PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: April 26, 2016

REVISED: July 4, 2016
ACCEPTED: July 10, 2016
PUBLISHED: July 25, 2016

N = 2 supersymmetric field theories on 3-manifolds
with A-type boundaries

Francesco Aprile® and Vasilis Niarchos®

@STAG Research Centre & Physics and Astronomy € Mathematical Sciences,
University of Southampton,
Highfield, Southampton SO17 1BJ, U.K.

bCrete Center for Theoretical Physics, Institute of Theoretical and Computational Physics,
Crete Center for Quantum Complezity and Nanotechnology,

Department of Physics, University of Crete,

Heraklion 71303, Greece

E-mail: F.Aprile@soton.ac.uk, niarchos@physics.uoc.gr

ABSTRACT: General half-BPS A-type boundary conditions are formulated for N' = 2 su-
persymmetric field theories on compact 3-manifolds with boundary. We observe that under
suitable conditions manifolds of the real A-type admitting two complex supersymmetries
(related by charge conjugation) possess, besides a contact structure, a natural integrable
toric foliation. A boundary, or a general co-dimension-1 defect, can be inserted along any
leaf of this preferred foliation to produce manifolds with boundary that have the topology of
a solid torus. We show that supersymmetric field theories on such manifolds can be endowed
with half-BPS A-type boundary conditions. We specify the natural curved space general-
ization of the A-type projection of bulk supersymmetries and analyze the resulting A-type
boundary conditions in generic 3d non-linear sigma models and YM/CS-matter theories.

KEYWORDS: Supersymmetric gauge theory, Field Theories in Lower Dimensions, Super-
symmetric Effective Theories

ARX1v EPRINT: 1604.01561

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. doi:10.1007/JHEP07(2016)126


mailto:F.Aprile@soton.ac.uk
mailto:niarchos@physics.uoc.gr
http://arxiv.org/abs/1604.01561
http://dx.doi.org/10.1007/JHEP07(2016)126

Contents

1 Introduction

2 Review of rigid supersymmetry on curved 3-manifolds

2.1
2.2

Geometry of M3

Supersymmetric multiplets and transformations
2.2.1 Chiral and the anti-chiral multiplets
2.2.2 Real and gauge multiplets

2.2.3 Curved D- and F-terms

3 Manifold decomposition for curved A-type backgrounds

3.1
3.2
3.3
3.4
3.5

Supersymmetric foliation

Topology and manifold decomposition

Clifford algebra and bilinears at the boundary
Twisting and phases

Examples: spheres and their squashings

3.5.1 Ellipsoid

3.5.2  On U(1) fibrations and non A-type geometries

4 Boundary effects in theories with rigid supersymmetry

4.1
4.2

Generalized A-type projections on supersymmetry
Bulk A-type supersymmetries and BPS equations

5 N = 2 Lagrangians

5.1

5.2

N = 2 non-linear sigma models

5.1.1 General Kéhler interactions

5.1.2 Superpotential interactions

5.1.3 Variation under supersymmetry
5.1.4 Digression on target space geometry
N = 2 gauge theories coupled to matter
5.2.1 YM and CS theories

5.2.2 Matter couplings

5.2.3 Variation under supersymmetry

6 Boundary conditions: a preview

6.1

6.2

The boundary value problem

6.1.1 Fermions

6.1.2 Vectors

6.1.3 Scalars

Path integral and closure under supersymmetry

© 00 ~J Ut

10

10
11
14
15
16
18
18
20

23
24
25

27
27
28
29
30
30
32
32
33
33

34
35
35
36
37
37



7 Boundary conditions I 38

7.1 Non-linear sigma models 38
7.1.1 General equations 38

7.1.2  Solutions in flat space 40

7.1.3 Solutions in curved space 42

7.2 Real multiplets 44
7.3 Closure under supersymmetry 45

8 Boundary conditions II 46
8.1 Gauge sector 47
8.1.1 Description and summary of results 47

8.1.2 Technical details 50

8.2 Matter sector 52
8.3 Closure under supersymmetry 54
8.3.1 Gauge sector 54

8.3.2 Matter sector 55

A Conventions 56
B Factorization of bilinears 58

1 Introduction

The study of supersymmetric quantum field theories on rigid curved backgrounds in di-
verse spacetime dimensions has been a powerful source of new non-perturbative results in
recent years. So far, a rather complete and systematic understanding of such results has
been obtained for supersymmetric field theories on closed manifolds. Most notably, these
theories can be engineered by taking appropriate rigid limits of certain supergravity the-
ories. This framework constrains the background geometry and determines the couplings
of the field theory to the curvature and the auxiliary background fields in the supergravity
multiplet [1-3]. Partition functions and other supersymmetric observables can then be
evaluated exactly with the powerful technique of supersymmetric localization providing a
new window into non-perturbative physics in quantum field theory. Some of the original
work in this direction in two, three, four, and five spacetime dimensions includes [4-11].

Analogous situations on manifolds with boundary, or more generally, on spaces with
co-dimension-1 defects, are comparatively much less elaborated upon. There are two key
aspects of this story one would like to develop systematically. The first aspect is related
to the geometric properties of boundaries. Given a fixed bulk supergravity background
that supports supersymmetric field theories, what restrictions should be imposed on the
geometry of a co-dimension-1 surface to preserve a subset of the bulk supersymmetry? The
second aspect is related more directly to the specific dynamic properties of the field theory
in question, in particular, the boundary conditions that can be imposed on the defect.



Regarding the first point, it is immediately clear that since the commutator of su-
persymmetries squares to isometries on the compact manifold, the boundary should be
oriented along directions parallel to these isometries, in order to preserve the correspond-
ing supersymmetries. Moreover, one can ask if supersymmetry puts any constraints on
co-dimension-1 foliations of a compact manifold. A foliation preferred by supersymmetry
could be used to decompose closed manifolds into a union of manifolds with boundary.
Indeed, we will show that such a foliation exists in a general class of 3-manifolds.

As far as the second point is concerned, it is well known that the invariance of generic
observables under bulk symmetries (including supersymmetries) is spoiled, in general, by
boundary effects. A symmetry can be restored by cancelling these boundary effects. This
can be achieved with the introduction of suitable boundary conditions and/or the intro-
duction of appropriate boundary degrees of freedom.

In the present work we concentrate on three dimensions and develop a systematic
treatment of half-BPS boundaries in A/ = 2 supersymmetric field theories on compact
3-manifolds. We discuss general aspects of the interplay between supersymmetry and
the geometry of manifolds with boundary, and analyze a wide class of related half-BPS
boundary conditions. We concentrate on the classical aspects of the problem. The main
contributions of this work can be summarized as follows.

Summary of main results. We begin in section 2 with a concise collection of useful
results on rigid supersymmetry in curved three-dimensional backgrounds. We follow closely
the conventions of ref. [3], where it was recognized that the existence of a supersymmetry
implies a tranversely holomorphic foliation. Subsequently, we focus on a more specific class
of curved 3-manifolds dubbed A-type backgrounds. These backgrounds are introduced
in section 3. By definition, they admit two complex Killing spinors related by charge
conjugation, [12]. We show, using supersymmetry, that they also admit a contact structure
whose Reeb vector is a Killing vector, and, under suitable conditions, a preferred co-
dimension-1 foliation whose distribution is defined only in terms of Killing spinors bilinears.
The Reeb vector belongs to the foliation, and the algebra of supersymmetry is preserved
on the leaves. Geometrically, global properties of the Reeb vector are classified as regular,
quasi-regular, and irregular, as reviewed in [13]. Manifolds covered by this analysis include
well-known examples of Seifert manifolds, like for instance the round and squashed 3-
spheres, and geometries of the S? x S! type.

A boundary can be introduced along a generic leaf of the co-dimension-1 foliation.
Technically, our construction of the foliation in terms of vector fields does not require
the use of coordinates, which may be problematic if the coordinates are not globally well
defined. We argue that the topology of the leaves is that of a torus. Hence, the manifold
decomposition, that follows from supersymmetry considerations, selects 3d manifolds with
boundary in which the boundary is a torus. The main goal of the paper is to formulate
N = 2 supersymmetric field theories with half-BPS boundary conditions on such spaces.

In section 4 we show that the geometry of the A-type backgrounds admits a natural
half-BPS projection on the bulk supersymmetries that generalizes in curved space the
well-known A-type projection familiar from studies of 2d N' = (2,2), [14], and 3d N = 2



theories in flat space, [15]. Unlike the case of flat space where one projects constant spinors,
in curved spaces one has to project spinors that are in general non-trivial functions of the
spacetime coordinates. We propose a ‘canonical’ way to implement a generalized A-type
projection in curved space, that reduces to the familiar A-type projections in flat space.
To the best of our knowledge this formulation is new. A similar generic formulation for
B-type projections in curved space is left to future work.

The generalized A-type projection can be employed to formulate corresponding A-type
boundary conditions in A/ = 2 supersymmetric field theories, that preserve half of the bulk
supersymmetry. In sections 5-8 we present these boundary conditions for arbitrary non-
linear sigma models and YM/CS-matter theories. In both cases, we relate the boundary
conditions to the geometry of certain 2-forms defined on the space of field configurations
at the boundary. These 2-forms are also relevant in the analysis of the on-shell boundary
value problem, that we review in section 6.

Section 7 studies the instructive case of non-linear sigma models with generic Kahler
potential and superpotential. The boundary conditions describe Lagrangian submanifolds
of the Kéhler form in target space. The effect of the curvature and the presence of couplings
to the background fields, generalize the more familiar analysis in flat space [14, 16].

The case of general (non-abelian) YM/CS-matter theories is discussed in section 8. We
find boundary conditions that include the curved space generalization of holomorphic Neu-
mann boundary conditions for Yang-Mills gauge fields and matter fields, and holomorphic
Dirichlet boundary conditions for the gauge fields in CS theories.

A summary of useful formulae, and an exposition of technical details for results used
in the main text are relegated to two appendices at the end of the paper.

Prospects. We conclude this short introduction with a few remarks on some of the inter-
esting open questions raised in this work and the prospects of further related developments.

Our main motivation for the study of the classical problem in this paper is the eventual
formulation of general half-BPS co-dimension-1 defects in 3d N = 2 supersymmetric quan-
tum field theories on curved spaces, and the non-perturbative computation of observables
associated with these defects.

The observables we are interested in include the partition function of N' = 2 supersym-
metric gauge theories on curved backgrounds with boundary. With A-type boundary con-
ditions these partition functions are computing a class of supersymmetric wavefunctions. It
would be interesting to explore the dependence of these observables on the moduli of the de-
fects, i.e. the moduli of the boundary conditions we formulate, generalizing the bulk analysis
of ref. [17]. A preliminary computation of partition functions on manifolds with boundary
in three dimensions using localization techniques has been performed in special cases in [18,
19]. The results in the present paper can be used to extend known results in this direction.

Moreover, one can also attempt to use the information of supersymmetric wavefunc-
tions to study the structure of observables on closed manifolds that do not involve co-
dimension-1 defects. Hints of such a possibility come from a variety of previous results:
the holomorphic block decomposition of 3d partition functions [19, 20], and the analogous
phenomenon in different dimensions [7, 21, 22], the recent progress in computing D-brane



amplitudes in 2d N = (2, 2) theories [23-25], and ¢t* arguments in flat toroidal backgrounds
in three, and four spacetime dimensions [26].

Boundary conditions also introduce another tool to probe dualities between quantum
field theories. If two theories are dual at the quantum level, we expect corresponding
boundary conditions on each side to be mapped to each other in a non-trivial way. For
instance, in the case of mirror symmetry, the duality between boundary conditions can be
understood in the mathematical framework of symplectic duality [27]. 3d Seiberg duality
also acts non-trivially on boundary conditions. We refer the reader to ref. [28] for a recent
discussion of the relation between 3d Seiberg dualities and 2d level-rank dualities in this
context. Similar problems with Wilson loops were investigated in [29, 30]. Finally, an
intriguing interpretation of co-dimension-1 defects relates the expectation value of these
operators to the entanglement structure of the field theory [31].

Another arena of potential applications of such computations is M-theory. The study
of boundary conditions in the ABJM theory [32], which is an N' = 6 Chern-Simons-matter
theory, is expected to yield information about the physics of M2, M5-branes and their in-
teractions. For instance, it is anticipated that the low-energy theory at the orthogonal in-
tersection of M2 and M5-branes in C*/Z, is a 2d theory with ' = (4, 2) (or in special cases
N = (4,4)) supersymmetry. The non-abelian quantum properties of this theory are still
illusive. A recent bare Lagrangian formulation of this theory in terms of boundary degrees
of freedom motivated by D-brane physics in type IIB Hanany-Witten setups was proposed
recently in [33]. For a study of half-BPS boundary conditions in ABJM theory see [34, 35].

Finally, there are several aspects of the general theory of supersymmetric boundaries
in three dimensions that are not discussed in this paper. One of these aspects is the
general curved space analog of B-type boundary conditions in 2d N = (2,2) theories.
Another aspect that is worth exploring further is the formulation of half-BPS boundaries
using explicit boundary degrees of freedom and boundary actions [36]. The analysis of
supersymmetric boundaries in 2d N' = (2, 2) theories in [23] was performed in this manner.

2 Review of rigid supersymmetry on curved 3-manifolds

In the modern approach to rigid supersymmetry on curved spaces, the metric tensor g,
(or any other background field) is embedded into a certain supergravity multiplet, and the
field theory is obtained by taking the rigid limit of Festuccia-Seiberg [1] (F'S). With a U(1) g
symmetry, the supergravity of interest in 4d is the “new minimal supergravity” of [37], and
the supergravity multiplet contains an R-symmetry gauge field AMR , a conserved vector
V# and the two gravitini ¥,,, \T/ud. Following FS, the rigid field theory of chiral and
vector superfields on the curved space, is obtained from the action of off-shell supergravity
coupled to chiral and vector fields, by freezing the bosonic components of the supergravity
multiplet to a configuration in which 6¥, = (5lflu = 0. The advantage of this formulation
is that the whole procedure can be carried out off-shell, without the need of an explicit
solution to the equations 0¥, = 5(IV'M = 0.

In 3d it is possible to perform a twisted dimensional reduction of the 4d rigid theories
to infer a consistent new minimal 3d algebra [3]. At the end of this process, the background



fields are, the metric g,,, an R-symmetry gauge field A&R), a conserved vector V# (as in
4d), and an extra scalar field H. The conditions d¥, = 0¥, = 0 reduce to the following
two Killing spinor equations

‘ 1 i 1 ,
(Ve —iAD)¢ = —-Hy + 3 Vil = 5Emp V"¢

2
1 . v
— L= Vo), 21
. x 1 = i pe 1 v.pr
(Vu + ’LALR))C = *QH’}/NC — §V,u< + ieyupv ’YPC
1 s . -
= 5w (HC +iV,7"0) - (2.2)

The two Weyl spinors ¢ and C~ have R-charges +1 and —1 respectively.

In practice, given a choice of the background metric, the other background fields can be
adjusted to obtain at least one solution of the Killing spinor equations. On the other hand,
assuming that at least one Killing spinor exists as a solution of the equations (2.1), (2.2),
it is possible to deduce what geometric structure the manifold needs to possess. In 3d, this
analysis was first carried out in [3, 17, 38]. In section 2.1 we will review in some detail the
relevant geometry since it will play an important role in our problem. In fact, in order to
set up supersymmetric boundary conditions, it will be useful to improve slightly the way
in which the relevant geometric structure is characterized. The new material is presented
in section 3. Experts familiar with rigid supersymmetry on spaces without boundary (e.g.
the work in [3, 17, 38]) may skip to section 3. We follow closely the notation of ref. [3].

In our presentation, it will be convenient to make an explicit distinction between com-
muting and anti-commuting Killing spinors. In particular, we will denote the commuting
spinors with ¢ and 5 , and the anti-commuting spinors with € and €. Both sets of Killing
spinors satisfy the same equations. The anti-commuting spinors € and €, will provide the
parameters of the supersymmetry transformations of the field theory. The commuting
spinors, ¢ and ¢, will be used to explore the geometry of the manifold.

2.1 Geometry of Mg

The existence of Killing spinor solutions, ¢ and 5 , strongly constrains the geometric struc-
ture of the background fields. We will not repeat the general analysis here, but we recall
two important results of [3], which will be useful for later purposes. The first states that a
solution of (2.1), or (2.2), when it exists, is nowhere vanishing.! The second result states
that given one Killing spinor, say ( for concreteness, it is possible to cover the manifold
with a transversely holomorphic foliation (THF), and write the metric in the following form

ds?* = gdatda” = n® + c(7, 2, 2)2dzdz, n=dr + (h(r,z,2)dz + c.c.) . (2.3)

By definition of the THF, the adapted coordinate 7 is real, whereas {z,z} are complex.
The leaves of the co-dimension-2 foliation are the submanifolds z = const., and two patches

! This property will be crucial for the consistency of the canonical formalism that we set up in section 4.1.
In general situations, depending on the specifics of the Killing spinor equations, a non-trivial solution may
or may not admit zeros [2].



are related by transitions functions, f and h, such that 2z’ = f(z) with f holomorphic, and
7" = h(T,2,z) with h real. In particular, h can be put in the form h(7, z,2) = 7 + (2, 2).

The origin of the transversely holomorphic foliation is an integrability constraint. The
one-form 1 = n,dx* can be represented as the spinor bilinear

1 C C
M = ‘C|2 C 7}1«(7 |C|2 = < Ca (24)
and the following fields can be defined,?

=g"nu, T, =¢e",80. (2.5)

The spinor (¢ is the charge conjugate to (. Notice that from the properties of £# and
J*, it also follows that the Killing spinor equation of ¢, (2.1), is invariant under the shift
symmetry,
VE =  VEL XHLEEH,
H — H+ 1k,

where the scalar k and the vector field X* are such that J, X" = iX* and V,(X*+k&H) =
0. After gauge fixing the shift invariance, the Killing spinor equation (2.1), implies the

(2.6)

constraint

Jh (L), =0 . (2.7)

Given the condition (2.7), the authors of ref. [3] showed that it is possible to find the adapted
coordinates {7, z,z} introduced in (2.3). This is the THF associated to . On the other
hand, if ¢ is the only non trivial solution to the Killing spinor equations, the corresponding
THF is defined as in (2.4) with the substitution ¢ — C, i.e. i, = (¢°7,¢) |¢| . The Killing
spinor equation of ¢ is invariant under a shift similar to (2.6).

Manifolds that admit two complex supercharges of opposite R-charge have additional
properties compared to the individual THFs given by ¢ and f . They have a nowhere
vanishing Killing vector K*, and a contact structure. The Killing vector is represented as

Kt =(4¢ . (2.8)
It solves the equation
VK, =iH €, KP 4 €,,V* ((, (2.9)

from which Vy,K,, = 0 follows. The norm of K* is K*K,, = (€¢)? = 2, and the function
Q is such that
K 0,(0C) = —K"e,0gV K" = 0. (2.10)

2The triple (n,, &, J4), with n,, €, and J*, such that n,&* =1 and J? = —1 + £, is called an almost
contact structure (ACS). This definition only requires that 7,, £, and J*,, satisfy algebraic constraints.
It does not require the manifold to have a metric. For Riemannian manifolds, a metric g, is said to be
compatible with the ACS if " = ¢g""n,. The ACS is then promoted to an almost contact metric structure
(ACMS). Similarly to the definition of a complex structure, the difference between an almost and a contact
structure, is a differential constraint. However, this constraint is not (2.7) but: dn (£, -) = 0 for the contact
structure, and dn (-,-) = g (J-,-) for the contact metric structure [39]. It is perhaps useful to mention that
the condition for a contact metric structure resembles the one for Kahler manifolds in even dimensions [40].



Notice that the Killing spinor equations are linear, therefore ( and A{, with A an arbitrary
complex number, are both solutions. Similarly for CN . However, the relation f ¢ = () breaks
the arbitrariness in the normalization of ( and Q: , and only the symmetry { — A( with
¢ = A7 I¢ remains. Eq. (2.8) is also invariant under this scaling.

When the Killing vector is real, the manifold is a Seifert manifold and the geometry
can be further characterized by the orbits of K#. Two cases can be distinguished: either
the orbits of K* are periodic, or they do not close. The first case consists of manifolds
with the topology of an S!'-bundle over a 2d Riemann surface. In the second case, it can
be proved that there exists another independent Killing vector, transverse to K*, and that
the isometry group of M3 is at least U(1) x U(1) [41]. Seifert manifolds are also singled out
as BRST-preserving backgrounds in 3d topological gravity. The relation between 3d topo-
logical gravity and rigid supersymmetry has been pointed out, and further studied, in [42].

The contact structure (7, é“ L J 1), is defined by the fields

= %K#, =K, o Jh = ég“Vpr : (2.11)
subject to the relations: ﬁuéf‘ =1, (dﬁ)m,é“ = 0. The latter condition can be checked by
means of the Killing spinor equations (2.1) and (2.2). In particular, (dﬁ)#,,é“ = 0 implies
through Darboux’s theorem [40] the existence of local coordinates (v, x1,y1) such that

. K, :

n= W :dw+x1dy1, 5“8M:8¢ . (2.12)
As a result, the Killing vector K* is aligned along 0,. M3 endowed with such contact
structure is a contact manifold, and the vector £* = K* is called Reeb vector. An equivalent
characterization of a contact manifold is the condition that 7 A df) # 0. The coordinates
(1, x1,y1) are called canonical since the condition 7 A dij # 0 becomes trivial. The contact
structure defined in (2.11), shares the same algebraic properties of the triple (1, &, J%)
defined in (2.7). These are 1,* = 1 and J? = —I + £, but in addition, an explicit
calculation shows that the tensor J*, satisfies a stronger (integrability) constraint, Eéj =0.

In section 3 we will supplement the above results on 3-manifold geometry with a further

new refinement that facilitates the introduction of boundaries preserving a subset of the
bulk supersymmetries.

2.2 Supersymmetric multiplets and transformations

Rigid supersymmetric field theories exist on any curved background Ms, equipped with
the two Killing spinors € and €. Their Lagrangians are obtained by exploiting the multiplet
calculus of 4d new minimal supergravity [37] and its 3d version (see appendix of [3]).

By multiplet calculus we mean the collection of all the supersymmetry transformations
of the components of a generic multiplet S. The total number of independent degrees of
freedom in S is 16 bosonic plus 16 fermionic. They are organized as follows:

S = {07 XG,XQ,M,M,%,U, )\ou:\onD} . (2‘13)

The R-charges are (0,—1,4+1,—-2,+42,0,0,+1,—1,0) relative to the bottom component C.
The supersymmetry transformation rules 6.8+ 0:S are summarized in appendix A. The set



of all these transformations realize an algebra on the space of fields. Denoting with ¢, .,
a field of arbitrary spin, R-charge r, and central charge z, the supersymmetric algebra is
represented by

[567 55] Plrz) = —21 (EK + €€ (Z - TH)) P(r,2)> [67 5] =0, [57 S] =0, (214)

The symbol L is defined in [3] as a modified Lie derivative along K

[:K(P(r,z) = [LieK —arK*H (A'u — ;V#> — 1z K“C'u:| (p(,n’z) . (2.15)

The covariant derivative associated to Lx will be denoted as

. 1 .
Dyup(rz) = [V# —ir (Au — 2Vu> — iz C#} Or,z) - (2.16)

Here the background gauge field C, is related to the background conserved vector V# by
the relation V,, = —ie*?9,C,. The gauge field A, is not ALR), but the two are related by
a redefinition 5

V. (2.17)

AR =A, - 5

i

The combination A, — %Vu is not invariant under the shift symmetry (2.6), but ALR) is.
Accordingly, it is convenient to express (Lx + €é(z — rH)) as

Liex — irK* A —ir(K"V, — c€iH) — iz K'C, + € = . (2.18)

In what follows, we will mostly use D, as defined above, since we adopt the notation

(B) in the covariant

of ref. [3]. Sometimes, however, it will be convenient to consider A
derivative. When this happens we will be very explicit.

For the benefit of the reader we list here two standard short multiplets S that will play
a dominant role in the main discussion. The shortening of the multiplets is obtained by

imposing restrictions on its components.

2.2.1 Chiral and the anti-chiral multiplets

Chiral (anti-chiral) multiplets are obtained by imposing the conditions xo = 0 (xo = 0).
This implies that not all components of the generic multiplet are independent. A chiral
multiplet ®, with independent components {¢, 1., F'} is organized as follows,

S

i ® = {¢, —iv/21a, 0, —i2F,0,
X=0 (2.19)

—iDu¢, (z —rH)$,0,0, 5 (R —2V? — 2H?)¢ — zH $}.

In the above formula, R[¢] = r is the R-charge of ¢, and z is the central charge. The
transformation rules of {¢,, F'} are

5¢ = \/ielp7
5 = V2eF —iv2(z —rH)Ep — iv/2y*ED,o (2.20)
6F = iv2(z — (r — 2)H) &) — ivV2 D, (Ey*1)) .



The shorthand notation for ® will be ® = {¢, 4, F'}. The case of the anti-chiral multiplet
® is analogous. The independent components are {(]5 ¢a,F} and the supersymmetric
transformation rules are

6% = _\/5&,/;7
51 = \/2eF +iv/2 (2 — FH) € g+ iv/2y e D,y (2.21)
F=ivV2(:—(F—2)H) e —iv/2D,(ev")),

where the R-charge of ¢ is R[;] = —7 and its central charge is —Z.

2.2.2 Real and gauge multiplets

A real multiplet ¥ arises by imposing on S the conditions M = M = 0, and r = z = 0.

The subset of independent components can be defined by {C(*) X& ),f(g) Gy}, and

> is organized as follows

5 = {c® & & 0,0,
VO, ™),
(2.22)

—HS + iy (V- V)RS NS — iy (V- iV,

— Vi, — Ho® — (V2 +V2)Cc*)} .
The vector field j, is a conserved current, V,j# = 0. The supersymmetric transformations
rules are
sC®) = z’ex(2> + ey ™)
(5x(2) — ( )—i-Z’y“ (]H_i_za C( )+V“C(E))7
x> = 60'(2) — iyt e (j, — 10,0 + V,C*)) | (2.23)
5ju = iEﬂypvl/(e,pr(E) - g,.yp)z(z))7
60 = —iV,,(eyx D) +&yP P+ 20 H (ex®) +exP)) =V, (eyPx ) —&yr D))
An abelian gauge multiplet V is a generic multiplet S subject to the gauge freedom
8V = A + A, where A is a chiral multiplet. After the standard procedure of Wess-Zumino

gauge fixing the independent fields reduce to {A,, 0, A, Aas D}. Notice that an abelian
gauge multiplet becomes a real multiplet under the identification:

C(E) =0, &Z) = .5‘047 N((XE) = - ‘)‘aa
7 X =1 X ! (2.24)
juz—%eu,,pf”p, o) =D+ 0oH,

where f“? is the field strength of A,. This parametrization will be particularly useful in
later sections.

In the case of non-abelian gauge multiplets the supersymmetry transformation rules
have extra terms compared to (2.23). The complete set of transformation rules in the



non-abelian case is

b0 = —e\+éA,
0N = +ie(D+oH) — %8”'4)%6-7:#1/ —te(iDyo — Vyo)
SN = —i&(D + o H) — LetPry € Fpuy + 1€ (iDyo + Vyo) | (2.25)

SA, = —i(evuh + EyN)
6D = D, (ey*X — &yFA) — iV, (ey* X + EyPA) — H(eh — EN) + [Ae + EX, 0] .

Fuv is the field strength of A,,, and D,, is the non-abelian gauge covariant derivative (5.28).

2.2.3 Curved D- and F-terms

So far we have not specified whether S is an elementary or a composite multiplet.
The supersymmetric transformations are, of course, valid regardless of this distinc-
tion. Once elementary multiplets are defined, any composite multiplet K of the form
K = (K, X(K),X(K),M(K), ...) is generated by the multiplet calculus. In practice, given
the definition of the bottom component K, as a function of the elementary fields C?, the
other components in the multiplet are obtained in a step-by-step procedure: varying K (CT)
with the use of 6C! one reads off the definitions of x*) and ¥*), and so on. From the
composite multiplets it is then possible to construct kinetic terms for the elementary fields
and thus generic supersymmetric Lagrangians whose variation is a total derivative.
Such Lagrangians can be understood as follows. Given a generic multiplet & with
r =0 and z = 0, its D component almost transforms as a total derivative. Terms that
are not total derivatives are proportional to background fields, and the flat space result is
recovered when these vanish. In curved space the correct combination transforming into a
total derivative is [3]
curved D—term : Zp = —%3(D—a,V*—0cH), (2.26)
0D = —iV,(ey" X\ — EYHA — Viey + VIEY) . '
The result for the F' (or ') component of a chiral ® (or anti-chiral ®) multiplet of R-charge
r =2 (or r = —2) and central charge z = 0 is the same as that in flat space. The F-term is

curved F—term : %p =F + F, 8.Lp = —2iV ,,(Ev" + exta)) . (2.27)

3 Manifold decomposition for curved A-type backgrounds

In this paper we focus on a class of background geometries introduced in [12], that we call

“A-type”.®> By definition, these backgrounds admit two supercharges related by charge

conjugation. The charge conjugate spinors, (¢ = +iy2C* and (¢ = +i72§*,4 solve the

3In [12] the partition function of A/ = 2 Chern-Simons theories on generic A-type backgrounds was
computed explicitly using supersymmetric localization techniques similar to [5].

4Our v matrix conventions are summarized in appendix A. In deriving the formulae (3.1) and (3.2) we
made use of the relation v** = —y2v#42. * denotes the standard complex conjugation.
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equations

. c 1 K e trk U pC

(Vﬂ+zAl(LR))C = —|—§'yu(H CC— V4" CY), (3.1)
. e 1 * Zc . Ve

(Vi = iAZ)CE = + (0 + V7 C°) (3:2)

In general, given a Killing spinor, say (, its complex conjugate (¢ is an independent spinor
that does not solve any of the Killing spinor equations (2.1) and (2.2). However, if the
background fields A,(LR) and V), are real, and H is purely imaginary, then (¢ solves the same
Killing spinor equation as 5 . Therefore, for an A-type background, ¢ and (¢ are the two
Killing spinors of opposite R-charge.

We are going to show that it is possible to understand any A-type background in terms
of a supersymmetric foliation in which a generic leaf has the topology of a torus. As a
mathematical statement about irreducible orientable closed 3-manifolds, it is certainly well
known in the literature that such a toric foliation exists, however we will use supersymmetry
and the Killing spinors ¢ and 5 to re-derive this result. Very explicitly, the geometry of the
foliation will be characterized by a distribution of orthogonal vector fields built out of the
Killing spinors. One of these vectors will be the Killing vector K*, and we will construct
another vector N* that: 1) is orthogonal to K*, and 2) can be used to define a proper
orthogonal submanifold.

The use of vector fields, instead of the adapted coordinates of the THF, will be essential
in the formulation of boundary conditions preserving a subset of the bulk supersymmetry.
With such a foliation in place, we will be able to decompose the compact manifolds by plac-
ing a boundary (or a co-dimension-1 defect) along any leaf of the foliation. Our main pur-
pose will be to formulate rigid supersymmetric fields theories on the resulting spaces with
boundary. Since the metric is part of a supergravity multiplet, the decomposition of the
manifolds should be combined with certain extra conditions on the remaining background
fields. We will discuss concretely how the manifold decomposition is carried out in the rest
of this section. In the final subsection 3.5, we revisit some of the well-known examples of
compact 3d manifolds, and re-discuss them from the perspective of this decomposition.

3.1 Supersymmetric foliation
Normal vector

Let us consider how the existence of the Killing spinors ¢ and (¢ determines the geometry
of A-type manifolds. By fixing the normalization of é to be é = (¢, we show that super-
symmetry provides a “refinement” of the THF in which a special orthogonal direction to
K* is selected out.

The starting point of our treatment is based on the use of a Fierz identity for commuting
spinors that allows us to show that the real vector N*, defined as

N* = () — () = (C9HC) + cec, (3.3)

is orthogonal to K*, i.e. K,N# = 0. The same result about N, can be obtained by
noticing that

C*’Yug = +Z’<~’Y2'YMC = +iguu€5(§C) - 5uupr€5 ) (3.4)
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where el is an unspecified vielbein. Hence, the real part of (3.4) gives N# = 2eH re2 K 05
which is manifestly orthogonal to K*. The tangent space T' M3 can then be spanned by the
following orthogonal vectors: K#, N#, and K* = e"P N, K p- By construction, we also have

Nte? =0, KW =2e"Pe,03e8 K'K, = —2¢5||K||> + 2K* (K - €?) . (3.5)

It is, therefore, convenient to choose a reference frame, {e1, ez, e3}, such that K = ¢4 and
(K -€*) = 0. For such a frame we deduce from (3.4) that e} o &/, ,N”ef, and N” o €Y.
By consistency, we have to prove that the inverse metric ¢ can be written in terms of
the bilinears K#K", N“N¥ and K*K". Indeed, from the Fierz identity applied to K* K",
and from the very definition of K#K", we obtain the relation

g = L grrry L onenvg 1 gege (3.6)

1K [IN][? NI

Our adapted dreibein fields are

NH K* KH

@M: En'u, eM:sz}‘u, euziEk‘u, (37)
LI 2K S K]
with || K| = ||N]|||K]||. The norms of K* and N* are
KMK, =0 NFN, =4(¢7¢)% +40%. (3.8)

The most general metric on M3 compatible with a THF was given in (2.3). Beginning
with manifolds that admit two generic Killing spinors of opposite R-charges, we refine the
adapted coordinates of the THF so to describe a local parametrization of the metric (3.6).
Recalling the form of (2.3),

ds* = gdatde” = n® + c(7, 2, 2)2dzdz, n=dr + (h(r,z,2)dz + c.c.) . (3.9)

we seek a metric compatible with a contact structure whose Reeb vector is also a Killing
vector. Firstly, let us notice that K, = Q%% and 3 = Q (d) + x1dy1). Then, instead of
{z1,y1}, we can make use of the coordinates {z, zZ} by implementing the contact structure
condition on the function h. As a result, h is ¥-independent, and since 9,2 = K#9,0Q = 0,
the function  is also t-independent. Finally, upon imposing that K* is Killing, the
metric (3.9) takes the final form [12]

ds® = Q(z,2)% (dy + h(z, 2)dz + c.c.)* + ¢(z, 2)?dzdz . (3.10)

For an A-type manifold, ¢ = (¢, and the two THFSs, the one associated to ¢, and the one
associated to C, are identified, i.e n = 77 = Q7 = € in (3.9). In particular, because of (3.6),
we also know that the plane dzdZ is parametrized by the real vectors N* and K*". From
the point of view of the contact structure, the vectors N* and KH span the distribution of
the contact plane H = ker 7.

If follows from Frobenius’ theorem, and from the defining property of a contact mani-
fold, namely 7 A d7) # 0, that the distribution H = ker 7 is not integrable. Instead, we will
now study under what conditions the distribution generated by K* and K* is integrable.
This will provide a regular foliation of the A-type manifold.
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Integrability condition

Frobenius’ theorem guarantees that the distribution &, generated by K and K, is integrable
if the commutator [K, K] belongs to € [43].> This commutator is equal to

[K, K| = KOV K" — KOV, K"
= K%"P (Vo) K, + K“"PN, (V,K,) —e*? N,K,V,K", (3.11)

and we shall consider the equation N,[K, K]* = 0.
The second and third terms in (3.11) can be manipulated by using the equation of K,
given in (2.9). We obtain the expression

+ KY%"PN, (VoK) — P N, K,VoK" = — (K - V)N (¢ —iH || K|PN* . (3.12)

A small complication arises in the calculation of V4 N,. By definition VN, = D,(*v,.¢ +
C*y, Do + c.c., but Do C* is not just —iy2D4C. It is given by the more involved expression

s 1 :
Do = =iy’ Dol — 4 e¥we b’ (Vo +7) € - (3.13)

Substituting (3.13) into V,N,, we get several contributions

. ~ 1 ;
VoN, = +i (DaC) Y WC + 10V W Dol + Jwaae™C (V9w — 97’ W) ¢ + ce. (3.14)

In the adapted frame (3.7), and after some algebra, we can show that
1
K, (K°VaN,) = =3 (K%Mbs“bCKc) N* (3.15)
Then, the commutator becomes,
- - 1
(KK = | = (K- V) &=l ||K* = 5 (K”waabgabcf(c) ] N* (3.16)

The vector N* does not belong to the distribution &, thus the distribution is integrable iff
N, K, K J# = 0. This equation determines the component K %w, 12 of the spin connection
in terms of the background fields. Since the spin connection enter explicitly the Killing
spinor equation, knowing K%w, 12 shall become very useful when we discuss more precise
properties of the Killing spinor solutions, in section 3.4.

Once the condition N,[K,K]* = 0 is satisfied, Frobenius’ theorem [43] implies the
integrability of the distribution £ and the existence of the foliation. Considering the general
metric (3.10), any A-type metric can always be put locally in the form,

ds® = O (8, ) (dib + Fpdf + Fodp)® + g34d6° + g2, (3.17)

where Fy, F,, gog, 9o, are y-independent, and N da* = df. The metric (3.17) should be
understood as a local parametrization of (3.6), where the normal vector N* is obtained

>The normalizations of K and K are not important in the argument. Even though they contribute to
the commutator, through the terms K”(K“aaﬁ) and K“(K"(’ﬁaﬁ)7 these contributions belong to £.
Thus the statement of Frobenius’ theorem remains unchanged.
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directly from the knowledge of the Killing spinors ¢ and ¢ = ¢¢.6 The 2d submanifolds
0 = const. define the foliation generated by .

The foliation generated by K and K will be denoted by F, and a generic leaf in F will
be denoted by M5.7 We refer to M/, as a supersymmetric leaf of M3. This terminology
follows from the observation that the algebra of supersymmetry

[56, 5g] Plrz) = —21 (ﬁK + €€ (Z — ’I“H)) P(r,z) (3.18)

involves the Killing vector K* in the Lie derivative Lx. In the simplest case, since the
commutator of two transformations d. and J¢ squares to a translation along the orbit of the
Killing vector K*, M} preserves supersymmetry because K* belongs to T M. In partic-
ular, let us notice that F includes the co-dimendion-2 THF generated by K, since K € £.

3.2 Topology and manifold decomposition

We can show with a simple argument that the topology of M/, cannot be genus zero, i.e. the
leaves of the supersymmetric foliations are not spheres. The reasoning goes as follows. M,
contains the orbits of the Killing vector K*, and K* is nowhere vanishing because, as we
mentioned in section 2.1, the Killing spinors are nowhere vanishing. If M/, was a sphere, K*
would correspond to the U(1) isometry of the sphere, which is unique. However, this cannot
be the case since the U(1) isometry of the sphere vanishes at the north and south poles.

The topology of M), is a torus. We showed that it cannot be genus zero, but also
it cannot be a higher genus surface either, because a 2d Riemann surface of genus g > 1
would not have a Killing vector. Thus locally, an A-type background is topologically a
torus fibered over a closed interval. Seifert manifolds have indeed this structure (see for
example the review in ref. [44]). The case of the round three-sphere is very instructive:
S? does admit a genus zero topological (Heegard) decomposition as the union of two 3-
balls [45], however the supersymmetry that we are considering rules out this possibility
and allows only for ¢ = 1 decompositions. A similar phenomenon has been noticed in 4d:
ref. [2] showed that a 4d supersymmetric manifold for which [K, K] = 0, is topologically
¥ x T?, where ¥ is a 2d Riemann surface. Also in this case, the metric and the complex
structures can be written only in terms of spinor bilinears [46].

The results we have obtained so far can be summarized by the statement that any
supersymmetric compact space M3 of A-type admits a toric foliation. We now pick one
leaf M), of the toric foliation, and slice M3 along its volume. In this way, we obtain
two manifolds 77 and 7z, which share a common boundary, the leaf M), and such that
Ti#7T2 =2 Mj3. Borrowing the terminology from surgery theory, we will refer to 7 as a solid
torus. For the three-sphere, the solid torus is the analog of the hemisphere in 2d, and the
tip of the hemisphere corresponds here to the shrinking of one of the two boundary cycles.
Following the analogy with the lower dimensional case, another interesting 3d manifold is
represented by the “cylinder”, which topologically would be a torus fibered on the interval

5We shall remark that the possibility of writing N* as spinor bilinear is the difference between an A-type
manifold and a manifold with two Killing spinors of opposite R-charge endowed with metric (3.10).
"To be pedantic we should also specify a reference point 8y € Ms for any leaf. This is usually implied.
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with both a left and a right boundary. We note the obvious fact that when a boundary is
inserted the homotopy properties of the manifold change.

Since the metric belongs to the supergravity multiplet, whose components include
the R-symmetry gauge field A&R), the vector field V,, and the scalar H, any manifold
decomposition should be consistent with the profile of these background fields. Being a
scalar field, H is not constrained by the manifold decomposition. However, a condition on
V# follows from the fact that V# is a conserved vector, and therefore we should require
n,VH = VL =0 at the boundary. As a further simplifying, but not necessary, assumption

in some of the examples that will be analysed below we will also consider n“ALR) = 0.

3.3 C(lifford algebra and bilinears at the boundary

The frame fields k*, k* and n*, split the algebra of the ~ matrices into a 2d “parallel”
Clifford algebra, which lives on M}, and an orthogonal matrix v+ = n,y*. As a conse-
quence, all possible spinor bilinears obtained from ¢ and 5 are classified in terms of scalars
and tensors on 7M. One obvious example is K* = E’y“( , which is a vector on T M}, and
has no scalar component because n, K" = 0.

It will be useful for later purposes to have the explicit decomposition for all spinor
bilinears. Since we have an expression for n, in terms of the Killing spinors, we can use
Fierz identities to bring the bilinears in a simple form. It is enough to consider a generic
bilinear with at most two ~ matrices; higher order bilinears would not be independent,
because of the identity y#v” = ¢g"” 4 ielPy,. For notational convenience we use the
indices v for directions parallel to M.

The bilinears of interest are®

(¢ = i€ = e,
CYEIC = A (COV R, (yyIC = g (CC) KM, (3.19)
5'7L’VV“C = _H;/HKV”’ C')/J_'Yyng = _||]Z\‘/'||R—V”'

As a technical remark, we observe that the right column of (3.19) can be obtained by
complex conjugation of the left column using ¢ = +iy2¢*, and v** = —2~y#~2. The
norm of the normal vector N# = ({(*y*() + c.c. was given in (3.8). However, by using the
symmetries of the commuting spinors, we can also write N*N, = N*[((y,(*) + c.c.], and
from the Fierz identity we obtain

(¢50) (&) = g (3:20)
Therefore,

(67¢) (6r') =~ () (é67) = o2 (3.21)

8For generic commuting spinors ¢ and Yy, we have ¥y"y = xy*1, thus 1y*1p # 0, and ¥y = —x.
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We conclude that the only new geometric information needed, in order to parametrize the
bilinears (3.19), is a phase

(e = Qe (i =,
Cﬂylfyyllg = Qe KV , EVJ-PYVHCN = Qe @ kY , (322)
Cytaric = =ik, (I = QR

The phase w can be calculated explicitly, given the Killing spinor ¢ and the norm of the
Killing vector. In general, we expect w to be coordinate dependent: w = w(1, z, Z), where
{1, z, z} are the coordinates adapted to the THF. We will present examples in section 3.5.

Finally, we can ask how the bilinear (v, decomposes in the basis {k,,n,, I;:M} The
answer is again obtained by using Fierz identities and reads

n, —iky,) . (3.23)
Consequently, we also find that the metric can be written equivalently as

5'7#5 - _U*.

ds* = kk, —U,U,, U, = a

(3.24)

3.4 Twisting and phases

So far we have discussed several of the characteristic properties of A-type backgrounds.
The appearance of the phase w is one of the properties that will play an important role in
the subsequent analysis and as such it deserves some further elaboration.

A constant shift of o can be understood as part of the U(1) invariance that is built into
the relations Q = ¢¢ and ¢ = (¢, as we discussed in section 2.1. The coordinate dependent
part of w(1), z,Z) is due to the non-trivial profile of the background fields and is closely
related to the explicit solution of the Killing spinor equations. The choice of the frame
fields, and therefore the definition of the curved 7 matrices becomes important when we
discuss the Killing spinor equation. We fix possible ambiguities in the choice of vielbein by
working in the preferred frame {n,, k,, I;:M} The relation between the coordinate dependent
phase, (1, 2, Z), and the Killing spinor, that we discuss here is made in this frame.”

We make the following observation. Given a metric g, with corresponding background
fields and a generic non-trivial w (1), z,Z) we can consider a U(1)r gauge transformation
that sets it everywhere to zero. As a result of this operation, the new background R-
symmetry, in which the phase is constant, is

AB = AW g (3.25)

new

where dA is a flat connection (in the simplest case a non-zero constant).

9The reader familiar with the S* geometry may notice that by using the Maurer-Cartan forms two out of
four Killing spinors of the S* are constant (see for example [47]). As we emphasize in the next section, U* is
always well defined and so is @. It can be explicitly checked that the phase @ = /2 will show up in U*, even
in the Maurer-Cartan formulation. In the frame {n,, k., I;u} the phase will appear in the Killing spinors.
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Globally, the addition of a non-trivial flat connection can lead to interesting phenom-
ena. Even though we expect the details of the manifold to become important at this point,
we know for sure that the leaves of the supersymmetric foliations are tori, and therefore
we can make the following general comments:

e When 7 (M3) is trivial, the two cycles of a generic leaf MY, will shrink in the bulk,

identifying the location of the north and south pole. Then, if Agﬁ) was topologically
trivial, Aflf&, is inserting a singularity, effectively changing the topology. For example,

it inserts punctures at the north/south pole.

e When 71 (M3) is non-trivial, e.g. m1(M3) = Z, the new flat connection will generically
decompose into a combination of an holonomy and a singularity (if both are non
vanishing).

e When the manifold has a toric contact structure, the Killing vector K = 0y is a
combination of the vectors 0y, and 0y,, where ¢; and ¢ are 27-periodic coordinates
on the leaves. The effect of a constant Al(fn)ew,
will result to the insertion of a vortex loop at the north and south pole, together with

over a topologically trivial connection,

an holonomy along the corresponding non-shrinking cycles.

From the point of view of the Killing spinor equations, the addition of a flat connection,
from AE)Z) to AE@V, is twisting the original solution.'® Indeed, assume that in the old back-
ground the spinor is of the type e/ ng, with 79 a constant spinor and @ = @ (1, z, z). Then,
in the new background 7 is the spinor and the Killing spinor equation becomes 0,19 = 0.

Returning to the coordinate system (3.17) we further observe that the i dependence
of the Killing spinor is always constrained to be a phase. This is due to the fact that
k = 0y, and the fact k“@u(fg ) = 0 that follows from the Killing spinor equations. The
generic ansatz for a solution of the Killing spinor equations is then

C = elf(’lb)go(Q’ 90) ) 5 = eiif(w)§0(97 90) :

According to this ansatz, for generic f neither ¢ nor C~ are scalars under translations along
the Killing vector, however, the 1) dependence can always be solved by considering a gauge
transformation of Agﬁl) such that k#0,( = k:”(?uf = 0. By using the integrability condi-
tion (3.16) we can prove that

kAR = —iH — K"V, . (3.26)
To prove this equation contract the Killing spinor equation of ¢ with k* and f . The same
result follows by considering the Killing spinor equation for 5 . We shall come back to

this relation in sections 7 and 8, where it will be used as an input to solve for boundary
conditions preserving a subset of the bulk supersymmetry.

10Sometimes, even Agﬁi) can be interpreted as a twisting of a theory with no A% [25]. Here we are saying

something slightly different, in particular we identify AR, — Afﬁi) as a gauge transformation.
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3.5 Examples: spheres and their squashings

Important examples of A-type backgrounds include: the round three-sphere S3, the ellipsoid
Sy, the SU(2) x U(1) squashed spheres of [48], and geometries of the type S?xS!. Round and
squashed spheres were the first manifolds on which the use of supersymmetric localization
made possible the exact computation of the partition function of N = 2 theories [5, 12,
49, 50]. Our main interest here will be to calculate the triple of vectors {n,, k, ifu} for the
round sphere and its deformations. We will also mention the case of S? x S! which admits
both an A-type and a different “non-real” structure. In the context of squashed spheres,
the distinction between these two structures has been also emphasized in [51].

3.5.1 Ellipsoid
2
s
2 ~
%' = 1. The squashing parameter b is usually defined as the ratio b> = £/¢. The
parametrization z = £sin 6 e, w = {cos 0 €92, gives the metric

Our first example is Sg’, defined as the set of points (z,w) € C2, with the property

dség = dzdz + dwdw = f(0)2d6* + (2 sin® 0 de? + (% cos 0 d¢3 (3.27)

where f(6)? = ¢?sin? 6 + (2 cos 2. The coordinates take values in the range 6 € [0, 7/2]
and ¢; € [0,27] for i = 1,2. They are toric, and make manifest the U(1) x U(1) symmetry
of the geometry. The north pole at # = 0, and south pole at § = 7/2, are conventionally
defined by the shrinking of the corresponding S' cycles. The precise form of f(#) is not
important and all of the following calculations will be valid for a generic regular function
goo(0)."1 The background fields can be taken to be (in a gauge where V,, = 0) as

i m 1 l 1< £>
H=+—, AP = " [(1- "= Vdpr¥=(1-—)dgs. 3.28
9o = 2 ( gee) o F 2 906 b2 (3.28)

Notice that AiR) is topologically trivial since AE_LR;I — 0 at the north pole and AiR;Q -0

at the south pole.'?

There are solutions to the Killing spinor equations with both 4+ and — signs. It is then
convenient to distinguish between positive and negative Killing spinors, respectively.

Our immediate task is to obtain the Killing spinors, (i, Ei, and calculate the vector
fields K*, N* and K*. Notice that (6, ¢, $2) are not the adapted coordinates introduced
in the previous section, but since we have coordinate-independent expressions for K*, N*
and K*, the choice of coordinates is not an issue. In the frame

E' = lcosfdos, E? =/sinfdé , E3 = gppdb, (3.29)

the explicit expression of the Killing spinors is

+1
Gt = M6, (91462 7 =7 (_1> : (3.30)

" Regularity means any function that asymptotes to ,0at0=0and =1 /2, respectively.
12The background AR of [48] is recovered by the substitution ¢; — —¢;. The difference in the sign is
due to our choice of v matrices that differs from the one in [48].
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; _ _ +1
Gt = M0, (1462 7T =7 ( > , (3.31)

with the matrix 9t given by

0 3 W e ¥cosZ je ?¥sinZ
Mg ] = exp <—12’V ) exp <—25’Y ) = (z’e*’w sin% il 2. (3.32)

COS 5

In (3.31) we have chosen a normalization such that (r = ¢5. In fact, since the curved
background is real, we are guaranteed that (¢ solves the equation of f . The Killing vector
associated to (4 is

KY 0, = (e 8, = £0710y, + 0710y, , (3.33)

and the novel vectors, n* = N#/||N||, and k* = K" /||K|| are

1
n't 8, = —gﬁa@, (3.34)
k0, = —07 cot 00y, + £ tan 09y, . (3.35)

It is interesting to write the metric in the adapted frame {k,,n,, l;‘“} In the case of
positive Killing spinors, the metric takes the form (3.17)

1 1 1
dség =1 (dvp 4 cos Ordp)* + 1939 o3, + 1 sin? 0 dye? (3.36)
where
dip = lddy + bdpy,  do = Llddy — bdpy,  dOy = 2d6 . (3.37)

For the round three-sphere £ = ¢ and we recover well known results. The coordinates
{4, 0, p} coincide with the familiar Hopf coordinates, for which S3 is seen as a U(1) fi-
bration over the two-sphere d6?% + sin? @ydp?.'? The interpretation of the Killing spinors
is manifest, K, = 0, and sits along the Hopf fiber, whereas K_ = 0, generates the U(1)
isometry of S2. Furthermore, in the example of the round three-sphere written in Hopf co-
ordinates, we can write the S? at the base of the fibration as CP', and exhibit the THF of S?

9 1zdz dzdz
dsgs = (dT + S (ENER)] + c.c.> + T (3.38)

where 7 = (¥ + ¢)/2 and z = tan(6/2)e". It is worth emphasizing that the Killing
spinors (— and (_, which generates K_ = 0., become the standard spinors of the S?, after
a change of frame. In the next section we will make this statement more precise.

3Notice that when £ # 7 the periodicities of ¢ and 1 are different from those of the round three-sphere.
In the coordinates ¥u = ¢1 + b2, Y = ¢2 — ¢1 the metric of S is [52]
1-b° R?

50 — b 2
in2 2 L costu — b
sin” 0 dpzr | + 1 ( bcosOn) | dpm + lbeOSGHd(pH ,

R?
2_ g 2 =0
ds” = (1+bcosh) d9H+1 bcos

where 2R? = (2 + (2 and b = (2 — (*)/((* + (%)
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The Killing spinors (4 in (3.30) have non-trivial dependence on 6 and w. As can
be seen from evaluating My on, the @ dependence reduces to a phase. Following the
discussion in the previous section, we can twist away the phase by performing a gauge
transformation on the background R-symmetry connection. To see how this works in

practice, let us observe that we can indeed decompose Af) as

AL 43001 & do) + 5 ({6 £ o) (3.39)

The background A&Rzew in which the spinors (4 are constant along the direction of the
Killing vectors, can be obtained either by an explicit computation, or by solving the general
relation k:“AEﬁl)eW = —iH — k*V, from the knowledge of k* and Al(f;)l 4 above. The latter

strategy implies that

1 1 -
AP =AY — (Ao + do) = — (Ldepy + Ldgps) . (3.40)
2 2900
As we expect Af,)ww becomes well defined on the ellipsoid S} with punctures at the north

and south poles.

3.5.2 On U(1) fibrations and non A-type geometries

Another class of interesting real curved spaces are the SU(2) x U(1) squashings of the round
three-sphere of [48]. We will consider a slightly more general class of backgrounds, whose
metric is given by

2

l 72
ds® = T+ u(0)dp)? + T (959d6% + sin® Odp?) . (3.41)

When u(f) = cosf, ggg = 1, and ¢ = ¢ we recover the Hopf fibration of the S®. When
l#£ 7, the U(1) fiber of the round sphere gets squashed, and the metric only preserves the
SU(2) x U(1) subgroup of the original SO(4) isometry group. We may also take u(6) = ug
constant, and for the particular value ug = 0 we recover the metric of S? x S!.

It will be useful to define the parameter § = 1 /0. It measures the squashing for geome-
tries that are deformations of S3, hereafter S%. Also, it measures the inverse temperature
for geometries of the type S x S!. By a global rescaling we can set £ = 1. We will work
with the dreibeins

1 1
El = 590040, E? = 5 sinfdep, E3 = §<dw +u(0)dyp) . (3.42)
The background scalar field H is taken to be purely imaginary, and we turn on
/
0
Vy =iy 20O (3.43)
goy sin 0
1 2 / 1 2
AP _ ~lcost B2 u(f) U.(9) a1 LM . (3.44)
2 goe 2 ggp sind ¥ 2 2ggg sind

In this setup, the metrics (3.41) admit two Killing spinors of opposite charge

C:eﬂ'wm <(1)>, Cczézeﬂwﬂ(?) . (3.45)
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From these Killing spinors we calculate the frame {n,, /~<;M, k,}, and find

2 2 ~ 2
ro, = —0 kto, = =0 krO, = — (u(0)0y — 0y) - 3.46
'Oy =0y b= 5% = g (WO)0y = 8y) (3.46)
We also recognize that the dreibeins {E!, B2, E3} correspond to the triple {n,, —l%u, k,}.
The phases +i1 of the spinors ¢ and 5 in (3.45) can be re-absorbed by twisting AR The

corresponding gauge transformation leaves Ac(pR) invariant and changes Aq(f) as follows
2 / (9)
AB) qm B9 4
4 - ¥ new 2999 sin 6 (3 7)

Observe that for S? x S! geometries, the function w(6) is trivial, and therefore

1 cos 0
2 ggo

AR —o, AR =

P new © (348)

By taking H = 0 this S? x S' background becomes the topologically twisted background
of [53].
The reasoning that led to the background fields (3.43) and (3.44) is based on simple

observations, which we now elucidate. First of all, A9

and V are real when H is imaginary,
hence the family of backgrounds is of the A-type. For example, considering the round three-
sphere, 8 = 1, u = cosf, we find A,SR) =0, and V3 = —iH — 1, thus in the gauge H = +1i,
the spinors ¢ and ¢ correspond to the positive Killing spinors (3.30) and (3.31) calculated in
the new frame (3.42). The more general background fields, (3.43) and (3.44), are obtained
by solving the Killing spinor equation for A% and V', upon insisting that ¢ in (3.45) is a
solution. By writing the Killing spinor equation in the following form

. 1, 1 o
(9 —iAYD)C = — i — S(H — VA", (3.49)

el
we get V3 from the § component, ASPR), and Az(pR) from the other two equations.
Some of the details of this calculation can be seen explicitly in the cases of S% and
S? x St geometries. The equations (3.49) become

00 — iAgC =+ (b B+iH — Virs) 7', (350)
OyC —iAyC = {ﬁ(pﬁ —iH — V3y3) %, (3.51)
0,C —iApC =+ [((2— p %) + i + Viys)® cos

+ (pB+iH + Vays)y?sind |(, (3.52)

where p = 1 for S3, and p = 0 for S?xS'. For the round three sphere 8 =1, H = +i, V3 =0
and the r.h.s. of (3.50) and (3.52) vanish identically. The use of the frame fields (3.42),
compared to the toric frame of the previous section, makes the computation of the positive
Killing spinors particularly simple: two out of three equations can be trivially satisfied,
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and the remaining one, dy¢ = —373(, is solved by (3.45). For the SU(2) x U(1) squashing
S%, the background field V3 is tuned in such a way that the r.h.s. of (3.49) becomes a
projector, as one can check from (3.50). Then, the positive Killing spinor of the round
sphere is promoted to a Killing spinor of(tl)le squashed sphere.!* 1In this case, the R-

symmetry background is proportional to A3R , and it is aligned with V3.

The analysis of S? x S! geometries follows the same logic.

Before we move on, let us notice that when we consider the negative Killing spinors
of the round three-sphere, a different simplification takes place in the equations (3.50)—
(3.52): the trivial equation becomes 0,,( = 0, whereas the equations along 6, and ¢ become

effectively those of the S? in its standard parametrization [7],

7 7
VoC = +§79C, V(= +§W< . (3.53)
whose solutions are!®
+ig CoS g _ie sing
(=Cie™2 ) +Che "2 ticos? | (3.54)
2 2

S? x S and non A-type geometry. Metrics of the type S? x S! are interesting for a sec-
ond reason: they are perhaps the simplest 3d example admitting both a real and a non-real
structure. The non-real structure is obtained by considering the following background fields

H=0, v--2tps = oam_  'ps (3.55)
906 goe
with B3 = g(dw + updyp). The Killing spinor equation (3.51) becomes trivial: 9,¢ = 0.
After A and V have been subtracted, the equations on the S? base, (3.50), and (3.52),
become

1
vﬂ:+?7wﬁg. (3.56)
go06

The Killing spinor equations for ¢ are not obtained from (3.56) by charge conjugation.
Indeed, the background is not real. Instead, from the original Killing spinor equation (2.2)

we find,

- - 1 - . 1 .
IpC =0 Vo(¢ = —%7973C7 V(= —%WQPW% . (3.57)

The equations (3.57) appear in the same form in [8, 19] for ggg = 1. The explicit solutions
are proportional to the following four spinors

, . , _ 0
G=e 22| PO ) =t N2, (3.58)
+cos 3 sin 5

. in ¢ ~ i 0
aeer (M), (). o
—0082 Sln2

14Squashings whose Killing spinors reduce to the negative Killing spinors of the round sphere, have been

studied in [50]. In this case, the ansatz for Killing spinors need to be slightly modified.
5 These S? Killing spinors can be uplifted to S, as explained in [54]. In two dimensions, 3 anti-commutes
with vffd). Therefore, the positive Killing spinors of the S? are proportional to v3¢, with ¢ given in (3.53).
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If the background fields are all purely imaginary (as in (3.55)), it follows from (3.1)
that the charge conjugate spinor (€ is independent of ( and solves the same equation. For
example, (2 = (f in (3.58). The same statement applies to ¢ and ¢¢. We conclude that if a
background admits two Killing spinors of opposite R-charge, and all the background fields
are purely imaginary, by construction it supports N' = 4 supersymmetry.

4 Boundary effects in theories with rigid supersymmetry

Given a supersymmetric field theory on a compact manifold Mg, defined by an action

S = Z, (4.1)
Ms
it is not guaranteed that the action will remain supersymmetric when we insert a boundary
along M/, and restrict the fields to the manifolds, 71 or 7Tz, obtained from Ti#72 = Ms.
In fact, for any symmetry § acting on the fields, the Lagrangian is locally invariant up to
a total derivative, 0.2 = V7", hence the action restricted on 7 will be invariant under
the symmetry ¢ iff
5S:/V,ﬂ/’*:j[ n, V" =0, (4.2)
T M

where in the last step we used the divergence theorem. Typically, the condition (4.2) is
solved by imposing appropriate boundary conditions such that n,”?* = 0, or by adding
appropriate degrees of freedom on the boundary. In this paper we consider only the first
possibility. In the case of supersymmetry #»* is both a function of the anticommuting
Killing spinors, € and €, and the fields of the theory. Therefore, in order to solve (4.2),
one generally synchronizes the boundary conditions on the fields with certain conditions on
the spinors. For example, if we assume that a certain projection on the spinors realizes a
specific sub-algebra of the bulk supersymmetry, we can insert this knowledge into n,7?* to
simplify the problem and deduce definite boundary conditions for the fields of the theory.
For example, in the case of boundary conditions in two-dimensional A" = (2, 2) theories
on a strip [14, 55], one can consider two different types of %—BPS boundary conditions, called

A- and B-type. They are characterized by the spinor projections

o & = +e_ for A-type,
o ¢, = —¢e%_ for B-type .

e+ and €1 are the complex components of the 2d Weyl spinors € and €, and € is the complex
conjugate of e. The phase « is an arbitrary constant and the minus sign is a convention. An
N = (2,2) theory has 4 real supercharges and the 1/2-BPS projections preserve (1,1) or
(2,0) supersymmetry, for A-type or B-type, respectively. Such conditions play an important
role in D-brane physics described by setups with A = (2, 2) worldsheet supersymmetry. In
3d theories with N' = 2 supersymmetry similar projections (and corresponding boundary
conditions) have been formulated in flat space in [15].

When one attempts to apply this standard logic to a theory on a curved background, as
in this paper, one encounters inevitably some obvious difficulties. Most notably, on curved
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backgrounds many of the simplifications of constant flat space spinors are absent. The
Killing spinors €, € are, in general, non-trivial functions of the coordinates and an A- or a
B-type projection cannot be imposed in the simple standard flat space form written above.

In what follows we will describe how to impose a direct generalization of the A-type
condition on the anticommuting spinors ¢ and € in a generic three-dimensional A-type
background. We will do so by introducing a “canonical” formalism that builds on the
observations of the previous two sections. We anticipate that a similar generic formulation
exists also for B-type projections. However, in this paper we will focus exclusively on
A-type boundary conditions leaving B-type projections and B-type boundary conditions
to a separate treatment in future work.

4.1 Generalized A-type projections on supersymmetry

Out of the commuting spinors ¢ and ¢ we construct two natural projectors, 2 and 2

Pp= @ Pe=gWol Ve (13)

It is simple to check that &2 = 2, P2 =P and P + P = 1. Since the Killing spinors
¢ ,f are nowhere vanishing these projectors are everywhere well defined. Moreover, both
2 and & are invariant under the symmetry ¢ = A(, ¢ — A1, with X € C.

By acting with &2 and 2 on both € and & we formulate the generalized A-type condi-

tions
Pe=0, Pe=0, (4.4)
(Z760) = (¢ 79), {=¢. (4.5)
Defining the parameters
1, - ~ 1 .
the above relations become
e=9C, §=9C, (4.7)
W ="1. (4.8)

The restriction 5 = (¢ (which is possible in A-type backgrounds) is imposed here
because the scalar product (¢¢) = (Ce) alone does not enforce a relation between e and
€. Indeed, by rescaling € — a¢ and € — [e, with arbitrary «, 8 € C, it is always possible
to find two representatives of the commuting spinors, A¢ and A~1C, for which the relation
(¢¢) = (Ce) is satisfied. The condition ¢ = (¢ is needed to break the invariance under the
rescalings by A € C to a residual U(1).

As a simple check that exhibits why this is the natural curved space generalization of
the A-type projection we notice that for constant spinors in flat space the relation (4.8)
reduces to the familiar A-type condition €, = +e'®e_. Indeed, in flat space, we may set
¢ = (1,0), ¢ = (0,1), @ = 1, and then the relation (¢¢) = (£¢) becomes the expected
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€+ = e_. The residual U(1) transformation gives the most general boundary condition,
which is precisely €, = e'®e_.

We emphasize that the curved space version of the above A-type condition is, by
construction, compatible only with A-type curved manifolds, for which ¢ = ¢¢. The pro-
jections (4.7), (4.8) reduce the amount of supersymmetry by one half.

In sections 6-8, we will demostrate how the input of the projections (4.7), (4.8) af-
fects the (in)variance of a generic N’ = 2 field theory under supersymmetry, and we will
study corresponding general A-type boundary conditions on ' = 2 supersymmetric gauge
theories that preserve half of the bulk supersymmetry at the boundary.

4.2 Bulk A-type supersymmetries and BPS equations

Having understood how to project the anticommuting Killing spinors of a generic A-type
background, we now go back to the supersymmetry transformations of chiral and vec-
tor superfields, and reformulate them accordingly. First we spell out the supersymmetry
transformations with generic ¥ and 5, and then we study what happens upon enforcing
the projection 9 = 0.

Before entering the details we point out that we can decompose any spinor v as

Y= (cwc 5 (¢C)C (4.9)

Moreover, we notice the useful identities

f\z

L Ca = kM G — UM,

Ll =UrC — k.

(7*C)a
(V“E)a =

7 Co —
0 Ca -

(4.10)

J\x
«f\x

A similar decomposition holds in 4d for manifolds which are a torus fibration [46].

Chiral and anti-chiral multiplets. In (2.20) and (2.21) we wrote down the supersym-
metric transformation rules for chiral and anti-chiral multiplets for generic Killing spinors.
When we further specialize the supersymmetry to an A-type background we obtain the
following expressions.

e For a chiral multiplet:
dp =+,
Sbe = +0 Flo+id Kk:“DHqﬁ —ir(iH)¢ — (2 — qg)¢> Co = (0*Dud)Cal
§F = +id [ <l<:“(D — iV —i(r — DEH)W — (2 — qa)d}>5

+ UMDy — V)Y + v2q (N ¢

(4.11)

S S-S

e For an anti-chiral multiplet:
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(4.12)

L G0 = +0 Flo+10 (WD + ir(iH)g + (2 — 49)0) Ca — (U Dud)Ca|
1
;t

6F = =it [ (D + $V)P +i(r = DT + (2 — g0)d) ¢ +
+UP LDy + SV)Y — vV2q ¢ 5] :

It is clear, in particular, that the fixed point (BPS) equations, in which the fermions
are set to zero and the bosons satisfy d f = 0 for any fermion f of the multiplet, depend on
the assumption we make about ¥ and 4. For the A-type projection, 14 = 1}, we obtain

kFD,¢ — ir(iH)p — (2 — qo)p =0, iU*D,p—F =0, (4.13)
kD¢ +ir(iH)p + (2 — qo)p =0, iU"Dup—F =0. (4.14)

Further assuming the reality conditions 5 = ¢* and F= F*, these equations reduce to
E'D,¢ —ir(iH)p =0 & (z—qo)p=0 & WU'D,p—F =0. (4.15)

We obtained the last equation using the property U = —U*. In the case of arbitrary
¥ and 9 we would have instead F = F = 0 and U #D,¢ = 0 independently. In the
presence of a superpotential, we should integrate out F'* in favor of g“E(%W. Recalling
that U = €@ (n# — ik"), we see that the equation iUFD,,¢* — F'* = 0 becomes the natural

3d generalization of the domain wall equations in two dimensional (2,2) theories.

Real and gauge multiplets. The supersymmetric transformation rules for the gauge
field were discussed in subsection (2.2.2). There we made a connection between the real
multiplet and the gauge multiplet:

. { . 3 ~ .

ju = —ié‘uypfyp, au = _ju - O-Vuy 1/}2 = 7'>\a ¢Z = —i\. (416)

Here we use the real multiplet parametrization for the fermions, and write the field strength
F in terms of the vector a,. The supersymmetry transformations on an A-type background
then takes the following form.

e For the € variation of the bosons
deo = +id (C¥x)
Ay = =0 [+ €n, ((Ys) — i@k, ((s) — by (V)] (4.17)
6D = +ib) [C(K(Dy = $Vi) = 3H) b = CUM(D, — §V)om]
e For the € variation of the bosons
deo = +id ((Us),
beAy = =0 — e ®n, (Cis) —ie ™k, (CPs) — ku ((¥n)] (4.18)

§:D = —id [f(k“(Du + 2V, + SH)gs — CUH(Dy + %Vu)iz} :
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e For the fermionic fields

Ss = 0 [[D —io(iH + kMV,) — ikH(j, + 10,0)]C — iU (a, — iaua)g} ,
R ) (4.19)
S = ¥ [[D —io(iH + k"V,) — ik (j, — 10,0)]C — iU (a,, + i@,ﬂ)(} .

The projection ¥ = ¥ becomes relevant when we consider the full variation § = d¢+0¢ of the
bosonic fields. The variations of the fermions is by construction chiral, and therefore §yy
and 5¢g is not modified when we impose ¥ = 9. The fixed point equations ¥y = 1[12 =0
and dy, = (WZ =0 are

D —io(iH + k'V,)) — ikt (j, +i0,0) = (n* +ik*)(a, — id,0) = 0, (4.20)
D —io(iH + k"V,)) — ik"(j, — i0,0) = (n* — ik*)(a, +i0,0) = 0 . (4.21)

There are two well known solutions to these BPS equations. In both cases, we shall assume
o and a, to be real. The first one is,

D —io(iH + k"V,) =0, Oyo =a, =0, (4.22)

where the combination iH + k*V), is correctly invariant under the shift symmetry (2.6).
If matter fields are set to zero, this solution represents a generalized ‘Coulomb branch’
solution. In the gauge k*V,, = 0 the solution (4.22) takes a more familiar form [48]. The
second solution to the BPS equations is:

n'a, + k'0,0 =0, kloo =0, (4.23)
kta, —ntd,0 =0, D —io(iH + k"V,) = ikVj, . (4.24)

The equations (4.23) and (4.24) generalize to arbitrary A-type backgrounds those of [52, 53].

5 N = 2 Lagrangians

With all the geometric prerequisites in place we need one more element before we can start
discussing concretely how to treat A/ = 2 supersymmetric field theories on A-type curved
backgrounds with boundaries. We need to collect all the surface terms that arise in the
supersymmetric variation of explicit Lagrangians. This is the main purpose of this section.

5.1 AN = 2 non-linear sigma models

In this subsection we study first the most general (classical) AV = 2 theory of chiral super-
fields on A-type curved manifolds. In flat space such theories are characterized in standard
fashion by an action governed by a Kahler potential K and a superpotential W. The
curved space generalization of this action is straightforward. We spell out the details for
a non-linear sigma model (NLo) of s elementary chiral superfields {¢®, %, F*}, and their
conjugate {557{/;2,}7’5}, with a generic superpotential. As far as we know, some of the
following calculations are not listed in the literature.
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5.1.1 General Kahler interactions

In flat space, supersymmetry turns a generic target space into a Kéahler manifold. This
continues to be true in curved space. In addition, the Lagrangian contains a set of new
couplings between the dynamical fields and the background fields H and V*. By following
the strategy outlined in the review section 2, the Lagrangian of the curved non-linear
sigma model is obtained from the curved D-term combination (2.26) evaluated on the
composite multiplet

K = {K, X(K),X(K)aM(K)vM(K),Q&K)70_( ) A N K)} (5.1)
whose bottom component is the generic real function K = K(¢%, qz~55) Derivatives of K
w.r.t. the fields will be indicated by Ky 1, .1,, where I can be either an unbarred or a

barred index. For n > 1 the tensor K, y,, . g, is totally symmetric. The assignment of R-
and central charges is

R[¢a] =7, R[%E] = —r", Z[¢a] = 2%, Z[¢E] = *ZE’ (5'2)

and the Lagrangian takes the form

Inte = —% (DH) — aff IV — o)
o (5.3)
— gﬂat _ % (Ta a(;sa PR E¢C) 4 g]l;os 4 gf]erm 4 g‘l;os 4 géerm’
where R is the curvature of the background manifold and we have defined:
. ; .
gﬂat _ _|_gle ¢aKacDV¢c ac wc ( “wa) + i(Duwc)vuwaKaE (5.43)
~_ 1 1~ 1 ~~
—FFKoz — iFaKém(ch) =+ §FcKaam(¢m¢a) + ZKEﬁamq/}cwnwawm ;
f}}os =+ (Hra — zE) (Hr® —2%) aaKaaqba
H - ~1 3H e
. [ (Hr®—2%) Ko+ (Hr— %) Kaﬂ +2= (z“ W42 E¢C) . (5.4b)
g]@erm = _% |: <H (T > ) Koz + )¢chma:| Zf)al/lc
—% [ <H <r > ) Koz — 2" anKam] e (5.4c)
1 ~
Ly = +M[ ( "6 Ko - K) Drge ( G Ko 21@—;) DHg?

+ Z v (r“ 20" + 1K ¢" — 47«%%555) ] , (5.4d)
og/pferm — +%VM |:Z"§ZC’Y# <<Ta _ ;) d]a + annrm¢m¢n>

+i <<r - ) Ve + rg,mrm%%"> wpa] K, . (5.4e)
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In (5.3) we are using the covariant derivatives

D) = Duprzy + irVup(r,2)
= Vyup(rz) —ir AELR)V?(W),
D = Dup® + K Kemn D™ ™,
DMZE = D;HZE + K% Kamn D™ ™.

(5.5)

The background connection appearing in D), is AR = A — %V. Let us also mention that
the R-charges of the derivatives of the composite fields are

RIK,] = —rq, R[KZ] = r°, R[Ku o) = —r* +1r°. (5.6)

As in flat space, the function K defines a Kahler potential for the metric G,z = Kyz. Con-
sistency of the supersymmetric transformation rules requires K to be a quasi-homogeneous
function of vanishing R- and central charge.'® Collecting the fields ¢® and ¢ under the

variable CT = (¢%, ¢°), the two conditions on K are
S, rICIK =0, rl = (r®, —r%), (5:8)
S K =0, 2= (29, -29) . '

These extra conditions on the Kéahler potential arise from coupling the theory to the
background field H.

5.1.2 Superpotential interactions

Superpotential interactions are introduced as F-terms for a chiral multiplet Qy =
(W, ¢(W)7 F (W)), where W is a holomorphic function of the chiral fields ¢®. The resulting
Lagrangian in components is

Sy = F™9,W — %uﬂ' WO0,W + F"0pW + %iz?ﬁ&maﬁamﬁ . (5.9)

Invariance under supersymmetry requires W to be a quasi-homogeneus function of the ¢®
of degree 2
—2W + ) 0. W =0. (5.10)

2

In a similar way W is quasi-homogeneous of degree —2. The R-charges of 9,V and &;VIV/ are
R[O,W] =2 — 1, R[O:W] =71°—2. (5.11)

The most general Lagrangian for a set of chiral superfields is then specified by the two
functions K and W, and by the assignment of charges. Schematically, from (5.3) and (5.9)

we find
DPNie = L + L . (5.12)
6This restriction can be understood from the computation of o). Extracting ¢®) from x*9 and
5% leads to two different expressions:
o) = 2 (rH — 2%) K6 + iKae 9°0° = =2 (r°H — 2°) Kog® + iKae °9° . (5.7)

In order for " to be well defined, K has to be quasi-homogeneous of the type (5.8).
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5.1.3 Variation under supersymmetry

Given ZnNLo, the object of interest for us is the total derivative that arises in a supersym-
metric variation

0LNLo +0LNLe = V(P (5.13)

The supervariation can be obtained either by varying the action explicitly or by evaluat-
ing (2.26) and (2.27) for the multiplets K, Qy and Q5. The result in both cases is

V2V, = e |y KaeDy 8 — (r°H = 25) Y0 Ko =iV Ky — 27" 6°0: W |
—¢ [wy”&é KeaDy ¢ — (r®H — 2%) y*° Kaqd® +iVH ) Ko+ 2mwaaaw}

+z‘ery%‘f<FaKEa - ;Kama(ww)) +igw¢a<ﬁCKm+ ;Kaﬁa(%&”b . (5.14)

The equations of motion of the auxiliary fields F* and F€ are

KueF© + %Kaéﬁ(l;é{;ﬁ) = 0, W,

N (5.15)
FaKaE - %Kéam(wawm) = 8EW .

Integrating out F'® and ' we obtain the final expression
V2Hp, = +elyy i D — (F°H — %)y 3 — VI K — in W Ko
€[y U DL — (1 H — 2) 3 6 4 VK + i W Ko, (5.16)

where we have defined the vectors

W= K“Co,W, W°=K*9,W, K°=K“K,  K'=K¥“K;. (5.17)

The R-charges of these vectors can be deduced from (5.6) and (5.11): R[W?*] = r® — 2,
R[WE] = 2 — ¢ and so on. Observe that the bilinears appearing in ¥y, are the most
general bilinears of vanishing R-charge with the correct index structure built out of € and €,
v and 1;, and the corresponding bosonic fields. For example, it is obvious that derivatives
of the superpotential W only couple to e*y”zz, not to ey*.

5.1.4 Digression on target space geometry

In differential geometry, a Kihler manifold is defined as a symplectic (real) manifold (N, w),
equipped with a complex structure J such that G(-,-) = w(-,J -) is a Riemaniann metric
on TN. The last condition is called w-compatibility [40]. In a local description with
coordinates (¢?, ¢°) the metric is represented as

ds3r = Guedd®dd° + Gadddg’ = 2Gaed?dd®,  Gooe = G

ac?

(5.18)

and the two-form w is represented as wae < Gazdd® Ad¢°. The target space of the non-linear
sigma model, listed above, is such a Kéahler manifold.
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For many of the explicit computations in the following sections, a different parametriza-
tion will turn out to be especially useful. This involves the change of variables

¢a _ (Pa + ’i(ba+5, QZ;E — (bé . i(p5+5’ (519)

where a,é = 1,...,s. When the reality condition ¢° = ¢°* holds, the fields ®' are real.
However, in general, we may consider ¢ and ¢ as two independent complex variables. Then
the fields ®/ are also complex and (5.19) is a standard change of variables in GL(2s, C).

Collecting the labels of the type (a,a+$) into one index I =1, ..., 2s, the matrix that
represents the change of variable is

P Pl L .
Col=om ), om= "t TTis ) ol = Lopt (5.20)
< @° oUts 0f  —idg, 2
where the symbol 47, stands for a diagonal matrix in the off-diagonal blocks of 9, and is

defined to be 6%, , =1 (or 0) if a =i (or a # i), as is clear from (5.19). The metric changes
accordingly

slast g —iol%d G
dsi/ = G]J dq)Id(I)J, G[J = < .7’ [a] g {al EJ}+5 . (5.21)
+i0,1.09 Gaz 014,05, Gac

The matrix Gy is real and symmetric, G = GT. On the other hand, the complex structure
and the two-form are given by

M 0 57T+5 1
el A I (5.22)
“Ynts

Important relations are J = —J7, J? = —I, and G = JGJ'.!7 The second one in (5.22) is
precisely the condition of w-compatibility, which is part of the definition of N.

By construction, two types of “products” exist on a Kéhler manifold, one is the
symplectic product defined from the tensor wj;; and the other one is the metric. In
components, we find

(v 0° + W) Goe = VIG W, (5.23)
(U“wé - waT}E) Guz = iVIwUW‘], (5.24)

for any pair of vectors V!, W7, The formulae (5.23) and (5.24) will be useful in several
occasions. Here we mention one simple application regarding the kinetic energy, which in
the new variables ®! is the sum of both the metric and the symplectic product. Because
of the following identity

Gac(9u0" — ir“ama)(@%@ + irfat¢°) =

1
= 5Guy <au<1>M + aMZJAfrIQDI) <a“<1>N + a“ZJ]}Qqu)K> (5.25)
I K

"When we write matrix products we always understand row by column multiplication, from right to left.
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valid for any connection a,, it is possible to introduce the analog of the covariant
derivatives (D, ¢% D,¢°) acting on ®!. In particular, we define

: 1
(D,¢*, Do) — 0,® + <Au - 2Vu> JR®+JZP (5.26)
where the bold symbol ® represents the vector ®' and the matrices R and Z are given by
r*6¢éd 0 24080¢ 0
Rij= A I Zr; = (R B 5.27
Y ( 0 5;95;) 1 ( 0 2° 555;) (5:27)

Notice the absence of negative signs in the right bottom corner of R (Z), corresponding to
r¢ (2°). The bold symbols ¥, W, and K, will be used to describe the vectors corresponding
to W, W and K, that indeed appear in the supervariation (5.16).

5.2 N = 2 gauge theories coupled to matter

5.2.1 YM and CS theories

Next, consider a vector multiplet V = {A,,, A, Ao, D} valued in the Lie algebra g of a gauge
group &, possibly non-abelian. The field strength F,,,, of the gauge field and the covariant
derivatives of the various fields in the vector multiplet are

Fuw = 0, A, — 0, A, —1[AL A,
DA = Do+ iVih — i[ A, ],
n n 1 T (5.28)
DX = Dy — VA [\, Ayl
D,o = 0,0 —i[A,, 0] .

In three dimensions a gauge field admits both Yang-Mills (YM) kinetic terms and
Chern-Simons (CS) kinetic terms. For abelian theories the supersymmetric Lagrangian
is obtained as the curved D-term of the composite multiplet —9%22, where 3. is the real
multiplet associated to V), and e is the coupling constant. The non-abelian Lagrangian is
the standard generalization of this construction, and the result in components is

1 1 )~ ; -
e’ Ly = Tl"{ Z}—W}-’”’ + §D“0DMU - %)\(V“D#A) - %(D#)\ AN

1 -
—5(D+ oH)? + %HM + LY } : (5.29)

+i)o, ]
. 1 -
2 LY\, = —i—;VH{U&?“”p]ﬂ,p - Ve’ + ;/\7“)\} : (5.30)
For CS theories the supersymmetric Lagrangian is

Log = %Tr {igwp (AuauAp + §A“A”Ap> —2Do + 2@'5\)\} . (5.31)

Finally, if the gauge group contains a (product of) U(1) factors we can add for each abelian

factor the corresponding FI term

gp[Z—F%f(D—AHVM—UH) . (5.32)
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5.2.2 Matter couplings

Matter can be added both to CS and YM theories by coupling the vector multiplet to
chiral and anti-chiral superfields in arbitrary representations of the gauge group 6. We
consider matter superfields ®2 and ®° labelled by a bold index which collectively indicates
both the color index a and flavor index m, i.e. a = (a, m). The color indices are contracted
in scalar products defined in the appropriate representation of the chiral and anti-chiral
fields. Similarly, the components of the gauge multiplets act on the matter fields according
to their representation, and the covariant derivatives contain both the background and the
gauge fields, Du‘?(r,z) = IDMQO(T,,Z) + irvu@(r,z) — iAuQO(r,z) for any field P(r,z)-

The gauge invariant interactions among different flavors are fixed by a choice of
Kahler potential and superpotential. For the simplicity of the presentation, we will
consider a canonical Kéahler potential. Each flavor may also have different background
R-charge ™ and central charge z™. Assuming that chiral and anti-chiral superfields have
opposite charges, it is convenient to define the diagonal matrices of R- and Z-charges.
The Lagrangian is

-iﬂmatter = D%K + D%W s (533)

where £y contains a gauge invariant superpotential, (5.9), and Lk is given by
Ly = LM — BIRG+ L + L™ + L5 + L™ (5.34)

In this formula fR is the curvature of the background manifold and

gﬂat _ guuDuéDya_ % QZVM(DMTb) —i—%(D“iZ)’)/uw—Fﬁ‘i‘\/ii <$)\¢‘|‘1ZX¢> +$D¢ )

(5.35a)
fhos = ¢ (HQR (R - ;) +(Z+40)2—2HMR-1)(Z - g)> ¢+ Hdod,  (5.35b)
Sherm — iy <H (R — ;) —(Z2- a)> v, (5.35¢)

2 =i, (3 (R ) oo (r- 3 ) pd- g vam (R ) 0) . 5350
g‘ggrm — #1; <R _ ;) 7M¢ . (5356)

Equipped with the precise form of %y, Zos and Zmatter it is possible to write down
the most generic quiver gauge theory. In this case, the gauge fields will be also labelled
by a bold index of the type, m = (a,m), where m labels the nodes of the quiver theory,
and a labels the generators of the gauge group &,, at the node m. Considering normalized
generators for the gauge groups, the CS coupling x is promoted to a matrix of the form
Kmn = 0ac ® Kmn, With K,,, a symmetric tensor.

5.2.3 Variation under supersymmetry

The supersymmetric variation of the actions Ay, Los and Znatter has the following
properties. Let us begin with the non-abelian YM theory. The change in the action under
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a supersymmetric transformation is given by the total derivative of
e? Wy = Tr| + %ew“yp:\ (.7:",, +2i0V,) — %e'y“'ypj\ 0,0
+ iév“'yp)\ (ﬁp + 2ioV,) + %E'y“v’)}\ 00
+ %ev“wg (iD + o (iH)) + %w{zz (D +oGH))|,  (5.36)
where ]:"p = cupF . In the real multiplet parametrization,
Jo=—=F,,  ap=—j,—0V,, A=iy, A= —ips, (5.37)
we can rewrite %), in a more compact form as follows
e’ “//#M =Tr [ - %(67“7'”1#2 (ap, —10,0) — exy!'1Ps (iD + (zH)a))
+ %(ww}z (a, +i8,0) + &5 (iD + (iH)a)) } . (5.38)
For the CS action (5.31) the variation under supersymmetry gives
Vos = +ﬁnac |70 (€908 — EYpUR)AS + 2y v + e 0R)o°] . (5.39)
The case of the FI Lagrangian (5.32) is straightforward, and we obtain
Wy =5 €A~ N) = —Le[ert s + e (5.40)
Finally, the variation of the matter action generates
V2 bt = +€ |11 Dy = (FPH — 2°) 7™ 6 — VIR + i P F | G
e[ DG — (FUH = ) Y 6+ VIO — i Y | g (5.41)
—e7 U (06) Cag + 4" 0°(00)Gas — iv2[€"0° (15 6)* + E76° (15 9)* | Gl

The contraction of the color and flavor indices is packaged into Gaz. Notice that in the
last line o, ¥y, and x5, act appropriately on color indices.

6 Boundary conditions: a preview

In the previous sections we made precise two key elements of our initial discussion: we
decomposed any compact A-type background Mjs into the union of submanifolds with
boundary, called 7, and we wrote down supersymmetric field theories for N' = 2 chiral
and vector superfields on M3, explicitly calculating the expressions for the supersymmetric
variation ¥*. When these field theories are restricted on 7, the action can only be invariant
under a subset of the bulk supersymmetries if there are boundary conditions solving the
corresponding constraints ¥+ = 0.
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In addition, a well-defined classical problem requires appropriate boundary conditions
that annihilate all the surface contributions in the Euler-Lagrange variation of the system.
Schematically, given a field ®, and a bulk action S = [ M Z[®] the equations of motion of
the theory require S = 0, where

0% 0% 0%
0S = 0P [ — 0, <>} +/ Oy < (5(I>> ®,=0,9 . (6.1
Ms 0P 0, Ms 0P K K )
On a space with boundary, one demands simultaneously
0L 0ZL 0L
E[®] = — — — | = B[®, 6P| =n,,— P =0. 2
o= 0. (5o ) =0, Bmsel-nSLsa 0. (62

A priori, the boundary equations B = 0 are a set of on-shell equations. In what follows,
some of these boundary equations will be required to hold also off-shell and will be used

to find solutions of V- = 0, which is our main goal.

6.1 The boundary value problem
6.1.1 Fermions

Let us focus first on the boundary value problem for the fermions in %y and Lnatter,
respectively. In Zog the fermions do not have a kinetic term and do not contribute

boundary terms. The corresponding boundary contributions are

—% / Tr (ML(SA - (55\’}/J‘)\> C 6Syum s (6.3)
2
_Z/ Ka& ({FVl&ba - 5{[;671_@0&) C 5Smatter . (64)
2 Jm,
It is convenient to rewrite both terms in a uniform way. Defining the doublet ¥ =
(0%, 61°) and ¥ = (1p%, 1), we obtain the expression

B/ [@, 5®] = _%\pT (KO If)) @yt 0w . (6.5)

The form (6.5) also covers the case of (6.3). It is convenient to use 1y, instead of A. If the
generators of the Lie algrebra {t®} are normalized so that Tr[t*t¢] = ¢, the corresponding
metric K is the identity. In the real notation of subsection 5.1.4 both (6.3) and (6.4) can
be written in the compact form

B/ [, 50] = —%GU\IIIVL 2 (6.6)

where G is the appropriate metric. Notice that because of the anti-symmetry of ¥/y+ §¥7
the boundary term B[W¥,0®] is a 2-form on the space of fermions, i.e. B[P, d¥] =
—B[ow, ¥].

As we did before, we decompose

ST

S 45‘1’

\Il§~

o ¢t —¢- (6.7)
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Then, the equation B[¥, j¥] = 0 becomes

1y _ FoLF
Gy S8 () (G0w) + Gy S () (39¢) = 0. (63)
Recalling (3.22), we solve this equation by requiring the boundary conditions
(¢ -
o (C®)" =M (®)"* (6.9)

with a general (possibly field-dependent) matrix M that has the property
MTGM =G . (6.10)
The boundary condition (6.9) respects the R-symmetry whatever r-charge is assigned to W.

6.1.2 Vectors

There are two possible actions for a vector field A, in 3d: Zcg, and Zyp. The Euler-
Lagrange variation with respect to A, yields the boundary terms

—ﬁ o Tr [ewAmAg] C 8Scs,  (6.11)
/Mé Tr[(]—"“—i—ia“pvp 0)5,4”] - /M/Q Tr[+ingvap5Ay] C 8Sya . (6.12)

F is the full non-abelian field strength and a, is defined in eq. (5.37). For a given set of
generators {t®} of the gauge group, we can write A = A and a = a“t¢. Then, both (6.11)
and (6.12) can be expressed in terms of the tensor

BY[V,6A] = Gmne ™ V" 0A (6.13)

with V, = A, for CS, and V, = a, for YM. We introduced bold indices m and n to
describe general quiver gauge theories. Specifically, m = (a,m) is a double index where
m labels the nodes of the quiver and a labels the generators of the gauge group &,,, that
refers to the node m of the quiver. Considering orthonormal generators, the matrix G is
Gmn = dac @ Kmn. i

In the orthogonal frame {k,, k,} on T M5, we can further decompose V and 6.4 along

k and k to obtain
T
ym 0 +1 0AR
B[V, 0A] = —Gmn k k . 6.14
oA (Vkm> (‘1 0)(‘5“412’) (o1

We used st”l;pk:l, =-1.

After tracing over the bold indices, B'[V, § A] becomes a 2-form on the cotangent space
of M),. Equation B¥[V,0.A] = 0 is solved by finding appropriate Lagrangian submanifolds
associated to this 2-form. Concretely, we may pick any Sp(2, C) matrix with unit determi-
nant, call it M, and impose the boundary conditions

1-M§A=(1-M)V=0 VpeM,. (6.15)
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When M}, is endowed with a complex structure, the action of Sp(2, C) has a natural inter-
pretation. By construction, these solutions are valid both for CS and YM gauge theories.

We point out that an additional interesting solution of BY[V,d.A] = 0 is available in
the case of CS theories. In general, the tensor k., is symmetric, but need not be positive
definite. In that case, it may have isotropic subspaces. On this subspaces BY[V, .A] vanishes
automatically, independently of the coordinate dependence of V and §A. For example,
given an isotropic vector v such that vk, v™ = 0, we may consider boundary conditions
0A = v AN dxt and V = v™V*dx# with arbitrary components §.A, and V), on Mj. For
a general treatment of such boundary conditions in CS theory we refer the reader to [56].

6.1.3 Scalars

In the non-linear sigma model, the variation of %414 With respect to ¢, ggé, yields the
result!'®

5Sn1s D — /
M

The term proportional to V1 does not contribute, because V- = 0 at the boundary. The

(D%E@ Koz 06 + 00° Kae DLqﬁ“) —qvt ( 1 K,o¢" — 1 KE&ZE) . (6.16)

/
2
first term can be written in compact notation as

0 Ky
TG DL P = ac 1
cve (0 o

where G is the target space metric and ® the vector of scalars, introduced in section 5.1.4.
We can set (6.17) to zero by assuming that the two vectors §® and D@ = 0 are orthogonal.
The standard way to do this, is to consider Dirichlet, §¢% = 0, or Neumann, D+¢* = 0,
boundary conditions (and similarly for the scalars a) Notice that in general D+ contains
non-vanishing normal components of a gauge connection.

In supersymmetric YM theories, the gauge multiplet contains a real scalar ¢ in the ad-
joint representation of the gauge group. The variation do of the action yields the boundary
term Tr (6o D+0o). This term is similar to (6.17), and can be set to zero in the same way.

6.2 Path integral and closure under supersymmetry

We conclude this section with an additional remark. In the ensuing sections 7 and 8 we solve
the equations ¥ = 0 to obtain half-BPS boundary conditions for general supersymmetric
gauge theories. This is sufficient for the purposes of the classical problem.

In the quantum problem we are integrating over generic field configurations in a path
integral. In the presence of a boundary the integration is further restricted to configurations
with specific boundary conditions. Consequently, in this context the invariance of the path
integral with respect to a given symmetry requires that the boundary conditions are also
invariant under the symmetry in question. In general, this is not automatic and it may
lead to further restrictions on the boundary conditions.

18We remind the reader that in this, and the next two sections, we are referring to a flat target space for
which the coefficients K,z are constants independent of the field profiles ¢, ¢°.
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Although we are mainly interested in the classical problem in this paper, we will
partially address the issue of the closure of boundary conditions under supersymmetry in
the following sections.

7 Boundary conditions I

In this section we address the precise form of A-type boundary conditions in general three-
dimensional non-linear sigma models. A good prototype for this exercise are A-type bound-
ary conditions in 2d NV = (2,2) non-linear sigma models on the strip that define D-branes
in a Kéhler target space X. In that case we know, [14], that the solution of the A-type
boundary conditions is describing D-branes wrapping Lagrangian submanifolds in X. We
will describe how similar solutions arise in three-dimensional theories. We work out first
the case of a flat space background, and then explain how things are modified when the 3d
theory is placed on a general curved A-type background.

7.1 Non-linear sigma models

7.1.1 General equations

The action S of a supersymmetric non-linear sigma model is specified by a Kahler potential
K, a superpotential W, and finally the R-charges and central charges of the chiral super-
fields. In this subsection K is generic (a flat Ké&hler potential for chiral superfields will be
considered in the ensuing section 8). We continue to call the target space X.

In section 5 we calculated the variation of S under supersymmetry, and found a
generic expression for #};, . Here we are interested in solutions of the equations Vo =0
at M. We have

\/541/]\Jf_LU = te [VL’VVwa DV(ZE - (TEH - ZE) ,}/J_wa (EE — Z'VJW/JGKE — Z"}/J_’(,/\J/EWCL] K,z
—g[ywy{ﬁf Dy¢® — (rTH — 2%) 79 ¢ + iVEgCKa + wwaﬁé] Koz . (7.1)

The indices a, ¢ run from 1 to s, where 2s is the real dimension of the target space X. It
is convenient to use the identity v#v" = g"” + v*¥ and rewrite

+ey Y Dyt = +e' D + ey My Dyt (7:2)
—Ey YDt = e DY — eyt YDyt (73)
In equations (7.1)—(7.3) we recognize the combinations

VJ_ [Ké(égé)susy - Ka(égba)susy} & (5¢)susyDJ—$+ (5$)susyDL¢v (74)

which appeared in the analysis of B%[®,0®] (6.16). This is expected because on-shell we
can always use the Noether current to rewrite ¥ .

Following the discussion in section 6, we require V]\%LU = 0. The analysis of this
equation reduces naturally to the study of four types of terms:

N =+ | DG — @D | Ko, (7.5)

— 38 —



% S |:6’)/LV77ZJG ,DVCEE . g,YLVJE 'D,,¢a:| Kaé, (76)
R e S S B o (7.7)
Yy = — {GVLJEW‘L + €7L¢“/VI75} K. . (7.8)

In order to obtain explicit boundary conditions for the fields that appear in these equations
we have to disentangle the spinorial and target space structures. The reader can find the
details of this computation in appendix B. Here we outline the main steps.

Firstly, the anticommuting spinors are decomposed in components using the projec-
tors 2 and 2. As a result, all the geometric information can be packaged into the
bilinears (3.22)

(r¢ =Qe”, (¢ = -Qe,
C,YJ_,.YV”C — Qeiw kV” , EVJ—PYVHE — Qefiw kl/H . (79)
CyHyI¢ = —iQUkM Il = —iQ kM

Secondly, we impose the A-type projection (4.4)—(4.5) on the spinors € and €,

Pe=0, Pe=0, I=0. (7.10)

Finally, we impose the boundary condition (6.9) on the spinors, i.e. e/@ (C®)! = ML ()X,
These manipulations introduce the orthogonal matrix M and the phase w in ¥%;. At the
end, the ¥ depend only on e and W(¢. Hence, a bilinear e® common in all terms can be
factorized out, and the result for “//]\%LU can be understood as a condition on the bosons.
This is nicely expressed in the matrix notation ® and ¥ of section 5.1.4. As a simple
example of these manipulations, we obtain

1—1J
2

- , 144
% — +6¢aKaEDJ_d)C o gchaEDJ_¢a — (€\I’)T < + e—Z’WMT—;ZJ> GDJ.@ )

The complete result is
Vi = +He®)T [(1—iJ)] G P [nﬂpﬂ + J%“DH‘I’} (7.11a)

+He®)T [e7=(1+iJ)] G P [kﬂpp L JGH)R® —iJ 2 @} (7.11b)

—(e®)T [e7=(1 )] P J[GW], (7.11c)
where the matrix Pﬁ H is a target space projector defined as
(’I.U,:l:) = 1
Py =3 (1 + M[w]) , (7.12)
M[w] = MZ|w| = Z|—w /2| MR|w /2], (7.13)
RH|w) =coswl+sinwJ . (7.14)
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In deriving (7.11) we imposed {M, J} = 0 from which (7.13) follows. With this condition,
Py is a projector if M? = 1. Collecting all requirements, the matrix M is an orthogonal

matrix with the properties
M?*=1, {M,J}=0. (7.15)

The matrix #Z[w] is the matrix of local R-symmetry.

7.1.2 Solutions in flat space

Having obtained the general formula (7.11) we are now in position to study solutions to
equation 7/]\JfL » = 0. Flat space is of course a special case of our discussion. It is instructive
to exhibit first how Lagrangian ‘D-branes’ come out of (7.11) for a theory defined on a
euclidean 3d half-plane. In this case the boundary leaf M), is a 2-plane.

In flat space the profile of the background fields is trivial, and the covariant derivative
D,, reduces to the standard partial derivative 9,. In what follows we will also set, for
convenience, Z = 0 for the central charges. The role of Z in (7.11b) is the same as that of
a real mass obtained by giving a vev to the bottom component of a real multiplet coupled
to ®. We will consider such masses in relation to YM and CS theories in section 8.

Before going into the details of the solution, it is worth emphasizing two simplifying
special properties of flat space:

1) There is always a choice of coordinates, say {6, x, &}, such that the frame {n,, k,, 12;“}
is precisely {0y, 05,0z }. The boundary is placed at a fixed value of 6.

2) The phase w appearing in M[w] is a constant.

Both of these features are generically absent in curved space because of the background
curvature.
Focusing on the vanishing of the components (7.11a)—(7.11b), we obtain the conditions

0p® € Ker(1l + M[w]) (7.16)
0, ® € Ker(1 — M[w]) & 0;:® € Ker(1 — M[w]) . (7.17)

Since M? = 1, the eigenvalues of the matrix M are +1. Moreover, since {M,J} = 0, the
complex structure of the target space is a bijection between Ker(1 — M) and Ker(1 + M).
As a result, Ker(1 4+ M) is middle dimensional in the target space, and the direct sum
Ker(1 — M) @ Ker(1 + M) is a basis for TX. The submanifold corresponding to the
distribution Ker(1 — M) is a Lagrangian submanifold £.'? The effect of the matrix %Z[w]
is to change the orientation of the Lagrangian submanifold by a constant angle w.

19For the convenience of the reader we remind that a Lagrangian submanifold £ (defined on a symplectic
manifold (M, w), where w is the symplectic form) is characterized by the two conditions:

w|, . =0, dim £ = %dim/\/’ . (7.18)

When the symplectic manifold A is Kihler, the Riemaniann metric G can be used to characterize £, and
the definition just given is equivalent to the condition

TLS=JTL, TL ={TecTN[vGw’ =0vdeTL). (7.19)
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The Lagrangian submanifold just described contains ®(M}), the image of M), under
the maps ®. Both M and the derivatives of ® are objects in TX. The solutions (7.16)—
(7.17) transform correctly under a change of coordinates in the target space. Locally, we
may take a chart such that the Lagrangian submanifold is described by mixed Dirichlet and
Neumann boundary conditions. We impose Neumann boundary conditions along the direc-
tions parallel to the submanifold, and Dirichlet conditions along the directions transverse
to the submanifold.

In the simplest situation, in which X" is an affine vector space and the Kéhler potential
is canonical, the Neumann and Dirichlet boundary conditions can be seen explicitly by
solving (7.16)—(7.17). This is done by considering a basis {v;};_; of Ker(1+M), and writing
® =537 [fiv'+g;Jv'] with f; and g; functions of the coordinates. The solution to (7.16)
is Jpg; = 0 at the boundary, i.e. Neumann boundary conditions along the direction of the
submanifold. The generic solution to (7.17) is f; = fi(f), and therefore f = const at the
boundary, i.e. Dirichlet boundary conditions in the direction transverse to the submanifold.
The worldvolume of £ is along the span of {Jv;}¢_;. The case with w # 0, is solved by
rotating the fields accordingly with the projector. The latter can be written as

(LM

PE*) = #-w/2) [w/2], (7.20)

and the solution is ® = Z[—w /2]®’, where @’ satisfies the Neumann /Dirichlet boundary
conditions that depend on M.

Along similar lines consider the boundary conditions derived from the superpotential
term, namely the equation that arises by requiring the last term (7.11c) to vanish,

PUEN IGW = Zlw/2](1 + MT)%[~w /2] JGW =0 . (7.21)

In this case the projector depends on MT%[—w], in agreement with R-symmetry con-
siderations. The vector W was defined in section 5.1.4, and in the complex basis it has
components W¢ = K aEaEW, Weé=K g, W. Since W = ReW +4iIm W is a holomorphic
function of the fields, the Cauchy-Riemann equations imply the relations

Om Re W O Im W 0 ) ;)
- AW = oz — i . (7.22
am+5 Re W J ! 8m+5 Im W ’ 8¢m W a(I)m Re W ¢ a©m+5 Re W (7 )
The quantity GW is
GW = 7.23
Omis ReW () | (7.23)

where 0; is shorthand notation for 9; = 0/0®’. Implementing the rotation ® =
H|—w/2]|®', we obtain from (7.21) the projection equations

&, Im W (®')
& Im W ()

m-+s

(1+M7T) [ =0, (7.24)

where 9’ = 9/0%’. Because Ker(1 + M) span the tangent space T M, and J is a bijection
between these two kernels, we can understand the boundary condition (7.24) by considering
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the action of v*'(1+M7T) and (Jv)T(1+M7T) on &'Im W (®'), for any v € Ker(1+ M). By
definition v7 (14+M7) = 0, thus only (Jv)T(1+M7) is non-trivial. The latter can be calcu-
lated explicitly (Jv)T (1+M7T) = 2(Jv)T, and from (7.24) we obtain the boundary condition

(Jv) o Im W (@) =0, (7.25)

which translates into the statement that 9;ImW (®’) has no component along the span of
{Jvi}5_, and therefore ImW (®’) is constant along the wordvolume of the submanifold L.

7.1.3 Solutions in curved space

In the previous section, we solved the equations ”//]\J,-L » = 0 relying on two special features
of flat space: the fact that the phase w is constant, and the fact that there is a coordinate-
adapted orthogonal basis in T Mj3. In curved space we do not expect in general these two
features to hold.

For example, in the case of the ellipsoid in toric coordinates with background
fields (3.28)

i ® 1 ‘ 1 < ¢ )
H=+— AP =" (1- = )dp1F-(1-—)dss, 7.26
9oo * 2 ( gae) h¥ 2 9oo »2 (7.26)
we find wy = v with frame vectors
1
nl d, = ——0p, (7.27)
966
ki 0, = +0719y, + 0710, (7.28)
~ 1 1 1
Ho, = 2 Ko, £ —— | = = . .2
0, =% cot20) 0, £ o (00, % 500 ) (7.29)

Consider now a more general manifold M3 in toric coordinates (6, ¢1, ¢2), in similar
notation to the one above for the ellipsoid. By definition, the Killing vector k = %&p is
expressed as a combination of d4, and 0y,, and w is only a function of 1. The triple of
vectors (kH, n*, l;“) takes the form

k:%&p, n=fn0p, k=f0y+v"0, . (7.30)

The functions f , fn and v* depend on the details of the background, however, the integra-
bility condition implies [v"0,,,0p] = 0. M3 is decomposed as before, M3z = Ti#75, and
the fields are restricted on one of the solid tori, call it 7 for simplicity.

In this case, the general solution of ¥+ = 0 has (see (7.11a), (7.11b))

0p® € Ker(1l + M[w]) (7.31)
Dy® + J(tH)R® € Ker(1 — M[w]), k'D,® € Ker(l — M[wl]) . (7.32)
(R)

In the first line we used, for illustration purposes, the simplifying assumption A" =
0, which clearly holds for the example of the ellipsoid (7.26). The covariant derivatives
in (7.32) are

D@ = f0,® +v"9,® + k" AD IR @, (7.33)
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KD, ® + J(GH)R® = k', ® + [k:#AfP + (H +k'V,) | JR® . (7.34)

We can always solve (7.31) with Neumann boundary conditions because regardless of
whether the phase w is constant or coordinate dependent, dyp Z[w]| = 0. The solution
of the other two equations instead depends on o.

Consider first the case of background fields where w is constant. As we explained in
section 3.4, this can be achieved from a general background with a gauge transformation
of the original ALR) to a new R-symmetry background A,(gv)v. In that case, the term that
appears inside the parenthesis on the r.h.s. of equation (7.34), with the substitution A —
AE@V, vanishes because of the condition we found in (3.26). Consequently, we obtain as in
flat space

KD, ®+ JiH)R® | W k'O, ® € Ker(1 — M[w]) . (7.35)
twiste
The analysis of E“DM@ requires more detailed knowledge of f and l;“A,(ﬁL)ew. To be concrete,

in the case of the geometries introduced in section 3.5 we obtain the following expressions:

e For the ellipsoid, A,(ﬁ)ew and its scalar product with k*, given in (7.29), are

1 1 -
AP = AT — (g + dos) = —— (ldgy + Ldgs), (7.36)

2 2900
AR | = Ecot(20)iHy . (7.37)

The function f is also proportional to cot(26).

e For the circle bundles of section 3.5.2, we find

AR i = (COSQ B2 ul0) “’(9)> dp— 5O, (7.38)

pnew 2900 2 ggp sinf © 2gpp sinf
~ 2
E= ), -9,) (7.39)
~ t 6
prAB = ST 7.40
K 906 ( )

The function f is proportional to u(f)/sin .

We notice that the boundary condition from l%“D,ﬁI) simplifies when the boundary is
placed at the equator of the corresponding geometries, because at that point ];“Aﬁ])ew = 0.
When this happens, the covariant derivative IE“DMI’ becomes a combination of partial
derivatives, and again we can solve the boundary conditions as in flat space. Namely, we
impose Neumann boundary conditions along the directions parallel to the submanifold, and
Dirichlet for the directions transverse to the submanifold. The value of f at the equator is
not important in this statement. When the boundary is placed away from the equator a
more complicated boundary condition (7.32) has to be imposed.

In more general setups, a background M3 exhibits a coordinate-dependent phase w.

In that case the boundary equations (7.31)—(7.32)

9p® € Ker(1 + M[w)), (7.41)
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Dy® +J(iH)R® € Ker(1 — M[w]), k"D,® €Ker(l - M[w])  (7.42)

do not exhibit any simplification in the covariant derivatives, and the boundary conditions
are functionals of both the derivatives and the values of the fields. As a result, the
direct geometric meaning of the boundary conditions in target space, that was present in
backgrounds with constant w, is now less manifest. Nevertheless, one can still solve the
boundary conditions by diagonalizing M [w], for a given choice of M, and arranging the
combinations (7.31)—(7.32) to belong to Ker(1+ M[w]). Since [M, J] # 0, the eigenvectors
of M[w] are not the ones of M = M[w = 0]. Consequently, as we move along the orbit of
the Killing vector, or more generically, along the boundary M), these eigenvectors change
according to their w dependence.

7.2 Real multiplets

Before we tackle general gauge theories, there is another comparatively simple example we
would like to discuss. It is well-known that in 3d flat space there is a simple duality between
a chiral superfield and an abelian gauge field.?’ We expect the corresponding boundary
conditions to be mapped trivially under this duality. With this in mind, in this subsection
we present A-type boundary conditions for A/ = 2 theories of s abelian vector superfields
interacting via a constant target space metric G.

The supersymmetric variation #* is expressed most conveniently in terms of the real
parametrization of the abelian vector superfields in (5.38):

1 I W e
Tty = =5 (€1"170% (a, = 0,0)° — ey"08 (iD + (iH)0)* ) G
1 i T c
n §<gryw¢g (a, +i0,0) + EY"0% (iD + (iH)o) )Gac . (7.43)

We can further rearrange ”/{éal by borrowing results from the study of ”//J\%LU in the previous
section. In particular, let us define the two complex combinations: 0,¢x = a, — 0,0 and
Im gy = (D + (H)o), Repy = 0. Then, we can rewrite ¥, as

1 - N 1/~ e
Vol = —3 (67“ VoS, O, + ey, v%) Gac + 3 (w"v%% DpS; + EvHas, @%)Gac ;

and with an obvious change of variables, it is clear that we have obtained an expression
that is essentially the sum of %1, #5 and ¥, given in (7.5), (7.6), (7.7), respectively.
Consequently, the surface term 7L, takes the suggestive form

real
iD + (iH)o
0

*°In the simplest case, the duality is obtained by considering [ d*0(X* — 3(® + ®)), where ® is a chiral
superfield and ¥ a generic superfield. Integrating out ® constrains 3 to be a real superfield and produces a

M Gy

real —

Ouo

VLt = —(e®y)T [(1 - i))G) P (w[
’uO'

+Jl%ﬂ[

(7.44)

U(1) gauge theory. Alternatively, integrating out X gives the action of a chiral superfield. It is interesting
to reconsider this exercise in curved spaces.
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where the matrix M fixes the spinor boundary conditions eiwf\llg = MWy(. From the
definition of a, = —j, — oV, and the fact that VL = 0, we finally obtain the boundary

conditions
wi | | e e+ M)y, R | e | L e Ker(1 — M),
Ouo Ouo Ouo
D —io((iH) + k"V,) =0 . (7.45)

The last condition is correctly invariant under the shift symmetry (2.6). Assuming kv, =
0, the boundary conditions for j, and J,0 are arranged as those of a neutral chiral multiplet.

7.3 Closure under supersymmetry

As we noted in subsection 6.2 the boundary conditions may transform non-trivially under
supersymmetry. We would like to know if the boundary conditions that were formulated
above are invariant under the A-type supersymmetries, and if not, whether invariance can
be restored by imposing further constraints. Since the boundary conditions on the fermions
are algebraic, it is immediately possible to examine how things work in some generality. In
particular, when the matrix M is field independent we find that supersymmetry invariance
of the fermion boundary conditions does not impose any new constraints.

In contrast, the analysis of the transformation of the boson boundary conditions is more
involved and case-dependent. Since the boson boundary conditions involve derivatives
of the bosons, their transformation leads to expressions that involve derivatives of the
corresponding fermions. The details of the resulting expressions depend on the specifics
of the differential operators and, in general, have to be analyzed case by case. For that
reason, and in order to keep the discussion as generic as possible, in what follows we will
concentrate mostly on the transformation properties of the fermion boundary conditions.

Chiral and anti-chiral multiplets. The supersymmetry transformations of the
fermions (1,) in a chiral multiplet are

Sthe = +0 Flo+i0 [(k‘“@ugb . ir(iH)gb) & — (ﬁ“Duqﬁ)Ca} :

_ o _ B L (7.46)

6% = +0 Fla+i0 | (KDud+ir(iH)S) o — (UPDud)Cal -
For A-type supersymmetries, we set 0 = 0. We want to examine how A-type supersymme-
try transforms the boundary conditions (W = M W(. Assuming for simplicity that the
matrix M is invariant we only need to consider the bilinears dW¥({, (dW¥. Straightforward
manipulations yield the scalar products

1+i 1—i 1—iJ
sw¢ = il (k:“DM+r(iH)J)<I>+ ;JF—Z' ;Je“w(n“—ik“)DM@, (7.47)
_ 1-i 1+i 1+iJ

Gow — i (#Dutr(iH) T) @+ EZJFH —;Ue_“”(n“—i—ik“)DH(I). (7.48)
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Consequently, the condition /(6% = M §®¢ holds if the following equations are satisfied
(1+iJ)(1 - M%Z[w)) (k“D# + r(z‘H)J><I> —0,

(1—iJ)(1 + MZ[w))(n"D,® — Jk"D,®) =0, (7.49)
(1-4J)(1 - MZ[—w]|)F =0.

In these formulae we recognize the boundary conditions that we derived previously
for the bosons. As a minor difference comparing (7.49) to the original boundary condi-
tion (7.11a), we notice a sign change in front of the term J IZ”DM'I). This sign difference, how-
ever, is irrelevant in the final boundary conditions, since the two terms in the second equa-
tion in (7.49) have to vanish independently. We note that both n#D,® and J l;:“leI) belong
in Ker(1+ M|w]) and their relative normalization is not fixed by the boundary conditions.

We conclude that the supersymmetry invariance of the fermion boundary conditions
does not impose any new constraints when M is separately invariant. In the more general
case of a field dependent M one needs to consider extra contributions from the supersym-
metric variation of M.

Finally, regarding the variation of the bosons at the boundary, it is possible to prove
in complete generality the orthogonality condition é® GD+® = 0. From the A-type
supersymmetry, the definition of §¢ and 5(75, and the boundary condition on the spinors
eiwf ¥ = ¥(, we deduce the boundary variation
(w+) 1 +1iJ

1 . : —iT _
5@25((1+ZJ)+(1—1J)6 M)e\II_PM 5

W . (7.50)

Therefore, P]Ef ® = 0 and 6@ belongs to Ker(1 — M[w]). From the orthogonality of
the two kernels Ker(1 + M[w]), the condition §® G D+® = 0 follows. Let us notice that
on-shell this orthogonality condition corresponds to B*[§®, ®] = 0 (see (6.16)).

Real multiplets. The supersymmetry transformations d¢s; and (5152 in a real multiplet
are very similar to the ones of the chiral fermions d7 and §¢. The only difference is the
contribution of the D-term

S = ¥ [[D —io(iH + k"V,) — ikP(j, + 10,0)]C + ie~ 1 (n + ik#)(a,, — iaua)é} ,
S = ¥ [[D —io(iH + k"V,) — ik (j, — 10,0)]C — i€ (nk — iki)(a,, + iaua)f} .

Repeating the evaluation of e@(CoWy, = M §Ws( we obtain results similar to the chi-
ral multiplet case. Also in this case supersymmetry invariance of the fermion boundary
conditions does not impose any further constraints.

8 Boundary conditions II

In this section we study A-type boundary conditions in general (non-abelian) A" = 2 su-
persymmetric CS/YM-matter theories. The corresponding actions on curved backgrounds
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and their supersymmetric variations #* were obtained in section 5.2. Our analysis recov-
ers previously known results in special cases, e.g. flat space, and extends them to general
A-type backgrounds 7, in particular backgrounds with a solid torus topology.

We discuss first the conditions arising from the supersymmetric variation in the gauge
sector. The corresponding conditions in the matter sector are presented separately.

8.1 (Gauge sector
8.1.1 Description and summary of results

From the supersymmetric variation of the Yang-Mills and Chern-Simons actions, respec-
tively, we obtain the boundary terms

) . . 1
e? ”i/f‘M =Tr { — ZE’yJ"y"@/Jz (Fp+2i0V,) + 56 vaypng 0,0
1. ~ 4 . 1. ~
+ Ze ’YL’YPT,[JE (Fp+2i0V,) + 56 'yJ‘vag 0,0

- %mlzpz (iD+o(iH)) + %efyl{pvz (iD + a(z‘H))] . (8.1)

i v a ~_ Ja\ gc a ~ Tay _c
Vel = +-re [ (908 — B3 TRMAS + 2ev ud + )] (82)

In the gauge sector analysis we will also include a term coming from the vector-matter
couplings
inatter O —H(0t70) [ev 9% + Eyyg] (8.3)

{t®} is a basis for the generators of the gauge groups in play, and (¢pt*¢) denotes the
action of the adjoint fermions A = A% and A = A\®t® in the representation of each of the
matter fields ¢ and q~5 Recall that we use bold indices a to describe general quiver gauge
theories. In the multi-index a = (a, m) m labels the nodes of the quiver theory, and a the
generators of the gauge group &,, at the node m. For any set {t®} of generators we set
Tr[t?t¢] = Gae, and Kae = Gae ® Kmp. For canonically normalized generators Gge = 0qe.-

The expressions in (8.1)—(8.3) are a collection of all the terms in ¥, e, and
7/55 +matter that are functions of the spinors ¢y and 95 of the N = 2 vector multiplets.
In what follows, we refer to the sum of (8.1) and (8.3) as ”f/g§YM, and the sum of (8.2)
and (8.3) as “//gics (gs stands for gauge sector).

To analyze the supersymmetric variations ”Vgi vy and “//;; cg we need to disentangle
the geometric and spinorial structures. This can be achieved, as before, by using the
projectors &, tﬁ, and the A-type projection on € and €. On the anti-commuting spinors
Uy = (¢, Jg) we impose the general boundary condition

7 (Wy, = M s( . (8.4)

Supersymmetry will soon fix some of the properties of the matrix M, as we found for the
non-linear sigma model in section 7. Nevertheless, the case of the non-linear sigma model
and the case of the general gauge theory discussed here exhibit conceptually different
properties. Let us highlight the origin of these differences.
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In the boundary condition (8.4), the spinors of the vector multiplets vy, 'JE have been
arranged conveniently as a doublet Wy. The same doublet can be formed in non-linear
sigma models out of the fermions in the chiral superfields. In that case we can also form
naturally a corresponding doublet of bosons ® = (¢, 5) This is also possible for abelian
real superfields, where the role of ® is played by the complex combination of the dual
photon and the real scalar o. In the case of a non-abelian gauge theory, however, there is
no obvious natural bosonic ® that we can associate to ¥y. As a result, we cannot proceed
identically to the non-linear sigma model case thinking in terms of a generalized target
space structure on the gauge indices.

An alternative approach is suggested by the 2-form
BY[V,6A] = Gmne " V" 0AY (8.5)

that appears in the on-shell boundary value problem for vectors. In (8.5) both V and §.A
are 1-forms on the boundary. For example, BY appears in the Euler-Lagrange variation of
CS theories, (6.13), as well as in the supersymmetric variation ”I/CLS, (5.39),

BU[0A, A] X Kace™? SARAS = kace™P (Ey,0% — ey ) AS . (8.6)

In this equation BY couples the two components of 4, in the boundary directions to a com-
bination of the spinors. It is therefore natural to think in terms of doublets distinguished
by the spacetime indices of vectors parallel to the boundary.

Similar manipulations can be employed in ”f/YLM using the identity v#~¥ = gl 4 ~+*
to rewrite the kinetic terms as follows

7/YLM ) +ﬁ Gace™r (6'7p¢% - g’YpYZ%)]:—ﬁ _ﬁ Gac (€5 — g&%) QLV]:-S (8.7a)
— 5ty Gae e P (V& +EVE) D¢ +5by Gae (Y&+EUE) gtV Dyoc . (8.7b)

The first two terms in (8.7a) and (8.7b) have the same structure as BY in (8.5) (up to a
difference in =+ signs).
Introducing the notation

1 ~
J.L(P,V) = §€M (€70 £ 7,02 GacVS (8.8)

we show in the next subsection (see egs. (8.25), (8.28)) that J1(¥y, V) is closely related to
BY[eWsy,, PyV], where Py is a certain projector depending on a matrix U that has only gauge
indices and satisfies UTGU = G and U? = 1. The interplay between A-type supersymmetry
and the geometry of the form BY fixes the relation between U and M by setting

Uo

M=12x2®U=<OU

) o ETE = UNSC, @RS =UNEC. (89)

Note that unlike the boundary conditions in the non-linear sigma model case, (6.9), (7.15),
in (8.9) the gauge indices of ¥x; and 1y do not mix.
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With these boundary conditions and the standard, by now, manipulations on spinor
bilinears we arrive at compact expressions for %ﬁcs and ”I/géy - In order to keep the
notation simple and most transparent, let us quote the pertinent results in the case of a
single gauge group. In Chern-Simons-matter theories we obtain
K

o | (P G i(0*Guc = vy Ut | [ewg r i) (310

L
Vescs =

where Py A = IE“AH + iUk A,. In the case of Yang-Mills theories

1

Vosymr = t5e2 {— 3 (PU]:> Gac + D10% Goc
—~ U (D® —io(iH 4+ k*V,)) Gae + 262 U (0 ta@] e, + &s.]
1 .q a c ~Tc
+ 55 Gac |11 — (PuDo)"| [evs, — &) (8.11)

where

PyF = kMF, +2i0V,) +iUk"F,,  PyDo = k"Dyo +iUk"D,o,  (8.12)

jJ_ = _%gJ_VpFVp = _%ﬁj_ . (813)

When the gauge group has an abelian component, a FI term can also be added to the
Lagrangian. Since the variation of this term is of the type

1 v t ~ .
Vi = +s8er - eyt = —Se[er s + Evus] (5.14)

we can easily include the FI parameters in (8.11) by considering the shift D — D — €.

In summary, without assuming any further constraints on the spinors Wy other
than (8.9), the most generic boundary conditions on the bosonic fields of the gauge multi-
plet are

CS — theories : Py A — iU(

2
o— 2=
K

(Pt $>> =0, (8.15)

YM — theories : D o —& PuF—U(D—io(iH+k'V,))+2e’U(pt $)=0 (8.16)

JL—FPyDo=0. (8.17)

As a special solution, one can further impose Py = 0 both in CS and YM theories.
In the next subsection we show that this is equivalent to requiring J+ = 0. This projection,
which is natural from the point of view of the Euler-Lagrange variations in Chern-Simons
theory (6.15), selects a Lagrangian submanifold of BY, as we explain in the next section.
The remaining conditions yield:

e In the case of CS theory, (8.15) reduces to the algebraic equation of motion of the
auxiliary field D,

K ~
008 —matter O (—ga“ + <¢t“¢>) 6D =0. (8.18)
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e In the case of YM, the condition .7:]_ = 0 translates into €, J* = 0, where the free
indices are constrained to run over the boundary indices by anti-symmetry. Then,
FL = 0 is satisfied if the non-abelian connection is flat at the boundary, namely
F =0 at the boundary. In components, the boundary condition on ¢ becomes

810% —i[AL,0]® = U (Db —ic®(iH + k"V,)) — 2e*(p U%t d) . (8.19)
The contribution from a FI term (5.40) can be incorporated by a shift of D.

8.1.2 Technical details

Let us elaborate further on the details that led to the above boundary conditions. The
key quantity is J4(¥,V) defined in (8.8). We re-express this quantity using the A-type
projection on € and €. Leaving the label ¥ of the spinors implicit, the resulting expression is

= +355 ek, [[ - e Cym F eI (V) - [+ 9 I VR | Gonn
(8.20)
or equivalently in matrix notation (with &?L”p/;:pky =+1)

x o -~ T

R 1Ce —eT Y™ T e ITmYm¢ 0 +1 Vi
N e . . 8.21
T 20 ( pgmeaigm ) (—1 0) ((iv,z») 521

It is clear that J4 is similar in form to BY evaluated on specific complex combinations of
the components of V and the spinors. We mentioned in section 6.1.2 that the most general
solution to the equations BY = 0, are the Lagrangian submanifolds of the two-form BY.
In special cases the general A-type boundary conditions (8.15)—(8.17) are solved by these
Lagrangian submanifolds. We proceed to examine this aspect more closely.

Starting with J_, which appears in the CS case, we notice that we can rewrite the
fermions in (8.21) as follows

(_eiwgwm + eiw{ﬁmc) _
+ym¢ - (P

etiw/2 0 Y m i e~ 1w /2 0 I
:_< 0 e_iw/2> (Cw)™e /2+< 0 etiw/2 o1 (BO)™e 2. (8.22)

Then, imposing the boundary condition eiwf W = M W¥(, on the spinors ¢ and zz we obtain

lg _ezwgdjm + e_jfl/lmﬁ _ _1 (1 — 0 6-}-@'03% M—le—i03%> 6—4—1’03% (G\I/) eiw/2 )
20\ +yme-Gom 3

The last expression can be written as a projector P, acting on e¥ with

1 . .
PE=+3 (1 + oy etios M_le_“737> . (8.23)
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The matrix M, which acts on the doublet ¥ = (wm,{/;m), is of the general form M =
R(3x2)®U, where U acts on the gauge indices and R is a 2-by-2 matrix. Pj\jf[ is a projector
only if R = £1. Choosing R = +1 for concreteness, (the R = —1 choice is very similar),
Py becomes

1
P = +5 1+ @U) (8.24)

and the matrix U is required to be orthogonal with respect to G, and to satisfy U? = 1.
The quantity J_ takes the final form

wm’ T 1 U ye

. o= [ € o i

3 = _|_€zw/2 eTi03% ~ (2'0—2) m m Gmn k , (825)
eyp™ U 1 Ve

(icrs) = < _01 +01> . (8.26)

Since U is orthogonal with respect to GG, the condition J_ = 0 can be achieved by setting
VE+US iVE=0. (8.27)

Notice that the dependence on the phase w has disappeared in the above manipulations.
The calculation of J; proceeds along similar lines. In this case, the relevant combina-
tion of spinors in (8.21) can be recast as

156 (_eiwgwm _ e—iw,&mq

5Q > = —03(1 401 eT% MleT35) T193T (W) /2

+Ym¢ A+ Y™
yielding the final expression
N T
. o ep™ 1 U™ %3
Iy =47/ 2etiosT 7{ ) o3 (i02) m Um Gun | * ] . (8.28)
eyp™ U 1 ivp

In conclusion, with R = +1, both conditions J; = 0 and J_ = 0 lead to (8.27).
Considering instead the choice R = —1 would lead to Vl? —U% 1V, = 0. Clearly, this
choice is equivalent to the substitution U — —U.

We noted in the previous subsection that by setting J+ = 0 in ”//Cls or ”/f‘M we are led
to a special solution of the boundary conditions (8.15)-(8.17) where PV = 0:

e In CS theories, where V = A, this is equivalent to a single boundary condition on
the gauge field
Ag +U% iA; =0. (8.29)

e In YM theories, where V = F , Do, one obtains two separate boundary conditions:
one on the non-abelian field strength and another one on D, o

FO 4 UM iFf = W'D,o™ + UM il'D,0° = 0 . (8:30)

These equations are natural covariant generalizations of corresponding boundary con-
ditions in flat space that set components parallel to the boundary of the dual field
strength .73“ and D,0o to zero.
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8.2 Matter sector

Next we focus on terms that arise from the supersymmetric variation of the matter sector
of the gauge theory. These terms are functions of the spinors ¢ and ¢ of the chiral and anti-
chiral multiplet. The relevant boundary contributions can be summarized in the expression

V2 atter =€ |15 U Dyt (PH = (° = %)) v 0™ 6 iV 0 + iy 0P G
_ g[VLVVQZE Dy(f)a—(TaH—(za—an)) ,YJ_JE ¢a+ivLJE¢a_ivaaﬁE:|Gaé ) (831)

The effects of a gauge invariant superpotential W can be incorporated, as already done
in (5.14), by considering the on-shell relations

GucFC=0,W,  FGaz = 0:W . (8.32)

In (8.31) the chiral and anti-chiral superfields transform in arbitrary representations of
the gauge group. In the bold multi-indices a = (a,m), a is a color index and m a flavor
index. The metric G is the scalar product in the combined flavor/color index space. In
non-abelian theories o acts on ¢ (gz~5) and 1) (1;) according to their representations. We will
make a slight abuse of notation where the specifics of this action are suppressed.

By making use of the standard identity vt7" = gtV 4iet? P, and the fact that V=0

at the boundary, 7., can be rewritten in the form:

\@ 7/HJl_atter = +i [gLupevaaDVggE + (Z'H)G’qu/)a 7"656] GaE

+ [ed)a Dlggé + (2% — ¢®0) e'yLwa QZE} Gag +1 efyLiZE Gea F?

—t [5Lyp€7p7;6 D,¢* + (iH)g’VLJE Taﬁba} Gza
_ [aZE DL 4 (22 — o) eyt ot ¢ } Goa +i ey 0 GacFC . (8.33)

The analysis of ”I/CLS and “//YLM selected boundary conditions in the gauge sector on the
basis of the two form BY. Even though 7., can still be thought of as ¥} ., on the basis
of the flavor indices, in this subsection we will not follow the approach of section 7. Instead,
we will explore the extension of the manipulations of the previous subsection 8.1 to the
matter sector. Accordingly, we assume from the start the following boundary conditions

on the matter fermions

g K
o (C¥)=M(¥¢), M= (0 §> : (8.34)

The matrices S and S act on the representation space of the matter. They are required to
have the properties S? = 52 = 1, and STGS = G. M acts diagonally on the doublet ¥ =
(2, JE), i.e. representations do not mix. This is the same type of ansatz that emerged in the
gauge sector. Here two possibly different S and S are allowed because of the two chiralities.

With standard manipulations of the spinor bilinears, we recast ¥, in terms of two
independent spinor components € and E?,Z,

ﬁd/nfatter = +e® Gae [ipg Dggé + (DLQZE — g%(zﬁ — qﬁa)ggﬁ) + ie_iwﬁé}
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+E0° Gra [Py D" — (DH6" — S (2™ = g™0)6™) +ic™= F?| . (8.35)
We defined

PsD¢* = D¢ +iS%, (D™ — ir™ (i H)¢™) (8.36)
P;D¢° = D;¢° +iSS (Dyg™ + ir® (iH)o") . (8.37)

The projectors Ps and Pg are the analog of Py in the gauge sector. For matter charged

under the R-symmetry, we see that the terms in 7L .,

proportional to the R-charges,
+r(iH), correctly combine with the covariant derivatives along the Killing vector.

The expression (8.35) allows us to read off the following general boundary conditions
on the matter sector

chiral :  iPgD¢® + (D ¢° — SE (2™ — ¢"0)™) +ie ""F° =0, (8.38)

anti — chiral :  iPsDg? — (DT¢? — S2, (2™ — ¢™0)¢™) +ie'“F2 =0.  (8.39)

A special solution of these boundary conditions is obtained by imposing the conditions
PsD¢ = PgD¢ = 0. Then, setting to zero the remaining terms in (8.38), (8.39) we obtain

Dlé— S(z—qo)p+ie "FF =0, Drp—S(z—qo)p —ie™F =0 . (8.40)

where the term (z — go) in (8.40) corresponds to the standard real mass.

In euclidean space, we may consider S = 1, then PsD¢ = 0 would become D¢ = 0,
with Dy a covariantized holomorphic derivative along the coordinates of the boundary,
which in this case would be a plane. The same is true for P§D$ =0 if 5 is regarded as a
field independent of ¢. Thus, PsD¢ = PzD¢ = 0 are the natural generalization to curved
space of such boundary conditions.

The covariant derivatives in Pg and Pg contain both the dynamical gauge fields A and
the R-symmetry connection ALR). Regarding the dependence on AgR), we may borrow part
of the discussion in section 7.1.3 to understand the precise form of Dy and Dj. As simple
illustrating examples, let us consider the case of A-type backgrounds with twisted spinors.
The twisted R-symmetry gauge field is such that Dy becomes

D™ — ir™ (iH )™ = kP, o™ — ik! (A,d)™ . (8.41)

For the ellipsoid and the manifolds with SU(2) x U(1) symmetry that we introduced in
section 3.5, we may also use k“A,(LR) = 0 at the equator to obtain Dj in the simplified form

D™ = f K'0,0™ + 018, ™ — ik (Au0)™ . (8.42)
In that case the boundary condition PsD¢ = 0 reads
PsDé = [f k'Oup + v'0u¢p — ik (Aup)] +iS[kF 8,6 — ik (Aud)] =0 . (8.43)

A similar result holds for PgDQNS =0.2!

2IThe action of S on (A,$)™ and of S on (A,$)® should not be confused with the separate action of U
that was defined in the gauge sector.
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The expressions (8.41)—(8.43) hold under a set of simplifying assumptions for the back-
ground fields. Let us also notice that the covariant derivative normal to the boundary, D=,
simplifies under the additional assumption AiR) = 0, and reads D+ = 9+ —igA,. For
a generic A-type background, the full convariant derivatives, including the R-symmetry
gauge fields, should be considered.

Finally, we should stress that the boundary conditions PsD¢ = 0 and PgDQNS = 0 are
genuinely complex. The reality condition on the bosonic fields of the chiral matter, ¢ = ¢*
and F = F*, would impose a restricted set of boundary conditions. Considering gg = ¢*, we
find either Dy = Dj¢p = 0 or S* = —g, provided the latter is compatible with STGS = G.
Higgs-like solutions can be defined as the solutions of (z — qo) = 0, where the gauge group
is broken to U(1)™"k®. Then, the boundary conditions D¢ = 0 and D¢ = 0 imply that
¢ is constant at the boundary, hence each U(1) can be Higgsed by the vevs of the charged
matter fields. Together with D¢ — ie®”F = 0 and its complex conjugate, we recover the
ordinary Dirichlet and Neumann?? boundary conditions for chiral fields.

8.3 Closure under supersymmetry

We conclude the analysis of the above boundary conditions, both in the gauge and the
matter sector, with a study of their transformation under supersymmetry. We already
looked at this problem when we discussed the boundary conditions of Lagrangian branes,
and similar comments continue to apply here. In particular, the variation of the boundary
conditions on the fermions are algebraic, and it is immediate to check whether they are
closed under supersymmetry or not. For CS theories, the variation of the boundary con-
ditions on A, and o are also simple and both turn out to be algebraic. In YM theories,
the boundary conditions on the bosons are boundary conditions on the derivatives, hence
their analysis requires specific information about the details of the background.

8.3.1 Gauge sector

The boundary conditions on the fermions vy and 7:/;2 are
YR = Un ¢, €T = ULy (8.44)

The supersymmetric variation of the fermions d¢x and 51;2 under the A-type supersym-
metry, 0 = 0, is

Sy, = 0 [[D —io(iH + kV,) — ik (j, + 10,0)]C + ie™ 1 (n# + ik#)(a,, — iDua)C] :
Sy, = 0 [[D —io(iH + k*V,) — ikk(j, — 10,0)]C — ie i (n# — k) (ay, + mua)i] :
and the conditions we would like to check (assuming the matrix U is invariant) are

e oY = UB SYR(, P (Y = USdynC . (8.45)

22In the presence of a superpotential, the Neumann condition Dt¢ = 0 (where F' = 0) is eventually
promoted to a ‘domain wall’ condition Dt¢ — e’ F = 0, when F is integrated-out.
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Both conditions are satisfied if

n'j, = k*D,o® + iU, kFDyo™ (5.46)
_ 8.46
n#Dyo® + k1 (ja + 07V,) + iU kP = U, [D — io(iH + kMV,)]™ .

Closer inspection reveals that in YM theories, (8.45) reduces to a subset of the boundary
conditions that we found in section 8.1 and 8.1.2. Since the vector-matter couplings cannot
appear in dy and 51;2, the conditions (8.45) cannot lead to the most general boundary
conditions (8.16), (8.17). Instead, they lead to the boundary conditions

n'j, = PyDo, Do+ (k'(ju+oV,) +iUk'j,) = U[D —ioc(iH + k'V,)] . (8.47)

In CS theories, consider the boundary condition A? + U @A = 0. The condition

on the fermions ¥y, and @Zg is the same as in YM, and therefore (8.45) leads to additional
constraints on D, and on the derivatives of A and o, which are precisely given by (8.47).
On the other hand, the variation of the gauge boson at the boundary is

5 A, = —0|nu (e Cips + e s() — ik (e Cips — e Fnl) + k(s — Cﬂz)} . (8.48)
Consequently, the special boundary condition 6./42 + U% 10 A7 = 0 is trivially satisfied:
SAR + U™ i0Af = —i(e™= (Y™ — e PPnC) +iU% (P — CP8)
= +ile TP~ ULCYS) —i(e Tt — UL ¥§0) = 0. (8.49)

Finally, the scalar field o, which is auxiliary in CS theories, but dynamical in YM
theories, exhibits the supersymmetric variation

§o = i0(Cs + Cibs) - (8.50)

We notice that the boundary conditions on the spinors relate the ¢ and ¢ component of
each fermionic field, and thus do not fix (8.50). We could impose do = 0 by requiring

by = (. (8.51)

In that case, out of four fermionic variables (two for s and two for @Zg), the boundary
conditions (8.45) would fix two in terms of the rest, and by imposing (8.51) only one would
remain unconstrained.

8.3.2 Matter sector

The supersymmetric variation of the matter fermions d and 5@5 under the A-type super-
symmetry, 6 = 0, is

0o = +0 F o+ 0 |i(Duo — ir(iH)6 — (2 = 40)6 ) o + i (7= (¥ + k") Dy ) Ca

Sn = +09 Fly+ 0 [z (kﬂpﬁ Fir(iH)g + (2 — qa)gz~5) Co — i(eﬂ'ww - il;:“)D#gg) ga} .
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The conditions we want to check are in this case
T 0P = % 0VRC, €T LOP° = SGaUnC . (8.52)
A short calculation leads to the constraints

iPsDg + (D¢ + S(z — qo)p) —ie™"™™F =0, (8.53)
iPsDd — (Drd— S(2 — qo)¢) —ie""F =0 . (8.54)
Compare these formulae with the boundary conditions (8.38) and (8.39). The two sets of

conditions do not coincide, because several signs do not match. They hold simultaneously
under the restriction,

PsD¢ = PsD¢ = 0, (8.55)
(z—qo)p=(2—qo)d =0, (8.56)
D¢ — i’ F =D g +ie "FF =0 . (8.57)

This restricted set of conditions, can be further constrained by imposing the reality condi-
tion ¢ = ¢*, as we mentioned at the end of section (8.2).
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A Conventions

Clifford algebra. The flat space v matrices are

01 0 —i 10
71:_<10>’ 72:_<7;0>’ 73:Jr<0—1>' (-1

These v matrices satisfy the relation y%9% = §% + %, In particular, 7% = %[’y“, Vb] =
i £%¢,. Spinors x, and x; are contracted as follows,
_ 8 . [ 0 -1
XaXb = Xg Ca,BXb Wlth C = <+1 O ) 5 (A2)
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and also
Xa V" X6 = X Cap (V)2 X7 (A.3)

Note the properties Cop = —Cpqo and (C7),5 = (C7)g,- Thus, for anticommuting spinors
xY*¢ = —(y*x whereas for commuting spinors xy*¢ = +{vy*x.
The Fierz Identity for anticommuting spinors is

(Xd’YuXc) (Xb'Y;LXa) = - (Xch) (XbXa) -2 (Xde) (Xch) . (A4)

For commuting spinors we have instead

(xav"xe) X Yuxa) = + (xaxe) (XoXa) — 2 (Xaxp) (XeXa) - (A.5)

Differential geometry. Given an euclidean metric ds* = g,,dz"dz”, the frame fields

b The inverse frame fields are ef = g"*dgel, with g"¥ the

are defined by ds? = eZdabe
inverse metric. The Levi-Civita covariant derivative V,, acting on 1) a spinor x, 2) a vector
field V¥, and 3) a 1-form field A, is

Vu X = auX + %w,u ab7abX7
V.V =09, VY 4T, Ve, (A.6)
VuA, = 9,A, —T% A,

where I', is the Levi-Civita connection, and we have defined the spin connection w,, out of
Vel = 0l + (wp)y €8 — T0,e0 = Vel + (wy)ieh =0 . (A7)

Supersymmetry transformations from [3]. We list the transformations rules of the
components of the generic multiplet S,
0C = iex + i€y,
dx =eM —€é(oc+ (z—rH)C) —~"€(D,C +iay),
5 = éM — elc = (z—rH)C) —~y"e(D,C —iay),
OM = —28E\+ 2i(z — (r — 2)H)éx — 2D, (év"x)
SM = +2eX — 2i(z — (r + 2)H)ex — 2iD,(ev"X) ,
da, = —i(eyu + E7u\) + Dulex — €X)
b0 = —ed+EX+i(z —rH)(ex — &),
N = +ie(D + oH) — ie"Py,eDya, — yHe((2 — rH)a, +iDyo — Vyo) ,
S\ = —i&(D + oH) — ie"Py,EDyay, +y*€((z — rH)ay, +iD,o + V,0),
0D = Du(ey* X — EyFA) — iV, (ey* X + EyHA) — H(eX — EN)
+(z —rH)(eA+ eX —iH(ex — &X)) + T (R — 2V?% — 6H?)(ex — &X) -
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B Factorization of bilinears

In this section we explain the details of the manipulations of ¥/ ]\%L , that were used to obtain
the final formula (7.11b) in section 7.1. Let us recall the two basic inputs of this discussion:

1) the main contributions to “//]\%LU that we want to analyze:

N+ Vo = + [y Dy — e DL | K (B.1)
Y = = [ertu 6 — eyt 60| Ko (B.2)
Y = — [eyiiéwa + gywa'v?@] Ko, (B.3)

and 2) the decomposition of the spinors with the use of the projectors & and Pz

e = §(Co. é = g(eq), B.4)
¥ = G(CU)C+ (10, ¥ = §(C)C+ (0
We begin by studying #; + 2. From (B.4) we get
Y+ Y = [+ e Vv DL ¢" — ety YD, 7]
= C [0 @) + (0 70 CuD +
- %i) (67970 (CU°) + (Cr97 Q) (°0) | Gaa D™ .
By using the knowledge of the bosonic bilinears (3.22), we obtain??
4 o — @ e a 17e¢ e\l a B
L8 = 20 () [P + ()P ] G (B.5)

+ (é? (¢ytyle) [(Q:W)Dy”gé — e‘ziw(zZEC)DV”dl} Ga:  (B.6)

CNG v|| * a e ~c a
+ (92) (910 | (WD 6" = (VD" |G - (BT)
In order to simplify our formulae, it is now convenient to use the matrix notation where
(%, 4°) — Ul and (¢% ¢°) — ®!. Each vector will be denoted by a corresponding bold

symbol: &, ¥, W, and K. The change of variables for (%¢) and (1;5() results in

(V) Gae Dy§° =
(V°C) Gae Dy =

()T~ )G D,®, (B3)
B.8

%(\I’C)T(l +iJ)GD,P .

For the scalar products involving ¢ we shall use the boundary condition /(¥ = M®(,

and write
(%) Gz Dy = L(C®)T (1 —iJ)G D, ® =

3 s = (@) TMT(1—iJ)GD,®,
(CY°) Gae Do = L(CE)T(1+iJ)G D@ = Le ™= (®)"MT(1+iJ)GD,® .

(B.9)

**In (B.6) and (B.7), the sum over v| is understood to run over the indices of the boundary Mo.
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From (B.8) and (B.9), it is a simple exercise to show that #;+ ¥4 can be put in the following
form

hts = g wor| IS s e E oot

-] 143J
2 2

e ™ [é(fe) (\I/g)T] [eiWMT 1 } G (k"D,®)

1—14J

i B(g}) (\IIC)T} [ _ e@'WMTHQU] G (D, ®) .

We can then introduce the projectors P]Ef ’i), and by using the properties:

( 7+) . ( 7_) ( 7_) ( 7+)

P =apr, P T = apr, (B.10)
w,+ w,+ w,— w,—

P=ta = apie™, P =ap) |

we arrive at the final expression

Vi + Vo = +(e¥)T [(1 — )G P{EH) (Do) +i(1 — ig)G PE) (l%"Du@)] (B.11)

+(el)T [e*W(l +iJ)G PP ("D, ®)| . (B.12)

We rearrange 73 and ¥4 with similar manipulations. In the case of #3 we find

¥y = [ — e 0" + ey 009" G (B.13)

= L9 (00 [0 + e (006 G (B.14)
(Ce) | V) [ imrrl—id | gl i

— () . [e MT——= 4 e "2 G8 (B.15)

= +ie @ (eW)T(1+iN)\GPT )T & . (B.16)

In the case of ¥4 we find

Y, = [ — gylwa”MV/E — GVL@Z‘EW“] Gaz (B.17)
= eyt [ e + (W] G (B.18)

e L 1—iJ : 144J
_(CQﬁ)(‘I,C)T (CWQ C) |:_e—2zw 22 + e—szT _;Z :| GW (B.lg)
= (@) (1 -i) PL,7TGW . (B.20)
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