes are given by differences of isospin components. For instance,

GK±(ν̃, ϑπ+) = [TK±π+(0,−4MKν)− TK±π−(0,−4MKν)] eiL~n
~ϑπ+ , (4.7)

and similarly for other pseudoscalar mesons. These asymptotic formulae are valid for

small external twisting angles and provide the results (3.9) obtained with ChPT at NLO

if one inserts the tree-level chiral representation of the amplitudes, namely Gπ±(ν̃, ϑπ+) =
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∓(4M2
π ν̃ eiL~n

~ϑπ+ )/F 2
π and GK±(K0)(ν̃, ϑπ+) = ∓( )+ (2MKMπ ν̃ eiL~n

~ϑπ+ )/F 2
π . Note that for

ϑµ
π+ = 0 the sums in eq. (4.6) are odd in ~n and hence, vanish — as they should for PBC.

The asymptotic formulae for decay constants are similar to those for masses,

δFπ0 =
1

(4π)2λπ

Mπ

Fπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2Nπ0(iy, ϑπ+) +O(e−λ̄),

δFπ± =
1

(4π)2λπ

Mπ

Fπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

(
1 + y

Dπ±

Mπ

∂

∂y

)
Nπ±(iy, ϑπ+) +O(e−λ̄),

δFK±(K0) =
1

(4π)2λK

Mπ

FK

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

(4.8)

×
(

1 + y
DK±(K0)

MK

∂

∂y

)
NK±(K0)(iy, ϑπ+) +O(e−λ̄),

δFη =
1

(4π)2λη

Mπ

Fη

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2Nη(iy, ϑπ+) +O(e−λ̄),

where Dπ± , DK±(K0) are given in eq. (4.5). The amplitudes are defined from the matrix

elements of the axialvector decay after a pole subtraction described in refs. [12, 14]. For

instance, the amplitudes of charged kaons read

NK±(ν̃, ϑπ+) = −i
{
ĀK±π0(0,−4MKν)

+
[
ĀK±π+(0,−4MKν) + ĀK±π−(0,−4MKν)

]
eiL~n

~ϑπ+

}
,

(4.9)

where ν = (u − t)/(4MK) and ν̃ = ν/Mπ = iy. Here, ĀK±π0(s, t − u), ĀK±π+(s, t − u),

ĀK±π−(s, t − u) are the isospin components of the matrix elements describing the kaon

decay into a two-pion state with zero isospin [14]:

ĀI=0
K (s, t− u) = ĀK±π0(s, t− u) + ĀK±π+(s, t− u) + ĀK±π−(s, t− u). (4.10)

Inserting the chiral representation at tree level of the amplitudes, the asymptotic formulae

provide the results (3.8) obtained with ChPT at NLO and if all twisting angles are set to

zero, they reduce to the formulae valid for PBC [14].

We also derive asymptotic formulae for the extra terms arising in the matrix elements

of the axial vector current. These read

∆~ϑAπ± =
−1

2(4π)2

M2
π

Fπ

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

yHπ±(iy, ϑπ+) +O(e−λ̄),

∆~ϑAK±(K0)
=
−1

2(4π)2

M2
π

FK

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

yHK±(K0)(iy, ϑπ+) +O(e−λ̄).

(4.11)
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The amplitudes are given by differences of isospin components, e.g.

HK±(ν̃, ϑπ+) = −i
[
ĀK±π+(0,−4MKν)− ĀK±π−(0,−4MKν)

]
eiL~n

~ϑπ+ . (4.12)

For ϑµ
π+ = 0 the sums in eq. (4.11) are odd in ~n and hence vanish, as expected for PBC.

The asymptotic formulae for the pseudoscalar coupling constants are

δGπ0 =
1

(4π)2λπ

M2
π

Gπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2Cπ0(iy, ϑπ+) +O(e−λ̄),

δGπ± =
1

(4π)2λπ

M2
π

Gπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

(
1 + y

Dπ±

Mπ

∂

∂y

)
Cπ±(iy, ϑπ+) +O(e−λ̄),

δGK±(K0) =
1

(4π)2λK

MπMK

GK

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

(4.13)

×
(

1 + y
DK±(K0)

MK

∂

∂y

)
CK±(K0)(iy, ϑπ+) +O(e−λ̄),

δGη =
1

(4π)2λη

MπMη

Gη

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2Cη(iy, ϑπ+) +O(e−λ̄).

The amplitudes are all defined in similar way for the various pseudoscalar mesons. For

charged kaons, they are

CK±(ν̃, ϑπ+) = C̄K±π0(0,−4MKν)

+ [C̄K±π+(0,−4MKν) + C̄K±π−(0,−4MKν)] eiL~n
~ϑπ+ ,

(4.14)

where the isospin components C̄K±π0(s, t − u), C̄K±π+(s, t − u), can be determined from

the matrix elements,

CK±π0 =
〈
π0(p1)π0(p2)

∣∣P4∓i5(0)
∣∣K±(p3)

〉
,

CK±π+ =
〈
π+(p1)π−(p2)

∣∣P4∓i5(0)
∣∣K±(p3)

〉
,

(4.15)

after the pole subtraction,

C̄K±π0(s, t− u) = CK±π0 −GK
TK±π0(s, t− u)

M2
K − Q̃2

,

C̄K±π+(s, t− u) = CK±π+ −GK
TK±π+(s, t− u)

M2
K − Q̃2

.

(4.16)

Here, Q̃µ = (p3−p1−p2)µ and TK±π0(s, t−u), TK±π+(s, t−u) are the isospin components

of the Kπ-scattering in the s-channel, see eq. (4.4). Note that the isospin component

C̄K±π−(s, t− u) can be determined in a similar way from CK±π+ by exchanging pµ1 ↔ pµ2 .
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Furthermore, we derive asymptotic formulae for extra terms of the matrix elements

Gπ± = 〈0|P1∓i2(0)
∣∣π±(p+ ϑπ±)

〉
L
,

GK± = 〈0|P4∓i5(0)
∣∣K±(p+ ϑK±)

〉
L
,

GK0 = 〈0|P6−i7(0)
∣∣K0(p+ ϑK0)

〉
L
.

(4.17)

These formulae are valid for small external twisting angles and read

∆~ϑGπ±
=
−1

2(4π)2

Mπ

Gπ

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

yKπ±(iy, ϑπ+) +O(e−λ̄),

(4.18)

∆~ϑGK±(K0)
=
−1

2(4π)2

M2
π

GKMK

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

yKK±(K0)(iy, ϑπ+) +O(e−λ̄).

The amplitudes are given by the difference of the isospin components, e.g.

KK±(ν̃, ϑπ+) =
[
C̄K±π+(0,−4MKν)− C̄K±π−(0,−4MKν)

]
eiL~n

~ϑπ+ . (4.19)

Setting ϑµ
π+ = 0 the sums in eq. (4.18) vanish, as expected for PBC.

4.1.3 Chiral Ward identities

In ref. [12] it was pointed out that the asymptotic formulae for masses, decay constants

and pseudoscalar coupling constants are related by means of chiral Ward identities. We

are now going to show that the relation can be generalized to TBC.

For convenience, we only illustrate the case of charged pions. We start from the relevant

chiral Ward identities which in momentum space read

− i
(
Q̃+ ϑπ±

)
µ

(
Aπ±πc(ϑπ±)

)µ
= m̂Cπ±πc(ϑπ±), (4.20)

where (
Aπ±πc(ϑπ±)

)µ
:= 〈πc(p1)πc(p2)|Aµ1∓i2(0)

∣∣π±(p3 + ϑπ±)
〉
,

Cπ±πc(ϑπ±) := 〈πc(p1)πc(p2)|P1∓i2(0)
∣∣π±(p3 + ϑπ±)

〉
.

(4.21)

The matrix elements (4.21) are in infinite volume though momenta are shifted by a twisting

angle. Note that 〈πc(p1)πc(p2)| is a two-pion state with zero isospin. We can leave out the

twisting angles of that state as they will appear as phase factors after a shift of the loop

momentum, see eq. (4.27). This is why the twisting angle just appears in the initial states.

According to ref. [46] the matrix elements
(
Aπ±πc(ϑπ±)

)µ
have a pole that does not

enter the amplitudes in the asymptotic formulae. We subtract that pole expanding the

matrix elements around (Q̃+ ϑπ±)2 = M2
π ,(

Aπ±πc(ϑπ±)
)µ

=
(
Āπ±πc(ϑπ±)

)µ
+ iFπ(Q̃+ ϑπ±)µ

Tπ±πc
(
s, t(ϑπ±)− u(ϑπ±)

)
M2
π − (Q̃+ ϑπ±)2

. (4.22)

Here, Tπ±πc
(
s, t(ϑπ±)−u(ϑπ±)

)
correspond to the isospin components of the ππ-scattering

in the s-channel with zero isospin and

s = (Q̃− p3)2, t(ϑπ±) = (Q̃+ ϑπ± + p2)2, u(ϑπ±) = (Q̃+ ϑπ± + p1)2, (4.23)
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are Mandelstam variables shifted by the twisting angles of p3 and Q̃. Note that the

first variable does not depend on ϑµ
π± as twisting angles exactly cancel out. The bar

of
(
Āπ±πc(ϑπ±)

)µ
indicates that the pole has been subtracted from the matrix elements.

Similarly, the pole in the matrix elements Cπ±πc(ϑπ±) should also be removed, see [12].

We do this by expanding the matrix elements around (Q̃+ ϑπ±)2 = M2
π ,

Cπ±πc(ϑπ±) = C̄π±πc(ϑπ±) +Gπ
Tπ±πc

(
s, t(ϑπ±)− u(ϑπ±)

)
M2
π − (Q̃+ ϑπ±)2

. (4.24)

We insert (4.22), (4.24) in the identities (4.20) and divide by Mπ. Using the relation

m̂Gπ = M2
πFπ, we find

−i
Mπ

(
Q̃+ ϑπ±

)
µ

(
Āπ±πc(ϑπ±)

)µ
=

m̂

Mπ
C̄π±πc(ϑπ±) +

Fπ
Mπ

Tπ±πc
(
s3, s1(ϑπ±)− s2(ϑπ±)

)
.

(4.25)

The last term can be brought on the left-hand side: we can set pµ1 = −pµ2 = kµ and rewrite

the momenta (p3 + ϑπ±)µ =
(
p̂+ ϑ̂π±

)µ
with p̂µ =

(
Mπ
~0

)
and ϑ̂µ

π± =
(
Dπ±
~ϑπ±

)
. We obtain

−i
Mπ

(
p̂+ ϑ̂π±

)
µ

(
Āπ±πc

(
ϑ̂π±

))µ
− Fπ
Mπ

Tπ±πc
(
0,−4Mπν±

)
=

m̂

Mπ
C̄π±πc

(
ϑ̂π±

)
, (4.26)

where ν± =
[
u
(
ϑ̂π±

)
−t
(
ϑ̂π±

)]
/(4Mπ) = ν+kµϑ̂

µ
π±/Mπ. Now, we expand for small external

twisting angles (i.e. around ϑ̂µ
π± = 0 or ν± = ν) and multiply both sides by

1

2

∑
~n∈Z3

|~n|6=0

∫
R4

d4k

(2π)4 eiL~n
~k Ωc

M2
π + k2

with Ωc =


e−iL~n

~ϑπ+ for c = 1

e−iL~n
~ϑπ− for c = 2

1 for c = 3

. (4.27)

The integration over ~k can be performed to an accuracy of O(e−λ̄) and what remains is the

integral over y = −ik0/Mπ appearing in the asymptotic formulae. This provides us with

δGπ± = 2 δMπ± + δFπ± +O(e−λ̄),

∆~ϑGπ±
=

1

M2
π

(
∆~ϑAπ± −∆~ϑΣπ±

)
+O(e−λ̄),

(4.28)

where δMπ± , δFπ± , δGπ± resp. ∆~ϑΣπ±
, ∆~ϑAπ± , ∆~ϑGπ±

are given in terms of eqs. (4.2),

(4.8), (4.13) resp. eqs. (4.6), (4.11), (4.18). These relations hold if the amplitudes entering

the asymptotic formulae satisfy

m̂

Mπ
Cπ±(ν̃, ϑπ+) = Nπ±(ν̃, ϑπ+)− Fπ

Mπ
Fπ±(ν̃, ϑπ+),

m̂

Mπ
Kπ±(ν̃, ϑπ+) = Hπ±(ν̃, ϑπ+)− Fπ

Mπ
Gπ±(ν̃, ϑπ+),

(4.29)

which they actually do in general. As a check one can insert the chiral representation of

these amplitudes provided below and explicitly verify that both relations hold.
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The relations for other pseudoscalar mesons can be proved in an analogous way and give

conditions on the amplitudes similar to eq. (4.29), see ref. [47]. From these conditions it is

possible to determine unknown amplitudes starting from the explicit representation of the

related amplitudes. For instance, one can determine Nπ0 from the chiral representation of

Fπ0 , Cπ0 (see refs. [32, 48]) or one can determine CK± (resp. KK±) from FK± , NK± (resp.

GK± , HK±), see refs. [49, 50]. Later, we will use this fact to work out the asymptotic

formulae for the decay constant of the neutral pion and for the pseudoscalar coupling

constants of charged kaons.

4.2 Pion form factors

As proposed by Häfeli [17] one can rely on the Feynman-Hellmann theorem to derive

asymptotic formulae for the matrix elements of the scalar form factor. In finite volume the

Feynman-Hellmann theorem relates the corrections of the matrix elements of the scalar

form factor with the derivative of the self-energies, see eq. (3.25). Starting from such

relation we can derive asymptotic formulae valid at vanishing momentum transfer via

∆Σπ0 = −2M2
π δMπ0 +O(e−λ̄),

∆Σπ± = −2M2
π δMπ± − 2~ϑπ±∆~ϑΣπ±

+O(e−λ̄).
(4.30)

Taking the derivative of the asymptotic formulae δMπ0 , δMπ± , ∆~ϑΣπ±
one finds

δΓπ
0

S

∣∣
q2=0

=
−1

2 (4π)2 λπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

×
(
1− λπ|~n|

√
1 + y2 + 2M2

π∂M2
π

)
Fπ0(iy, ϑπ+) +O(e−λ̄), (4.31a)

δΓπ
±
S

∣∣
q2=0

=
−1

2 (4π)2 λπ

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

×

[(
1− λπ|~n|

√
1 + y2 + 2M2

π∂M2
π

)
Fπ±(iy, ϑπ+) (4.31b)

− y Dπ±

Mπ

(
λπ|~n|

√
1 + y2 +

Mπ

Mπ +Dπ±
− 2M2

π∂M2
π

)
∂yFπ±(iy, ϑπ+)

+ y L~n~ϑπ±

(
1− λπ|~n|

√
1 + y2 + 2M2

π∂M2
π

)
Gπ±(iy, ϑπ+)

]
+O(e−λ̄).

These asymptotic formulae depend on the amplitudes entering the expressions for δMπ0 ,

δMπ± , ∆~ϑΣπ±
. Here, the dependence on the twist is threefold. The formulae depend on

the twisting angle of the virtual positive pion through the phase factor exp(iL~n~ϑπ+) in

the amplitudes. Furthermore, they depend on the external twisting angles through the

parameter Dπ± and through the product ~n~ϑπ± in the last line of eq. (4.31). Note that the

formulae for charged pions are only valid for small external twisting angles. The formula

for the neutral pion is valid for arbitrary twisting angles.
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We have checked the above asymptotic formulae in two ways. First, we have set all

twisting angles to zero and we have recovered the formula valid for PBC, originally proposed

by Häfeli [17]. Second, we have inserted the tree-level chiral representation of Fπ0 , Fπ± ,

Gπ± and we have obtained the results (3.23) found at NLO with SU(2) ChPT.

The general derivation of asymptotic formulae for form factors is complicated by the

presence of a non-zero momentum transfer. We anticipate that in this case we were not able

to derive asymptotic formulae. The first part of the derivation is similar to the one outlined

in section 4.1.1. In this case, there is an additional external line due to the insertion of the

pseudoscalar densities (resp. vector currents). Taking appropriate modifications one can

still show that the argumentation holds and the matrix elements of form factors decay as

O(e−
√

3λπ/2) at asymptotically large L. In the second part of the derivation, complications

arise due to the injected non-zero momentum transfer, which implies that the integration

over the loop momentum can not be performed as for the self-energy. Note that these

complications should not arise in matrix elements with two different external states, as

e.g. 〈K+|S4+i5

∣∣π0
〉
. In such matrix elements, both external particles can be taken in the

rest frame and the momentum transfer remains non-zero. The vertex functions could be

then expanded around small external angles as outlined in section 4.1.1 and the integration

performed in a similar way as for the self-energy [51].

5 Application of asymptotic formulae

5.1 Amplitudes in ChPT

We apply the asymptotic formulae in combination with ChPT and estimate finite-volume

corrections beyond NLO. We use the chiral representation of the amplitudes at one loop

which is known for most of the amplitudes derived in this work. In table 1 we summarize

all quantities for which we have derived an asymptotic formula and the infinite-volume

amplitudes needed therein. If available we give the reference where the chiral representation

at one loop can be found. We also list the process from which the chiral representation can

be determined. Note that currently, Nπ0 , CK± , KK± are unknown in ChPT but they can

be determined from Fπ0 , Cπ0 , FK± ,NK± and GK± ,HK± relying on chiral Ward identities.

5.1.1 Chiral representation at one loop

Pions. The amplitudes Fπ0 , Fπ± , Gπ± are defined similarly to eqs. (4.3), (4.7). Their

chiral representation can be determined from the ππ-scattering, π(p1) + π(p2) −→ π(p3) +

π(p4), for forward kinematics:

s = (p1+p2)2 = 2Mπ(Mπ+ν), t = (p1−p3)2 = 0, u = (p1−p4)2 = 2Mπ(Mπ−ν). (5.1)

All isospin components of the ππ-scattering can be given in terms of the invariant amplitude

Astu := A(s, t, u) which is known up to NNLO in ChPT [48]. In terms of Astu the isospin
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Asymptotic formula Amplitude Process Ref.

δMπ0 , δMπ± , ∆~ϑΣπ±
Fπ0 , Fπ± , Gπ± ππ-scattering [48]

δMK±(K0), ∆~ϑΣK±(K0)
FK±(K0), GK±(K0) Kπ-scattering [49]

δMη Fη ηπ-scattering [52]

δFπ± , ∆~ϑAπ±
Nπ± , Hπ± τ -decay [46]

δFK± , ∆~ϑAK±
NK± , HK± K`4-decay [50]

δFπ0 , δFK0 , ∆~ϑAK0 , δFη Nπ0 , NK0 , HK0 , Nη
δGπ0 , δGπ± , ∆~ϑGπ±

Cπ0 , Cπ± , Kπ± Pa −→ πa(πcπc) [32]

δGK±(K0), ∆~ϑGK±(K0)
, δGη CK±(K0), KK±(K0), Cη

δΓπ
0

S |q2=0, δΓ
π±
S |q2=0 Fπ0 , Fπ± , Gπ± ππ-scattering [48]

Table 1. We summarize the quantities for which asymptotic formulae have been derived in this

work, the corresponding infinite-volume amplitudes needed and the processes from which the chiral

representation can be determined. We also provide references where the results for the amplitudes

at one loop can be found. Here, Pa −→ πa(πcπc) denotes the pseudoscalar decay into three pions

in which two pions form a state with zero isospin.

components of Fπ0 , Fπ± , Gπ± read

Tπ0π0(t, u− s) = Astu +Atus +Aust,

Tπ0π+(t, u− s) = Tπ0π−(t, u− s) = Tπ+π0(t, u− s) = Tπ−π0(t, u− s) = Atus,

Tπ+π+(t, u− s) = Tπ−π−(t, u− s) = Atus +Aust,

Tπ+π−(t, u− s) = Tπ−π+(t, u− s) = Astu +Atus.

(5.2)

Inserting the expression of Astu at NLO [32] and evaluating the isospin components in the

kinematics (5.1) one obtains the chiral representation of Fπ0 , Fπ± , Gπ± at one loop.

The amplitudes Nπ± , Hπ± have similar definitions as eqs. (4.9), (4.12). Their chiral

representation can be determined from the matrix elements of the τ -decay, τ(pτ ) −→
π(p1) + π(p2) + π(p3) + ντ (pτ −Q), for forward kinematics:

s1 = (p2+p3)2 = 2Mπ(Mπ−ν), s2 = (p1+p3)2 = 2Mπ(Mπ+ν), s3 = (p1+p2)2 = 0. (5.3)

In ChPT the matrix elements of this τ -decay are known at NLO [46] and can be written as

(Aπ−π0)µ :=
〈
π0(p1)π0(p2)π−(p3)

∣∣Aµ1−i2(0) |0〉 ,
(Aπ−π−)µ :=

〈
π−(p1)π+(p2)π−(p3)

∣∣Aµ1−i2(0) |0〉 .
(5.4)

According to [46] these matrix elements can be decomposed as4

(Aπ−π0)µ = F123 p
µ
3 +G123 (p1 + p2)µ +H123 (p1 − p2)µ,

(Aπ−π−)µ = F
[−]
123 p

µ
3 +G

[−]
123(p1 + p2)µ +H

[−]
123(p1 − p2)µ.

(5.5)

4The factors F123, G123, H123 are 1/
√

2 times smaller than those of ref. [46].
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The scalar functions F123 = F (s1, s2, s3), G123 = G(s1, s2, s3), H123 = H(s1, s2, s3) are

related to F
[−]
123 = F [−](s1, s2, s3), G

[−]
123 = G[−](s1, s2, s3), H

[−]
123 = H [−](s1, s2, s3) through

F
[−]
123 = F123 +G231 −H231,

G
[−]
123 = G123 +

1

2
[F231 +G231 +H231],

H
[−]
123 = H123 +

1

2
[F231 −G231 −H231].

(5.6)

As described in ref. [12] the matrix elements (5.5) have a pole that does not contribute

to the amplitudes of asymptotic formulae and must be subtracted. The subtraction occurs

expanding the matrix elements around Q2 = (p1 + p2 + p3)2 = M2
π and isolating the pole

appearing in F123, G123 resp. F
[−]
123, G

[−]
123. One gets(

Āπ−π0

)µ
= (Aπ−π0)µ − iFπQµ

Tπ−π0(s3, s1 − s2)

M2
π −Q2

,

(
Āπ−π−

)µ
= (Aπ−π−)µ − iFπQµ

Tπ−π−(s3, s1 − s2)

M2
π −Q2

,

(5.7)

where Tπ−π0(s3, s1 − s2), Tπ−π−(s3, s1 − s2) are isospin components of the ππ-scattering

amplitude in the s3-channel, see eq. (5.2). The bar indicates that the pole has been

subtracted from the matrix elements. The amplitudes can be obtained contracting with

pµ3/Mπ and setting the momenta to pµ2 = −pµ1 resp. pµ3 =
(Mπ
~0

)
. For instance, the isospin

components of Nπ− , Hπ− read

Āπ−π0(s3, s1 − s2) =
pµ3
Mπ

(
Āπ−π0

)
µ

and Āπ−π−(s3, s1 − s2) =
pµ3
Mπ

(
Āπ−π−

)
µ
. (5.8)

The isospin component Āπ−π+(s3, s1 − s2) can be obtained from
(
Aπ−π−

)µ
exchanging

pµ1 ↔ pµ2 . Note that isospin symmetry relates the amplitudes of the negative pion to those

of the positive pion via

Nπ+(ν̃, ϑπ+) = Nπ−(ν̃, ϑπ+) and Hπ+(ν̃, ϑπ+) = −Hπ−(ν̃, ϑπ+). (5.9)

The amplitudes Cπ0 , Cπ± , Kπ± are defined similarly to eqs. (4.14), (4.19). Their rep-

resentation can be determined from the point function containing four pseudoscalar den-

sities, where three of them serve as interpolating fields for pions. In ChPT such point

function can be calculated from eq. (16.2) of ref. [32]: one must take the off-shell ampli-

tude A(s, t, u; p2
1, p

2
2, p

2
3, p

2
4) and set the momenta to p2

1 = p2
2 = p2

3 = M2
π resp. p2

4 = Q̃2 with

Q̃µ = (p3− p1− p2)µ. Defining Cstu := A(s, t, u;M2
π ,M

2
π ,M

2
π , Q̃

2), the isospin components

of Cπ0 , Cπ± , Kπ± can be expressed as

Cπ0π0(s, t− u) =
Gπ

M2
π − Q̃2

[Cstu + Ctus + Cust],

Cπ0π+(s, t− u) = Cπ0π−(s, t− u) = Cπ+π0(s, t− u) = Cπ−π0(s, t− u) =
Gπ

M2
π − Q̃2

Cstu,

Cπ+π+(s, t− u) = Cπ−π−(s, t− u) =
Gπ

M2
π − Q̃2

[Cstu + Ctus],

Cπ+π−(s, t− u) = Cπ−π+(s, t− u) =
Gπ

M2
π − Q̃2

[Cstu + Cust], (5.10)
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after having subtracted the pole at Q̃2 = M2
π . In section 4.1.2 we describe how to subtract

this pole and how to define the isospin components, see eq. (4.16). From that definition, one

obtains the chiral representation evaluating the isospin components in the forward kine-

matics:

s = 0, t = 2Mπ(Mπ − ν), u = 2Mπ(Mπ + ν). (5.11)

In section 4.2 we have derived asymptotic formulae for the matrix elements of the scalar

form factor of pions at vanishing momentum transfer. The amplitudes entering those for-

mulae are Fπ0 , Fπ± , Gπ± . The chiral representation is given by the isospin components (5.2)

evaluated in the forward kinematics. In this case, the asymptotic formulae also contain

∂M2
π
Fπ0 , ∂M2

π
Fπ± , ∂M2

π
Gπ± , for which attention must be paid during their calculation.

Kaons. The amplitudes FK±(K0), GK±(K0) can be determined from the Kπ-scattering,

π+(p1) +K+(p2) −→ π+(p3) +K+(p4), in the case of forward kinematics:

s = M2
K +M2

π + 2MKν, t = 0, u = M2
K +M2

π − 2MKν. (5.12)

In ChPT this scattering is given by the amplitude T
3/2
stu := T 3/2(s, t, u) which is known at

NLO from ref. [49].5 In terms of T
3/2
stu the isospin components of FK±(K0), GK±(K0) read

TK+π0(t, u− s) = TK−π0(t, u− s) = TK0π0(t, u− s) =
1

2

[
T

3/2
stu + T

3/2
uts

]
,

TK+π+(t, u− s) = TK−π−(t, u− s) = TK0π−(t, u− s) = T
3/2
stu ,

TK+π−(t, u− s) = TK−π+(t, u− s) = TK0π+(t, u− s) = T
3/2
uts .

(5.13)

The chiral representation of FK±(K0), GK±(K0) can be then obtained evaluating these ex-

pressions in the kinematics (5.12). Note that from eq. (5.13) it turns out that the isospin

components of the negative kaon are equal to those of the neutral and hence,

FK0(ν̃, ϑπ+) = FK−(ν̃, ϑπ+) and GK0(ν̃, ϑπ+) = GK−(ν̃, ϑπ+). (5.14)

The amplitudes NK± , HK± are defined in eqs. (4.9), (4.12). Their chiral representation

can be determined from the matrix elements of the K`4-decay, K+(p3) −→ π(p1) +π(p2) +

`+(p`) + ν̄`(Q̃− p`), for forward kinematics:

s = 0, t = M2
K +M2

π − 2MKν, u = M2
K +M2

π + 2MKν. (5.15)

In ChPT the matrix elements of the K`4-decay are known at NLO [50] and read

(AK+π0)µ =
〈
π0(p1)π0(p2)

∣∣Aµ4−i5(0)
∣∣K+(p3)

〉
,

(AK+π+)µ =
〈
π+(p1)π−(p2)

∣∣Aµ4−i5(0)
∣∣K+(p3)

〉
.

(5.16)

According to [50] these matrix elements can be decomposed as6

(AK+π0)µ =
−i
MK

[
F+
stu (p1 + p2)µ +G−stu (p1 − p2)µ +R+

stu Q̃
µ
]
,

(AK+π+)µ =
−i
MK

[
Fstu (p1 + p2)µ +Gstu (p1 − p2)µ +Rstu Q̃

µ
]
,

(5.17)

5As noted in [14] there are two misprints in eq. (3.16) of [49]. The prefactor of [Mr
πK(u) + Mr

Kη(u)]

should read (M2
K −M2

π)2 and the factor of 3
8
JrKη(u) should read [u− 2

3
(M2

π +M2
K)]2.

6The factors Fstu, Gstu, Rstu are 1/
√

2 times smaller than those of ref. [50].

– 25 –



J
H
E
P
0
7
(
2
0
1
6
)
1
3
4

where Q̃µ = (p3 − p1 − p2)µ. The scalar functions F+
stu = F+(s, t, u), G−stu = G−(s, t, u),

R+
stu = R+(s, t, u) are related to Fstu = F (s, t, u), Gstu = G(s, t, u), Rstu = R(s, t, u) via

F+
stu =

1

2
[Fstu + Fsut], G−stu =

1

2
[Gstu −Gsut], R+

stu =
1

2
[Rstu +Rsut]. (5.18)

As described in ref. [14] the matrix elements (5.17) have a pole that must be subtracted.

Expanding around Q̃2 = M2
K the pole appears in R+

stu resp. Rstu and can be expressed in

terms of the isospin components of the Kπ-scattering amplitude. One gets(
ĀK+π0

)µ
= (AK+π0)µ − iFKQ̃µ

TK+π0(s, t− u)

M2
K − Q̃2

,

(
ĀK+π+

)µ
= (AK+π+)µ − iFKQ̃µ

TK+π+(s, t− u)

M2
K − Q̃2

.

(5.19)

The amplitudes of asymptotic formulae can be obtained contracting with pµ3/MK and

setting the momenta to pµ2 = −pµ1 resp. pµ3 =
(
MK
~0

)
. Thus, the isospin components of

NK+ , HK+ read

ĀK+π0(s, t− u) =
pµ

MK

(
ĀK+π0

)
µ
, ĀK+π+(s, t− u) =

pµ

MK

(
ĀK+π+

)
µ
, (5.20)

and ĀK+π−(s, t−u) can be obtained from
(
ĀK+π+

)µ
exchanging pµ1↔pµ2 . Note that isospin

symmetry relates the amplitudes of the positive kaon to those of the negative one as

NK−(ν̃, ϑπ+) = NK+(ν̃, ϑπ+) and HK−(ν̃, ϑπ+) = −HK+(ν̃, ϑπ+). (5.21)

Eta meson. The amplitude Fη is defined similarly to eq. (4.3). Its chiral representation

can be determined from the ηπ-scattering, π(p1)+η(p2) −→ π(p3)+η(p4), for forward kine-

matics:

s = M2
η +M2

π + 2Mην, t = 0, u = M2
η +M2

π − 2Mην. (5.22)

In ChPT the ηπ-scattering is given by the invariant amplitude Tπη(s, t, u). In terms of

Tπη(s, t, u) the isospin components of Fη are all the same,

Tηπ0(t, u− s) = Tηπ+(t, u− s) = Tηπ−(t, u− s) = Tπη(s, t, u). (5.23)

Inserting the expression of Tπη(s, t, u) at NLO [52] and evaluating the isospin components

for forward kinematics one obtains the chiral representation of Fη at one loop.

5.1.2 Chiral expansion

We now apply the asymptotic formulae of section 4. The results are presented in

sections 5.2–5.4 with long expressions relegated to appendix C. To better organize these

results we follow ref. [14] and make use of the chiral expansion.

We first keep the discussion general and consider a pseudoscalar meson P with the

mass MP and the twisting angle ϑµP . The amplitudes of table 1 can be expressed in the

generic forms,

XP (ν̃, ϑπ+) = ZPπ0(0,−4MP ν) + [ZPπ+(0,−4MP ν) + ZPπ−(0,−4MP ν)]eiL~n
~ϑπ+ ,

YP (ν̃, ϑπ+) = [ZPπ+(0,−4MP ν)− ZPπ−(0,−4MP ν)]eiL~n
~ϑπ+ ,

(5.24)
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where ν = (s − u)/(4MP ) and ν̃ = ν/Mπ. The functions ZPπ0(t, u − s), ZPπ+(t, u − s),
ZPπ−(t, u − s) are isospin components in infinite volume. Let us assume that XP (ν̃, ϑπ+)

enters the asymptotic formula for the observable XP and so, provides an estimate for the

corrections δXP . The asymptotic formula has then the form

δXP = R(XP ) +O(e−λ̄),

R(XP ) =
1

(4π)2λP

Mπ

XP

∑
~n∈Z3

|~n|6=0

∫
R

dy

|~n|
e−λπ |~n|

√
1+y2

(
1 + y

DP

MP

∂

∂y

)
XP (iy, ϑπ+), (5.25)

where λP = MPL and DP =
√
M2
P + |~ϑP |2−MP . Analogously, assume that the amplitude

YP (ν̃, ϑπ+) enters the asymptotic formula for the extra term ∆ϑµXP
which has the form

∆~ϑXP
= ~R(ϑXP

) +O(e−λ̄),

~R(ϑXP
) =

−1

2(4π)2

M2
π

XP

∑
~n∈Z3

|~n|6=0

~n

|~n|

∫
R
dy e−λπ |~n|

√
1+y2

y YP (iy, ϑπ+). (5.26)

For convenience, we rewrite the amplitudes as

XP (ν̃, ϑπ+) = XP (XP , π
0) + XP (XP , π

±) eiL~n
~ϑπ+ ,

YP (ν̃, ϑπ+) = YP (ϑXP
) eiL~n

~ϑπ+ ,
(5.27)

where we collect the isospin components in

XP (XP , π
0) := ZPπ0(0,−4MP ν),

XP (XP , π
±) := ZPπ+(0,−4MP ν) + ZPπ−(0,−4MP ν),

YP (ϑXP
) := ZPπ+(0,−4MP ν)− ZPπ−(0,−4MP ν).

(5.28)

In ChPT the amplitudes XP (ν̃, ϑπ+), YP (ν̃, ϑπ+) can be developed according to the

chiral expansion in powers of ξP = M2
P /(4πFπ)2. Expanding the amplitudes one gets

XP (ν̃, ϑπ+) = X (2)
P (ν̃, ϑπ+) + ξPX (4)

P (ν̃, ϑπ+) +O(ξ2
P ),

YP (ν̃, ϑπ+) = Y(2)
P (ν̃, ϑπ+) + ξPY(4)

P (ν̃, ϑπ+) +O(ξ2
P ).

(5.29)

At each order the terms can be written by means of the definitions (5.27) as

X (j)
P (ν̃, ϑπ+) = X (j)

P (XP , π
0) + X (j)

P (XP , π
±)eiL~n

~ϑπ+ ,

Y(j)
P (ν̃, ϑπ+) = Y(j)

P (ϑXP
)eiL~n

~ϑπ+ ,
(5.30)

with j = 2, 4, . . . This allows one to factorize order by order the phase factor exp(iL~n~ϑπ+)

within the chiral expansion. The amplitudes become

XP (ν̃, ϑπ+) = X (2)
P (XP , π

0) + ξPX (4)
P (XP , π

0) +O(ξ2
P )

+
[
X (2)
P (XP , π

±) + ξPX (4)
P (XP , π

±) +O(ξ2
P )
]
eiL~n

~ϑπ+ , (5.31a)

YP (ν̃, ϑπ+) =
[
Y(2)
P (ϑXP

) + ξPY(4)
P (ϑXP

) +O(ξ2
P )
]
eiL~n

~ϑπ+ . (5.31b)
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These expressions induce a similar expansion in the asymptotic formulae. The asymptotic

formula (5.25) exhibit four contributions which in general take the form

R(XP ) = R(XP , π
0) +R(XP , π

±) +RD(XP , π
0) +RD(XP , π

±), (5.32)

with

R(XP , π
0) =

ξπ
λπ

Xπ

XP

∑
~n∈Z3

|~n|6=0

1

|~n|

[
I(2)(XP , π

0) + ξP I
(4)(XP , π

0) +O(ξ2
P )
]
,

R(XP , π
±) =

ξπ
λπ

Xπ

XP

∑
~n∈Z3

|~n|6=0

1

|~n|

[
I(2)(XP , π

±) + ξP I
(4)(XP , π

±) +O(ξ2
P )
]
eiL~n

~ϑπ+ ,

(5.33)

RD(XP , π
0) =

ξπ
λπ

Xπ

XP

DP

MP

∑
~n∈Z3

|~n|6=0

1

|~n|

[
I

(2)
D (XP , π

0) + ξP I
(4)
D (XP , π

0) +O(ξ2
P )
]
,

RD(XP , π
±) =

ξπ
λπ

Xπ

XP

DP

MP

∑
~n∈Z3

|~n|6=0

1

|~n|

[
I

(2)
D (XP , π

±) + ξP I
(4)
D (XP , π

±) +O(ξ2
P )
]
eiL~n

~ϑπ+ .

Each contribution is rescaled by Xπ/XP where Xπ denotes the observable XP in infinite

volume for P = π. The integrals I(j)(XP , π
0), . . . , I

(j)
D (XP , π

±) can be determined from the

terms X (j)
P (XP , π

0), X (j)
P (XP , π

±) of eq. (5.30). Note that the contributions RD(XP , π
0),

RD(XP , π
±) are proportional to the parameter DP and are not present if the particle P

has no external twisting angle (as e.g. for the neutral pion and the eta meson).

The asymptotic formula (5.26) can be expanded in a similar way as

~R(ϑXP
) = −ξπMP

2

Xπ

XP

∑
~n∈Z3

|~n|6=0

i~n

|~n|

[
I(2)(ϑXP

) + ξP I
(4)(ϑXP

) +O(ξ2
P )
]
eiL~n

~ϑπ+ . (5.34)

The integrals I(j)(ϑXP
) can be determined from the term Y(j)

P (ϑXP
) of eq. (5.30). Note

that ~R(ϑXP
) is not present if the particle P has no twisting angle (as e.g. for π0 and η)

and disappears for ϑµ
π+ = 0.

5.2 Pions

5.2.1 Masses

We start with the asymptotic formulae for pion masses. In the generic form of eq. (5.32)

the formula of the neutral pion exhibits two contributions: R(Mπ0) = R(Mπ0 , π0) +

R(Mπ0 , π±). At one loop, R(Mπ0 , π0) and R(Mπ0 , π±) are given by the first two expressions

of eq. (5.33) multiplied by (−1/2) and replacing XP = Xπ = MP = Mπ. The integrals

I(j)(Mπ0 , π0) resp. I(j)(Mπ0 , π±) can be determined from the chiral representation of Fπ0
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and read

I(2)(Mπ0 , π0) = −1

2
I(2)(Mπ0 , π±) = B0,

I(4)(Mπ0 , π0) = −B0

[
9

2
− 4

3
¯̀
1 −

8

3
¯̀
2 +

3

2
¯̀
3 − 2¯̀

4

]
+B2

[
8− 8

3
¯̀
1 −

16

3
¯̀
2

]
+ S(4)(Mπ0 , π0),

I(4)(Mπ0 , π±) = B0

[
13

9
+

8

3
¯̀
1 − ¯̀

3 − 4¯̀
4

]
+B2

[
40

9
− 16

3
¯̀
2

]
+ S(4)(Mπ0 , π±). (5.35)

The functions B2k = B2k(λπ|~n|) were defined in ref. [13] and can be evaluated analytically

B2k =

∫
R

dy y2k e−λπ |~n|
√

1+y2
=

Γ(k + 1/2)

Γ(3/2)

[
2

λπ|~n|

]k
K k+1(λπ|~n|), (5.36)

where K r(x) are modified Bessel functions of the second kind. The constants ¯̀
j were

originally introduced in ref. [32] and depend logarithmically on the pion mass,

¯̀
j = ¯̀phys

j + 2 log

(
Mphys
π

Mπ

)
. (5.37)

Here, Mphys
π = 0.140 GeV and ¯̀phys

j are listed in table 2. The terms S(4)(Mπ0 , π0),

S(4)(Mπ0 , π±) contain integrals that can not be evaluated analytically but just numeri-

cally. Their explicit expressions are given in eq. (C.1).

The asymptotic formulae for masses of charged pions exhibit four contributions, namely

R(Mπ±) = R(Mπ± , π
0) +R(Mπ± , π

±) +RD(Mπ± , π
0) +RD(Mπ± , π

±). At one loop, these

contributions are given by the expressions of eq. (5.33) multiplied by (−1/2) and replacing

XP = Xπ = MP = Mπ as well as DP = Dπ± , see eq. (4.5). The integrals I(j)(Mπ± , π
0)

resp. I(j)(Mπ± , π
±) are related to to those of eq. (5.35) through

I(j)(Mπ± , π
0) =

1

2
I(j)(Mπ0 , π±),

I(j)(Mπ± , π
±) = I(j)(Mπ0 , π0) +

1

2
I(j)(Mπ0 , π±), j = 2, 4.

(5.38)

Such relations follow from the representation of isospin components in ChPT, see eq. (5.2).

The integrals I
(j)
D (Mπ± , π

0) resp. I
(j)
D (Mπ± , π

±) can be evaluated from the derivative of

the chiral representation ∂yFπ± . For j = 2, 4, we find

I
(2)
D (Mπ± , π

0) = I
(2)
D (Mπ± , π

±) = 0,

I
(4)
D (Mπ± , π

0) = B2

[
40

9
− 16

3
¯̀
2

]
+ S

(4)
D (Mπ± , π

0),

I
(4)
D (Mπ± , π

±) = B2

[
184

9
− 16

3
¯̀
1 − 16¯̀

2

]
+ S

(4)
D (Mπ± , π

±),

(5.39)

where S
(4)
D (Mπ± , π

0), S
(4)
D (Mπ± , π

±) are given in eq. (C.2).

The asymptotic formulae for the extra terms ∆ϑµΣπ±
can be expressed in the form of

eq. (5.34) replacing ϑXP
= ϑΣπ±

and XP = Xπ = MP = Mπ. The integrals of ~R(ϑΣπ±
)
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can be determined from the chiral representation of Gπ± and read

I(2)(ϑΣπ±
) = ±

{
− 4B2

}
,

I(4)(ϑΣπ±
) = ±

{
8B2

[
1− ¯̀

4

]
+ S(4)(ϑΣπ+ )

}
,

(5.40)

where S(4)(ϑΣπ+ ) is given in eq. (C.3).

5.2.2 Decay constants

The asymptotic formula for the decay constant of the neutral pion is given in eq. (4.8).

In section 4.1.3 we have mentioned that Nπ0 is related to Fπ0 , Cπ0 by virtue chiral Ward

identities. We use this relation to determine the chiral representation of Nπ0 at one loop.

Expanding the chiral representation according to eq. (5.31a) the asymptotic formula ex-

hibits two contributions: R(Fπ0) = R(Fπ0 , π0) + R(Fπ0 , π±). At one loop, R(Fπ0 , π0) and

R(Fπ0 , π±) are given by the first two expressions of eq. (5.33) where XP = Xπ = Fπ and

MP = Mπ. The integrals I(j)(Fπ0 , π0) resp. I(j)(Fπ0 , π±) are related to those of the mass

and of the pseudoscalar coupling constant through

I(j)(Fπ0 , π0) = I(j)(Mπ0 , π0) + I(j)(Gπ0 , π0),

I(j)(Fπ0 , π±) = I(j)(Mπ0 , π±) + I(j)(Gπ0 , π±), j = 2, 4,
(5.41)

and can be explicitly evaluated from eqs. (5.35), (5.45).

The asymptotic formulae for the decay constants of charged pions exhibit four contribu-

tions: R(Fπ±) = R(Fπ± , π
0)+R(Fπ± , π

±)+RD(Fπ± , π
0)+RD(Fπ± , π

±). Their expressions

at one loop are given by eq. (5.33) where XP = Xπ = Fπ, MP = Mπ and DP = Dπ± . The

integrals I(j)(Fπ± , π
0) resp. I(j)(Fπ± , π

±) can be evaluated from the chiral representation

of Nπ± and are related to the integrals I
(j)
F,0 resp. I

(j)
F,± of ref. [40] through

I(j)(Fπ± , π
0) = I

(j)
F,0,

I(j)(Fπ± , π
±) = I

(j)
F,±, j = 2, 4.

(5.42)

The integrals I
(j)
D (Fπ± , π

0) resp. I
(j)
D (Fπ± , π

±) can be determined from the derivative of

the chiral representation ∂yNπ± and read

I
(2)
D (Fπ± , π

0) = I
(2)
D (Fπ± , π

±) = 0,

I
(4)
D (Fπ± , π

0) = B2

[
40

9
− 16

3
¯̀
2

]
+ S

(4)
D (Fπ± , π

0),

I
(4)
D (Fπ± , π

±) = B2

[
184

9
− 16

3
¯̀
1 − 16¯̀

2

]
+ S

(4)
D (Fπ± , π

±),

(5.43)

where S
(4)
D (Fπ± , π

0), S
(4)
D (Fπ± , π

±) are given in eq. (C.4).

The asymptotic formulae for the extra terms ∆ϑµAπ±
can be expressed in the form of

eq. (5.34) replacing ϑXP
= ϑAπ±

, XP = Xπ = Fπ and MP = Mπ. The integrals of ~R(ϑAπ± )

can be evaluated from the chiral representation of Hπ± and read

I(2)(ϑAπ± ) = ±
{
− 4B2

}
,

I(4)(ϑAπ± ) = ±
{

4B2
[
1− ¯̀

4

]
+ S(4)(ϑAπ+ )

}
,

(5.44)

where S(4)(ϑAπ+ ) is given in eq. (C.5).
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5.2.3 Pseudoscalar coupling constants

The asymptotic formula for the pseudoscalar coupling constant of the neutral pion exhibits

two contributions: R(Gπ0) = R(Gπ0 , π0) + R(Gπ0 , π±). At one loop, R(Gπ0 , π0) and

R(Gπ0 , π±) are given by the first two expressions of eq. (5.33) where XP = Xπ = Gπ and

MP = Mπ. The integrals I(j)(Gπ0 , π0) resp. I(j)(Gπ0 , π±) can be evaluated from the chiral

representation of Cπ0 and read

I(2)(Gπ0 , π0) = −B0,

I(2)(Gπ0 , π±) = 0,

I(4)(Gπ0 , π0) = B0

[
7

2
− 2

3
¯̀
1 −

4

3
¯̀
2 +

3

2
¯̀
3 − 3¯̀

4

]
+ S(4)(Gπ0 , π0),

I(4)(Gπ0 , π±) = −B0

[
11

9
+

4

3
¯̀
1 − ¯̀

3 − 2¯̀
4

]
+ S(4)(Gπ0 , π±).

(5.45)

The terms S(4)(Gπ0 , π0), S(4)(Gπ0 , π±) are explicitly given in eq. (C.6).

The asymptotic formulae for pseudoscalar coupling constants of charged pions exhibit

four contributions: R(Gπ±)=R(Gπ± , π
0)+R(Gπ± , π

±)+RD(Gπ± , π
0)+RD(Gπ± , π

±). Their

expressions at one loop are given by eq. (5.33) where XP = Xπ = Gπ, MP = Mπ and

DP = Dπ± . The integrals I(j)(Gπ± , π
0) resp. I(j)(Gπ± , π

±) can be evaluated from the

chiral representation of Cπ± and are related to those of eq. (5.45) by means of

I(j)(Gπ± , π
0) =

1

2
I(j)(Gπ0 , π±),

I(j)(Gπ± , π
±) = I(j)(Gπ0 , π0) +

1

2
I(j)(Gπ0 , π±), j = 2, 4.

(5.46)

These relations follow from eq. (5.10) once the pole has been subtracted. The integrals

I
(j)
D (Gπ± , π

0) resp. I
(j)
D (Gπ± , π

±) can be determined from the derivative of the chiral rep-

resentation ∂yCπ± and are related to those of masses and of decay constants through

I
(j)
D (Gπ± , π

0) = I
(j)
D (Fπ± , π

0)− I(j)
D (Mπ± , π

0),

I
(j)
D (Gπ± , π

±) = I
(j)
D (Fπ± , π

±)− I(j)
D (Mπ± , π

±), j = 2, 4.
(5.47)

Inserting eqs. (5.39), (5.43) one can obtain the explicit expressions.

The asymptotic formulae for the extra terms ∆ϑµGπ±
can be expressed in the form

of eq. (5.34) replacing ϑXP
= ϑGπ±

, XP = Xπ = Gπ and MP = Mπ. In this case, the

equation must be divided by M2
π . The integrals of ~R(ϑGπ±

) can be evaluated from the

chiral representation of Kπ± and are related to those of eqs. (5.40), (5.44) through

I(j)(ϑGπ±
) = I(j)(ϑAπ± )− I(j)(ϑΣπ±

), j = 2, 4. (5.48)

5.2.4 Scalar form factors at vanishing momentum transfer

In section 4.2 we have presented asymptotic formulae for the matrix elements of the scalar

form factor valid at vanishing momentum transfer. The formula for the neutral pion is

given in eq. (4.31). If we insert the chiral representation of Fπ0 and expand according to
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eq. (5.31a), the formula exhibits two contributions, R(Γπ
0

S ) = R(Γπ
0

S , π
0) +R(Γπ

0

S , π
±). At

one loop, R(Γπ
0

S , π
0) and R(Γπ

0

S , π
±) are given by the first two expressions of eq. (5.33)

multiplied by (−1/2) and replacing XP = Xπ = FS(0) as well as MP = Mπ. The integrals

I(j)(Γπ
0

S , π
0) resp. I(j)(Γπ

0

S , π
±) can be evaluated from the chiral representation of Fπ0 .

The evaluation involves terms with
√

1 + y2Fπ0 and we make use of∫
R

dy y2kλπ|~n|
√

1 + y2 e−λπ |~n|
√

1+y2
= (2k − 1)B2k−2 + (2k + 1)B2k, (5.49)

where B2k are defined in eq. (5.36). The derivative ∂M2
π
Fπ0 must be evaluated with care.

The operator ∂M2
π

acts on all quantities depending on the pion mass. In particular, it

acts on the decay constant Fπ and on the constants ¯̀
j of eq. (5.37). This leads to supple-

mentary terms which must be integrated and added according to their chiral order to the

corresponding integral. Altogether, we find

I(2)(Γπ
0

S , π
0) = −1

2
I(2)(Γπ

0

S , π
±) = B−2 + 2B0,

I(4)(Γπ
0

S , π
0) = −B−2

[
9

2
− 4

3
¯̀
1 −

8

3
¯̀
2 +

3

2
¯̀
3 − 2¯̀

4

]
−B0

[
31− 8¯̀

1 − 16¯̀
2 + 6¯̀

3 − 4¯̀
4

]
,

+B2

[
32− 16

3
¯̀
1 −

32

3
¯̀
2

]
+ S(4)(Γπ

0

S , π
0),

I(4)(Γπ
0

S , π
±) = B−2

[
13

9
+

8

3
¯̀
1 − ¯̀

3 − 4¯̀
4

]
−B0

[
2− 32

3
¯̀
1 −

16

3
¯̀
2 + 4¯̀

3 + 8¯̀
4

]
+B2

[
176

9
− 32

3
¯̀
2

]
+ S(4)(Γπ

0

S , π
±), (5.50)

where S(4)(Γπ
0

S , π
0), S(4)(Γπ

0

S , π
±) are explicitly given in eq. (C.7).

The asymptotic formulae for the matrix elements of the scalar form factor of charged

pions are given in eq. (4.31). If we insert the chiral representation of Fπ± , Gπ± and expand

according to eq. (5.31a) the formulae exhibit five contributions which can be written as

R(Γπ
±
S ) = R(Γπ

±
S , π0) +R(Γπ

±
S , π±) +RD(Γπ

±
S , π0) +RD(Γπ

±
S , π±) + 2~ϑπ± ~R(Θπ±). At one

loop, the first four contributions are given by the expressions of eq. (5.33) multiplied by

(−1/2) where XP = Xπ = FS(0), MP = Mπ and DP = Dπ± . The integrals I(j)(Γπ
±
S , π0)

resp. I(j)(Γπ
±
S , π±) can be evaluated from the first group of terms in the square brackets

of eq. (4.31). Using the chiral representation of Fπ± we find

I(2)(Γπ
±
S , π0) = −[B−2 + 2B0],

I(2)(Γπ
±
S , π±) = 0,

I(4)(Γπ
±
S , π0) = B−2

[
13

18
+

4

3
¯̀
1 −

1

2
¯̀
3 − 2¯̀

4

]
−B0

[
1− 16

3
¯̀
1 −

8

3
¯̀
2 + 2¯̀

3 + 4¯̀
4

]
+B2

[
88

9
− 16

3
¯̀
2

]
+ S(4)(Γπ

±
S , π0),

I(4)(Γπ
±
S , π±) = −B−2

[
34

9
− 8

3
¯̀
1 −

8

3
¯̀
2 + 2¯̀

3

]
−B0

[
32− 40

3
¯̀
1 −

56

3
¯̀
2 + 8¯̀

3

]
+B2

[
376

9
− 16

3
¯̀
1 − 16¯̀

2

]
+ S(4)(Γπ

±
S , π±),

(5.51)
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where S(4)(Γπ
±
S , π0), S(4)(Γπ

±
S , π±) are given in eq. (C.8). The integrals I

(j)
D (Γπ

±
S , π0) resp.

I
(j)
D (Γπ

±
S , π±) can be determined from the second group of terms in the square brackets of

eq. (4.31) after having taken the derivative of the chiral representation ∂yFπ± . We find

I
(2)
D (Γπ

±
S , π0) = I

(2)
D (Γπ

±
S , π±) = 0,

I
(4)
D (Γπ

±
S , π0) = −B0

[
40

9
− 16

3
¯̀
2

]
+B2

[
32

3
+ (1− Cπ±)

(
40

9
− 16

3
¯̀
2

)]
+ S

(4)
D (Γπ

±
S , π0),

I
(4)
D (Γπ

±
S , π±) = −B0

[
184

9
− 16

3
¯̀
1 − 16¯̀

2

]
+B2

[
128

3
+ (1− Cπ±)

(
184

9
− 16

3
¯̀
1 − 16¯̀

2

)]
+ S

(4)
D (Γπ

±
S , π±), (5.52)

where Cπ± = Mπ/(Mπ + Dπ±) with Dπ± defined by eq. (4.5). The terms S
(4)
D (Γπ

±
S , π0),

S
(4)
D (Γπ

±
S , π±) are explicitly given in eq. (C.8).

The fifth contribution ~R(Θπ±) can be expressed in the form of eq. (5.34) replacing

ϑXP
= Θπ± , XP = Xπ = FS(0) and MP = Mπ. In this case, the equation must be divided

by 2M2
π . The integrals of ~R(Θπ±) can be evaluated from the last group of terms in the

square brackets of eq. (4.31). Using the chiral representation of Gπ± we find

I(2)(Θπ±) = ±
{

4B0
}
,

I(4)(Θπ±) = ±
{
− 8B0

[
1− ¯̀

4

]
+ 16B2 + S(4)(Θπ+)

}
,

(5.53)

where S(4)(Θπ+) can be found in eq. (C.8).

5.3 Kaons

5.3.1 Masses

The asymptotic formulae for the kaon masses are given in eq. (4.2). They differ in terms

of the parameters DK± , DK0 and in terms of the amplitudes FK± , FK0 . In section 5.1.1

we have seen that the chiral representation of FK0 is equal to that of FK− , see eq. (5.14).

Hence, we can just consider the asymptotic formulae of charged kaons as the results of the

neutral kaon can be obtained replacing DK± with DK0 .

We insert the chiral representation of FK± and expand according to eq. (5.31a). The

asymptotic formulae of charged kaons exhibit four contributions which can be written as

R(MK±) = R(MK± , π
0)+R(MK± , π

±)+RD(MK± , π
0)+RD(MK± , π

±). At one loop, these

contributions are given by eq. (5.33) multiplied by (−1/2) where XP = Xπ = MP = MK

and DP = DK± . The integrals I(j)(MK± , π
0) resp. I(j)(MK± , π

±) can be evaluated from

the chiral representation of FK± and are related to the integrals I
(j)
MK

of ref. [14] through

I(j)(MK± , π
0) =

x
−1/2
πK

3
I

(j)
MK

,

I(j)(MK± , π
±) =

2

3
x
−1/2
πK I

(j)
MK

, j = 2, 4.

(5.54)
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The integrals I
(j)
D (MK± , π

0) resp. I
(j)
D (MK± , π

±) can be determined from the derivative of

the chiral representation ∂yFK± and read

I
(2)
D (MK± , π

0) = I
(2)
D (MK± , π

±) = 0,

I
(4)
D (MK± , π

0) =
1

2
I

(4)
D (MK± , π

±)

= xπKB
2

[
− 16N(4Lr

2 + Lr
3)− `π

5xπK
1− xπK

+ `η
xηK

xηK − 1

+ `K

(
5

1− xπK
− 1

xηK − 1

)]
+ S

(4)
D (MK± , π

0).

(5.55)

Here, N = (4π)2, `P = 2 log(MP /µ), xPQ = M2
P /M

2
Q for P,Q = π,K, η and Lr

j are the

renormalized LECs, see [24]. The expression of S
(4)
D (MK± , π

0) is given in eq. (C.12).

The asymptotic formulae for the extra terms ∆ϑµΣK±
can be expressed in the form of

eq. (5.34) replacing ϑXP
= ϑΣK±

and XP = Xπ = MP = MK . The integrals of ~R(ϑΣK±
)

can be evaluated from the chiral representation of GK± and read

I(2)(ϑΣK±
) = ±

{
−2x

1/2
πK B

2
}
,

I(4)(ϑΣK±
) = ±

{
x

1/2
πK B

2

[
− 16NxπKL

r
5 −

`π
2

5x2
πK

1− xπK
− `η

xηK
4

(
3− 1 + xπK

xηK − 1

)

− `K
4

(
7− 10

1− xπK
+

1 + xπK
xηK − 1

)]
+ S(4)(ϑΣK+ )

}
,

(5.56)

where S(4)(ϑΣK+ ) is given in eq. (C.13). Note that the asymptotic formula for ∆ϑµΣK0

differs from that for ∆ϑµΣK−
only in terms of GK0 , GK− . As the chiral representation of

GK0 coincides with that of GK− , the asymptotic formulae are equal in this case, and we

can use ~R(ϑΣK−
) to estimate ∆ϑµΣK0

.

5.3.2 Decay constants

The asymptotic formulae for the decay constants of charged kaons exhibit four contri-

butions: R(FK±) = R(FK± , π
0) + R(FK± , π

±) + RD(FK± , π
0) + RD(FK± , π

±). Their

expressions at one loop are given by eq. (5.33) where XP = FK , Xπ = Fπ, MP = MK and

DP = DK± . The integrals I(j)(FK± , π
0) resp. I(j)(FK± , π

±) can be evaluated from the

chiral representation of NK± and are related to the integrals I
(j)
FK

of ref. [14] by virtue of7

I(j)(FK± , π
0) =

I
(j)
FK

3
,

I(j)(FK± , π
±) =

2

3
I

(j)
FK
, j = 2, 4.

(5.57)

7In ref. [14] there are two missprints: in eq. (57) the term 2`π(xπη − 9
4
) should read 2(`η − `π 9

4
) and in

eq. (79) the factor of S0,4
ηK should read 3

32
(1 + xπK)(5− 2xπK − 3xηK) instead of 3

32
(5− 3xηK)(1− x2

πK).

– 34 –



J
H
E
P
0
7
(
2
0
1
6
)
1
3
4

The integrals I
(j)
D (FK± , π

0) resp. I
(j)
D (FK± , π

±) can be determined from the derivative of

the chiral representation ∂yNK± and read

I
(2)
D (FK± , π

0) = I
(2)
D (FK± , π

±) = 0,

I
(4)
D (FK± , π

0) =
1

2
I

(4)
D (FK± , π

±)

= xπK B
2

[
− 16N(4Lr

2 + Lr
3)− `π

5xπK
1− xπK

+ `η
xηK

xηK − 1

+ `K

(
5

1− xπK
− 1

xηK − 1

)]
+ S

(4)
D (FK± , π

0),

(5.58)

where S
(4)
D (FK± , π

0) is given in eq. (C.14).

The asymptotic formulae for the extra terms ∆ϑµAK±
can be expressed in the form of

eq. (5.34) replacing ϑXP
= ϑAK±

, XP = FK , Xπ = Fπ and MP = MK . The integrals of
~R(ϑAK± ) can be evaluated from the chiral representation of HK± and read

I(2)(ϑAK± ) = ±
{
− 2x

1/2
πK B

2
}
,

I(4)(ϑAK± ) = ±

{
x

1/2
πK B

2

[
− 8NxπKL

r
5 −

`π
4

5x2
πK

1− xπK
− `η

xηK
8

(
3− 1 + xπK

xηK − 1

)

− `K
8

(
7− 10

1− xπK
+

1 + xπK
xηK − 1

)]
+ S(4)(ϑAK+ )

}
,

(5.59)

where S(4)(ϑAK+ ) is given in eq. (C.15).

5.3.3 Pseudoscalar coupling constants

The asymptotic formulae for the pseudoscalar coupling constants of charged kaons are given

in eq. (4.13). In section 4.1.3 we have mentioned that CK± is related to FK± , NK± by virtue

of chiral Ward identities. We use that relation to determine the chiral representation of CK±
at one loop. Expanding the representation as in eq. (5.31a) the asymptotic formula exhibits

four contributions: R(GK±) = R(GK± , π
0)+R(GK± , π

±)+RD(GK± , π
0)+RD(GK± , π

±).

Their expressions at one loop are given by eq. (5.33) where XP = GK , Xπ = Gπ, MP = MK

andDP = DK± . The integrals can be evaluated from those of eqs. (5.54), (5.57) by means of

I(j)(GK± , π
0) =

◦
xπKx

−1
πK

[
I(j)(FK± , π

0)− FK
Fπ

I(j)(MK± , π
0)

]
,

I(j)(GK± , π
±) =

◦
xπKx

−1
πK

[
I(j)(FK± , π

±)− FK
Fπ

I(j)(MK± , π
±)

]
,

(5.60)

where j = 2, 4 and
◦
xπK =

◦
M2
π/
◦
M2
K . Here, similar relations hold also for I

(j)
D (GK± , π

0),

I
(j)
D (GK± , π

±). In the evaluation, some attention must be paid: because of the prefactors

(i.e.
◦
xπKx

−1
πK and FK/Fπ) the integrals with j = 2 on the right-hand side generate terms

that contribute to the integrals with j = 4 on the left-hand side.

The asymptotic formulae for the extra terms ∆ϑµGK±
are presented in eq. (4.18). As

mentioned in section 4.1.3 the chiral representation of KK± is related to that of GK± ,
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HK± by means of chiral Ward identities. We use that relation to determine the chiral

representation of KK± at one loop. The asymptotic formulae for ∆ϑµGK±
can be then

expressed in the form of eq. (5.34) replacing ϑXP
= ϑGK±

, XP = GK , Xπ = Gπ and

MP = MK . In this case, the equation must be divided by M2
K . The integrals of ~R(ϑGK±

)

can be evaluated from those of eqs. (5.56), (5.59) by means of

I(j)(ϑGK±
) =

◦
xπKx

−1
πK

[
I(j)(ϑAK± )− FK

Fπ
I(j)(ϑΣK±

)

]
, j = 2, 4. (5.61)

Note that because of the prefactors (viz.
◦
xπKx

−1
πK and FK/Fπ) the integrals I(2)(ϑΣK±

)

and I(2)(ϑAK± ) generate terms that contribute to I(4)(ϑGK±
).

5.4 Eta meson

In the generic form of eq. (5.32) the asymptotic formula for the mass of the eta meson

exhibits two contributions, R(Mη) = R(Mη, π
0) +R(Mη, π

±). At one loop, R(Mη, π
0) and

R(Mη, π
±) are given by the first two expressions of eq. (5.33) multiplied by (−1/2) and

replacing XP = Xπ as well as MP = Mη. The integrals I(j)(Mη, π
0) resp. I(j)(Mη, π

±)

can be evaluated from the chiral representation of Fη and are related to the integrals I
(j)
Mη

of ref. [14] by virtue of

I(j)(Mη, π
0) =

x
−1/2
πη

3
I

(j)
Mη
,

I(j)(Mη, π
±) =

2

3
x−1/2
πη I

(j)
Mη
, j = 2, 4.

(5.62)

6 Numerical results

6.1 Numerical set-up

We adopt the numerical set-up of refs. [13, 14] and express the quantities in infinite volume

appearing in the formulae (i.e. Fπ, FK , MK , Mη) as functions of Mπ. For Fπ we use the

expression at NNLO obtained with SU(2) ChPT while for FK , MK , Mη we use expressions

at NLO of SU(3) ChPT. In any cases, the values of the relevant LECs are summarized

in table 2. If available, these values are taken from results of lattice simulations with

Nf = 2+1 dynamical flavors. For LECs of SU(2) ChPT we take the averages of the FLAG

working group [54] which are obtained from refs. [57–60]. For LECs of SU(3) ChPT we

take the results of ref. [56] as recommended by FLAG [54]. The remaining values come

from phenomenology [53, 55] or have been determined evaluating the expressions of Fπ,

FK , MK , Mη at the physical point (see later).

6.1.1 Pion mass dependence in infinite volume

In infinite volume, the expression of the pion decay constant at NNLO reads

Fπ = F

{
1+ξ ¯̀

4+ξ2

[
5

4
`2π+`π

(
7

6
¯̀
1+

4

3
¯̀
2+

¯̀
3

2
−

¯̀
4

2
+2

)
+

¯̀
3

2
¯̀
4−

¯̀
1

12
−

¯̀
2

3
− 13

192
+rF (µ)

]}
. (6.1)
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j ¯̀phys
j Ref.

1 −0.36± 0.59 [53]

2 4.31± 0.11 [53]

3 3.05± 0.99 [54]

4 4.02± 0.28 [54]

(a) SU(2) ChPT LECs.

j Lr
j(µ) · 103 Ref.

1 0.88± 0.09 [55]

2 0.61± 0.20 [55]

3 −3.04± 0.43 [55]

4 0.04± 0.14 [56]

5 0.84± 0.38 [56]

6 0.07± 0.10 [56]

7 −0.16± 0.15

8 0.36± 0.09 [56]

(b) SU(3) ChPT LECs.

Table 2. Values of LECs used in the numerical analysis. Here, the renormalization scale is

µ = 0.770 GeV. The central value of Lr
7 has been determined evaluating the expression of Mη at

the physical point (see text) whereas its uncertainty is taken from table 5 (column “All”) of ref. [55].

This expression is obtained with SU(2) ChPT, see ref. [33]. Here, ξ = M2
π/(4πF )2 and

`π = 2 log(Mπ/µ). The constants ¯̀
j are given in eq. (5.37) and the values of ¯̀phys

j are

in table 2. The parameter rF (µ) is a combination of LECs at NNLO. In ref. [13] it was

estimated as rF (µ) = 0± 3.

We can determine F numerically, evaluating eq. (6.1) at the physical point. Taking

Mπ = Mphys
π± and inverting the expression, we find F = (86.6± 0.4) MeV. This value

agrees with the result of ref. [13] and provides the ratio Fπ/F = (1.065 ± 0.006) which in

turn agrees with the FLAG average obtained from simulations with Nf = 2 + 1 dynamical

flavors, see refs. [54, 56, 57, 59].

In figure 4 we represent the pion mass dependence of decay constants. We observe

that the dependence of Fπ is rather mild. As in ref. [13], we conclude that this dependence

is too mild to violate the condition of eq. (2.8). Thus, we can rely on ChPT and apply the

formulae of sections 2 and 5 to estimate finite-volume corrections.

At NLO the expressions of M2
K , M2

η , FK obtained with SU(3) ChPT read [14]:

M2
K =

◦
M2
K+

1

F 2
π

{
M4
π

[
1

4N

( ◦`η
3
− `π

)
− 2k1

]
+B0ms(M

2
π +B0ms)

[
8(k1 + 2k2)+

4

9N

◦
`η

]}
,

(6.2a)

M2
η =

◦
M2
η +

1

F 2
π

{
M4
π

[
16

9
(−k1 + 2k3)− 1

3N

(
2`π −

◦
`K

)]
+M2

πB0ms

[
64

9
(k1 + 3k2 − 2k3) +

4

3N

(
◦
`K −

2

9

◦
`η

)]
(6.2b)

+ (B0ms)
2

[
128

9
(k1 + 3k2/2 + k3) +

4

3N

(
◦
`K −

8

9

◦
`η

)]}
,

FK = Fπ +
1

F 2
π

[
4(M2

K −M2
π)Lr

5 +
1

N

(
5

8
M2
π`π −

1

4
M2
K`η −

3

8
M2
η `η

)]
. (6.2c)
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Figure 4. Pion mass dependence of Fπ, FK in infinite volume.

In these expressions, k1 = 2Lr
8 − Lr

5, k2 = 2Lr
6 − Lr

4, k3 = 3Lr
7 + Lr

8 and
◦
`P = 2 log(

◦
MP /µ)

resp. `P = 2 log(MP /µ) for P = π,K, η. The decay constant Fπ is expressed as in eq. (6.1).

Here, the circled masses are not just at leading order but are of hybrid nature,

◦
M2
K =

1

2
(M2

π + 2B0ms) and
◦
M2
η =

1

3
(M2

π + 4B0ms). (6.3)

The part containing M2
π is at NLO while the part containing B0ms is at leading order.

This is unavoidable if we want to study the dependence on the pion mass of MK , Mη, FK
in ChPT. In practice, we use the first two expressions (6.2a), (6.2b) to determine B0ms,

Lr
7 and the third one (6.2c) to check the numerical results.

Taking the LECs from table 2 we evaluate eq. (6.2a) at Mπ = Mphys
π± . Requiring

MK = Mphys
K± we find B0ms = 0.241 GeV2. The uncertainty on this value is of order

10−5 GeV2 and may be neglected. Then, we evaluate eq. (6.2b) at Mπ = Mphys
π± and require

Mη = Mphys
η . We find Lr

7 = −0.16 · 10−3. This value agrees with the result presented in

table 5 (column “All”) of ref. [55]. As uncertainty estimated we take the one given in [55],

yielding Lr
7 = (−0.16± 0.15) · 10−3. To check our numerical results on B0ms, L

r
7 we insert

the expressions of M2
K , M2

η in eq. (6.2c) and evaluate FK at Mπ = Mphys
π± . We find FK =

(0.106± 0.004) GeV which agrees with the PDG result [61] and with the FLAG average

obtained from simulations with Nf = 2 + 1 dynamical flavors, see refs. [54, 58, 62, 63].

We stress that Fπ is expressed here with SU(2) ChPT even in the SU(3) expressions

of M2
K , M2

η , FK . This choice was already made in ref. [14] and for ms = mphys
s it exactly

reproduces what one would get in the SU(3) framework. As lattice simulations are usually

performed at ms ≈ mphys
s we expect that such choice remains a valid approximation also

in our numerical analysis.

In figure 5 we show the pion mass dependence of MK , Mη. We observe that the

dependence on Mπ is mild. The same holds for FK as one sees from figure 4. Note that for

Mπ ≈ 0.500 GeV we have MK ≈ 0.610 GeV and Mη ≈ 0.640 GeV. In that case, the values

of Mπ, MK , Mη are all similar. If we consider ξP = M2
P /(4πFπ)2 for P = π,K, η we expect
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Figure 5. Pion mass dependence of MK , Mη and of the expansion parameter ξP in infinite volume.

that the expansion parameter stays small for all pion masses in [0.1 GeV, 0.5 GeV]. This

is confirmed by figure 5 where the pion mass dependence of ξP is represented graphically.

In the numerical analysis we will use the expansion parameter as in figure 5 and consider

ξP as exact, ignoring its uncertainty.

6.1.2 Twisting angles and multiplicity

To perform the numerical analysis we use the following configuration of twisting angles

~ϑπ+ = ~ϑK+ =
1

L

θ0
0

 resp. ~ϑK0 = ~0. (6.4)

In principle, the angle θ can be arbitrarily chosen. Since we rely on ChPT, we require

θ/L � 4πFπ. If we consider L � 1 fm — as requested by eq. (2.8) — such condition is

certainly satisfied for θ ∈ [0, 2π].

The configuration (6.4) allows us to simplify a lot of calculations. As twisting angles

are aligned to one specific axis, we may use the formula,

∑
~n∈Z3

|~n|6=0

f( |~n| ) eiL~n
~ϑπ+ =

∞∑
n=1

f(
√
n )

b√nc∑
n1=−b√nc

m(n, n1) ein1θ, (6.5)

to rewrite the three sums over integer vectors as a nested sum over n ∈ N. In general,

this speeds up the numerical evaluation by a factor 15. The notation b . c indicates the

floor function and m(n, n1) is the multiplicity (i.e. the number of possibilities to construct

a vector ~n ∈ Z3 with n = |~n|2, having previously fixed the value of the first component to

n1 ∈ Z). As an illustration, we list in table 3 the values of the multiplicity for n ≤ 10.

In the following we present our numerical results. We plot the dependences of the

corrections on Mπ and θ. The pion mass dependence is plotted for different values of

L and θ. Lines of different colors refer to different values of L whereas lines of different

hatchings refer to different values of θ. The dark (resp. light) yellow areas refer to the region
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m(n, n1) n1 0 ±1 ±2 ±3

n

1 4 1 0 0

2 4 4 0 0

3 0 4 0 0

4 4 0 1 0

5 8 4 4 0

6 0 8 4 0

7 0 0 0 0

8 4 0 4 0

9 4 4 8 1

10 8 4 0 4

Table 3. Multiplicity of vectors ~n ∈ Z3 with n := |~n|2 ≤ 10.

MπL < 2 for θ = 0 (resp. θ = π/3). The dependence on the angle θ is plotted for different

values of Mπ, at fixed L = 2 fm. Lines of different hatchings refer to different values of Mπ.

For L = 2 fm, the region MπL < 2 begins for masses smaller than Mπ = 0.197 GeV. We

remind the reader that in that region formulae obtained in the p-regime are not reliable

any more.

6.2 Finite-volume corrections at NLO

The corrections of masses, decay constants and vector form factors were numerically eval-

uated at NLO in refs. [7, 10]. As we have reproduced their plots we refrain from presenting

results for these quantities at this order. We just focus on pseudoscalar coupling constants

and scalar form factors for which no numerical analysis was published, yet.

We start with the pseudoscalar coupling constants. At NLO the corrections of the

pseudoscalar coupling constants exhibit all a dependence on twisting angles. In section 3.1

we have seen that the corrections of the pseudoscalar coupling constants are given by the

sum of the corrections of masses and decay constants, see eq. (3.15). As δMπ± , δMK± and

δFπ± , δFK± were numerically evaluated in ref. [10] one can use those results to determine

δGπ± , δGK± . Moreover, δGK0 can be determined from δGK± substituting ϑK0 ↔ ϑK+ ,

cfr. eq. (3.10). Thus, we just study the dependence of δGπ0 , δGη on the pion mass.

In figure 6a (resp. 6b) we represent the pion mass dependence of −δGπ0 (resp. −δGη).
The logarithmic graphs illustrate the exponential decay O(e−λπ) of the corrections. The line

slopes depend on L while the y-intercepts on θ. In figure 6a the lines are so close that they

overlap in the graph: δGπ0 is practically insensitive to θ. On the contrary, δGη is noticeably

sensitive to θ. In general, the corrections are negative and for θ ∈ { 0, π/8, π/4, π/3 }
their absolute values decrease with the angle. Note that δGπ0 , δGη reach the percentage

level before entering yellow areas and are thus comparable with the statistical precision of

lattice simulations.

In figure 7a and 7b we represent the corrections of the matrix elements of the pion scalar

form factor at vanishing momentum transfer. The pion mass dependence is represented
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Figure 6. Corrections of pseudoscalar coupling constants at NLO.
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Figure 7. Corrections of the matrix elements of the scalar form factor at NLO.
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in linear graphs where yellow areas refer to the region MπL < 2. The solid lines (θ = 0)

reach that region when — starting from the right-hand side of the figure — they first touch

the dark yellow area. The dotted lines (θ = π/3) reach this region when they enter in the

light yellow area. We observe that the corrections decay exponentially as O(e−λπ) and

are mainly negative. They may turn positive depending on the pion mass. In the region

where the p-regime is guaranteed, the corrections are less than the percentage level and

thus negligible.

To estimate the corrections at a non-zero momentum transfer we consider the incoming

pion at rest (i.e. ~p = ~0) and the outgoing pion moving along the first axis carrying the first

non-zero momentum (i.e. | ′~p | = 2π/L). This kinematics provides the momentum transfer,

qµmin =

(
q0

~q

)
with ~q =

2π

L

1

0

0

 . (6.6)

The zeroth component corresponds to the energy transfer among external pions,

q0 = E′π0(L)−Mπ0(L) for external π0,

q0 = E′π+(L)− Eπ+(L) for external π+.
(6.7)

For the configuration (6.4) the pion energies take the following forms,

E′π0(L) =
√
M2
π0(L) + (2π)2/L2,

Eπ+(L) =
√
M2
π±(L) + (θ/L)2 + 2 θ∆ϑ/L+O(ξ2

π),

E′π+(L) =
√
M2
π±(L) + (2π + θ)2/L2 + 2 (2π + θ)∆ϑ/L+O(ξ2

π).

(6.8)

Here, Mπ0(L), Mπ±(L) are the pion masses in finite volume and for SU(2) ChPT, their

corrections are given from eq. (3.7) discarding the contributions of kaons and the eta meson.

The quantity,

∆ϑ = ξπ

∞∑
n=1

4i

Ln
K 2(λπ

√
n)

b√nc∑
n1=−b√nc

m(n, n1)n1ein1θ, (6.9)

corresponds to the first component of the extra term (3.20) in the configuration (6.4). We

refrain from presenting numerical results of the square radius as according to ref. [64] it is

more effective to correct the matrix elements of form factors and from those, extract the

square radii.

In figure 8a (resp. 8b) we represent the pion mass dependence of −δΓπ0

S (resp. −δΓπ+

S )

at q2 = q2
min. The logarithmic graphs illustrate the exponential decay O(e−λπ) of the

corrections. The corrections are mainly negative. For θ ∈ { 0, π/8, π/4, π/3 } the absolute

value of δΓπ
0

S increases (resp. that of δΓπ
+

S decreases) with the angle. Note that the

corrections reach the percentage level before entering yellow areas and they should be

subtracted when the scalar form factor is extracted from lattice data.
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Figure 8. Corrections of the matrix element of the scalar form factor at NLO.
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Figure 9. Mass corrections of pions beyond NLO.
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Mπ [GeV] δMπ0 R(Mπ0)

0.100 0.0240 0.0334(5)

0.120 0.0163 0.0234(5)

0.140 0.0113 0.0167(5)

0.160 0.0079 0.0121(4)

0.180 0.0057 0.0088(4)

0.200 0.0040 0.0065(3)

0.220 0.0029 0.0048(3)

0.240 0.0021 0.0038(2)

0.260 0.0015 0.0027(2)

0.280 0.0011 0.0020(2)

0.300 0.0008 0.0015(1)

0.320 0.0006 0.0012(1)

0.340 0.0004 0.0009(1)

0.360 0.0003 0.0007(1)

0.380 0.0002 0.0005(1)

0.400 0.0002 0.0004(0)

0.420 0.0001 0.0003(0)

0.440 0.0001 0.0002(0)

0.460 0.0001 0.0002(0)

0.480 0.0001 0.0001(0)

0.500 0.0000 0.0001(0)

(a) Mass corrections for θ = 0.

Mπ [GeV] δMπ0 R(Mπ0)

0.100 0.0050 0.0119(4)

0.120 0.0050 0.0102(4)

0.140 0.0043 0.0082(4)

0.160 0.0034 0.0065(4)

0.180 0.0027 0.0050(3)

0.200 0.0020 0.0039(3)

0.220 0.0015 0.0030(3)

0.240 0.0012 0.0023(2)

0.260 0.0009 0.0017(2)

0.280 0.0006 0.0013(2)

0.300 0.0005 0.0010(1)

0.320 0.0004 0.0008(1)

0.340 0.0003 0.0006(1)

0.360 0.0002 0.0005(1)

0.380 0.0001 0.0004(1)

0.400 0.0001 0.0003(0)

0.420 0.0001 0.0002(0)

0.440 0.0001 0.0002(0)

0.460 0.0000 0.0001(0)

0.480 0.0000 0.0001(0)

0.500 0.0000 0.0001(0)

(b) Mass corrections for θ = π/3.

Table 4. Comparison of corrections evaluated at NLO with ChPT and estimated beyond NLO

with asymptotic formulae. Here, we use L = 2.83 fm so that MπL = 2 for Mπ = Mphys
π± . The

uncertainties of R(Mπ0) originate from the errors of LECs contained in the integrals I(4)(Mπ0 , π0),

I(4)(Mπ0 , π±). Note that results with Mπ < 0.140 GeV should be taken with a grain of salt as they

are in the region where the p-regime is no more guaranteed.

6.3 Finite-volume corrections beyond NLO

6.3.1 Masses and extra terms of self-energies

In figure 9 and 10 we represent the mass corrections estimated with R(Mπ0), R(Mπ±). The

pion mass dependences of R(Mπ0), R(Mπ±) are represented in logarithmic plots whereas

the angle dependences in linear ones. In these graphs the bands of the uncertainty are

displayed for solid lines (i.e. for θ = 0 in figure 9 resp. for Mπ = 0.140 GeV in figure 10).

Bands of different colors refer to different values of L. The uncertainty bands are calculated

with the usual formula of the error propagation. As unique source of error, we have taken

the uncertainties on the LECs contained in the integrals I(4)(Mπ0 , π0), . . . , I
(4)
D (Mπ± , π

±).
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Figure 10. Mass corrections of pions beyond NLO.
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The logarithmic plots neatly illustrate the exponential decay O(e−λπ) of the correc-

tions. In figure 9a the lines are almost straight and can be distinguished for different angles.

In figure 9b the lines are exactly straight and are so close that they overlap in the graph.

This indicates that for small angles, R(Mπ0) is more sensitive to θ. The corrections are

significantly bigger than those at NLO. As illustration, we list in table 4a (resp. table 4b)

numerical values for δMπ0 , R(Mπ0) at L = 2.83 fm for θ = 0 (resp. for θ = π/3). In some

cases, R(Mπ0) is of order 50% with respect to δMπ0 . Such significant subleading effects

were already observed in finite volume with PBC, see ref. [39]. However, the comparison of

numerical results obtained from asymptotic formulae with amplitudes at two loops [13, 14]

has showed that subsubleading effects are small and that the expansion does have a good

converging behaviour for MπL > 2. We are confident that this is also true for TBC and

that our numerical estimates are reliable, at least for small angles (i.e. θ < π).

In figure 10 we display the angle dependences of R(Mπ0), R(Mπ±). We observe that

R(Mπ0) depends on θ as a cosine function. The corrections oscillate with a period of

2π and have maxima (resp. minima) at even (resp. odd) integer multiples of π. If we

consider Mπ = 0.197 GeV, the difference among maxima and minima is 5.4% at L = 2 fm.

This is a sizable effect and should be taken into account when physical observables are

extrapolated from lattice data. In figure 10b we observe that R(Mπ±) depends on θ as

(a + cos θ)
√

1 + θ2 with a > 0. This dependence originates from contributions O(ξ2
π) and

provides large corrections at large angles. However, one should here retain only results in

the interval θ ∈ [0, π]. The reason is, R(Mπ±) is derived by means of an expansion which

is valid for small external twisting angles. Considering Mπ = 0.197 GeV, the difference

among the local maximum and the local minimum in θ ∈ [0, π] is 0.2% at L = 2 fm. This

is a negligible effect. Note that the corrections estimated with R(MK±), R(Mη) are less

than a percent for small angles and can be neglected.

In figure 11 we plot the extra term ∆ϑµΣπ+
estimated by means of Rµ(ϑΣπ+ ). We

represent the first spatial component as it is the only one which is non-zero for configura-

tion (6.4). The values on the y-axis are in GeV since Rµ(ϑΣπ+ ) is a dimensionful quantity.

Uncertainty bands are displayed for θ = π/8 in figure 11a and for Mπ = 0.140 GeV in

figure 11b. From the logarithmic graph of figure 11a we observe that the extra term decays

exponentially as O(e−λπ). For θ ∈ {π/8, π/4, π/3 } its absolute value increases with the

angle. This can also be seen in figure 11b where Rµ(ϑΣπ+ ) is represented as a function of

θ. We observe that the extra term depends on θ almost exactly as a (negative) sine func-

tion. The zeros correspond to integer multiples of π and extrema are close to half-integer

multiples of π. In this graph, one should retain only results for θ ∈ [0, π] as by derivation,

Rµ(ϑΣπ+ ) is valid for small external angles. Note that Rµ(ϑΣK+ ) has similar dependences

on Mπ resp. θ and its absolute value is in general smaller than that of Rµ(ϑΣπ+ ).

6.3.2 Decay constants and extra terms in axialvector matrix elements

In figure 12 we represent the corrections of decay constants estimated with R(Fπ±),

R(FK±). The logarithmic graphs illustrate the exponential decay O(e−λπ) of the cor-

rections. The corrections are negative and for θ ∈ { 0, π/8, π/4, π/3 } their absolute val-

ues decrease with the angle. Note that the corrections may reach more than 10% before
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Figure 11. Extra term of positive pion beyond NLO. Note that in (a) the dark yellow area refers

to the region MπL < 2 for θ = π/8.
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Figure 12. Corrections of decay constants beyond NLO.
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Figure 13. Pion mass dependence of −Rµ(ϑAπ+ ) for µ = 1. Note that the dark yellow area refers

to the region MπL < 2 for θ = π/8.

entering yellow areas and they should be subtracted before decay constants are extracted

from lattice data.

In figure 13 we represent the extra term ∆ϑµAπ+
estimated with Rµ(ϑAπ+ ). We represent

the first component as it is the only one which is non-zero for configuration (6.4). Also this

extra term decays exponentially with λπ. Comparing figure 13 with figure 11a we observe

that for a fixed angle −Rµ(ϑAπ+ ) is smaller than −Rµ(ϑΣπ+ ). This difference is O(ξ2
π) and

is proportional to the extra term Rµ(ϑGπ+ ). A similar observation can be made for charged

kaons where the difference among Rµ(ϑAK+ ) and Rµ(ϑΣK+ ) is O(ξ2
π) and is proportional

to Rµ(ϑGK+ ).

6.3.3 Pseudoscalar coupling constants

In figure 14 we represent the pion mass dependence of −R(Gπ0) which is as well exponential.

In general, the corrections are negative and for θ ∈ { 0, π/8, π/4, π/3 } their absolute

value increases with the angle. In this case, the corrections are smaller than those at

NLO. This can be explained if we look at the contributions O(ξ2
π), see eq. (5.45). For

θ ∈ { 0, π/8, π/4, π/3 } the contribution originating from integral I(4)(Gπ0 , π0) is negative

but that from I(4)(Gπ0 , π±) is positive. As the negative contribution is smaller than the

positive one, the corrections estimated with −R(Gπ0) are smaller than those evaluated

with −δGπ0 at NLO.
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Figure 14. Pion mass dependence of −R(Gπ0).

6.3.4 Pion form factors

We consider pions at rest and estimate the corrections of the matrix elements of the scalar

form factor with R(Γπ
0

S ), R(Γπ
+

S ). In figure 15a [resp. 15b] we represent the pion mass

dependence of R(Γπ
0

S ) [resp. R(Γπ
+

S )] at q2 = 0. From the graphs we observe that the

corrections decay exponentially as O(e−λπ). In general, they are negative but they may

turn positive depending on the pion mass. Note that the corrections reach percentage level

before entering yellow areas and they should be subtracted when the scalar form factor is

extracted from lattice data.

7 Conclusions

In this work we studied the effects of a finite cubic volume with twisted boundary con-

ditions on pseudoscalar mesons. We applied chiral perturbation theory (ChPT) in the

p-regime and introduced twisting angles by means of a constant vector field, see ref. [4].

The corrections for masses, decay constants, pseudoscalar coupling constants were recalcu-

lated at next-to-leading order (NLO) and new results for pion form factors were presented.

In the calculations we adopted the mass definition of refs. [4, 7] which treats new extra

terms as renormalization terms of twisting angles, and argued in some detail about the

reasons behind this choice. These extra terms originate from the breaking of the cubic

invariance and can be reabsorbed in the on-shell conditions modifying the mass definition

in finite volume. We found that the Feynman-Hellmann theorem [18, 19] as well as the

Ward-Takahashi identity [20, 21] are satisfied. To prove the Ward-Takahashi identity we
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Figure 15. Corrections of matrix elements of the scalar form factor beyond NLO.
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constructed an effective field theory for charged pions invariant under gauge transforma-

tions which reproduces results obtained with ChPT.

We generalized the derivation of Lüscher [11] and derived asymptotic formulae for

twisted boundary conditions. We showed that the asymptotic formulae for masses, decay

constants, pseudoscalar coupling constants are related by means of chiral Ward identities

where extra terms satisfy such relations in an independent way. Applying asymptotic

formulae in combination with ChPT, we estimated corrections beyond NLO and found

that, as in the case of PBC, NNLO corrections can be very significant, indeed almost as

large as NLO corrections. This underlines the importance of using asymptotic formulae

combined with NLO chiral calculations of the relevant infinite-volume amplitude to reliably

estimate finite-volume corrections. From our numerical analysis we see that the corrections

can be comparable (or even larger) than the statistical precision reached in simulations of

lattice QCD and hence, should be taken into account.
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A Sums in finite volume

We list some results which are useful in the evaluation of loop diagrams in finite volume.

For convenience, we define∫∑′
g(k) :=

1

L3

∑
~k= 2π

L
~m

~m∈Z3

∫
R

dk0

2π
g(k)−

∫
R4

d4k

(2π)4
g(k), (A.1)

where g is a generic function in momentum space and L is the side length of the finite cubic

box. The right-hand side of the equation represents the difference among contributions in

finite and infinite volume. For loop diagrams encountered in this work, this difference is

finite and can be calculated by means of the Poisson resummation formula [29]:∫∑′
g(k) =

∑
~n∈Z3

|~n|6=0

∫
R4

d4k

(2π)4
g(k) eiL~n

~k. (A.2)

The first group of results is∫∑′ Γ(r)

i
[
M2
P − (k + ϑ)2

]r =
M2
P

(4π)2
gr(λP , ϑ),∫∑′ Γ(r) (k + ϑ)µ

i
[
M2
P − (k + ϑ)2

]r = −
M2
P

(4π)2
fµr (λP , ϑ),∫∑′ Γ(r) (k + ϑ)µ(k + ϑ)ν

i
[
M2
P − (k + ϑ)2

]r = −
M2
P

(4π)2

[
gµν

2
gr−1(λP , ϑ) + hµνr (λP , ϑ)

]
,

(A.3)
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for r ∈ N. Here, Γ(r) is the gamma function, gµν is the metric of Minkowski space-time,

ϑµ =
( 0
~ϑ

)
is a twisting angle and λP = MPL. The functions on the right-hand side can be

expressed in terms of modified Bessel functions of the second kind, K r(x). They read

gr(λP , ϑ) =
∑
~n∈Z3

|~n|6=0

2

M2
P

[
L2|~n|
2λP

]r−2

K r−2(λP |~n|) eiL~n
~ϑ,

fµr (λP , ϑ) =
∑
~n∈Z3

|~n|6=0

iL

M2
P

nµ
[
L2|~n|
2λP

]r−3

K r−3(λP |~n|) eiL~n
~ϑ,

hµνr (λP , ϑ) =
∑
~n∈Z3

|~n|6=0

L2

2M2
P

nµnν
[
L2|~n|
2λP

]r−4

K r−4(λP |~n|) eiL~n
~ϑ,

(A.4)

with nµ =
(

0
~n

)
. Corrections of masses and decay constants were calculated using the

results (A.3) for r = 1.

To evaluate loop diagrams with two different propagators one can use the Feynman

parametrization,
1

AB
=

∫ 1

0

dz[
zA+ (1− z)B

]2 . (A.5)

Here, we consider A = M2
P − (k + ϑ)2 and B = M2

P − (k + ϑ+ q)2 where qµ is an external

momentum. The second group of results we present, is∫∑′ Γ(r)

i [AB]
r
2

=
M2
P

(4π)2

∫ 1

0
dz gr(λz, q, ϑ),∫∑′ Γ(r) (k + ϑ)µ

i [AB]
r
2

= −
M2
P

(4π)2

∫ 1

0
dz [fµr (λz, q, ϑ) + (1− z)qµ gr(λz, q, ϑ)] ,∫∑′ Γ(r) (k + ϑ)µ(k + ϑ)ν

i [AB]
r
2

=
M2
P

(4π)2

∫ 1

0
dz {(1− z) [fµr (λz, q, ϑ)qν + fνr (λz, q, ϑ)qµ]}

−
M2
P

(4π)2

∫ 1

0
dz

[
gµν

2
gr−1(λz, q, ϑ) + hµνr (λz, q, ϑ)

]
+
M2
P

(4π)2

∫ 1

0
dz
[
(1− z)2qµqν gr(λz, q, ϑ)

]
,

(A.6)

with λz = MPL
√

1 + z(z − 1)q2/M2
P . The functions on the right-hand side can be ex-

pressed as

gr(λz, q, ϑ) =
∑
~n∈Z3

|~n|6=0

2

M2
P

[
L2|~n|
2λz

]r−2

K r−2(λz|~n|) eiL~n
[
~ϑ+~q(1−z)

]
,

fµr (λz, q, ϑ) =
∑
~n∈Z3

|~n|6=0

iL

M2
P

nµ
[
L2|~n|
2λz

]r−3

K r−3(λz|~n|) eiL~n
[
~ϑ+~q(1−z)

]
,

hµνr (λz, q, ϑ) =
∑
~n∈Z3

|~n|6=0

L2

2M2
P

nµnν
[
L2|~n|
2λz

]r−4

K r−4(λz|~n|) eiL~n
[
~ϑ+~q(1−z)

]
.

(A.7)
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For q2 = 0 the functions gr(λz, q, ϑ), fµr (λz, q, ϑ), hµνr (λz, q, ϑ) reduce to the expressions of

eq. (A.4). Note that if ~q = 2π
L
~l with ~l ∈ Z3, the results (A.6) can be simplified by means

of substitutions z 7→ (1 − z) and ~n 7→ −~n. This leads to the results of section 3.2 and

appendix B.2.

B Gauge symmetry in finite volume

To explain the results of section 3.2 we construct an an effective theory for charged pions

which is invariant under electromagnetic gauge transformations. The theory reproduces

the expression obtained at vanishing momentum transfer and indicates that the gauge

symmetry is preserved in this case. Relying on this observation, we show that the Ward-

Takahashi identity [20, 21] holds in finite volume as long as the momentum transfer is

discrete. Only the differential form of the identity — the Ward identity [34] — is violated

due to the discretization of the spatial components. These considerations were presented

for PBC in ref. [37] and are here generalized to TBC.

B.1 Construction of a gauge invariant effective theory

We consider a finite cubic box of side length L on which we impose TBC. In presence of

two light flavors, we can introduce the electromagnetic gauge field through the external

vector field,

vµ = −eAµ(x)Q. (B.1)

Here, e is the elementary electric charge of the positron and Q = diag(2/3,−1/3). As long

as Q is diagonal we may redefine the fields so that they are periodic and introduce the

twisting angles by means of a constant vector field.

Since Aµ(x) as well as other fields are periodic, we can proceed in a similar way as in

ref. [37] to construct the effective theory. The only difference is that the effective Lagrangian

contains additional terms due to the constant vector field proportional to the twisting

angles. At low energies, the relevant degrees of freedom are pions and for simplicity, we just

consider the charged ones in the following. In absence of the electromagnetic interaction

the Lagrangian of the effective theory reads

L =
1

4
〈D̂µΦ[D̂µΦ]† −M2

π±(L) Φ†Φ〉 , where Φ =

(
0

√
2 π+

√
2 π− 0

)
, (B.2)

and Mπ±(L) is the mass of charged pions in finite volume. The kinetic term contains the

derivative D̂µΦ = ∂µΦ− i
[
wµϑ,Φ

]
with

wµϑ =
(
ϑµ
π+ + ∆ϑµΓπ+

) τ3

2
. (B.3)

The constant vector field wµϑ is proportional to the third Pauli matrix, τ3 = diag(1,−1)

and introduces the twisting angle ϑµ
π+ as well as the extra term ∆ϑµΓπ+

. Here, ϑµ
π+ , ∆ϑµΓπ+

break Lorentz invariance. For ϑµ
π+ → 0 the field wµϑ disappears and the cubic invariance

is restored: in this case the theory respects PBC. Note that Mπ±(L), ∆ϑµΓπ+
implicitly

depend on parameters of the effective theory (like the LECs).
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To add the electromagnetic interaction we must include all possible operators which

are invariant under gauge transformations. This can be achieved using Wilson loops, see

ref. [37]. We limit ourselves to include operators containing the zero mode of the gauge field

Aµ(x) as these allow us to study the electromagnetic form factor at vanishing momentum

transfer. Proceeding in a similar way as ref. [37] we obtain the following effective Lagrangian

in presence of the electromagnetic interaction,

L =
1

4
〈D̂µΦ[D̂µΦ]† −M2

π±(L) Φ†Φ〉− i

2
Q(L)µνW

µ
− 〈Q[(D̂νΦ)†Φ− Φ†(D̂νΦ)]〉+ . . . , (B.4)

where D̂µΦ = ∂µΦ + ieAµ(x)[Q,Φ] − i
[
wµϑ,Φ

]
. The operator Wµ

− = (
0
~W−

) is constructed

from Wilson loops, see ref. [37]. The expression (B.4) needs some explanations. The dots

at the end indicate that we have just written down the relevant terms of the effective

Lagrangian. The most general effective Lagrangian contains terms with arbitrary many

insertions of Wµ
−, which we are not writing explicitly. The expansion of Wµ

− starts with a

term linear in the zero mode which allows us to study the electromagnetic form factor at

vanishing momentum transfer. The tensor Q(L)µν breaks the Lorentz as well as the cubic

invariances and must be determined by matching. For ϑµ
π+ = 0 we expect that Q(L)µν

reproduces the result for PBC [37] and that it disappears for L→∞.

We match Q(L)µν with the results (3.27) of section 3.2. From the Lagrangian (B.4) we

take the terms linear in the zero mode and evaluate them at the first order in e. We obtain

〈π±|Jµ|π±〉 = 2eQe

[
(p+ ϑπ± + ∆ϑΓπ±

)µ +
L

3
(p+ ϑπ±)νQ(L)µν

]
+O(e2), (B.5)

where Qe = ±1 is the electric charge of π± in elementary units. Matching this expression

with eq. (3.27) we find

Q(L)µν =
6

L
ξπ hµν2 (λπ, ϑπ+), (B.6)

where hµν2 (λπ, ϑπ+) is defined in eq. (A.4). For ϑµ
π± = 0 the tensor (B.6) coincides with the

result of eq. (33) of ref. [37].

The effective theory of eq. (B.4) reproduces the expression of the vector form factor

at vanishing momentum transfer. The presence of Wilson loops ensures that the theory

is invariant under gauge transformations. As long as Aµ(x) is periodic this invariance

is preserved. Starting from this observation, we show in appendix B.2 that the Ward-

Takahashi identity holds for TBC and that the corrections to the vector form factor are

related to inverse propagators.

B.2 Ward-Takahashi identity

In infinite volume gauge symmetry implies that the electromagnetic vertex function Γµ

satisfies the Ward-Takahashi identity [20, 21]:

− iqµΓµ = iQe
[
∆−1(p′)−∆−1(p)

]
. (B.7)

Here, qµ = (p′ − p)µ is the momentum transfer, ∆(p′) resp. ∆(p) are the propagators of

outgoing and incoming particles and Qe = Q/e is the electric charge of external particles
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in units of the positron charge. In the limit qµ → 0, the identity tends to a differential

form, known as Ward identity [34]:

− iΓµ = iQe
∂

∂pµ
∆−1(p). (B.8)

For external charged pions, we can calculate the electromagnetic vertex function from the

matrix elements, iΓµ = 〈π±(p′)|V µ
3 |π±(p)〉. In ref. [32] these matrix elements are evaluated

in ChPT at NLO and amount to

Γµ = Qe

{
(p′ + p)µ

[
1 + f(q2)

]
− qµ

q2
(p′2 − p2) f(q2)

}
,

f(q2) =
1

6F 2
π

[(
q2 − 4M2

π

)
J̄(q2) +

q2

(4π)2

(
¯̀
6 −

1

3

)]
+O(q4),

(B.9)

where J̄(q2) is the finite part of the loop integral (C.11). Here, we display all terms, even

those that disappear as external momenta are on-shell. For on-shell momenta only the

term proportional to (p′+p)µ contributes and provides the vector form factor, see ref. [32].

One can show that the vertex function (B.9) satisfies the Ward-Takahashi identity by

contracting with qµ and arranging the surviving terms in inverse propagators. Taking the

limit qµ → 0, the same vertex function satisfies the Ward identity, indicating that the

electromagnetic current as well as the electric charge are conserved.

In finite volume the vertex function receives additional corrections: Γµ(L) = Γµ+∆Γµ.

The first term corresponds to eq. (B.9) with momenta shifted by ϑµ
π± ,

Γµ = Qe

{
Pµ[1 + f(q2)]− qµ

q2
(Pνq

ν) f(q2)

}
, (B.10)

where qµ, Pµ are defined in eqs. (3.19), (3.22). The second term includes corrections arising

from loop diagrams,

∆Γµ = Qe

{
Pµ G1 +2 Hµν

2 Pν − qµ Fν2 Pν −
Pνq

ν

q2
[qµ G1 +2 Hµρ

2 qρ − qµ Fρ2 qρ]

}
+Qe

{
2∆ϑµΓπ±

+
[
2M2

π −
(
p′ + ϑπ±

)2 − (p+ ϑπ±)2 − q2
]

∆Θµ
π±

}
.

(B.11)

The Lorentz vectors ∆ϑµΓπ±
, ∆Θµ

π± are given in eqs. (3.20), (3.22) and the new functions

are defined as

G1 = ξπ

[ ∫ 1

0
dz g1(λz, q, ϑπ+)− g1(λ, ϑπ+)

]
,

Fµ2 = ξπ

∫ 1

0
dz (1− 2z) fµ2 (λz, q, ϑπ+),

Hµν
2 = ξπ

∫ 1

0
dz hµν2 (λz, q, ϑπ+).

(B.12)
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In the case of on-shell momenta, the second term ∆Γµ reduces to the corrections (3.26).

We note that

Fµ2 =
2

q2
qν Hµν

2 ,

∆Θµ
π± = ±ξπ

∫ 1

0
dz [fµ2 (λz, q, ϑπ+) + qµ (1/2− z) g2(λz, q, ϑπ+)]

= ±ξπ
∫ 1

0
dz

{
fµ2 (λz, q, ϑπ+)− qµ

q2
[qν fν2(λz, q, ϑπ+)]

}
,

(B.13)

if qµ is non-vanishing and if ~q = 2π
L
~l with ~l ∈ Z3 \ {~0 }. These relations can be obtained

by partial integration and by using properties of the derivatives of the modified Bessel

functions of second kind.

We now show that in this case, the Ward-Takahashi identity holds in finite volume.

We contract the vertex function with qµ and use the relations (B.13). The term qµ∆Θµ
π±

disappears and many others mutually cancel. The surviving terms can be arranged to form

inverse propagators,

−iqµΓµ(L) = −iQe
[
qµP

µ + 2qµ∆ϑµΓπ±

]
=

= iQe

[
(p+ ϑπ±)2 + 2(p+ ϑπ±)µ∆ϑµΓπ±

−
(
p′ + ϑπ±

)2 − 2
(
p′ + ϑπ±

)
µ
∆ϑµΓπ±

]
= iQe

[
∆−1
π±,L(p′)−∆−1

π±,L(p)
]
. (B.14)

In the last step of eq. (B.14) we added terms canceling each other and used the fact that

at NLO the extra terms ∆ϑµΓπ±
coincide with those of self-energies, ∆ϑµΣπ±

. This allows

us to form the propagators with self-energies ∆Σπ± at NLO,

∆π±,L(p) =
1

M2
π − (p+ ϑπ±)2 −∆Σπ±

. (B.15)

Eq. (B.14) shows that the Ward-Takahashi identity holds even for TBC. Necessary

conditions are: the discretization of qµ and that ∆ϑµΓπ±
coincide with ∆ϑµΣπ±

. Note that

the limit qµ → 0 can not be taken due to the discretization of qµ. This invalidates the

differential form of the identity, i.e. the Ward identity (B.8). In this case, the Ward identity

is violated for the spatial components but it remains valid for the zeroth component.

C Terms S(4)

We list some explicit expressions of the terms S(4) introduced in section 5 indicating the

equation where they appear. Other terms S(4) can be found in appendix A of ref. [14].

C.1 Pions

We begin with the terms S(4) appearing in the asymptotic formulae for pions. Note that

the functions Rk0 , (Rk0)′, (Rk0)′′, Qk0, (Qk0)′ are defined in eq. (C.9).
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The terms appearing in eq. (5.35) are

S(4)(Mπ0 , π0) = 3R0
0 − 8R1

0 − 8R2
0 and S(4)(Mπ0 , π±) =

4

3

(
R0

0 + 2R1
0 − 4R2

0

)
. (C.1)

The terms appearing in eq. (5.39) are

S
(4)
D (Mπ± , π

0) =
4

3

(
R1

0 − 4R2
0

)
− 4

3

[
(R1

0)′ − 2(R2
0)′ − 4(R3

0)′
]
,

S
(4)
D (Mπ± , π

±) = −4

3

(
5R1

0 + 16R2
0

)
− 2

3

[
11(R1

0)′ + 20(R2
0)′ − 32(R3

0)′
]
.

(C.2)

The term appearing in eq. (5.40) is

S(4)(ϑΣπ+ ) = −1

3

(
11R1

0 + 20R2
0 − 8R3

0

)
. (C.3)

The terms appearing in eq. (5.43) are

S
(4)
D (Fπ± , π

0) = +
4

3

(
R1

0 − 4R2
0

)
− 2

3

[
3(R1

0)′ − 8(R2
0)′ − 8(R3

0)′
]

+
2

3

[
(R1

0)′′ − 2(R2
0)′′ − 4(R3

0)′′
]
,

S
(4)
D (Fπ± , π

±) = −8

3

(
R1

0 + 8R2
0

)
+

2

3

[
3(R1

0)′ + 8(R2
0)′ + 32(R3

0)′
]

+
1

3

[
11(R1

0)′′ + 20(R2
0)′′ − 32(R3

0)′′
]
.

(C.4)

The term appearing in eq. (5.44) is

S(4)(ϑAπ+ ) = −2

3

(
R1

0 + 4R2
0 − 4R3

0

)
+

1

6

[
11(R1

0)′ + 20(R2
0)′ − 8(R3

0)′
]
. (C.5)

The terms appearing in eq. (5.45) are

S(4)(Gπ0 , π0) = −3R0
0 + 4R1

0 −
1

2

[
3(R0

0)′ − 8(R1
0)′ − 8(R2

0)′
]

S(4)(Gπ0 , π±) = −2

3

[
(R0

0)′ + 2(R1
0)′ − 4(R2

0)′
]
.

(C.6)

The terms appearing in eq. (5.50) are

S(4)(Γπ
0

S , π
0) = 5

(
3R0

0 − 8R1
0 − 8R2

0

)
− (3Q0

0 − 8Q1
0 − 8Q2

0),

S(4)(Γπ
0

S , π
±) =

20

3

(
R0

0 + 2R1
0 − 4R2

0

)
− 4

3

(
Q0

0 + 2Q1
0 − 4Q2

0

)
.

(C.7)
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The terms appearing in eqs. (5.51), (5.52), (5.53) are

S(4)(Γπ
±
S , π0) =

10

3

(
R0

0 + 2R1
0 − 4R2

0

)
− 2

3

(
Q0

0 + 2Q1
0 − 4Q2

0

)
,

S(4)(Γπ
±
S , π±) =

5

3

(
11R0

0 − 20R1
0 − 32R2

0

)
− 1

3

(
11Q0

0 − 20Q1
0 − 32Q2

0

)
,

S
(4)
D (Γπ

±
S , π0) = +

4

3
[4− Cπ± ]

[
R1

0 − 4R2
0 − (R1

0)′ + 2(R2
0)′ + 4(R3

0)′
]

− 4

3

[
Q1

0 − 4Q2
0 − (Q1

0)′ + 2(Q2
0)′ + 4(Q3

0)′
]
,

S
(4)
D (Γπ

±
S , π±) = −2

3
[4− Cπ± ]

[
10R1

0 + 32R2
0 + 11(R1

0)′ + 20(R2
0)′ − 32(R3

0)′
]

+
2

3

[
10Q1

0 + 32Q2
0 + 11(Q1

0)′ + 20(Q2
0)′ − 32(Q3

0)′
]
,

S(4)(Θπ+) = −5

3

(
11R1

0 + 20R2
0 − 8R3

0

)
+

1

3

(
11Q1

0 + 20Q2
0 − 8Q3

0

)
.

(C.8)

Here, Cπ± = Mπ/(Mπ +Dπ±) and Dπ± =

√
M2
π + |~ϑπ± |2 −Mπ.

The functions Rk0 , (Rk0)′, (Rk0)′′, Qk0, (Qk0)′ entering the above expressions are defined as

(Rk0)( ,′,′′) = (Rk0)( ,′,′′)(λπ|~n|)

=

{
Re

Im

∫
R

dy yke−λπ |~n|
√

1+y2
g( ,′,′′)(2 + 2iy) for

{
k even

k odd
,

(Qk0)( ,′) = (Qk0)( ,′)(λπ|~n|) (C.9)

=

{
Re

Im

∫
R

dy ykλπ|~n|
√

1 + y2e−λπ |~n|
√

1+y2
g( ,′)(2 + 2iy) for

{
k even

k odd
,

where

g(x) = σ log

(
σ − 1

σ + 1

)
+ 2 with σ =

√
1− 4/x, (C.10)

and g′(x), g′′(x) are the first and second derivative of g(x) with respect to x. Note that

g(x) = (4π)2 J̄(xM2
π) with J̄(q2) = J(q2) − J(0) the loop-integral function evaluated in

d = 4 dimensions,

J(q2) =

∫
ddk

(2π)d
1

i [M2
π − (k + q)2] [M2

π − k2]
. (C.11)

C.2 Kaons

We list the terms S(4) appearing in the asymptotic formulae for kaons. Note that the

functions SklPQ are defined in eq. (C.16). In the next expressions, we denote the ratio of

mass squares as xPQ = M2
P /M

2
Q for P,Q = π,K, η.
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The term appearing in eq. (5.55) is

S
(4)
D (MK± , π

0) =

{
− 5

8
(1 + xπK)S1,1

Kπ −
3

16
(1 + xπK)2S1,2

Kπ +
13

8
(1− xπK)S1,3

Kπ

+
3

8
(1− x2

πK)S1,4
Kπ −

19

4

(
S2,1
Kπ − S

3,2
Kπ

)
− 5

4
(1 + xπK)S2,2

Kπ

+
13

4
(1− xπK)S2,4

Kπ + 3
(
xπKS

1,6
Kπ − S

2,5
Kπ + S3,6

Kπ

)
− 1

8
(1 + xπK)S1,1

ηK

− 1

48
(1 + xπK)2S1,2

ηK +
3

8
(1− 2xπK + xηK)S1,3

ηK −
1

4
(1 + xπK)S2,2

ηK

+
1

8
(1 + xπK)(5− 2xπK − 3xηK)S1,4

ηK −
3

4

(
S2,1
ηK − S

3,2
ηK

)
+

3

4
(1− 2xπK + xηK)S2,4

ηK + 3
(
xπKS

1,6
ηK − S

2,5
ηK + S3,6

ηK

)}
x
−1/2
πK . (C.12)

The term appearing in eq. (5.56) is

S(4)(ϑΣK+ ) =

{
− 3

16
(1 + xπK)2S1,1

Kπ +
3

8
(1− x2

πK)S1,3
Kπ −

5

4
(1 + xπK)S2,1

Kπ

+
13

4
(1− xπK)S2,3

Kπ +
3

4
S3,1
Kπ + 3

(
xπKS

1,5
Kπ + S3,5

Kπ

)
− 1

48
(1 + xπK)2S1,1

ηK

+
1

8
(1 + xπK)

(
5− 2xπK − 3xηK

)
S1,3
ηK −

1

4
(1 + xπK)S2,1

ηK

+
3

4
(1− 2xπK + xηK)S2,3

ηK +
3

4
S3,1
ηK + 3

(
xπKS

1,5
ηK + S3,5

ηK

)}
x−1
πK . (C.13)

The term appearing in eq. (5.58) is

S
(4)
D (FK± , π

0) =

{
− 5

16
(1+xπK)(S1,1

Kπ−S
1,2
Kπ)+

1

8
(16−5xπK)S1,3

Kπ−
1

4
(4−7xπK)S1,4

Kπ

+
3

32
(1+xπK)2S1,7

Kπ−
3

16
(1−x2

πK)S1,8
Kπ+

1

8
(14−5xπK)S2,2

Kπ

+
1

4
(16−5xπK)S2,4

Kπ+
5

8
(1+xπK)S2,7

Kπ−
13

8
(1−xπK)S2,8

Kπ

+
3

2

(
xπKS

1,6
Kπ−xπKS

1,9
Kπ+S2,6

Kπ−S
3,9
Kπ

)
− 19

8

(
2S2,1

Kπ−2S3,2
Kπ+S3,7

Kπ

)
+

5

2

(
S2,3
Kπ−S

3,4
Kπ

)
−3
(
S2,5
Kπ−S

3,6
Kπ

)
− 1

16
(1+xπK)(S1,1

ηK−S
1,2
ηK)

+
1

8
(4−2xπK+3xηK)S1,3

ηK+
1

4
(2+2xπK−3xηK)S1,4

ηK

− 1

16
(1+xπK)

(
5−2xπK−3xηK

)
S1,8
ηK+

1

96
(1+xπK)2S1,7

ηK

+
1

8
(2−xπK)S2,2

ηK+
1

4
(4−2xπK+3xηK)S2,4

ηK−
3

8
(1−2xπK+xηK)S2,8

ηK

+
3

2

(
S2,3
ηK−S

3,4
ηK

)
− 3

8

(
2S2,1

ηK−2S3,2
ηK+S3,7

ηK

)
+

1

8
(1+xπK)S2,7

ηK

+
3

2

(
xπKS

1,6
ηK−xπKS

1,9
ηK+S2,6

ηK−S
3,9
ηK

)
−3
(
S2,5
ηK−S

3,6
ηK

)}
x
−1/2
πK . (C.14)
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The term appearing in eq. (5.59) is

S(4)(ϑAK+ ) =

{
+

3

32
(1 + xπK)2S1,2

Kπ −
3

16
(1− 5xπK)S1,3

Kπ −
3

16
(1− x2

πK)S1,4
Kπ

− 5

8
(1 + xπK)

(
S2,1
Kπ − S

2,2
Kπ

)
+

1

4
(16− 5xπK)S2,3

Kπ −
13

8
(1− xπK)S2,4

Kπ

+
3

4
S3,1
Kπ −

3

8
S3,2
Kπ −

5

2
S3,3
Kπ + 3S3,5

Kπ +
3

2

(
xπKS

1,5
Kπ − xπKS

1,6
Kπ − S

3,6
Kπ

)
+

1

96
(1 + xπK)2S1,2

ηK +
1

16
(11 + 2xπK − 9xηK)S1,3

ηK

− 1

16
(1 + xπK)(5− 2xπK − 3xηK)S1,4

ηK −
1

8
(1 + xπK)

(
S2,1
ηK − S

2,2
ηK

)
+

1

4
(4− 2xπK + 3xηK)S2,3

ηK −
3

8
(1− 2xπK + xηK)S2,4

ηK +
3

4
S3,1
ηK −

3

8
S3,2
ηK

− 3

2
S3,3
ηK + 3S3,5

ηK +
3

2

(
xπKS

1,5
ηK − xπKS

1,6
ηK − S

3,6
ηK

)}
x−1
πK . (C.15)

The functions Sk,lPQ entering the above expressions are defined as

Sk,lPQ = Sk,lPQ(λπ|~n|) (C.16)

=

{
Re

Im
Nx

(k+1)/2
πK

∫
R

dy yke−λπ |~n|
√

1+y2
g

(l)
PQ(M2

K+M2
π+2iMKMπy), for

{
k even

k odd
.

Here, N = (4π)2 and

g
(1)
PQ(x) = J̄PQ(x), g

(2)
PQ(x) = M2

K J̄
′
PQ(x), g

(7)
PQ(x) = M4

K J̄
′′
PQ(x),

g
(3)
PQ(x) = KPQ(x), g

(4)
PQ(x) = M2

K K
′
PQ(x), g

(8)
PQ(x) = M4

K K
′′
PQ(x),

g
(5)
PQ(x) = M̄PQ(x), g

(6)
PQ(x) = M2

K M̄
′
PQ(x), g

(9)
PQ(x) = M4

K M̄
′′
PQ(x).

(C.17)

The explicit forms of g
(l)
PQ(x) were presented in ref. [50]. They can be expressed in terms

of the loop-integral function J̄PQ(q2) = JPQ(q2)− JPQ(0) evaluated in d = 4 dimensions,

JPQ(q2) =

∫
ddk

(2π)d
1

i
[
M2
P − (k + q)2

][
M2
Q − k2

] . (C.18)

Using the abbreviations (t = q2, M = MP , m = MQ),

J̄(t) = J̄PQ(t), K(t) = KPQ(t) M̄(t) = M̄PQ(t)

∆ = M2 −m2, Σ = M2 +m2, ρ = (t+ ∆)2 − 4tM2,

the above functions take the forms

J̄(t) =
1

2N

[
2 +

∆

t
ln
m2

M2
− Σ

∆
ln
m2

M2
−
√
ρ

t
ln

(t+
√
ρ)2 −∆2

(t−√ρ)2 −∆2

]
,

K(t) =
∆

2t
J̄(t),

M̄(t) =
1

12t
[t− 2Σ]J̄(t) +

∆2

3t2
J̄(t) +

1

18N
− 1

6Nt

[
Σ +

2M2m2

∆
ln
m2

M2

]
.

(C.19)
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We conclude with a remark on the use of the loop-integral functions in the asymptotic

formulae. The loop functions (C.19) need to be evaluated for complex values of their

arguments. For J̄PQ(M2
P+M2

Q+2iMPMQy) there is an ambiguity due to the negative value

of ρ = −4M2
PM

2
Q(1 + y2), which (C.19) does not resolve explicitly. An explicit analytic

continuation was provided in ref. [14] but unfortunately was not correct. The correct

prescription is as follows: take the positive value of the square root
√
ρ = 2iMPMQ

√
1 + y2

for which the logarithm in (C.19) becomes (t = M2
P +M2

Q + 2iMPMQ y)

ln
(t+
√
ρ)2 −∆2

(t−√ρ)2 −∆2
= ln

(
1 + y2

) 1
2 + y

(1 + y2)
1
2 − y

+ iπ, for all y ∈ R . (C.20)
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