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1 Introduction

The study of supersymmetric quantum field theories on rigid curved backgrounds in di-

verse spacetime dimensions has been a powerful source of new non-perturbative results in

recent years. So far, a rather complete and systematic understanding of such results has

been obtained for supersymmetric field theories on closed manifolds. Most notably, these

theories can be engineered by taking appropriate rigid limits of certain supergravity the-

ories. This framework constrains the background geometry and determines the couplings

of the field theory to the curvature and the auxiliary background fields in the supergravity

multiplet [1–3]. Partition functions and other supersymmetric observables can then be

evaluated exactly with the powerful technique of supersymmetric localization providing a

new window into non-perturbative physics in quantum field theory. Some of the original

work in this direction in two, three, four, and five spacetime dimensions includes [4–11].

Analogous situations on manifolds with boundary, or more generally, on spaces with

co-dimension-1 defects, are comparatively much less elaborated upon. There are two key

aspects of this story one would like to develop systematically. The first aspect is related

to the geometric properties of boundaries. Given a fixed bulk supergravity background

that supports supersymmetric field theories, what restrictions should be imposed on the

geometry of a co-dimension-1 surface to preserve a subset of the bulk supersymmetry? The

second aspect is related more directly to the specific dynamic properties of the field theory

in question, in particular, the boundary conditions that can be imposed on the defect.

– 1 –
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Regarding the first point, it is immediately clear that since the commutator of su-

persymmetries squares to isometries on the compact manifold, the boundary should be

oriented along directions parallel to these isometries, in order to preserve the correspond-

ing supersymmetries. Moreover, one can ask if supersymmetry puts any constraints on

co-dimension-1 foliations of a compact manifold. A foliation preferred by supersymmetry

could be used to decompose closed manifolds into a union of manifolds with boundary.

Indeed, we will show that such a foliation exists in a general class of 3-manifolds.

As far as the second point is concerned, it is well known that the invariance of generic

observables under bulk symmetries (including supersymmetries) is spoiled, in general, by

boundary effects. A symmetry can be restored by cancelling these boundary effects. This

can be achieved with the introduction of suitable boundary conditions and/or the intro-

duction of appropriate boundary degrees of freedom.

In the present work we concentrate on three dimensions and develop a systematic

treatment of half-BPS boundaries in N = 2 supersymmetric field theories on compact

3-manifolds. We discuss general aspects of the interplay between supersymmetry and

the geometry of manifolds with boundary, and analyze a wide class of related half-BPS

boundary conditions. We concentrate on the classical aspects of the problem. The main

contributions of this work can be summarized as follows.

Summary of main results. We begin in section 2 with a concise collection of useful

results on rigid supersymmetry in curved three-dimensional backgrounds. We follow closely

the conventions of ref. [3], where it was recognized that the existence of a supersymmetry

implies a tranversely holomorphic foliation. Subsequently, we focus on a more specific class

of curved 3-manifolds dubbed A-type backgrounds. These backgrounds are introduced

in section 3. By definition, they admit two complex Killing spinors related by charge

conjugation, [12]. We show, using supersymmetry, that they also admit a contact structure

whose Reeb vector is a Killing vector, and, under suitable conditions, a preferred co-

dimension-1 foliation whose distribution is defined only in terms of Killing spinors bilinears.

The Reeb vector belongs to the foliation, and the algebra of supersymmetry is preserved

on the leaves. Geometrically, global properties of the Reeb vector are classified as regular,

quasi-regular, and irregular, as reviewed in [13]. Manifolds covered by this analysis include

well-known examples of Seifert manifolds, like for instance the round and squashed 3-

spheres, and geometries of the S2 × S1 type.

A boundary can be introduced along a generic leaf of the co-dimension-1 foliation.

Technically, our construction of the foliation in terms of vector fields does not require

the use of coordinates, which may be problematic if the coordinates are not globally well

defined. We argue that the topology of the leaves is that of a torus. Hence, the manifold

decomposition, that follows from supersymmetry considerations, selects 3d manifolds with

boundary in which the boundary is a torus. The main goal of the paper is to formulate

N = 2 supersymmetric field theories with half-BPS boundary conditions on such spaces.

In section 4 we show that the geometry of the A-type backgrounds admits a natural

half-BPS projection on the bulk supersymmetries that generalizes in curved space the

well-known A-type projection familiar from studies of 2d N = (2, 2), [14], and 3d N = 2

– 2 –
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theories in flat space, [15]. Unlike the case of flat space where one projects constant spinors,

in curved spaces one has to project spinors that are in general non-trivial functions of the

spacetime coordinates. We propose a ‘canonical’ way to implement a generalized A-type

projection in curved space, that reduces to the familiar A-type projections in flat space.

To the best of our knowledge this formulation is new. A similar generic formulation for

B-type projections in curved space is left to future work.

The generalized A-type projection can be employed to formulate corresponding A-type

boundary conditions in N = 2 supersymmetric field theories, that preserve half of the bulk

supersymmetry. In sections 5–8 we present these boundary conditions for arbitrary non-

linear sigma models and YM/CS-matter theories. In both cases, we relate the boundary

conditions to the geometry of certain 2-forms defined on the space of field configurations

at the boundary. These 2-forms are also relevant in the analysis of the on-shell boundary

value problem, that we review in section 6.

Section 7 studies the instructive case of non-linear sigma models with generic Kähler

potential and superpotential. The boundary conditions describe Lagrangian submanifolds

of the Kähler form in target space. The effect of the curvature and the presence of couplings

to the background fields, generalize the more familiar analysis in flat space [14, 16].

The case of general (non-abelian) YM/CS-matter theories is discussed in section 8. We

find boundary conditions that include the curved space generalization of holomorphic Neu-

mann boundary conditions for Yang-Mills gauge fields and matter fields, and holomorphic

Dirichlet boundary conditions for the gauge fields in CS theories.

A summary of useful formulae, and an exposition of technical details for results used

in the main text are relegated to two appendices at the end of the paper.

Prospects. We conclude this short introduction with a few remarks on some of the inter-

esting open questions raised in this work and the prospects of further related developments.

Our main motivation for the study of the classical problem in this paper is the eventual

formulation of general half-BPS co-dimension-1 defects in 3d N = 2 supersymmetric quan-

tum field theories on curved spaces, and the non-perturbative computation of observables

associated with these defects.

The observables we are interested in include the partition function of N = 2 supersym-

metric gauge theories on curved backgrounds with boundary. With A-type boundary con-

ditions these partition functions are computing a class of supersymmetric wavefunctions. It

would be interesting to explore the dependence of these observables on the moduli of the de-

fects, i.e. the moduli of the boundary conditions we formulate, generalizing the bulk analysis

of ref. [17]. A preliminary computation of partition functions on manifolds with boundary

in three dimensions using localization techniques has been performed in special cases in [18,

19]. The results in the present paper can be used to extend known results in this direction.

Moreover, one can also attempt to use the information of supersymmetric wavefunc-

tions to study the structure of observables on closed manifolds that do not involve co-

dimension-1 defects. Hints of such a possibility come from a variety of previous results:

the holomorphic block decomposition of 3d partition functions [19, 20], and the analogous

phenomenon in different dimensions [7, 21, 22], the recent progress in computing D-brane
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amplitudes in 2d N = (2, 2) theories [23–25], and tt? arguments in flat toroidal backgrounds

in three, and four spacetime dimensions [26].

Boundary conditions also introduce another tool to probe dualities between quantum

field theories. If two theories are dual at the quantum level, we expect corresponding

boundary conditions on each side to be mapped to each other in a non-trivial way. For

instance, in the case of mirror symmetry, the duality between boundary conditions can be

understood in the mathematical framework of symplectic duality [27]. 3d Seiberg duality

also acts non-trivially on boundary conditions. We refer the reader to ref. [28] for a recent

discussion of the relation between 3d Seiberg dualities and 2d level-rank dualities in this

context. Similar problems with Wilson loops were investigated in [29, 30]. Finally, an

intriguing interpretation of co-dimension-1 defects relates the expectation value of these

operators to the entanglement structure of the field theory [31].

Another arena of potential applications of such computations is M-theory. The study

of boundary conditions in the ABJM theory [32], which is an N = 6 Chern-Simons-matter

theory, is expected to yield information about the physics of M2, M5-branes and their in-

teractions. For instance, it is anticipated that the low-energy theory at the orthogonal in-

tersection of M2 and M5-branes in C4/Zk is a 2d theory with N = (4, 2) (or in special cases

N = (4, 4)) supersymmetry. The non-abelian quantum properties of this theory are still

illusive. A recent bare Lagrangian formulation of this theory in terms of boundary degrees

of freedom motivated by D-brane physics in type IIB Hanany-Witten setups was proposed

recently in [33]. For a study of half-BPS boundary conditions in ABJM theory see [34, 35].

Finally, there are several aspects of the general theory of supersymmetric boundaries

in three dimensions that are not discussed in this paper. One of these aspects is the

general curved space analog of B-type boundary conditions in 2d N = (2, 2) theories.

Another aspect that is worth exploring further is the formulation of half-BPS boundaries

using explicit boundary degrees of freedom and boundary actions [36]. The analysis of

supersymmetric boundaries in 2d N = (2, 2) theories in [23] was performed in this manner.

2 Review of rigid supersymmetry on curved 3-manifolds

In the modern approach to rigid supersymmetry on curved spaces, the metric tensor gµν
(or any other background field) is embedded into a certain supergravity multiplet, and the

field theory is obtained by taking the rigid limit of Festuccia-Seiberg [1] (FS). With a U(1)R
symmetry, the supergravity of interest in 4d is the “new minimal supergravity” of [37], and

the supergravity multiplet contains an R-symmetry gauge field A
(R)
µ , a conserved vector

V µ and the two gravitini Ψµα, Ψ̃µα̇. Following FS, the rigid field theory of chiral and

vector superfields on the curved space, is obtained from the action of off-shell supergravity

coupled to chiral and vector fields, by freezing the bosonic components of the supergravity

multiplet to a configuration in which δΨµ = δΨ̃µ = 0. The advantage of this formulation

is that the whole procedure can be carried out off-shell, without the need of an explicit

solution to the equations δΨµ = δΨ̃µ = 0.

In 3d it is possible to perform a twisted dimensional reduction of the 4d rigid theories

to infer a consistent new minimal 3d algebra [3]. At the end of this process, the background

– 4 –
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fields are, the metric gµν , an R-symmetry gauge field A
(R)
µ , a conserved vector V µ (as in

4d), and an extra scalar field H. The conditions δΨµ = δΨ̃µ = 0 reduce to the following

two Killing spinor equations(
∇µ − iA(R)

µ

)
ζ = −1

2
Hγµζ +

i

2
Vµζ −

1

2
εµνρV

νγρζ

= −1

2
γµ(Hζ − iVνγνζ) , (2.1)(

∇µ + iA(R)
µ

)
ζ̃ = −1

2
Hγµζ̃ −

i

2
Vµζ̃ +

1

2
εµνρV

νγρζ̃

= −1

2
γµ(Hζ̃ + iVνγ

ν ζ̃) . (2.2)

The two Weyl spinors ζ and ζ̃ have R-charges +1 and −1 respectively.

In practice, given a choice of the background metric, the other background fields can be

adjusted to obtain at least one solution of the Killing spinor equations. On the other hand,

assuming that at least one Killing spinor exists as a solution of the equations (2.1), (2.2),

it is possible to deduce what geometric structure the manifold needs to possess. In 3d, this

analysis was first carried out in [3, 17, 38]. In section 2.1 we will review in some detail the

relevant geometry since it will play an important role in our problem. In fact, in order to

set up supersymmetric boundary conditions, it will be useful to improve slightly the way

in which the relevant geometric structure is characterized. The new material is presented

in section 3. Experts familiar with rigid supersymmetry on spaces without boundary (e.g.

the work in [3, 17, 38]) may skip to section 3. We follow closely the notation of ref. [3].

In our presentation, it will be convenient to make an explicit distinction between com-

muting and anti-commuting Killing spinors. In particular, we will denote the commuting

spinors with ζ and ζ̃, and the anti-commuting spinors with ε and ε̃. Both sets of Killing

spinors satisfy the same equations. The anti-commuting spinors ε and ε̃, will provide the

parameters of the supersymmetry transformations of the field theory. The commuting

spinors, ζ and ζ̃, will be used to explore the geometry of the manifold.

2.1 Geometry of M3

The existence of Killing spinor solutions, ζ and ζ̃, strongly constrains the geometric struc-

ture of the background fields. We will not repeat the general analysis here, but we recall

two important results of [3], which will be useful for later purposes. The first states that a

solution of (2.1), or (2.2), when it exists, is nowhere vanishing.1 The second result states

that given one Killing spinor, say ζ for concreteness, it is possible to cover the manifold

with a transversely holomorphic foliation (THF), and write the metric in the following form

ds2 = gµνdx
µdxν = η2 + c(τ, z, z̄)2dzdz̄, η = dτ + (h(τ, z, z̄)dz + c.c.) . (2.3)

By definition of the THF, the adapted coordinate τ is real, whereas {z, z̄} are complex.

The leaves of the co-dimension-2 foliation are the submanifolds z = const., and two patches

1This property will be crucial for the consistency of the canonical formalism that we set up in section 4.1.

In general situations, depending on the specifics of the Killing spinor equations, a non-trivial solution may

or may not admit zeros [2].

– 5 –
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are related by transitions functions, f and h, such that z′ = f(z) with f holomorphic, and

τ ′ = h(τ, z, z̄) with h real. In particular, h can be put in the form h(τ, z, z̄) = τ + t(z, z̄).

The origin of the transversely holomorphic foliation is an integrability constraint. The

one-form η = ηµdx
µ can be represented as the spinor bilinear

ηµ =
1

|ζ|2
ζcγµζ, |ζ|2 = ζcζ , (2.4)

and the following fields can be defined,2

ξµ = gµνηµ , Jµν = εµνρξ
ρ . (2.5)

The spinor ζc is the charge conjugate to ζ. Notice that from the properties of ξµ and

Jµν it also follows that the Killing spinor equation of ζ, (2.1), is invariant under the shift

symmetry,
V µ → V µ +Xµ + k ξµ ,

H → H + ik ,
(2.6)

where the scalar k and the vector field Xµ are such that JµνXν = iXµ and ∇µ(Xµ+kξµ) =

0. After gauge fixing the shift invariance, the Killing spinor equation (2.1), implies the

constraint

Jµν (LξJ)νρ = 0 . (2.7)

Given the condition (2.7), the authors of ref. [3] showed that it is possible to find the adapted

coordinates {τ, z, z̄} introduced in (2.3). This is the THF associated to ζ. On the other

hand, if ζ̃ is the only non trivial solution to the Killing spinor equations, the corresponding

THF is defined as in (2.4) with the substitution ζ → ζ̃, i.e. η̃µ = (ζ̃cγµζ̃) |ζ̃|−2
. The Killing

spinor equation of ζ̃ is invariant under a shift similar to (2.6).

Manifolds that admit two complex supercharges of opposite R-charge have additional

properties compared to the individual THFs given by ζ and ζ̃. They have a nowhere

vanishing Killing vector Kµ, and a contact structure. The Killing vector is represented as

Kµ = ζ̃γµζ . (2.8)

It solves the equation

∇µKν = iH εµνρK
ρ + εµνρV

ρ ζ̃ζ , (2.9)

from which ∇{µKν} = 0 follows. The norm of Kµ is KµKµ = (ζ̃ζ)2 ≡ Ω2, and the function

Ω is such that

Kµ∂µ(ζ̃ζ) = −KµεµαβV
αKβ = 0 . (2.10)

2The triple (ηµ, ξ
µ, Jµν), with ηµ, ξµ, and Jµν such that ηµξ

µ = 1 and J2 = −1 + ξ η, is called an almost

contact structure (ACS). This definition only requires that ηµ, ξµ, and Jµν , satisfy algebraic constraints.

It does not require the manifold to have a metric. For Riemannian manifolds, a metric gµν is said to be

compatible with the ACS if ξµ = gµνηµ. The ACS is then promoted to an almost contact metric structure

(ACMS). Similarly to the definition of a complex structure, the difference between an almost and a contact

structure, is a differential constraint. However, this constraint is not (2.7) but: dη (ξ, ·) = 0 for the contact

structure, and dη (·, ·) = g (J ·, ·) for the contact metric structure [39]. It is perhaps useful to mention that

the condition for a contact metric structure resembles the one for Kähler manifolds in even dimensions [40].

– 6 –
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Notice that the Killing spinor equations are linear, therefore ζ and λζ, with λ an arbitrary

complex number, are both solutions. Similarly for ζ̃. However, the relation ζ̃ζ = Ω breaks

the arbitrariness in the normalization of ζ and ζ̃, and only the symmetry ζ → λζ with

ζ̃ → λ−1ζ̃ remains. Eq. (2.8) is also invariant under this scaling.

When the Killing vector is real, the manifold is a Seifert manifold and the geometry

can be further characterized by the orbits of Kµ. Two cases can be distinguished: either

the orbits of Kµ are periodic, or they do not close. The first case consists of manifolds

with the topology of an S1-bundle over a 2d Riemann surface. In the second case, it can

be proved that there exists another independent Killing vector, transverse to Kµ, and that

the isometry group ofM3 is at least U(1)×U(1) [41]. Seifert manifolds are also singled out

as BRST-preserving backgrounds in 3d topological gravity. The relation between 3d topo-

logical gravity and rigid supersymmetry has been pointed out, and further studied, in [42].

The contact structure (η̂µ, ξ̂
µ, Ĵµν), is defined by the fields

η̂µ =
1

Ω2
Kµ, ξ̂µ = Kµ, Ĵµν =

1

Ω
εµνρK

ρ , (2.11)

subject to the relations: η̂µξ̂
µ = 1, (dη̂)µν ξ̂

µ = 0. The latter condition can be checked by

means of the Killing spinor equations (2.1) and (2.2). In particular, (dη̂)µν ξ̂
µ = 0 implies

through Darboux’s theorem [40] the existence of local coordinates (ψ, x1, y1) such that

η̂ =
Kµ

Ω2
= dψ + x1dy1 , ξ̂µ∂µ = ∂ψ . (2.12)

As a result, the Killing vector Kµ is aligned along ∂ψ. M3 endowed with such contact

structure is a contact manifold, and the vector ξµ = Kµ is called Reeb vector. An equivalent

characterization of a contact manifold is the condition that η̂ ∧ dη̂ 6= 0. The coordinates

(ψ, x1, y1) are called canonical since the condition η̂ ∧ dη̂ 6= 0 becomes trivial. The contact

structure defined in (2.11), shares the same algebraic properties of the triple (ηµ, ξ
µ, Jµν)

defined in (2.7). These are ηµξ
µ = 1 and J2 = −I + ξ η, but in addition, an explicit

calculation shows that the tensor Ĵµν satisfies a stronger (integrability) constraint, Lξ̂Ĵ = 0.

In section 3 we will supplement the above results on 3-manifold geometry with a further

new refinement that facilitates the introduction of boundaries preserving a subset of the

bulk supersymmetries.

2.2 Supersymmetric multiplets and transformations

Rigid supersymmetric field theories exist on any curved background M3, equipped with

the two Killing spinors ε and ε̃. Their Lagrangians are obtained by exploiting the multiplet

calculus of 4d new minimal supergravity [37] and its 3d version (see appendix of [3]).

By multiplet calculus we mean the collection of all the supersymmetry transformations

of the components of a generic multiplet S. The total number of independent degrees of

freedom in S is 16 bosonic plus 16 fermionic. They are organized as follows:

S = {C,χa, χ̃α,M, M̃, aµ, σ, λα, λ̃α, D} . (2.13)

The R-charges are (0,−1,+1,−2,+2, 0, 0,+1,−1, 0) relative to the bottom component C.

The supersymmetry transformation rules δεS+ δ̃ε̃S are summarized in appendix A. The set

– 7 –
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of all these transformations realize an algebra on the space of fields. Denoting with ϕ(r,z)

a field of arbitrary spin, R-charge r, and central charge z, the supersymmetric algebra is

represented by

[δε, δ̃ε̃]ϕ(r,z) = −2i (LK + εε̃ (z − rH))ϕ(r,z), [δ, δ] = 0, [δ̃, δ̃] = 0 , (2.14)

The symbol LK is defined in [3] as a modified Lie derivative along K

LKϕ(r,z) =

[
LieK − irKµ

(
Aµ −

1

2
Vµ

)
− iz KµCµ

]
ϕ(r,z) . (2.15)

The covariant derivative associated to LK will be denoted as

Dµϕ(r,z) =

[
∇µ − ir

(
Aµ −

1

2
Vµ

)
− iz Cµ

]
ϕ(r,z) . (2.16)

Here the background gauge field Cµ is related to the background conserved vector V µ by

the relation Vµ = −iεµνρ∂νCρ. The gauge field Aµ is not A
(R)
µ , but the two are related by

a redefinition

A(R)
µ ≡ Aµ −

3

2
Vµ . (2.17)

The combination Aµ − 1
2Vµ is not invariant under the shift symmetry (2.6), but A

(R)
µ is.

Accordingly, it is convenient to express (LK + εε̃(z − rH)) as

LieK − irKµA(R)
µ − ir(KµVµ − εε̃ iH)− iz KµCµ + εε̃ z . (2.18)

In what follows, we will mostly use Dµ, as defined above, since we adopt the notation

of ref. [3]. Sometimes, however, it will be convenient to consider A(R) in the covariant

derivative. When this happens we will be very explicit.

For the benefit of the reader we list here two standard short multiplets S that will play

a dominant role in the main discussion. The shortening of the multiplets is obtained by

imposing restrictions on its components.

2.2.1 Chiral and the anti-chiral multiplets

Chiral (anti-chiral) multiplets are obtained by imposing the conditions χ̃α = 0 (χα = 0).

This implies that not all components of the generic multiplet are independent. A chiral

multiplet Φ, with independent components {φ, ψα, F} is organized as follows,

S
∣∣∣
χ̃=0
≡ Φ = {φ,−i

√
2ψα, 0,−i2F, 0,

−iDµφ, (z − rH)φ, 0, 0, r4(R− 2V 2 − 2H2)φ− zHφ}.
(2.19)

In the above formula, R[φ] = r is the R-charge of φ, and z is the central charge. The

transformation rules of {φ, ψ, F} are

δφ =
√

2 εψ ,

δψ =
√

2εF − i
√

2 (z − rH) ε̃ φ− i
√

2γµε̃Dµφ ,

δF = i
√

2 (z − (r − 2)H) ε̃ψ − i
√

2Dµ(ε̃γµψ) .

(2.20)
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The shorthand notation for Φ will be Φ = {φ, ψ, F}. The case of the anti-chiral multiplet

Φ̃ is analogous. The independent components are {φ̃, ψ̃α, F̃} and the supersymmetric

transformation rules are

δφ̃ = −
√

2 ε̃ψ̃ ,

δψ̃ =
√

2ε̃F̃ + i
√

2 (z̃ − r̃H) ε φ̃+ i
√

2γµεDµφ̃ ,

δF̃ = i
√

2 (z̃ − (r̃ − 2)H) ε ψ̃ − i
√

2Dµ(ε γµψ̃) ,

(2.21)

where the R-charge of φ̃ is R[φ̃] = −r̃ and its central charge is −z̃.

2.2.2 Real and gauge multiplets

A real multiplet Σ arises by imposing on S the conditions M = M̃ = 0, and r = z = 0.

The subset of independent components can be defined by {C(Σ), χ
(Σ)
α , χ̃

(Σ)
α , jµ, σ

(Σ)}, and

Σ is organized as follows

Σ = {C(Σ), χ
(Σ)
α , χ̃

(Σ)
α , 0, 0,

− jµ − VµC(Σ),−σ(Σ),

− i
2Hχ̃

(Σ)
α + iγµ β

α (∇µ + iVµ)χ̃
(Σ)
β ,+ i

2Hχ
(Σ)
α − iγµ β

α (∇µ − iVµ)χ
(Σ)
β ,

− V µjµ −Hσ(Σ) − (∇2 + V 2)C(Σ)} .

(2.22)

The vector field jµ is a conserved current, ∇µjµ = 0. The supersymmetric transformations

rules are

δC(Σ) = iεχ(Σ) + iε̃χ̃(Σ) ,

δχ(Σ) = ε̃ σ(Σ) + iγµ ε̃ (jµ + i∂µC
(Σ) + VµC

(Σ)) ,

δχ̃(Σ) = ε σ(Σ) − iγµ ε (jµ − i∂µC(Σ) + VµC
(Σ)) ,

δjµ = iεµνρ∇ν(εγρχ(Σ) − ε̃γρχ̃(Σ)) ,

δσ(Σ) = −i∇µ(εγρχ(Σ)+ε̃γρχ̃(Σ))+2iH(εχ(Σ)+ε̃χ̃(Σ))−Vµ(εγρχ(Σ)−ε̃γρχ̃(Σ)) .

(2.23)

An abelian gauge multiplet V is a generic multiplet S subject to the gauge freedom

δV = Λ + Λ̃, where Λ is a chiral multiplet. After the standard procedure of Wess-Zumino

gauge fixing the independent fields reduce to {Aµ, σ, λα, λ̃α, D}. Notice that an abelian

gauge multiplet becomes a real multiplet under the identification:

C(Σ) = σ , χ
(Σ)
α = iλ̃α , χ̃

(Σ)
α = −iλa ,

jµ = − i
2εµνρf

νρ , σ(Σ) = D + σH ,
(2.24)

where fνρ is the field strength of Aµ. This parametrization will be particularly useful in

later sections.

In the case of non-abelian gauge multiplets the supersymmetry transformation rules

have extra terms compared to (2.23). The complete set of transformation rules in the
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non-abelian case is

δσ = −ελ̃+ ε̃λ ,

δλ = +iε(D + σH)− i
2ε
µνργρεFµν − γµε (iDµσ − Vµσ) ,

δλ̃ = −iε̃(D + σH)− i
2ε
µνργρε̃Fµν + γµε̃ (iDµσ + Vµσ) ,

δAµ = −i(εγµλ̃+ ε̃γµλ) ,

δD = Dµ(εγµλ̃− ε̃γµλ)− iVµ(εγµλ̃+ ε̃γµλ)−H(ελ̃− ε̃λ) + [λ̃ε+ ε̃λ, σ] .

(2.25)

Fµν is the field strength of Aµ, and Dµ is the non-abelian gauge covariant derivative (5.28).

2.2.3 Curved D- and F-terms

So far we have not specified whether S is an elementary or a composite multiplet.

The supersymmetric transformations are, of course, valid regardless of this distinc-

tion. Once elementary multiplets are defined, any composite multiplet K of the form

K = (K,χ(K), χ̃(K),M (K), . . .) is generated by the multiplet calculus. In practice, given

the definition of the bottom component K, as a function of the elementary fields CI , the

other components in the multiplet are obtained in a step-by-step procedure: varying K(CI)

with the use of δCI one reads off the definitions of χ(K) and χ̃(K), and so on. From the

composite multiplets it is then possible to construct kinetic terms for the elementary fields

and thus generic supersymmetric Lagrangians whose variation is a total derivative.

Such Lagrangians can be understood as follows. Given a generic multiplet S with

r = 0 and z = 0, its D component almost transforms as a total derivative. Terms that

are not total derivatives are proportional to background fields, and the flat space result is

recovered when these vanish. In curved space the correct combination transforming into a

total derivative is [3]

curved D−term : LD = −1
2(D − aµV µ − σH) ,

δLD = −1
2∇µ(εγµλ̃− ε̃γµλ− V µεχ+ V µε̃χ̃) .

(2.26)

The result for the F (or F̃ ) component of a chiral Φ (or anti-chiral Φ̃) multiplet of R-charge

r = 2 (or r = −2) and central charge z = 0 is the same as that in flat space. The F-term is

curved F−term : LF = F + F̃ , δLF = −2i∇µ(ε̃γµψ + εγµψ̃) . (2.27)

3 Manifold decomposition for curved A-type backgrounds

In this paper we focus on a class of background geometries introduced in [12], that we call

“A-type”.3 By definition, these backgrounds admit two supercharges related by charge

conjugation. The charge conjugate spinors, ζc ≡ +iγ2ζ? and ζ̃c ≡ +iγ2ζ̃?,4 solve the

3In [12] the partition function of N = 2 Chern-Simons theories on generic A-type backgrounds was

computed explicitly using supersymmetric localization techniques similar to [5].
4Our γ matrix conventions are summarized in appendix A. In deriving the formulae (3.1) and (3.2) we

made use of the relation γµ? = −γ2γµγ2. ? denotes the standard complex conjugation.
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equations (
∇µ + iA(R)

µ

)
ζc = +

1

2
γµ(H?ζc − iV ?

ν γ
νζc) , (3.1)(

∇µ − iA(R)
µ

)
ζ̃c = +

1

2
γµ(H?ζ̃c + iV ?

ν γ
ν ζ̃c) . (3.2)

In general, given a Killing spinor, say ζ, its complex conjugate ζc is an independent spinor

that does not solve any of the Killing spinor equations (2.1) and (2.2). However, if the

background fields A
(R)
µ and Vµ are real, and H is purely imaginary, then ζc solves the same

Killing spinor equation as ζ̃. Therefore, for an A-type background, ζ and ζc are the two

Killing spinors of opposite R-charge.

We are going to show that it is possible to understand any A-type background in terms

of a supersymmetric foliation in which a generic leaf has the topology of a torus. As a

mathematical statement about irreducible orientable closed 3-manifolds, it is certainly well

known in the literature that such a toric foliation exists, however we will use supersymmetry

and the Killing spinors ζ and ζ̃ to re-derive this result. Very explicitly, the geometry of the

foliation will be characterized by a distribution of orthogonal vector fields built out of the

Killing spinors. One of these vectors will be the Killing vector Kµ, and we will construct

another vector Nµ that: 1) is orthogonal to Kµ, and 2) can be used to define a proper

orthogonal submanifold.

The use of vector fields, instead of the adapted coordinates of the THF, will be essential

in the formulation of boundary conditions preserving a subset of the bulk supersymmetry.

With such a foliation in place, we will be able to decompose the compact manifolds by plac-

ing a boundary (or a co-dimension-1 defect) along any leaf of the foliation. Our main pur-

pose will be to formulate rigid supersymmetric fields theories on the resulting spaces with

boundary. Since the metric is part of a supergravity multiplet, the decomposition of the

manifolds should be combined with certain extra conditions on the remaining background

fields. We will discuss concretely how the manifold decomposition is carried out in the rest

of this section. In the final subsection 3.5, we revisit some of the well-known examples of

compact 3d manifolds, and re-discuss them from the perspective of this decomposition.

3.1 Supersymmetric foliation

Normal vector

Let us consider how the existence of the Killing spinors ζ and ζc determines the geometry

of A-type manifolds. By fixing the normalization of ζ̃ to be ζ̃ = ζc, we show that super-

symmetry provides a “refinement” of the THF in which a special orthogonal direction to

Kµ is selected out.

The starting point of our treatment is based on the use of a Fierz identity for commuting

spinors that allows us to show that the real vector Nµ, defined as

Nµ = (ζ?γµζ)− (ζ̃?γµζ̃) = (ζ?γµζ) + c.c. , (3.3)

is orthogonal to Kµ, i.e. KµN
µ = 0. The same result about Nµ can be obtained by

noticing that

ζ?γµζ = +iζ̃γ2γµζ = +igνµe
ν
2(ζ̃ζ)− ενµρKρeν2 , (3.4)
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where eµ2 is an unspecified vielbein. Hence, the real part of (3.4) gives Nµ = 2εµνρe2
νKρ,

which is manifestly orthogonal to Kµ. The tangent space TM3 can then be spanned by the

following orthogonal vectors: Kµ, Nµ, and K̃µ ≡ εµνρNνKρ. By construction, we also have

Nµe2
µ = 0 , K̃µ = 2εµνρεναβe

α
2K

βKρ = −2eµ2 ||K||
2 + 2Kµ

(
K · e2

)
. (3.5)

It is, therefore, convenient to choose a reference frame, {e1, e2, e3}, such that Kµ = eµ3 and(
K · e2

)
= 0. For such a frame we deduce from (3.4) that eµ2 ∝ εµνρNνeρ3, and Nν ∝ eν1 .

By consistency, we have to prove that the inverse metric gµν can be written in terms of

the bilinears KµKν , NµNν and K̃µK̃ν . Indeed, from the Fierz identity applied to KµKν ,

and from the very definition of K̃µK̃ν , we obtain the relation

gµν =
1

||K||2
KµKν +

1

||N ||2
NµNν +

1

||N ||2||K||2
K̃µK̃ν . (3.6)

Our adapted dreibein fields are

eµ1 =
Nµ

||N ||
≡ nµ, eµ2 =

K̃µ

||K̃||
≡ k̃µ, eµ3 =

Kµ

||K||
≡ kµ , (3.7)

with ||K̃|| = ||N || ||K||. The norms of Kµ and Nµ are

KµKµ = Ω2, NµNµ = 4 (ζ?ζ)2 + 4Ω2 . (3.8)

The most general metric onM3 compatible with a THF was given in (2.3). Beginning

with manifolds that admit two generic Killing spinors of opposite R-charges, we refine the

adapted coordinates of the THF so to describe a local parametrization of the metric (3.6).

Recalling the form of (2.3),

ds2 = gµνdx
µdxν = η2 + c(τ, z, z̄)2dzdz̄, η = dτ + (h(τ, z, z̄)dz + c.c.) . (3.9)

we seek a metric compatible with a contact structure whose Reeb vector is also a Killing

vector. Firstly, let us notice that Kµ = Ω2 η̂ and e3 = Ω (dψ + x1dy1). Then, instead of

{x1, y1}, we can make use of the coordinates {z, z̄} by implementing the contact structure

condition on the function h. As a result, h is ψ-independent, and since ∂ψΩ = Kµ∂µΩ = 0,

the function Ω is also ψ-independent. Finally, upon imposing that Kµ is Killing, the

metric (3.9) takes the final form [12]

ds2 = Ω (z, z̄)2 (dψ + h(z, z̄)dz + c.c.)2 + c(z, z̄)2dzdz̄ . (3.10)

For an A-type manifold, ζ̃ = ζc, and the two THFs, the one associated to ζ, and the one

associated to ζ̃, are identified, i.e η = η̃ = Ω η̂ = e3 in (3.9). In particular, because of (3.6),

we also know that the plane dzdz̄ is parametrized by the real vectors Nµ and K̃µ. From

the point of view of the contact structure, the vectors Nµ and K̃µ span the distribution of

the contact plane H = ker η̂.

If follows from Frobenius’ theorem, and from the defining property of a contact mani-

fold, namely η̂ ∧ dη̂ 6= 0, that the distribution H = ker η̂ is not integrable. Instead, we will

now study under what conditions the distribution generated by Kµ and K̃µ is integrable.

This will provide a regular foliation of the A-type manifold.
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Integrability condition

Frobenius’ theorem guarantees that the distribution E , generated by K and K̃, is integrable

if the commutator [K, K̃] belongs to E [43].5 This commutator is equal to

[K, K̃]µ ≡ Kα∇αK̃µ − K̃α∇αKµ

= Kαεµνρ (∇αNν)Kρ +KαεµνρNν (∇αKρ)− εανρ NνKρ∇αKµ , (3.11)

and we shall consider the equation Nµ[K, K̃]µ = 0.

The second and third terms in (3.11) can be manipulated by using the equation of Kν ,

given in (2.9). We obtain the expression

+KαεµνρNν (∇αKρ)− εανρ NνKρ∇αKµ = − (K · V )Nµ ζ̃ζ − iH ||K||2Nµ . (3.12)

A small complication arises in the calculation of ∇αNν . By definition ∇αNν = Dαζ
?γνζ +

ζ?γνDαζ + c.c., but Dαζ
? is not just −iγ2Dαζ̃. It is given by the more involved expression

Dαζ
? = −iγ2Dαζ̃ −

1

4
εabcωαabγ

2 (γ?c + γc) ζ̃ . (3.13)

Substituting (3.13) into ∇αNν , we get several contributions

∇αNν = +i
(
Dαζ̃

)
γ2γνζ + iζ̃ γ2γνDαζ +

1

4
ωαabε

abcζ̃
(
γ2γcγν − γcγ2γν

)
ζ + cc. (3.14)

In the adapted frame (3.7), and after some algebra, we can show that

εµνρKρ (Kα∇αNν) = −1

2

(
Kαωαabε

abcKc

)
Nµ . (3.15)

Then, the commutator becomes,

[K, K̃]µ =

[
− (K · V ) ζ̃ζ − iH ||K||2 − 1

2

(
Kαωαabε

abcKc

)]
Nµ . (3.16)

The vector Nµ does not belong to the distribution E , thus the distribution is integrable iff

Nµ[K, K̃]µ = 0. This equation determines the component Kαωα 12 of the spin connection

in terms of the background fields. Since the spin connection enter explicitly the Killing

spinor equation, knowing Kαωα 12 shall become very useful when we discuss more precise

properties of the Killing spinor solutions, in section 3.4.

Once the condition Nµ[K, K̃]µ = 0 is satisfied, Frobenius’ theorem [43] implies the

integrability of the distribution E and the existence of the foliation. Considering the general

metric (3.10), any A-type metric can always be put locally in the form,

ds2 = Ω2 (θ, ϕ) (dψ + Fθdθ + Fϕdϕ)2 + g2
θθdθ

2 + g2
ϕϕdϕ

2 , (3.17)

where Fθ, Fϕ, gθθ, gϕϕ are ψ-independent, and Nµdx
µ = dθ. The metric (3.17) should be

understood as a local parametrization of (3.6), where the normal vector Nµ is obtained

5The normalizations of K and K̃ are not important in the argument. Even though they contribute to

the commutator, through the terms K̃µ(Kα∂α
1

||K̃|| ) and Kµ(K̃α∂α
1

||K|| ), these contributions belong to E .

Thus the statement of Frobenius’ theorem remains unchanged.
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directly from the knowledge of the Killing spinors ζ and ζ̃ = ζc.6 The 2d submanifolds

θ = const. define the foliation generated by E .

The foliation generated by K and K̃ will be denoted by F , and a generic leaf in F will

be denoted by M′2.7 We refer to M′2 as a supersymmetric leaf of M3. This terminology

follows from the observation that the algebra of supersymmetry

[δε, δ̃ε̃]ϕ(r,z) = −2i (LK + εε̃ (z − rH))ϕ(r,z) (3.18)

involves the Killing vector Kµ in the Lie derivative LK . In the simplest case, since the

commutator of two transformations δε and δε̃ squares to a translation along the orbit of the

Killing vector Kµ, M′2 preserves supersymmetry because Kµ belongs to TM′2. In partic-

ular, let us notice that F includes the co-dimendion-2 THF generated by K, since K ∈ E .

3.2 Topology and manifold decomposition

We can show with a simple argument that the topology ofM′2 cannot be genus zero, i.e. the

leaves of the supersymmetric foliations are not spheres. The reasoning goes as follows. M′2
contains the orbits of the Killing vector Kµ, and Kµ is nowhere vanishing because, as we

mentioned in section 2.1, the Killing spinors are nowhere vanishing. IfM′2 was a sphere, Kµ

would correspond to the U(1) isometry of the sphere, which is unique. However, this cannot

be the case since the U(1) isometry of the sphere vanishes at the north and south poles.

The topology of M′2 is a torus. We showed that it cannot be genus zero, but also

it cannot be a higher genus surface either, because a 2d Riemann surface of genus g > 1

would not have a Killing vector. Thus locally, an A-type background is topologically a

torus fibered over a closed interval. Seifert manifolds have indeed this structure (see for

example the review in ref. [44]). The case of the round three-sphere is very instructive:

S3 does admit a genus zero topological (Heegard) decomposition as the union of two 3-

balls [45], however the supersymmetry that we are considering rules out this possibility

and allows only for g = 1 decompositions. A similar phenomenon has been noticed in 4d:

ref. [2] showed that a 4d supersymmetric manifold for which [K, K̄] = 0, is topologically

Σ × T2, where Σ is a 2d Riemann surface. Also in this case, the metric and the complex

structures can be written only in terms of spinor bilinears [46].

The results we have obtained so far can be summarized by the statement that any

supersymmetric compact space M3 of A-type admits a toric foliation. We now pick one

leaf M′2 of the toric foliation, and slice M3 along its volume. In this way, we obtain

two manifolds T1 and T2, which share a common boundary, the leaf M′2, and such that

T1#T2
∼=M3. Borrowing the terminology from surgery theory, we will refer to T as a solid

torus. For the three-sphere, the solid torus is the analog of the hemisphere in 2d, and the

tip of the hemisphere corresponds here to the shrinking of one of the two boundary cycles.

Following the analogy with the lower dimensional case, another interesting 3d manifold is

represented by the “cylinder”, which topologically would be a torus fibered on the interval

6We shall remark that the possibility of writing Nµ as spinor bilinear is the difference between an A-type

manifold and a manifold with two Killing spinors of opposite R-charge endowed with metric (3.10).
7To be pedantic we should also specify a reference point θ0 ∈M3 for any leaf. This is usually implied.
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with both a left and a right boundary. We note the obvious fact that when a boundary is

inserted the homotopy properties of the manifold change.

Since the metric belongs to the supergravity multiplet, whose components include

the R-symmetry gauge field A
(R)
µ , the vector field Vµ, and the scalar H, any manifold

decomposition should be consistent with the profile of these background fields. Being a

scalar field, H is not constrained by the manifold decomposition. However, a condition on

V µ follows from the fact that V µ is a conserved vector, and therefore we should require

nµV
µ ≡ V ⊥ = 0 at the boundary. As a further simplifying, but not necessary, assumption

in some of the examples that will be analysed below we will also consider nµA
(R)
µ = 0.

3.3 Clifford algebra and bilinears at the boundary

The frame fields kµ, k̃µ and nµ, split the algebra of the γ matrices into a 2d “parallel”

Clifford algebra, which lives on M′2, and an orthogonal matrix γ⊥ = nµγ
µ. As a conse-

quence, all possible spinor bilinears obtained from ζ and ζ̃ are classified in terms of scalars

and tensors on TM′2. One obvious example is Kµ = ζ̃γµζ, which is a vector on TM′2, and

has no scalar component because nµK
µ = 0.

It will be useful for later purposes to have the explicit decomposition for all spinor

bilinears. Since we have an expression for nµ in terms of the Killing spinors, we can use

Fierz identities to bring the bilinears in a simple form. It is enough to consider a generic

bilinear with at most two γ matrices; higher order bilinears would not be independent,

because of the identity γµγν = gµν + i εµνργρ. For notational convenience we use the

indices ν‖ for directions parallel to M′2.

The bilinears of interest are8

ζγ⊥ζ = + 2 Ω
||N ||(ζ̃ζ

?)?,

ζγ⊥γν‖ζ = + 2
||N ||(ζ̃ζ

?)?Kν‖ ,

ζ̃γ⊥γν‖ζ = − i
||N ||K̃

ν‖ ,

ζ̃γ⊥ζ̃ = − 2 Ω
||N ||(ζ̃ζ

?),

ζ̃γ⊥γν‖ ζ̃ = + 2
||N ||(ζ̃ζ

?)Kν‖ ,

ζγ⊥γν‖ ζ̃ = − i
||N ||K̃

ν‖ .

(3.19)

As a technical remark, we observe that the right column of (3.19) can be obtained by

complex conjugation of the left column using ζ̃ = +iγ2ζ?, and γµ? = −γ2γµγ2. The

norm of the normal vector Nµ = (ζ?γµζ) + c.c. was given in (3.8). However, by using the

symmetries of the commuting spinors, we can also write NµNµ = Nµ[(ζγµζ
?) + c.c.], and

from the Fierz identity we obtain(
ζ?ζ̃
)(

ζζ̃?
)

=
1

4
||N ||2 . (3.20)

Therefore, (
ζγ⊥ζ

)(
ζ̃γ⊥ζ̃

)
= − 4Ω2

||N ||2
(
ζ̃ζ?
)? (

ζ̃ζ?
)

= −Ω2 . (3.21)

8For generic commuting spinors ψ and χ, we have ψγµχ = χγµψ, thus ψγµψ 6= 0, and ψχ = −χψ.
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We conclude that the only new geometric information needed, in order to parametrize the

bilinears (3.19), is a phase

ζγ⊥ζ ≡ Ω ei$ ,

ζγ⊥γν‖ζ = Ω ei$ kν‖ ,

ζ̃γ⊥γν‖ζ = −iΩ k̃ν‖ ,

ζ̃γ⊥ζ̃ = −Ω e−i$ ,

ζ̃γ⊥γν‖ ζ̃ = Ω e−i$ kν‖ ,

ζγ⊥γν‖ ζ̃ = −iΩ k̃ν‖ .

(3.22)

The phase $ can be calculated explicitly, given the Killing spinor ζ and the norm of the

Killing vector. In general, we expect $ to be coordinate dependent: $ = $(ψ, z, z̄), where

{ψ, z, z̄} are the coordinates adapted to the THF. We will present examples in section 3.5.

Finally, we can ask how the bilinear ζγµζ decomposes in the basis {kµ, nµ, k̃µ}. The

answer is again obtained by using Fierz identities and reads

Uµ ≡
ζγµζ

Ω
= ei$(nµ − ik̃µ) . (3.23)

Consequently, we also find that the metric can be written equivalently as

ds2 = kµkν − UµŨν , Ũµ ≡
ζ̃γµζ̃

Ω
= −U? . (3.24)

3.4 Twisting and phases

So far we have discussed several of the characteristic properties of A-type backgrounds.

The appearance of the phase $ is one of the properties that will play an important role in

the subsequent analysis and as such it deserves some further elaboration.

A constant shift of $ can be understood as part of the U(1) invariance that is built into

the relations Ω = ζζ̃ and ζ̃ = ζc, as we discussed in section 2.1. The coordinate dependent

part of $(ψ, z, z̄) is due to the non-trivial profile of the background fields and is closely

related to the explicit solution of the Killing spinor equations. The choice of the frame

fields, and therefore the definition of the curved γ matrices becomes important when we

discuss the Killing spinor equation. We fix possible ambiguities in the choice of vielbein by

working in the preferred frame {nµ, kµ, k̃µ}. The relation between the coordinate dependent

phase, $(ψ, z, z̄), and the Killing spinor, that we discuss here is made in this frame.9

We make the following observation. Given a metric gµν with corresponding background

fields and a generic non-trivial $(ψ, z, z̄) we can consider a U(1)R gauge transformation

that sets it everywhere to zero. As a result of this operation, the new background R-

symmetry, in which the phase is constant, is

A(R)
new = A

(R)
old + dΛ (3.25)

where dΛ is a flat connection (in the simplest case a non-zero constant).

9The reader familiar with the S3 geometry may notice that by using the Maurer-Cartan forms two out of

four Killing spinors of the S3 are constant (see for example [47]). As we emphasize in the next section, Uµ is

always well defined and so is $. It can be explicitly checked that the phase $ = ψ/2 will show up in Uµ, even

in the Maurer-Cartan formulation. In the frame {nµ, kµ, k̃µ} the phase will appear in the Killing spinors.
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Globally, the addition of a non-trivial flat connection can lead to interesting phenom-

ena. Even though we expect the details of the manifold to become important at this point,

we know for sure that the leaves of the supersymmetric foliations are tori, and therefore

we can make the following general comments:

• When π1(M3) is trivial, the two cycles of a generic leaf M′2 will shrink in the bulk,

identifying the location of the north and south pole. Then, if A
(R)
old was topologically

trivial, A
(R)
new is inserting a singularity, effectively changing the topology. For example,

it inserts punctures at the north/south pole.

• When π1(M3) is non-trivial, e.g. π1(M3) = Z, the new flat connection will generically

decompose into a combination of an holonomy and a singularity (if both are non

vanishing).

• When the manifold has a toric contact structure, the Killing vector K = ∂ψ is a

combination of the vectors ∂φ1 and ∂φ2 , where φ1 and φ2 are 2π-periodic coordinates

on the leaves. The effect of a constant A
(R)
ψ new, over a topologically trivial connection,

will result to the insertion of a vortex loop at the north and south pole, together with

an holonomy along the corresponding non-shrinking cycles.

From the point of view of the Killing spinor equations, the addition of a flat connection,

from A
(R)
old to A

(R)
new, is twisting the original solution.10 Indeed, assume that in the old back-

ground the spinor is of the type ei$η0, with η0 a constant spinor and $ = $(ψ, z, z̄). Then,

in the new background η0 is the spinor and the Killing spinor equation becomes ∂µη0 = 0.

Returning to the coordinate system (3.17) we further observe that the ψ dependence

of the Killing spinor is always constrained to be a phase. This is due to the fact that

k = ∂ψ, and the fact kµ∂µ(ζ̃ζ) = 0 that follows from the Killing spinor equations. The

generic ansatz for a solution of the Killing spinor equations is then

ζ = eif(ψ)ζ0(θ, ϕ) , ζ̃ = e−if(ψ)ζ̃0(θ, ϕ) .

According to this ansatz, for generic f neither ζ nor ζ̃ are scalars under translations along

the Killing vector, however, the ψ dependence can always be solved by considering a gauge

transformation of A
(R)
old such that kµ∂µζ = kµ∂µζ̃ = 0. By using the integrability condi-

tion (3.16) we can prove that

kµA(R)
µ new = −iH − kµVµ . (3.26)

To prove this equation contract the Killing spinor equation of ζ with kµ and ζ̃. The same

result follows by considering the Killing spinor equation for ζ̃. We shall come back to

this relation in sections 7 and 8, where it will be used as an input to solve for boundary

conditions preserving a subset of the bulk supersymmetry.

10Sometimes, even A
(R)
old can be interpreted as a twisting of a theory with no A(R) [25]. Here we are saying

something slightly different, in particular we identify A
(R)
new −A(R)

old as a gauge transformation.
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3.5 Examples: spheres and their squashings

Important examples of A-type backgrounds include: the round three-sphere S3, the ellipsoid

S3
b , the SU(2)×U(1) squashed spheres of [48], and geometries of the type S2×S1. Round and

squashed spheres were the first manifolds on which the use of supersymmetric localization

made possible the exact computation of the partition function of N = 2 theories [5, 12,

49, 50]. Our main interest here will be to calculate the triple of vectors {nµ, kµ, k̃µ} for the

round sphere and its deformations. We will also mention the case of S2 × S1 which admits

both an A-type and a different “non-real” structure. In the context of squashed spheres,

the distinction between these two structures has been also emphasized in [51].

3.5.1 Ellipsoid

Our first example is S3
b , defined as the set of points (z, w) ∈ C2, with the property |z|

2

˜̀2 +
|w|2
`2

= 1. The squashing parameter b is usually defined as the ratio b2 = ˜̀/`. The

parametrization z = ˜̀sin θ eiφ1 , w = ` cos θ eiφ2 , gives the metric

ds2
S3
b

= dzdz̄ + dwdw̄ = f(θ)2dθ2 + ˜̀2 sin2 θ dφ2
1 + `2 cos2 θ dφ2

2 , (3.27)

where f(θ)2 = `2 sin2 θ + ˜̀2 cos θ2. The coordinates take values in the range θ ∈ [0, π/2]

and φi ∈ [0, 2π] for i = 1, 2. They are toric, and make manifest the U(1)×U(1) symmetry

of the geometry. The north pole at θ = 0, and south pole at θ = π/2, are conventionally

defined by the shrinking of the corresponding S1 cycles. The precise form of f(θ) is not

important and all of the following calculations will be valid for a generic regular function

gθθ(θ).
11 The background fields can be taken to be (in a gauge where Vµ = 0) as

H = ± i

gθθ
, A

(R)
± = −1

2

(
1−

˜̀

gθθ

)
dφ1 ∓

1

2

(
1− `

gθθ

)
dφ2 . (3.28)

Notice that A
(R)
± is topologically trivial since A

(R)
±φ1
→ 0 at the north pole and A

(R)
±φ2
→ 0

at the south pole.12

There are solutions to the Killing spinor equations with both + and − signs. It is then

convenient to distinguish between positive and negative Killing spinors, respectively.

Our immediate task is to obtain the Killing spinors, ζ±, ζ̃±, and calculate the vector

fields Kµ, Nµ and K̃µ. Notice that (θ, φ1, φ2) are not the adapted coordinates introduced

in the previous section, but since we have coordinate-independent expressions for Kµ, Nµ

and K̃µ, the choice of coordinates is not an issue. In the frame

E1 = ` cos θ dφ2 , E2 = ˜̀sin θ dφ1 , E3 = gθθ dθ , (3.29)

the explicit expression of the Killing spinors is

ζ± = M[± θ, (φ1±φ2)] η , η = 1√
2

(
+1

−1

)
, (3.30)

11Regularity means any function that asymptotes to ˜̀, ` at θ = 0 and θ = π/2, respectively.
12The background A(R) of [48] is recovered by the substitution φi → −φi. The difference in the sign is

due to our choice of γ matrices that differs from the one in [48].
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ζ̃± = M[± θ, (φ1±φ2)] η̄ , η̄ = 1√
2

(
+1

+1

)
, (3.31)

with the matrix M given by

M[θ,$] = exp

(
−iθ

2
γ3

)
exp

(
−i$

2
γ1
)

=

(
e−iθ cos $2 ie−iθ sin $

2

ie+iθ sin $
2 e+iθ cos $2

)
. (3.32)

In (3.31) we have chosen a normalization such that ζ̃± = ζc±. In fact, since the curved

background is real, we are guaranteed that ζc solves the equation of ζ̃. The Killing vector

associated to ζ± is

Kµ
± ∂µ = ζ̃±γ

µζ± ∂µ = ±˜̀−1∂φ1 + `−1∂φ2 , (3.33)

and the novel vectors, nµ ≡ Nµ/||N ||, and k̃µ = K̃µ/||K̃|| are

nµ± ∂µ = − 1

gθθ
∂θ , (3.34)

k̃µ± ∂µ = −˜̀−1 cot θ ∂φ1 ± `−1 tan θ ∂φ2 . (3.35)

It is interesting to write the metric in the adapted frame {kµ, nµ, k̃µ}. In the case of

positive Killing spinors, the metric takes the form (3.17)

ds2
S3
b

=
1

4
(dψ + cos θHdϕ)2 +

1

4
g2
θθ dθ

2
H +

1

4
sin2 θHdϕ

2 , (3.36)

where

dψ = `dφ2 + ˜̀dφ1 , dϕ = `dφ2 − ˜̀dφ1 , dθH = 2dθ . (3.37)

For the round three-sphere ` = ˜̀ and we recover well known results. The coordinates

{ψ, θH , ϕ} coincide with the familiar Hopf coordinates, for which S3 is seen as a U(1) fi-

bration over the two-sphere dθ2
H + sin2 θHdϕ

2.13 The interpretation of the Killing spinors

is manifest, K+ = ∂ψ and sits along the Hopf fiber, whereas K− = ∂ϕ generates the U(1)

isometry of S2. Furthermore, in the example of the round three-sphere written in Hopf co-

ordinates, we can write the S2 at the base of the fibration as CP1, and exhibit the THF of S3

ds2
S3 =

(
dτ +

i z̄dz

2(1 + |z|2)
+ c.c.

)
+

dzdz̄

1 + |z|2
, (3.38)

where τ = (ψ + ϕ)/2 and z = tan(θ/2) eiϕ. It is worth emphasizing that the Killing

spinors ζ− and ζ̃−, which generates K− = ∂ϕ, become the standard spinors of the S2, after

a change of frame. In the next section we will make this statement more precise.

13Notice that when ` 6= ˜̀ the periodicities of ϕ and ψ are different from those of the round three-sphere.

In the coordinates ψH ≡ φ1 + φ2, ϕH ≡ φ2 − φ1 the metric of S2
b is [52]

ds2 =
R2

4

[
(1 + b cos θ) dθ2

H +
1− b2

1− b cos θH
sin2 θ dϕ2

H

]
+
R2

4
(1− b cos θH)

(
dψH +

cos θH − b

1− b cos θH
dϕH

)2

,

where 2R2 = `2 + ˜̀2 and b = (˜̀2 − `2)/(˜̀2 + `2).
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The Killing spinors ζ± in (3.30) have non-trivial dependence on θ and $. As can

be seen from evaluating M[θ,$]η , the $ dependence reduces to a phase. Following the

discussion in the previous section, we can twist away the phase by performing a gauge

transformation on the background R-symmetry connection. To see how this works in

practice, let us observe that we can indeed decompose A
(R)
± as

A
(R)
± = +

1

2
(dφ1 ± dφ2) +

1

2gθθ
(˜̀dφ1 ± `dφ2) . (3.39)

The background A
(R)
±new in which the spinors ζ± are constant along the direction of the

Killing vectors, can be obtained either by an explicit computation, or by solving the general

relation kµA
(R)
µ new = −iH − kµVµ from the knowledge of kµ and A

(R)
µ old above. The latter

strategy implies that

A
(R)
±new = A

(R)
± − 1

2
(dφ1 ± dφ2) =

1

2gθθ
(˜̀dφ1 ± `dφ2) . (3.40)

As we expect A
(R)
±new becomes well defined on the ellipsoid S3

b with punctures at the north

and south poles.

3.5.2 On U(1) fibrations and non A-type geometries

Another class of interesting real curved spaces are the SU(2)×U(1) squashings of the round

three-sphere of [48]. We will consider a slightly more general class of backgrounds, whose

metric is given by

ds2 =
˜̀2

4
(dψ + u(θ)dϕ)2 +

`2

4

(
g2
θθdθ

2 + sin2 θdϕ2
)
. (3.41)

When u(θ) = cos θ, gθθ = 1, and ` = ˜̀ we recover the Hopf fibration of the S3. When

` 6= ˜̀, the U(1) fiber of the round sphere gets squashed, and the metric only preserves the

SU(2)×U(1) subgroup of the original SO(4) isometry group. We may also take u(θ) = u0

constant, and for the particular value u0 = 0 we recover the metric of S2 × S1.

It will be useful to define the parameter β = ˜̀/`. It measures the squashing for geome-

tries that are deformations of S3, hereafter S3
β . Also, it measures the inverse temperature

for geometries of the type S2 × S1. By a global rescaling we can set ` = 1. We will work

with the dreibeins

E1 =
1

2
gθθdθ , E2 =

1

2
sin θdϕ , E3 =

β

2
(dψ + u(θ)dϕ) . (3.42)

The background scalar field H is taken to be purely imaginary, and we turn on

V3 = −iH +
β

gθθ

u′(θ)

sin θ
, (3.43)

A
(R)
ϕ = −1

2

cos θ

gθθ
− β2

2

u(θ)

gθθ

u′(θ)

sin θ
, A

(R)
ψ = −1

2
− β2

2gθθ

u′(θ)

sin θ
. (3.44)

In this setup, the metrics (3.41) admit two Killing spinors of opposite charge

ζ = e−iψ/2

(
1

0

)
, ζc = ζ̃ = e+iψ/2

(
0

1

)
. (3.45)
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From these Killing spinors we calculate the frame {nµ, k̃µ, kµ}, and find

nµ∂µ =
2

gθθ
∂θ , kµ∂µ =

2

β
∂ψ , k̃µ∂µ =

2

sin θ
(u(θ)∂ψ − ∂ϕ) . (3.46)

We also recognize that the dreibeins {E1, E2, E3} correspond to the triple {nµ,−k̃µ, kµ}.
The phases ±iψ of the spinors ζ and ζ̃ in (3.45) can be re-absorbed by twisting A(R). The

corresponding gauge transformation leaves A
(R)
ϕ invariant and changes A

(R)
ψ as follows

A
(R)
ψ → A

(R)
ψ new = − β2

2gθθ

u′(θ)

sin θ
. (3.47)

Observe that for S2 × S1 geometries, the function u(θ) is trivial, and therefore

A
(R)
ψ new = 0 , A(R)

ϕ = −1

2

cos θ

gθθ
. (3.48)

By taking H = 0 this S2 × S1 background becomes the topologically twisted background

of [53].

The reasoning that led to the background fields (3.43) and (3.44) is based on simple

observations, which we now elucidate. First of all, A(R) and V are real when H is imaginary,

hence the family of backgrounds is of the A-type. For example, considering the round three-

sphere, β = 1, u = cos θ, we find A
(R)
µ = 0, and V3 = −iH − 1, thus in the gauge H = +i,

the spinors ζ and ζ̃ correspond to the positive Killing spinors (3.30) and (3.31) calculated in

the new frame (3.42). The more general background fields, (3.43) and (3.44), are obtained

by solving the Killing spinor equation for A(R) and V , upon insisting that ζ in (3.45) is a

solution. By writing the Killing spinor equation in the following form

(∂µ − iA(R)
µ

)
ζ = −1

4
ωabµ γabζ −

1

2
γµ(H − iVνγν)ζ , (3.49)

we get V3 from the θ component, A
(R)
ϕ , and A

(R)
ψ from the other two equations.

Some of the details of this calculation can be seen explicitly in the cases of S3
β and

S2 × S1 geometries. The equations (3.49) become

∂θζ − iAθζ = +
i

4
(pβ + iH − V3γ3) γ1ζ , (3.50)

∂ψζ − iAψζ = − i
4
β(pβ − iH − V3γ3) γ3ζ , (3.51)

∂ϕζ − iAϕζ = +
i

4

[
((2− pβ2) + iH + V3γ3)γ3 cos θ

+ (pβ + iH + V3γ3)γ2 sin θ
]
ζ , (3.52)

where p = 1 for S3
β , and p = 0 for S2×S1. For the round three sphere β = 1, H = +i, V3 = 0

and the r.h.s. of (3.50) and (3.52) vanish identically. The use of the frame fields (3.42),

compared to the toric frame of the previous section, makes the computation of the positive

Killing spinors particularly simple: two out of three equations can be trivially satisfied,
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and the remaining one, ∂ψζ = − i
2γ3ζ, is solved by (3.45). For the SU(2)×U(1) squashing

S3
β , the background field V3 is tuned in such a way that the r.h.s. of (3.49) becomes a

projector, as one can check from (3.50). Then, the positive Killing spinor of the round

sphere is promoted to a Killing spinor of the squashed sphere.14 In this case, the R-

symmetry background is proportional to A
(R)
3 , and it is aligned with V3.

The analysis of S2 × S1 geometries follows the same logic.

Before we move on, let us notice that when we consider the negative Killing spinors

of the round three-sphere, a different simplification takes place in the equations (3.50)–

(3.52): the trivial equation becomes ∂ψζ = 0, whereas the equations along θ, and ϕ become

effectively those of the S2 in its standard parametrization [7],

∇θζ = +
i

2
γθζ , ∇ϕζ = +

i

2
γϕζ . (3.53)

whose solutions are15

ζ = C1 e
+iϕ

2

(
cos θ2
−i sin θ

2

)
+ C2 e

−iϕ
2

(
sin θ

2

+i cos θ2

)
. (3.54)

S2×S1 and non A-type geometry. Metrics of the type S2×S1 are interesting for a sec-

ond reason: they are perhaps the simplest 3d example admitting both a real and a non-real

structure. The non-real structure is obtained by considering the following background fields

H = 0 , V = − 2i

gθθ
E3 , A(R) = +

i

gθθ
E3 , (3.55)

with E3 = β
2 (dψ + u0dϕ). The Killing spinor equation (3.51) becomes trivial: ∂ψζ = 0.

After A(R) and V have been subtracted, the equations on the S2 base, (3.50), and (3.52),

become

∇µζ = +
1

2gθθ
γµγ

3ζ . (3.56)

The Killing spinor equations for ζ̃ are not obtained from (3.56) by charge conjugation.

Indeed, the background is not real. Instead, from the original Killing spinor equation (2.2)

we find,

∂ψ ζ̃ = 0 ∇θ ζ̃ = − 1

2gθθ
γθγ

3ζ̃ , ∇ϕζ̃ = − 1

2gθθ
γϕγ

3ζ̃ . (3.57)

The equations (3.57) appear in the same form in [8, 19] for gθθ = 1. The explicit solutions

are proportional to the following four spinors

ζ1 = e−
i
2
ϕ

(
sin θ

2

+ cos θ2

)
, ζ2 = e+ i

2
ϕ

(
− cos θ2
sin θ

2

)
, (3.58)

ζ̃1 = e−
i
2
ϕ

(
sin θ

2

− cos θ2

)
, ζ̃2 = e+ i

2
ϕ

(
+ cos θ2
sin θ

2

)
. (3.59)

14Squashings whose Killing spinors reduce to the negative Killing spinors of the round sphere, have been

studied in [50]. In this case, the ansatz for Killing spinors need to be slightly modified.
15These S2 Killing spinors can be uplifted to S3, as explained in [54]. In two dimensions, γ3 anti-commutes

with γ
(2d)
µ . Therefore, the positive Killing spinors of the S2 are proportional to γ3ζ, with ζ given in (3.53).
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If the background fields are all purely imaginary (as in (3.55)), it follows from (3.1)

that the charge conjugate spinor ζc is independent of ζ and solves the same equation. For

example, ζ2 = ζc1 in (3.58). The same statement applies to ζ̃ and ζ̃c. We conclude that if a

background admits two Killing spinors of opposite R-charge, and all the background fields

are purely imaginary, by construction it supports N = 4 supersymmetry.

4 Boundary effects in theories with rigid supersymmetry

Given a supersymmetric field theory on a compact manifold M3, defined by an action

S =

∫
M3

L , (4.1)

it is not guaranteed that the action will remain supersymmetric when we insert a boundary

along M′2, and restrict the fields to the manifolds, T1 or T2, obtained from T1#T2
∼=M3.

In fact, for any symmetry δ acting on the fields, the Lagrangian is locally invariant up to

a total derivative, δL = ∇µV µ, hence the action restricted on T will be invariant under

the symmetry δ iff

δS =

∫
T
∇µV µ =

∮
M′

2

nµV
µ = 0 , (4.2)

where in the last step we used the divergence theorem. Typically, the condition (4.2) is

solved by imposing appropriate boundary conditions such that nµV µ = 0, or by adding

appropriate degrees of freedom on the boundary. In this paper we consider only the first

possibility. In the case of supersymmetry V µ is both a function of the anticommuting

Killing spinors, ε and ε̃, and the fields of the theory. Therefore, in order to solve (4.2),

one generally synchronizes the boundary conditions on the fields with certain conditions on

the spinors. For example, if we assume that a certain projection on the spinors realizes a

specific sub-algebra of the bulk supersymmetry, we can insert this knowledge into nµV µ to

simplify the problem and deduce definite boundary conditions for the fields of the theory.

For example, in the case of boundary conditions in two-dimensional N = (2, 2) theories

on a strip [14, 55], one can consider two different types of 1
2 -BPS boundary conditions, called

A- and B-type. They are characterized by the spinor projections

• ε̄+ = +eiαε− for A-type ,

• ε+ = −eiαε− for B-type .

ε± and ε̄± are the complex components of the 2d Weyl spinors ε and ε̄, and ε̄ is the complex

conjugate of ε. The phase α is an arbitrary constant and the minus sign is a convention. An

N = (2, 2) theory has 4 real supercharges and the 1/2-BPS projections preserve (1, 1) or

(2, 0) supersymmetry, for A-type or B-type, respectively. Such conditions play an important

role in D-brane physics described by setups with N = (2, 2) worldsheet supersymmetry. In

3d theories with N = 2 supersymmetry similar projections (and corresponding boundary

conditions) have been formulated in flat space in [15].

When one attempts to apply this standard logic to a theory on a curved background, as

in this paper, one encounters inevitably some obvious difficulties. Most notably, on curved

– 23 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
6

backgrounds many of the simplifications of constant flat space spinors are absent. The

Killing spinors ε, ε̃ are, in general, non-trivial functions of the coordinates and an A- or a

B-type projection cannot be imposed in the simple standard flat space form written above.

In what follows we will describe how to impose a direct generalization of the A-type

condition on the anticommuting spinors ε and ε̃ in a generic three-dimensional A-type

background. We will do so by introducing a “canonical” formalism that builds on the

observations of the previous two sections. We anticipate that a similar generic formulation

exists also for B-type projections. However, in this paper we will focus exclusively on

A-type boundary conditions leaving B-type projections and B-type boundary conditions

to a separate treatment in future work.

4.1 Generalized A-type projections on supersymmetry

Out of the commuting spinors ζ and ζ̃ we construct two natural projectors, P and P̃

Pψ =
1

Ω
(ζ̃ψ)ζ, P̃ψ =

1

Ω
(ψζ)ζ̃, ∀ψ. (4.3)

It is simple to check that P2 = P, P̃2 = P̃ and P + P̃ = I. Since the Killing spinors

ζ, ζ̃ are nowhere vanishing these projectors are everywhere well defined. Moreover, both

P and P̃ are invariant under the symmetry ζ → λζ, ζ̃ → λ−1ζ̃, with λ ∈ C.

By acting with P and P̃ on both ε and ε̃ we formulate the generalized A-type condi-

tions

P̃ε = 0 , P ε̃ = 0 , (4.4)

(Pε ζ̃) = (ζ P̃ ε̃) , ζ̃ = ζc . (4.5)

Defining the parameters

ϑ ≡ 1

Ω
(ζ̃ε) , ϑ̃ ≡ 1

Ω
(ε̃ ζ) . (4.6)

the above relations become

ε = ϑζ , ε̃ = ϑ̃ζ̃ , (4.7)

ϑ = ϑ̃ . (4.8)

The restriction ζ̃ = ζc (which is possible in A-type backgrounds) is imposed here

because the scalar product (ε̃ ζ) = (ζ̃ε) alone does not enforce a relation between ε and

ε̃. Indeed, by rescaling ε̃ → αε̃ and ε → βε, with arbitrary α, β ∈ C, it is always possible

to find two representatives of the commuting spinors, λζ and λ−1ζ̃, for which the relation

(ε̃ ζ) = (ζ̃ε) is satisfied. The condition ζ̃ = ζc is needed to break the invariance under the

rescalings by λ ∈ C to a residual U(1).

As a simple check that exhibits why this is the natural curved space generalization of

the A-type projection we notice that for constant spinors in flat space the relation (4.8)

reduces to the familiar A-type condition ε̃+ = +eiαε−. Indeed, in flat space, we may set

ζ = (1, 0), ζ̃ = (0, 1), Ω = 1, and then the relation (ε̃ ζ) = (ε̃ ζ) becomes the expected
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ε̃+ = ε−. The residual U(1) transformation gives the most general boundary condition,

which is precisely ε̃+ = eiαε−.

We emphasize that the curved space version of the above A-type condition is, by

construction, compatible only with A-type curved manifolds, for which ζ̃ = ζc. The pro-

jections (4.7), (4.8) reduce the amount of supersymmetry by one half.

In sections 6–8, we will demostrate how the input of the projections (4.7), (4.8) af-

fects the (in)variance of a generic N = 2 field theory under supersymmetry, and we will

study corresponding general A-type boundary conditions on N = 2 supersymmetric gauge

theories that preserve half of the bulk supersymmetry at the boundary.

4.2 Bulk A-type supersymmetries and BPS equations

Having understood how to project the anticommuting Killing spinors of a generic A-type

background, we now go back to the supersymmetry transformations of chiral and vec-

tor superfields, and reformulate them accordingly. First we spell out the supersymmetry

transformations with generic ϑ and ϑ̃, and then we study what happens upon enforcing

the projection ϑ = ϑ̃.

Before entering the details we point out that we can decompose any spinor ψ as

ψ =
1

Ω
(ζ̃ψ)ζ +

1

Ω
(ψζ)ζ̃ . (4.9)

Moreover, we notice the useful identities

(γµζ)α = ζ̃γµζ
Ω ζα − ζγµζ

Ω ζ̃α = kµ ζα − Uµ ζ̃α ,

(γµζ̃)α = ζ̃γµζ̃
Ω ζα − ζ̃γµζ

Ω ζ̃α = Ũµ ζα − kµ ζ̃α .
(4.10)

A similar decomposition holds in 4d for manifolds which are a torus fibration [46].

Chiral and anti-chiral multiplets. In (2.20) and (2.21) we wrote down the supersym-

metric transformation rules for chiral and anti-chiral multiplets for generic Killing spinors.

When we further specialize the supersymmetry to an A-type background we obtain the

following expressions.

• For a chiral multiplet:

1√
2
δφ = +ϑ ζψ ,

1√
2
δψα = +ϑ F ζα + i ϑ̃

[(
kµDµφ− ir(iH)φ− (z − qσ)φ

)
ζ̃α − (ŨµDµφ)ζα

]
,

1√
2
δF = +i ϑ̃

[(
kµ(Dµ − i

2Vµ)ψ − i(r − 1
2)(iH)ψ − (z − qσ)ψ

)
ζ̃

+ Ũµ ζ(Dµ − i
2Vµ)ψ +

√
2q ζ̃λ̃ φ

]
.

(4.11)

• For an anti-chiral multiplet:
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1√
2
δφ̃ = − ϑ̃ ζ̃ψ ,

1√
2
δψ̃α = + ϑ̃ F̃ ζ̃α + i ϑ

[(
kµDµφ̃+ ir(iH)φ̃+ (z − qσ)φ̃

)
ζα − (UµDµφ̃)ζ̃α

]
,

1√
2
δF̃ = −i ϑ

[ (
kµ(Dµ + i

2Vµ)ψ̃ + i(r − 1
2)(iH)ψ̃ + (z − qσ)ψ̃

)
ζ +

+ Uµ ζ̃(Dµ + i
2Vµ)ψ̃ −

√
2q ζλ φ̃

]
.

(4.12)

It is clear, in particular, that the fixed point (BPS) equations, in which the fermions

are set to zero and the bosons satisfy δf = 0 for any fermion f of the multiplet, depend on

the assumption we make about ϑ and ϑ̃. For the A-type projection, ϑ = ϑ̃, we obtain

kµDµφ− ir(iH)φ− (z − qσ)φ = 0 , iŨµDµφ− F = 0 , (4.13)

kµDµφ̃+ ir(iH)φ̃+ (z − qσ)φ̃ = 0 , iUµDµφ̃− F̃ = 0 . (4.14)

Further assuming the reality conditions φ̃ = φ? and F̃ = F ?, these equations reduce to

kµDµφ− ir(iH)φ = 0 & (z − qσ)φ = 0 & iUµDµφ− F = 0 . (4.15)

We obtained the last equation using the property Ũ = −U?. In the case of arbitrary

ϑ and ϑ̃ we would have instead F = F̃ = 0 and UµDµφ = 0 independently. In the

presence of a superpotential, we should integrate out F a in favor of gac̄∂c̄W̃ . Recalling

that Uµ = ei$(nµ− ik̃µ), we see that the equation iUµDµφa−F a = 0 becomes the natural

3d generalization of the domain wall equations in two dimensional (2, 2) theories.

Real and gauge multiplets. The supersymmetric transformation rules for the gauge

field were discussed in subsection (2.2.2). There we made a connection between the real

multiplet and the gauge multiplet:

jµ = − i
2
εµνρFνρ, aµ = −jµ − σVµ , ψΣ = iλ̃ , ψ̃Σ = −iλ . (4.16)

Here we use the real multiplet parametrization for the fermions, and write the field strength

F in terms of the vector aµ. The supersymmetry transformations on an A-type background

then takes the following form.

• For the ε variation of the bosons

δεσ = +iϑ (ζψΣ) ,

δεAµ = −ϑ
[

+ ei$nµ (ζ̃ψΣ)− iei$k̃µ(ζ̃ψΣ)− kµ (ζψ)
]
,

δεD = +iϑ
[
ζ
(
kµ(Dµ − i

2Vµ)− 1
2H
)
ψΣ − ζ̃ Uµ(Dµ − i

2Vµ)ψΣ

]
.

(4.17)

• For the ε̃ variation of the bosons

δε̃σ = +iϑ̃ (ζ̃ψ̃Σ) ,

δε̃Aµ = −ϑ̃
[
− e−i$nµ (ζψ̃Σ)− ie−i$k̃µ (ζψ̃Σ)− kµ (ζ̃ψ̃Σ)

]
,

δε̃D = −iϑ̃
[
ζ̃
(
kµ(Dµ + i

2Vµ) + 1
2H
)
ψ̃Σ − ζ Ũµ(Dµ + i

2Vµ)ψ̃Σ

]
.

(4.18)
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• For the fermionic fields

δψΣ = ϑ̃
[[
D − iσ(iH + kµVµ)− ikµ(jµ + i∂µσ)

]
ζ̃ − iŨµ(aµ − i∂µσ)ζ

]
,

δψ̃Σ = ϑ
[[
D − iσ(iH + kµVµ)− ikµ(jµ − i∂µσ)

]
ζ̃ − iUµ(aµ + i∂µσ)ζ

]
.

(4.19)

The projection ϑ̃ = ϑ becomes relevant when we consider the full variation δ = δε+δε̃ of the

bosonic fields. The variations of the fermions is by construction chiral, and therefore δψΣ

and δψ̃Σ is not modified when we impose ϑ̃ = ϑ. The fixed point equations ψΣ = ψ̃Σ = 0

and δψΣ = δψ̃Σ = 0 are

D − iσ(iH + kµVµ)− ikµ(jµ + i∂µσ) = (nµ + ik̃µ)(aµ − i∂µσ) = 0 , (4.20)

D − iσ(iH + kµVµ)− ikµ(jµ − i∂µσ) = (nµ − ik̃µ)(aµ + i∂µσ) = 0 . (4.21)

There are two well known solutions to these BPS equations. In both cases, we shall assume

σ and aµ to be real. The first one is,

D − iσ(iH + kµVµ) = 0 , ∂µσ = aµ = 0 , (4.22)

where the combination iH + kµVµ is correctly invariant under the shift symmetry (2.6).

If matter fields are set to zero, this solution represents a generalized ‘Coulomb branch’

solution. In the gauge kµVµ = 0 the solution (4.22) takes a more familiar form [48]. The

second solution to the BPS equations is:

nµaµ + k̃µ∂µσ = 0 , kµ∂µσ = 0 , (4.23)

k̃µaµ − nµ∂µσ = 0 , D − iσ(iH + kµVµ) = ikµjµ . (4.24)

The equations (4.23) and (4.24) generalize to arbitrary A-type backgrounds those of [52, 53].

5 N = 2 Lagrangians

With all the geometric prerequisites in place we need one more element before we can start

discussing concretely how to treat N = 2 supersymmetric field theories on A-type curved

backgrounds with boundaries. We need to collect all the surface terms that arise in the

supersymmetric variation of explicit Lagrangians. This is the main purpose of this section.

5.1 N = 2 non-linear sigma models

In this subsection we study first the most general (classical) N = 2 theory of chiral super-

fields on A-type curved manifolds. In flat space such theories are characterized in standard

fashion by an action governed by a Kähler potential K and a superpotential W . The

curved space generalization of this action is straightforward. We spell out the details for

a non-linear sigma model (NLσ) of s elementary chiral superfields {φa, ψaα, F a}, and their

conjugate {φ̃c̄, ψ̃c̄α, F̃ c̄}, with a generic superpotential. As far as we know, some of the

following calculations are not listed in the literature.
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5.1.1 General Kähler interactions

In flat space, supersymmetry turns a generic target space into a Kähler manifold. This

continues to be true in curved space. In addition, the Lagrangian contains a set of new

couplings between the dynamical fields and the background fields H and V µ. By following

the strategy outlined in the review section 2, the Lagrangian of the curved non-linear

sigma model is obtained from the curved D-term combination (2.26) evaluated on the

composite multiplet

K = {K,χ(K), χ̃(K),M (K), M̃ (K), a(K)
µ , σ(K), λ(K), λ̃(K), D(K)} , (5.1)

whose bottom component is the generic real function K = K(φa, φ̃c̄). Derivatives of K

w.r.t. the fields will be indicated by KI1I2,...In , where I can be either an unbarred or a

barred index. For n > 1 the tensor KI1I2,...In is totally symmetric. The assignment of R-

and central charges is

R[φa] = ra, R[φ̃c̄] = −rc̄, Z[φa] = za, Z[φ̃c̄] = −zc̄, (5.2)

and the Lagrangian takes the form

LNLσ = −1
2

(
D(K) − a(K)

µ V µ − σ(K)H
)

= L flat − R
8

(
raKaφ

a + rc̄Kc̄φ̃
c̄
)

+ L bos
H + L ferm

H + L bos
V + L ferm

V ,
(5.3)

where R is the curvature of the background manifold and we have defined:

L flat = +gµνDµφ
aKac̄Dν φ̃

c̄ − i

2
Kac̄ ψ̃

c̄γµ(Dµψa) +
i

2
(Dµψ̃c̄)γµψaKac̄ (5.4a)

−F aF̃ c̄Kac̄ −
1

2
F aKc̄n̄a(ψ̃

c̄ψ̃n̄) +
1

2
F̃ c̄Kc̄am(ψmψa) +

1

4
Kc̄n̄amψ̃

c̄ψ̃n̄ψaψm ,

L bos
H = +

(
Hrc̄ − zc̄

)
(Hra − za) φ̃c̄Kc̄aφ

a

−H
4

[
(Hra−za)Kaφ

a+
(
Hrc̄−zc̄

)
Kc̄φ̃

c̄
]
+

3H

4

(
zaKaφ

a+zc̄Kc̄φ̃
c̄
)
, (5.4b)

L ferm
H = − i

2

[(
H

(
rc̄ − 1

2

)
− zc̄

)
Kac̄ + (Hrm − zm)φmKc̄ma

]
ψaψ̃c̄

− i
2

[(
H

(
ra − 1

2

)
− zc̄

)
Kac̄ +

(
Hrn̄ − zn̄

)
φ̃n̄Kan̄c̄

]
ψaψ̃c̄ , (5.4c)

L bos
V = +iVµ

[(
rc̄φ̃c̄Kc̄a −

1

2
Ka

)
Dµφa −

(
raφaKac̄ −

1

2
Kc̄

)
Dµφ̃c̄

+
i

4
V µ
(
raKaφ

a + rc̄Kc̄φ̃
c̄ − 4raφarc̄φ̃c̄

)]
, (5.4d)

L ferm
V = +

i

2
Vµ

[
iψ̃c̄γµ

((
ra − 1

2

)
ψa + Γamnr

mφmψn
)

+ i

((
rc̄ − 1

2

)
ψc̄ + Γc̄m̄n̄r

m̄φ̃m̄ψn̄
)
γµψa

]
Kac̄ . (5.4e)
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In (5.3) we are using the covariant derivatives

Dµϕ(r,z) = Dµϕ(r,z) + irVµϕ(r,z)

= ∇µϕ(r,z) − irA
(R)
µ ϕ(r,z),

Dµψa = Dµψ
a +Kac̄Kc̄mnDµφ

mψn,

Dµψ̃c̄ = Dµψ̃
c̄ +K c̄aKam̄n̄Dµφ̄

m̄ψn̄.

(5.5)

The background connection appearing in Dµ is A(R) = A− 3
2V . Let us also mention that

the R-charges of the derivatives of the composite fields are

R[Ka] = −ra, R[Kc̄] = rc̄, R[Kac̄] = −ra + rc̄ . (5.6)

As in flat space, the function K defines a Kähler potential for the metric Gac̄ ≡ Kac̄. Con-

sistency of the supersymmetric transformation rules requires K to be a quasi-homogeneous

function of vanishing R- and central charge.16 Collecting the fields φa and φ̃c̄ under the

variable CI = (φa, φ̃c̄), the two conditions on K are∑
I r

ICIKI = 0, rI = (ra,−rc̄),∑
I z

ICIKI = 0, zI = (za,−zc̄) .
(5.8)

These extra conditions on the Kähler potential arise from coupling the theory to the

background field H.

5.1.2 Superpotential interactions

Superpotential interactions are introduced as F-terms for a chiral multiplet ΩW =

(W,ψ(W ), F (W )), where W is a holomorphic function of the chiral fields φa. The resulting

Lagrangian in components is

LW = Fm∂mW −
1

2
ψi ψj∂i∂jW + F̃ n̄∂n̄W̃ +

1

2
ψ̃n̄ψ̃m̄∂n̄∂m̄W̃ . (5.9)

Invariance under supersymmetry requires W to be a quasi-homogeneus function of the φa

of degree 2

− 2W +
∑
i

raφa∂aW = 0 . (5.10)

In a similar way W̃ is quasi-homogeneous of degree −2. The R-charges of ∂aW and ∂cW̃ are

R[∂aW ] = 2− ra, R[∂c̄W ] = rc̄ − 2 . (5.11)

The most general Lagrangian for a set of chiral superfields is then specified by the two

functions K and W , and by the assignment of charges. Schematically, from (5.3) and (5.9)

we find

LNLσ = LK + LW . (5.12)
16This restriction can be understood from the computation of σ(K). Extracting σ(K) from δχ(K) and

δχ̃(K) leads to two different expressions:

σ(K) = −2 (raH − za)Kaφ
a + iKac̄ ψ

aψ̃c̄ = −2
(
rc̄H − zc̄

)
Kc̄φ̃

c̄ + iKac̄ ψ
aψ̃c̄ . (5.7)

In order for σ(K) to be well defined, K has to be quasi-homogeneous of the type (5.8).
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5.1.3 Variation under supersymmetry

Given LNLσ, the object of interest for us is the total derivative that arises in a supersym-

metric variation

δLNLσ + δ̃LNLσ = ∇µ(V µ
NLσ). (5.13)

The supervariation can be obtained either by varying the action explicitly or by evaluat-

ing (2.26) and (2.27) for the multiplets K, ΩW and Ω̃
W̃

. The result in both cases is

√
2 V µ

NLσ = +ε
[
γµγνψaKac̄Dν φ̃c̄−(rc̄H−zc̄) γµψaKac̄φ̃

c̄−iV µψaKa−2iγµψ̃c̄∂c̄W̃
]

−ε̃
[
γµγνψ̃c̄Kc̄aDνφa−(raH−za) γµψ̃c̄Kc̄aφ

a+iV µψ̃c̄Kc̄+2iγµψa∂aW
]

+iεγµψ̃c̄
(
F aKc̄a−

1

2
Kamc̄(ψ

aψm)

)
+iε̃γµψa

(̃
F c̄Kc̄a+

1

2
Kc̄n̄a(ψ̃

c̄ψ̃n̄)

)
. (5.14)

The equations of motion of the auxiliary fields F a and F̄ c̄ are

Kac̄F̃
c̄ + 1

2Kac̄n̄(ψ̃c̄ψ̃n̄) = ∂aW ,

F aKac̄ − 1
2Kc̄am(ψaψm) = ∂c̄W̃ .

(5.15)

Integrating out F a and F̄ c̄ we obtain the final expression

√
2 V µ

NLσ = +ε
[
γµγνψaDν φ̃c̄ − (rc̄H − zc̄) γµψa φ̃c̄ − iV µψaK c̄ − iγµψ̃c̄W a

]
Kac̄

−ε̃
[
γµγνψ̃c̄Dνφa − (raH − za) γµψ̃c̄ φa + iV µψ̃c̄Ka + iγµψaW̃ c̄

]
Kac̄ , (5.16)

where we have defined the vectors

W a ≡ Kac̄∂c̄W̃ , W̃ c̄ ≡ K c̄a∂aW, K c̄ ≡ K c̄aKa, Ka ≡ Kac̄Kc̄ . (5.17)

The R-charges of these vectors can be deduced from (5.6) and (5.11): R[W a] = ra − 2,

R[W̃ c̄] = 2 − rc̄, and so on. Observe that the bilinears appearing in VNLσ, are the most

general bilinears of vanishing R-charge with the correct index structure built out of ε and ε̃,

ψ and ψ̃, and the corresponding bosonic fields. For example, it is obvious that derivatives

of the superpotential W a only couple to εγµψ̃, not to εγµψ.

5.1.4 Digression on target space geometry

In differential geometry, a Kähler manifold is defined as a symplectic (real) manifold (N , ω),

equipped with a complex structure J such that G(·, ·) ≡ ω(·, J ·) is a Riemaniann metric

on T N . The last condition is called ω-compatibility [40]. In a local description with

coordinates (φa, φ̄c̄) the metric is represented as

ds2
N = Gac̄dφ

adφ̄c̄ +Gc̄adφ
adφ̄c̄ = 2Gac̄dφ

adφ̄c̄ , Gac̄ = G?āc , (5.18)

and the two-form ω is represented as ωαc̄ ∝ Gac̄dφa∧dφc̄. The target space of the non-linear

sigma model, listed above, is such a Kähler manifold.
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For many of the explicit computations in the following sections, a different parametriza-

tion will turn out to be especially useful. This involves the change of variables

φa = Φa + iΦa+s, φ̄c̄ = Φc̄ − iΦc̄+s, (5.19)

where a, c̄ = 1, . . . , s. When the reality condition φ̄c̄ = φc ? holds, the fields ΦI are real.

However, in general, we may consider φ and φ̄ as two independent complex variables. Then

the fields ΦI are also complex and (5.19) is a standard change of variables in GL(2s,C).

Collecting the labels of the type (a, a+ s) into one index I = 1, . . . , 2s, the matrix that

represents the change of variable is(
φa

φ̄c̄

)
= M

(
Φi

Φi+s

)
, M =

(
δai +iδai+s

δc̄i −iδc̄i+s

)
, M−1 = 1

2
M†, (5.20)

where the symbol δai+s stands for a diagonal matrix in the off-diagonal blocks of M, and is

defined to be δai+s = 1 (or 0) if a = i (or a 6= i), as is clear from (5.19). The metric changes

accordingly

ds2
N = GIJ dΦIdΦJ , GIJ =

(
δ
{a
i δ

c̄}
j Gac̄ −iδ[a

i δ
c̄]
j+sGac̄

+iδ
[a
i+sδ

c̄]
j Gac̄ δ

{a
i+sδ

c̄}
j+sGac̄

)
. (5.21)

The matrix GIJ is real and symmetric, G = GT . On the other hand, the complex structure

and the two-form are given by

JMN =

(
0 δmn+s

−δmn+s 0

)
, ωMN = −GMIJ

I
N . (5.22)

Important relations are J = −JT , J2 = −I, and G = JGJT .17 The second one in (5.22) is

precisely the condition of ω-compatibility, which is part of the definition of N .

By construction, two types of “products” exist on a Kähler manifold, one is the

symplectic product defined from the tensor ωIJ and the other one is the metric. In

components, we find (
vaw̄c̄ + wav̄c̄

)
Gac̄ = V IGIJW

J , (5.23)(
vaw̄c̄ − wav̄c̄

)
Gac̄ = iV IωIJW

J , (5.24)

for any pair of vectors V I , W J . The formulae (5.23) and (5.24) will be useful in several

occasions. Here we mention one simple application regarding the kinetic energy, which in

the new variables ΦI is the sum of both the metric and the symplectic product. Because

of the following identity

Gac̄(∂µφ
a − iraaµφa)(∂µφ̄c̄ + irc̄aµφ̄c̄) =

=
1

2
GMN

(
∂µΦM + aµ

∑
I

JMI r
IΦI

)(
∂µΦN + aµ

∑
K

JNKr
KΦK

)
(5.25)

17When we write matrix products we always understand row by column multiplication, from right to left.
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valid for any connection aµ, it is possible to introduce the analog of the covariant

derivatives (Dµφa,Dµφ̄c̄) acting on ΦI . In particular, we define

(Dµφa,Dµφc̄) → ∂µΦ +

(
Aµ −

1

2
Vµ

)
J RΦ + J ZΦ , (5.26)

where the bold symbol Φ represents the vector ΦI and the matrices R and Z are given by

RIJ =

(
ra δai δ

a
j 0

0 rc̄ δc̄i δ
c̄
j

)
, ZIJ =

(
za δai δ

a
j 0

0 zc̄ δc̄i δ
c̄
j

)
. (5.27)

Notice the absence of negative signs in the right bottom corner of R (Z), corresponding to

rc̄ (zc̄). The bold symbols Ψ, W, and K, will be used to describe the vectors corresponding

to ΨI , W I and KI , that indeed appear in the supervariation (5.16).

5.2 N = 2 gauge theories coupled to matter

5.2.1 YM and CS theories

Next, consider a vector multiplet V = {Aµ, λ, λ̃, σ,D} valued in the Lie algebra g of a gauge

group S, possibly non-abelian. The field strength Fµν of the gauge field and the covariant

derivatives of the various fields in the vector multiplet are

Fµν = ∂µAν − ∂νAµ − i[Aµ,Aν ] ,

Dµλ = Dµλ+ iVµλ− i[Aµ, λ] ,

Dµλ̃ = Dµλ̃− iVµλ+ i[λ̃,Aµ] ,

Dµσ = ∂µσ − i[Aµ, σ] .

(5.28)

In three dimensions a gauge field admits both Yang-Mills (YM) kinetic terms and

Chern-Simons (CS) kinetic terms. For abelian theories the supersymmetric Lagrangian

is obtained as the curved D-term of the composite multiplet − 1
e2 Σ2, where Σ is the real

multiplet associated to V, and e is the coupling constant. The non-abelian Lagrangian is

the standard generalization of this construction, and the result in components is

e2 LYM = Tr

{
1

4
FµνFµν +

1

2
DµσDµσ −

i

2
λ̃(γµDµλ) +

i

2
(Dµλ̃ γ

µ)λ

+ iλ̃[σ, λ]− 1

2
(D + σH)2 +

i

2
Hλ̃λ+ L V

YM

}
, (5.29)

e2 L V
YM = +

i

2
Vµ

{
σεµνρFνρ −

1

2
V µσ2 +

i

2
λ̃γµλ

}
. (5.30)

For CS theories the supersymmetric Lagrangian is

LCS =
k

4π
Tr

{
iεµνρ

(
Aµ∂νAρ +

2

3
AµAνAρ

)
− 2Dσ + 2iλ̃λ

}
. (5.31)

Finally, if the gauge group contains a (product of) U(1) factors we can add for each abelian

factor the corresponding FI term

LFI = +
1

2
ξ(D −AµV µ − σH) . (5.32)
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5.2.2 Matter couplings

Matter can be added both to CS and YM theories by coupling the vector multiplet to

chiral and anti-chiral superfields in arbitrary representations of the gauge group S. We

consider matter superfields Φa and Φ̃c̄ labelled by a bold index which collectively indicates

both the color index a and flavor index m, i.e. a = (a,m). The color indices are contracted

in scalar products defined in the appropriate representation of the chiral and anti-chiral

fields. Similarly, the components of the gauge multiplets act on the matter fields according

to their representation, and the covariant derivatives contain both the background and the

gauge fields, Dµϕ(r,z) = Dµϕ(r,z) + irVµϕ(r,z) − iAµϕ(r,z) for any field ϕ(r,z).

The gauge invariant interactions among different flavors are fixed by a choice of

Kähler potential and superpotential. For the simplicity of the presentation, we will

consider a canonical Kähler potential. Each flavor may also have different background

R-charge rm and central charge zm. Assuming that chiral and anti-chiral superfields have

opposite charges, it is convenient to define the diagonal matrices of R- and Z-charges.

The Lagrangian is

Lmatter = LK + LW , (5.33)

where LW contains a gauge invariant superpotential, (5.9), and LK is given by

LK = L flat − R
4
φ̃Rφ+ L bos

H + L ferm
H + L bos

V + L ferm
V . (5.34)

In this formula R is the curvature of the background manifold and

L flat = gµνDµφDν φ̃−
i

2
ψ̃γµ(Dµψ)+

i

2
(Dµψ̃)γµψ−FF̃+

√
2i
(
φ̃λψ+ψ̃λ̃φ

)
+φ̃Dφ ,

(5.35a)

L bos
H = φ̃

(
H2R

(
R− 1

2

)
+ (Z + σ)2 − 2H(R− 1)(Z − σ)

)
φ+Hφ̃σφ , (5.35b)

L ferm
H = −iψ

(
H

(
R− 1

2

)
− (Z − σ)

)
ψ̃ , (5.35c)

L bos
V = iVµ

(
φ̃

(
R− 1

2

)
Dµφ− φ

(
R− 1

2

)
Dµφ̃− i

2
V µφ̃R

(
R− 1

2

)
φ

)
, (5.35d)

L ferm
V = −Vµψ̃

(
R− 1

2

)
γµψ . (5.35e)

Equipped with the precise form of LYM , LCS and Lmatter it is possible to write down

the most generic quiver gauge theory. In this case, the gauge fields will be also labelled

by a bold index of the type, m = (a,m), where m labels the nodes of the quiver theory,

and a labels the generators of the gauge group Sm at the node m. Considering normalized

generators for the gauge groups, the CS coupling κ is promoted to a matrix of the form

κmn = δac ⊗ κmn, with κmn a symmetric tensor.

5.2.3 Variation under supersymmetry

The supersymmetric variation of the actions LYM , LCS and Lmatter has the following

properties. Let us begin with the non-abelian YM theory. The change in the action under
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a supersymmetric transformation is given by the total derivative of

e2 V µ
YM = Tr

[
+

1

4
ε γµγρλ̃ (F̂ρ + 2iσVρ)−

1

2
ε γµγρλ̃ ∂ρσ

+
1

4
ε̃ γµγρλ (F̂ρ + 2iσVρ) +

1

2
ε̃ γµγρλ ∂ρσ

+
1

2
ε γµψΣ (iD + σ(iH)) +

1

2
ε̃ γµψ̃Σ (iD + σ(iH))

]
, (5.36)

where F̂ρ = εµνρFµν . In the real multiplet parametrization,

jρ = − i
2
F̂ρ , aρ = −jρ − σVρ , λ = iψ̃Σ , λ̃ = −iψΣ , (5.37)

we can rewrite V µ
YM in a more compact form as follows

e2 V µ
YM = Tr

[
− 1

2

(
εγµγρψΣ (aρ − i∂ρσ)− εγµψΣ

(
iD + (iH)σ

))
+

1

2

(
ε̃γµγρψ̃Σ (aρ + i∂ρσ) + ε̃γµψ̃Σ

(
iD + (iH)σ

)) ]
. (5.38)

For the CS action (5.31) the variation under supersymmetry gives

V µ
CS = +

i

4π
κac

[
εµνρ (εγρψ

a
Σ − ε̃γρψ̃a

Σ)Ac
ν + 2(εγµψa

Σ + ε̃γµψ̃a
Σ)σc

]
. (5.39)

The case of the FI Lagrangian (5.32) is straightforward, and we obtain

V µ
FI = +

1

2
ξ (εγµλ̃− ε̃γµλ) = − i

2
ξ
[
εγµψ̃Σ + ε̃γµψΣ

]
. (5.40)

Finally, the variation of the matter action generates

√
2 V µ

matter = +ε
[
γµγνψaDν φ̃c̄ − (rc̄H − zc̄) γµψa φ̃c̄ − iV µψaφ̃c̄ + i γµψ̃c̄F a

]
Gac̄

−ε̃
[
γµγνψ̃c̄Dνφa − (raH − za) γµψ̃c̄ φa + iV µψ̃c̄φa − i γµψaF̃ c̄

]
Gac̄ (5.41)

−ε γµψa(σφ̃)c̄Gac̄ + ε̃ γµψ̃c̄(σφ)aGac̄ − i
√

2
[
ε γµφ̃c̄ (ψΣ φ)a + ε̃ γµφ̃c̄ (ψ̃Σ φ)a

]
Gac̄ .

The contraction of the color and flavor indices is packaged into Gac̄. Notice that in the

last line σ, ψΣ and ψ̃Σ act appropriately on color indices.

6 Boundary conditions: a preview

In the previous sections we made precise two key elements of our initial discussion: we

decomposed any compact A-type background M3 into the union of submanifolds with

boundary, called T , and we wrote down supersymmetric field theories for N = 2 chiral

and vector superfields onM3, explicitly calculating the expressions for the supersymmetric

variation V µ. When these field theories are restricted on T , the action can only be invariant

under a subset of the bulk supersymmetries if there are boundary conditions solving the

corresponding constraints V ⊥ = 0.
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In addition, a well-defined classical problem requires appropriate boundary conditions

that annihilate all the surface contributions in the Euler-Lagrange variation of the system.

Schematically, given a field Φ, and a bulk action S =
∫
M3

L [Φ] the equations of motion of

the theory require δS = 0, where

δS =

∫
M3

δΦ

[
∂L

∂Φ
− ∂µ

(
∂L

∂Φµ

)]
+

∫
M3

∂µ

(
∂L

∂Φµ
δΦ

)
, Φµ ≡ ∂µΦ . (6.1)

On a space with boundary, one demands simultaneously

E[Φ] =
∂L

∂Φ
− ∂µ

(
∂L

∂Φµ

)
= 0 , B[Φ, δΦ] = nµ

∂L

∂Φµ
δΦ
∣∣∣
bdy

= 0 . (6.2)

A priori, the boundary equations B = 0 are a set of on-shell equations. In what follows,

some of these boundary equations will be required to hold also off-shell and will be used

to find solutions of V⊥ = 0, which is our main goal.

6.1 The boundary value problem

6.1.1 Fermions

Let us focus first on the boundary value problem for the fermions in LYM and Lmatter,

respectively. In LCS the fermions do not have a kinetic term and do not contribute

boundary terms. The corresponding boundary contributions are

− i
2

∫
M′

2

Tr
(
λ̃γ⊥δλ− δλ̃γ⊥λ

)
⊂ δSYM , (6.3)

− i
2

∫
M′

2

Kac̃

(
ψ̃c̄γ⊥δψa − δψ̃c̄γ⊥ψa

)
⊂ δSmatter . (6.4)

It is convenient to rewrite both terms in a uniform way. Defining the doublet δΨ =

(δψa, δψ̃c̄) and Ψ = (ψa, ψ̃c̄), we obtain the expression

Bf [Ψ, δΨ] = − i
2
ΨT

(
0 Kac̄

Kc̄a 0

)
⊗ γ⊥ δΨ . (6.5)

The form (6.5) also covers the case of (6.3). It is convenient to use ψΣ instead of λ. If the

generators of the Lie algrebra {ta} are normalized so that Tr[tatc] = δac, the corresponding

metric K is the identity. In the real notation of subsection 5.1.4 both (6.3) and (6.4) can

be written in the compact form

Bf [Ψ, δΨ] = − i
2
GIJΨIγ⊥ δΨJ , (6.6)

where G is the appropriate metric. Notice that because of the anti-symmetry of ΨIγ⊥ δΨJ ,

the boundary term B[Ψ, δΨ] is a 2-form on the space of fermions, i.e. B[Ψ, δΨ] =

−B[δΨ,Ψ].

As we did before, we decompose

Ψ =
ζ̃Ψ

Ω
ζ +

Ψζ

Ω
ζ̃ , δΨ =

ζ̃δΨ

Ω
ζ +

δΨζ

Ω
ζ̃ . (6.7)
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Then, the equation B[Ψ, δΨ] = 0 becomes

GIJ
ζγ⊥ζ

Ω
(ζ̃Ψ)I (ζ̃δΨ)J +GIJ

ζ̃γ⊥ζ̃

Ω
(Ψζ)I (δΨζ)J = 0 . (6.8)

Recalling (3.22), we solve this equation by requiring the boundary conditions

ζγ⊥ζ

Ω
(ζ̃Ψ)I = M I

K (Ψζ)K (6.9)

with a general (possibly field-dependent) matrix M that has the property

MTGM = G . (6.10)

The boundary condition (6.9) respects the R-symmetry whatever r-charge is assigned to Ψ.

6.1.2 Vectors

There are two possible actions for a vector field Aµ in 3d: LCS , and LYM . The Euler-

Lagrange variation with respect to Aµ, yields the boundary terms

− i

4π

∫
M′

2

κmn Tr
[
ε⊥νρAmν δAnρ

]
⊂ δSCS , (6.11)∫

M′
2

Tr
[(
F⊥ν + i ε⊥νρVρ σ

)
δAν

]
=

∫
M′

2

Tr
[

+ iε⊥ρνaρδAν
]
⊂ δSYM . (6.12)

F is the full non-abelian field strength and aρ is defined in eq. (5.37). For a given set of

generators {ta} of the gauge group, we can write A = Actc and a = actc. Then, both (6.11)

and (6.12) can be expressed in terms of the tensor

Bv[V, δA] = Gmn ε
⊥ρν Vm

ρ δAn
ν (6.13)

with Vρ = Aρ for CS, and Vρ = aρ for YM. We introduced bold indices m and n to

describe general quiver gauge theories. Specifically, m = (a,m) is a double index where

m labels the nodes of the quiver and a labels the generators of the gauge group Sm, that

refers to the node m of the quiver. Considering orthonormal generators, the matrix G is

Gmn = δac ⊗ κmn.

In the orthogonal frame {kµ, k̃µ} on TM′2, we can further decompose V and δA along

k and k̃ to obtain

Bv[V, δA] = −Gmn

(
Vm
k̃

Vm
k

)T (
0 +1

−1 0

)(
δAn

k̃

δAn
k

)
. (6.14)

We used ε⊥ρν k̃ρkν = −1.

After tracing over the bold indices, Bv[V, δA] becomes a 2-form on the cotangent space

of M′2. Equation Bv[V, δA] = 0 is solved by finding appropriate Lagrangian submanifolds

associated to this 2-form. Concretely, we may pick any Sp(2,C) matrix with unit determi-

nant, call it M , and impose the boundary conditions

(1−M)δA = (1−M)V = 0 ∀ p ∈M′2 . (6.15)

– 36 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
6

WhenM′2 is endowed with a complex structure, the action of Sp(2,C) has a natural inter-

pretation. By construction, these solutions are valid both for CS and YM gauge theories.

We point out that an additional interesting solution of Bv[V, δA] = 0 is available in

the case of CS theories. In general, the tensor κmn is symmetric, but need not be positive

definite. In that case, it may have isotropic subspaces. On this subspaces Bv[V, δA] vanishes

automatically, independently of the coordinate dependence of V and δA. For example,

given an isotropic vector vm such that vmκmnv
n = 0, we may consider boundary conditions

δA = vmδAmµ dxµ and V = vmVmµ dxµ with arbitrary components δAµ and Vµ on M′2. For

a general treatment of such boundary conditions in CS theory we refer the reader to [56].

6.1.3 Scalars

In the non-linear sigma model, the variation of Lscalar with respect to φa, φ̃c̄, yields the

result18

δSNLσ ⊃ −
∫
M′

2

(
D⊥φ̃c̄Kac̄ δφ

a + δφ̃c̄Kac̄D⊥φa
)
− iV ⊥

(
1
2
Kaδφ

a − 1
2
Kc̄δφ̃

c̄
)
. (6.16)

The term proportional to V ⊥ does not contribute, because V ⊥ = 0 at the boundary. The

first term can be written in compact notation as

δΦTGD⊥Φ , G =

(
0 Kac̄

Kc̄a 0

)
(6.17)

where G is the target space metric and Φ the vector of scalars, introduced in section 5.1.4.

We can set (6.17) to zero by assuming that the two vectors δΦ and D⊥Φ = 0 are orthogonal.

The standard way to do this, is to consider Dirichlet, δφa = 0, or Neumann, D⊥φa = 0,

boundary conditions (and similarly for the scalars φ̃). Notice that in general D⊥ contains

non-vanishing normal components of a gauge connection.

In supersymmetric YM theories, the gauge multiplet contains a real scalar σ in the ad-

joint representation of the gauge group. The variation δσ of the action yields the boundary

term Tr (δσD⊥σ). This term is similar to (6.17), and can be set to zero in the same way.

6.2 Path integral and closure under supersymmetry

We conclude this section with an additional remark. In the ensuing sections 7 and 8 we solve

the equations V ⊥ = 0 to obtain half-BPS boundary conditions for general supersymmetric

gauge theories. This is sufficient for the purposes of the classical problem.

In the quantum problem we are integrating over generic field configurations in a path

integral. In the presence of a boundary the integration is further restricted to configurations

with specific boundary conditions. Consequently, in this context the invariance of the path

integral with respect to a given symmetry requires that the boundary conditions are also

invariant under the symmetry in question. In general, this is not automatic and it may

lead to further restrictions on the boundary conditions.

18We remind the reader that in this, and the next two sections, we are referring to a flat target space for

which the coefficients Kac̄ are constants independent of the field profiles φa, φ̃c̄.
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Although we are mainly interested in the classical problem in this paper, we will

partially address the issue of the closure of boundary conditions under supersymmetry in

the following sections.

7 Boundary conditions I

In this section we address the precise form of A-type boundary conditions in general three-

dimensional non-linear sigma models. A good prototype for this exercise are A-type bound-

ary conditions in 2d N = (2, 2) non-linear sigma models on the strip that define D-branes

in a Kähler target space X . In that case we know, [14], that the solution of the A-type

boundary conditions is describing D-branes wrapping Lagrangian submanifolds in X . We

will describe how similar solutions arise in three-dimensional theories. We work out first

the case of a flat space background, and then explain how things are modified when the 3d

theory is placed on a general curved A-type background.

7.1 Non-linear sigma models

7.1.1 General equations

The action S of a supersymmetric non-linear sigma model is specified by a Kähler potential

K, a superpotential W , and finally the R-charges and central charges of the chiral super-

fields. In this subsection K is generic (a flat Kähler potential for chiral superfields will be

considered in the ensuing section 8). We continue to call the target space X .

In section 5 we calculated the variation of S under supersymmetry, and found a

generic expression for V µ
NLσ. Here we are interested in solutions of the equations V ⊥NLσ = 0

at M′2. We have

√
2 V ⊥NLσ = +ε

[
γ⊥γνψaDν φ̃c̄ − (rc̄H − zc̄) γ⊥ψa φ̃c̄ − iV ⊥ψaK c̄ − iγ⊥ψ̃c̄W a

]
Kac̄

−ε̃
[
γ⊥γνψ̃c̄Dνφa − (raH − za) γ⊥ψ̃c̄ φa + iV ⊥ψ̃c̄Ka + iγ⊥ψaW̃ c̄

]
Kac̄ . (7.1)

The indices a, c̄ run from 1 to s, where 2s is the real dimension of the target space X . It

is convenient to use the identity γµγν = gµν + γµν and rewrite

+εγ⊥γνψaDν φ̃c̄ = +εψaD⊥φ̃c̄ + εγ⊥νψaDν φ̃c̄ , (7.2)

−ε̃γ⊥γνψ̃c̄Dνφa = −ε̃ψ̃c̄D⊥φa − ε̃γ⊥νψ̃c̄Dνφa . (7.3)

In equations (7.1)–(7.3) we recognize the combinations

V ⊥
[
Kc̄(δφ̃

c̄)susy −Ka(δφ
a)susy

]
& (δφ)susyD⊥φ̃+ (δφ̃)susyD⊥φ , (7.4)

which appeared in the analysis of Bs[Φ, δΦ] (6.16). This is expected because on-shell we

can always use the Noether current to rewrite V ⊥.

Following the discussion in section 6, we require V ⊥NLσ = 0. The analysis of this

equation reduces naturally to the study of four types of terms:

V1 = +
[
εψaD⊥φ̃c̄ − ε̃ψ̃c̄D⊥φa

]
Kac̄ , (7.5)
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V2 = +
[
εγ⊥νψaDν φ̃c̄ − ε̃γ⊥νψ̃c̄Dνφa

]
Kac̄ , (7.6)

V3 = −
[
ε γ⊥ψa φ̃c̄ − ε̃ γ⊥ψ̃c̄ φa

]
Kac̄ , (7.7)

V4 = −
[
εγ⊥ψ̃c̄W a + ε̃γ⊥ψaW̃ c̄

]
Kac̄ . (7.8)

In order to obtain explicit boundary conditions for the fields that appear in these equations

we have to disentangle the spinorial and target space structures. The reader can find the

details of this computation in appendix B. Here we outline the main steps.

Firstly, the anticommuting spinors are decomposed in components using the projec-

tors P and P̃. As a result, all the geometric information can be packaged into the

bilinears (3.22)

ζγ⊥ζ ≡ Ω ei$ ,

ζγ⊥γν‖ζ = Ω ei$ kν‖ ,

ζ̃γ⊥γν‖ζ = −iΩ k̃ν‖ ,

ζ̃γ⊥ζ̃ = −Ω e−i$ ,

ζ̃γ⊥γν‖ ζ̃ = Ω e−i$ kν‖ .

ζγ⊥γν‖ ζ̃ = −iΩ k̃ν‖ .

(7.9)

Secondly, we impose the A-type projection (4.4)–(4.5) on the spinors ε and ε̃,

P̃ε = 0 , P ε̃ = 0 , ϑ = ϑ̃ . (7.10)

Finally, we impose the boundary condition (6.9) on the spinors, i.e. ei$(ζ̃Ψ)I = M I
K(Ψζ)K .

These manipulations introduce the orthogonal matrix M and the phase $ in Vi. At the

end, the Vi depend only on ζ̃ε and Ψζ. Hence, a bilinear εΨ common in all terms can be

factorized out, and the result for V ⊥NLσ can be understood as a condition on the bosons.

This is nicely expressed in the matrix notation Φ and Ψ of section 5.1.4. As a simple

example of these manipulations, we obtain

V1 = +εψaKac̄D⊥φ̃c̄ − ε̃ψ̃c̄Kac̄D⊥φa = (εΨ)T
(

1− iJ
2

+ e−i$MT 1 + iJ

2

)
GD⊥Φ .

The complete result is

V ⊥NLσ = +(εΨ)T [(1− iJ)] GP
($,+)
M

[
nµDµΦ + J k̃µDµΦ

]
(7.11a)

+(εΨ)T
[
e−i$(1 + iJ)

]
GP

($,−)
M

[
kµDµΦ + J (iH)RΦ− iJ ZΦ

]
(7.11b)

−(εΨ)T
[
e−i$(1− iJ)

]
P

(−$,+)

MT J
[
GW

]
, (7.11c)

where the matrix P
($,±)
M is a target space projector defined as

P
($,±)
M ≡ 1

2

(
1±M [$]

)
, (7.12)

M [$] ≡ MR[$] = R[−$/2]MR[$/2] , (7.13)

R[$] ≡ cos$ 1 + sin$J . (7.14)
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In deriving (7.11) we imposed {M,J} = 0 from which (7.13) follows. With this condition,

PM is a projector if M2 = 1. Collecting all requirements, the matrix M is an orthogonal

matrix with the properties

M2 = 1 , {M,J} = 0 . (7.15)

The matrix R[$] is the matrix of local R-symmetry.

7.1.2 Solutions in flat space

Having obtained the general formula (7.11) we are now in position to study solutions to

equation V ⊥NLσ = 0. Flat space is of course a special case of our discussion. It is instructive

to exhibit first how Lagrangian ‘D-branes’ come out of (7.11) for a theory defined on a

euclidean 3d half-plane. In this case the boundary leaf M′2 is a 2-plane.

In flat space the profile of the background fields is trivial, and the covariant derivative

Dµ reduces to the standard partial derivative ∂µ. In what follows we will also set, for

convenience, Z = 0 for the central charges. The role of Z in (7.11b) is the same as that of

a real mass obtained by giving a vev to the bottom component of a real multiplet coupled

to Φ. We will consider such masses in relation to YM and CS theories in section 8.

Before going into the details of the solution, it is worth emphasizing two simplifying

special properties of flat space:

1) There is always a choice of coordinates, say {θ, x, x̃}, such that the frame {nµ, kµ, k̃µ}
is precisely {∂θ, ∂x, ∂x̃}. The boundary is placed at a fixed value of θ.

2) The phase $ appearing in M [$] is a constant.

Both of these features are generically absent in curved space because of the background

curvature.

Focusing on the vanishing of the components (7.11a)–(7.11b), we obtain the conditions

∂θΦ ∈ Ker(1 +M [$]) (7.16)

∂xΦ ∈ Ker(1−M [$]) & ∂x̃Φ ∈ Ker(1−M [$]) . (7.17)

Since M2 = 1, the eigenvalues of the matrix M are ±1. Moreover, since {M,J} = 0, the

complex structure of the target space is a bijection between Ker(1 −M) and Ker(1 +M).

As a result, Ker(1 ±M) is middle dimensional in the target space, and the direct sum

Ker(1 − M) ⊕ Ker(1 + M) is a basis for TX . The submanifold corresponding to the

distribution Ker(1 −M) is a Lagrangian submanifold L.19 The effect of the matrix R[$]

is to change the orientation of the Lagrangian submanifold by a constant angle $.

19For the convenience of the reader we remind that a Lagrangian submanifold L (defined on a symplectic

manifold (N , ω), where ω is the symplectic form) is characterized by the two conditions:

ω
∣∣
T L = 0, dimL =

1

2
dimN . (7.18)

When the symplectic manifold N is Kähler, the Riemaniann metric GIJ can be used to characterize L, and

the definition just given is equivalent to the condition

T L⊥ = J T L, T L⊥ = {~v ∈ T N | vIGIJwJ = 0 ∀ ~w ∈ T L} . (7.19)
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The Lagrangian submanifold just described contains Φ(M′2), the image of M′2 under

the maps Φ. Both M and the derivatives of Φ are objects in TX . The solutions (7.16)–

(7.17) transform correctly under a change of coordinates in the target space. Locally, we

may take a chart such that the Lagrangian submanifold is described by mixed Dirichlet and

Neumann boundary conditions. We impose Neumann boundary conditions along the direc-

tions parallel to the submanifold, and Dirichlet conditions along the directions transverse

to the submanifold.

In the simplest situation, in which X is an affine vector space and the Kähler potential

is canonical, the Neumann and Dirichlet boundary conditions can be seen explicitly by

solving (7.16)–(7.17). This is done by considering a basis {vi}si=1 of Ker(1+M), and writing

Φ =
∑s

i=1

[
fiv

i+giJv
i
]

with fi and gi functions of the coordinates. The solution to (7.16)

is ∂θgi = 0 at the boundary, i.e. Neumann boundary conditions along the direction of the

submanifold. The generic solution to (7.17) is fi = fi(θ), and therefore f = const at the

boundary, i.e. Dirichlet boundary conditions in the direction transverse to the submanifold.

The worldvolume of L is along the span of {Jvi}si=1. The case with $ 6= 0, is solved by

rotating the fields accordingly with the projector. The latter can be written as

P
($,±)
M = R[−$/2]

(1±M)

2
R[$/2] , (7.20)

and the solution is Φ ≡ R[−$/2]Φ′, where Φ′ satisfies the Neumann/Dirichlet boundary

conditions that depend on M .

Along similar lines consider the boundary conditions derived from the superpotential

term, namely the equation that arises by requiring the last term (7.11c) to vanish,

P
(−$,+)

MT J GW = R[$/2](1 +MT )R[−$/2] J GW = 0 . (7.21)

In this case the projector depends on MTR[−$], in agreement with R-symmetry con-

siderations. The vector W was defined in section 5.1.4, and in the complex basis it has

components W a = Kac̄∂c̄W̃ , W̃ c̄ = K c̄a∂aW . Since W = ReW + iImW is a holomorphic

function of the fields, the Cauchy-Riemann equations imply the relations[
∂m ReW

∂m+s ReW

]
= J

[
∂m ImW

∂m+s ImW

]
,

∂

∂φm
W =

∂

∂Φm
ReW − i ∂

∂Φm+s
ReW . (7.22)

The quantity GW is

GW =

[
∂m ReW (Φ)

∂m+s ReW (Φ)

]
, (7.23)

where ∂i is shorthand notation for ∂i = ∂/∂Φi. Implementing the rotation Φ =

R[−$/2]Φ′, we obtain from (7.21) the projection equations

(1 +MT )

[
∂′m ImW (Φ′)

∂′m+s ImW (Φ′)

]
= 0, (7.24)

where ∂′ = ∂/∂Φ′. Because Ker(1±M) span the tangent space TM, and J is a bijection

between these two kernels, we can understand the boundary condition (7.24) by considering
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the action of vT (1 +MT ) and (Jv)T (1 +MT ) on ∂′ImW (Φ′), for any v ∈ Ker(1 +M). By

definition vT (1+MT ) = 0, thus only (Jv)T (1+MT ) is non-trivial. The latter can be calcu-

lated explicitly (Jv)T (1+MT ) = 2(Jv)T , and from (7.24) we obtain the boundary condition

(Jv)I∂′IImW (Φ′) = 0 , (7.25)

which translates into the statement that ∂′IImW (Φ′) has no component along the span of

{Jvi}si=1 and therefore ImW (Φ′) is constant along the wordvolume of the submanifold L.

7.1.3 Solutions in curved space

In the previous section, we solved the equations V ⊥NLσ = 0 relying on two special features

of flat space: the fact that the phase $ is constant, and the fact that there is a coordinate-

adapted orthogonal basis in TM3. In curved space we do not expect in general these two

features to hold.

For example, in the case of the ellipsoid in toric coordinates with background

fields (3.28)

H = ± i

gθθ
, A

(R)
± = −1

2

(
1−

˜̀

gθθ

)
dφ1 ∓

1

2

(
1− `

gθθ

)
dφ2 , (7.26)

we find $± = ψ with frame vectors

nµ± ∂µ = − 1

gθθ
∂θ , (7.27)

kµ± ∂µ = ±˜̀−1∂φ1 + `−1∂φ2 , (7.28)

k̃µ±∂µ = ∓ cot(2θ) kµ±∂µ ±
1

sin(2θ)

(
1

`
∂φ2 ∓

1
˜̀
∂φ1

)
. (7.29)

Consider now a more general manifold M3 in toric coordinates (θ, φ1, φ2), in similar

notation to the one above for the ellipsoid. By definition, the Killing vector k = 1
Ω∂ψ is

expressed as a combination of ∂φ1 and ∂φ2 , and $ is only a function of ψ. The triple of

vectors (kµ, nµ, k̃µ) takes the form

k =
1

Ω
∂ψ , n = fn ∂θ , k̃ = f̃ ∂ψ + vµ∂µ . (7.30)

The functions f̃ , fn and vµ depend on the details of the background, however, the integra-

bility condition implies [vµ∂µ, ∂ψ] = 0. M3 is decomposed as before, M3
∼= T1#T2, and

the fields are restricted on one of the solid tori, call it T for simplicity.

In this case, the general solution of V ⊥ = 0 has (see (7.11a), (7.11b))

∂θΦ ∈ Ker(1 +M [$]) (7.31)

DψΦ + J (iH)RΦ ∈ Ker(1−M [$]) , k̃µDµΦ ∈ Ker(1−M [$]) . (7.32)

In the first line we used, for illustration purposes, the simplifying assumption A
(R)
⊥ =

0, which clearly holds for the example of the ellipsoid (7.26). The covariant derivatives

in (7.32) are

k̃µDµΦ = f̃ ∂ψΦ + vµ∂µΦ + k̃µA(R)
µ JRΦ , (7.33)
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kµDµΦ + J(iH)RΦ = kµ∂µΦ +
[
kµA(R)

µ + (iH + kµVµ)
]
JRΦ . (7.34)

We can always solve (7.31) with Neumann boundary conditions because regardless of

whether the phase $ is constant or coordinate dependent, ∂θ R[$] = 0. The solution

of the other two equations instead depends on $.

Consider first the case of background fields where $ is constant. As we explained in

section 3.4, this can be achieved from a general background with a gauge transformation

of the original A
(R)
µ to a new R-symmetry background A

(R)
new. In that case, the term that

appears inside the parenthesis on the r.h.s. of equation (7.34), with the substitution A(R) →
A

(R)
new, vanishes because of the condition we found in (3.26). Consequently, we obtain as in

flat space

kµDµΦ + J(iH)RΦ
∣∣∣
twisted

= kµ∂µΦ ∈ Ker(1−M [$]) . (7.35)

The analysis of k̃µDµΦ requires more detailed knowledge of f̃ and k̃µA
(R)
µnew. To be concrete,

in the case of the geometries introduced in section 3.5 we obtain the following expressions:

• For the ellipsoid, A
(R)
µ new and its scalar product with k̃µ, given in (7.29), are

A
(R)
±new = A

(R)
± − 1

2
(dφ1 ± dφ2) =

1

2gθθ
(˜̀dφ1 ± `dφ2), (7.36)

k̃µA(R)
µ new

∣∣∣
±

= ± cot(2θ) iH± . (7.37)

The function f̃ is also proportional to cot(2θ).

• For the circle bundles of section 3.5.2, we find

A(R)
µ newdx

µ = −
(

cos θ

2gθθ
+
β2

2

u(θ)

gθθ

u′(θ)

sin θ

)
dϕ− β2

2gθθ

u′(θ)

sin θ
dψ , (7.38)

k̃ =
2

sin θ
(u(θ)∂ψ − ∂ϕ) , (7.39)

k̃µA(R)
µ new =

cot θ

gθθ
. (7.40)

The function f̃ is proportional to u(θ)/ sin θ.

We notice that the boundary condition from k̃µDµΦ simplifies when the boundary is

placed at the equator of the corresponding geometries, because at that point k̃µA
(R)
µ new = 0.

When this happens, the covariant derivative k̃µDµΦ becomes a combination of partial

derivatives, and again we can solve the boundary conditions as in flat space. Namely, we

impose Neumann boundary conditions along the directions parallel to the submanifold, and

Dirichlet for the directions transverse to the submanifold. The value of f̃ at the equator is

not important in this statement. When the boundary is placed away from the equator a

more complicated boundary condition (7.32) has to be imposed.

In more general setups, a background M3 exhibits a coordinate-dependent phase $.

In that case the boundary equations (7.31)–(7.32)

∂θΦ ∈ Ker(1 +M [$]) , (7.41)
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DψΦ + J (iH)RΦ ∈ Ker(1−M [$]) , k̃µDµΦ ∈ Ker(1−M [$]) (7.42)

do not exhibit any simplification in the covariant derivatives, and the boundary conditions

are functionals of both the derivatives and the values of the fields. As a result, the

direct geometric meaning of the boundary conditions in target space, that was present in

backgrounds with constant $, is now less manifest. Nevertheless, one can still solve the

boundary conditions by diagonalizing M [$], for a given choice of M , and arranging the

combinations (7.31)–(7.32) to belong to Ker(1±M [$]). Since [M,J ] 6= 0, the eigenvectors

of M [$] are not the ones of M = M [$ = 0]. Consequently, as we move along the orbit of

the Killing vector, or more generically, along the boundary M′2, these eigenvectors change

according to their $ dependence.

7.2 Real multiplets

Before we tackle general gauge theories, there is another comparatively simple example we

would like to discuss. It is well-known that in 3d flat space there is a simple duality between

a chiral superfield and an abelian gauge field.20 We expect the corresponding boundary

conditions to be mapped trivially under this duality. With this in mind, in this subsection

we present A-type boundary conditions for N = 2 theories of s abelian vector superfields

interacting via a constant target space metric G.

The supersymmetric variation V µ is expressed most conveniently in terms of the real

parametrization of the abelian vector superfields in (5.38):

V µ
real = −1

2

(
εγµγρψaΣ (aρ − i∂ρσ)c − εγµψaΣ

(
iD + (iH)σ

)c)
Gac

+
1

2

(
ε̃γµγρψ̃aΣ (aρ + i∂ρσ)c + ε̃γµψ̃aΣ

(
iD + (iH)σ

)c)
Gac . (7.43)

We can further rearrange V ⊥real by borrowing results from the study of V ⊥NLσ in the previous

section. In particular, let us define the two complex combinations: ∂ρφ̃Σ ≡ aρ − i∂ρσ and

ImϕΣ ≡ (D + (H)σ), ReϕΣ ≡ 0. Then, we can rewrite V ⊥real as

V µ
real = −1

2

(
εγµγρψaΣ ∂ρφ̃

c
Σ + εγµψaΣ ϕ̃

c
Σ

)
Gac +

1

2

(
ε̃γµγρψ̃aΣ ∂ρφ

c
Σ + ε̃γµψ̃aΣ ϕ

c
Σ

)
Gac ,

and with an obvious change of variables, it is clear that we have obtained an expression

that is essentially the sum of V1, V2 and V3, given in (7.5), (7.6), (7.7), respectively.

Consequently, the surface term V ⊥real takes the suggestive form

V ⊥real = −(εΨΣ)T [(1− iJ)G]P
($,+)
M

(
nµ

[
aµ
∂µσ

]
+ J k̃µ

[
aµ
∂µσ

])

−(εΨΣ)T
[
e−i$(1 + iJ)G

]
P

($,−)
M

(
kµ

[
aµ
∂µσ

]
−

[
iD + (iH)σ

0

]) (7.44)

20In the simplest case, the duality is obtained by considering
∫
d4θ(Σ2 − Σ(Φ + Φ)), where Φ is a chiral

superfield and Σ a generic superfield. Integrating out Φ constrains Σ to be a real superfield and produces a

U(1) gauge theory. Alternatively, integrating out Σ gives the action of a chiral superfield. It is interesting

to reconsider this exercise in curved spaces.
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where the matrix M fixes the spinor boundary conditions ei$ ζ̃ΨΣ = MΨΣζ. From the

definition of aµ = −jµ − σVµ, and the fact that V ⊥ = 0, we finally obtain the boundary

conditions

nµ

[
jµ
∂µσ

]
∈ Ker(1 +M [$]) ,

{
k̃µ

[
aµ
∂µσ

]
, kµ

[
jµ
∂µσ

]}
∈ Ker(1−M [$]) ,

D − iσ((iH) + kµVµ) = 0 . (7.45)

The last condition is correctly invariant under the shift symmetry (2.6). Assuming k̃µVµ =

0, the boundary conditions for jµ and ∂µσ are arranged as those of a neutral chiral multiplet.

7.3 Closure under supersymmetry

As we noted in subsection 6.2 the boundary conditions may transform non-trivially under

supersymmetry. We would like to know if the boundary conditions that were formulated

above are invariant under the A-type supersymmetries, and if not, whether invariance can

be restored by imposing further constraints. Since the boundary conditions on the fermions

are algebraic, it is immediately possible to examine how things work in some generality. In

particular, when the matrix M is field independent we find that supersymmetry invariance

of the fermion boundary conditions does not impose any new constraints.

In contrast, the analysis of the transformation of the boson boundary conditions is more

involved and case-dependent. Since the boson boundary conditions involve derivatives

of the bosons, their transformation leads to expressions that involve derivatives of the

corresponding fermions. The details of the resulting expressions depend on the specifics

of the differential operators and, in general, have to be analyzed case by case. For that

reason, and in order to keep the discussion as generic as possible, in what follows we will

concentrate mostly on the transformation properties of the fermion boundary conditions.

Chiral and anti-chiral multiplets. The supersymmetry transformations of the

fermions (ψ, ψ̃) in a chiral multiplet are

δψα = +ϑ F ζα + i ϑ̃
[(
kµDµφ− ir(iH)φ

)
ζ̃α − (ŨµDµφ)ζα

]
,

δψ̃α = + ϑ̃ F̃ ζ̃α + i ϑ
[(
kµDµφ̃+ ir(iH)φ̃

)
ζα − (UµDµφ̃)ζ̃α

]
.

(7.46)

For A-type supersymmetries, we set θ = θ̃. We want to examine how A-type supersymme-

try transforms the boundary conditions ei$ ζ̃Ψ = M Ψζ. Assuming for simplicity that the

matrix M is invariant we only need to consider the bilinears δΨζ, ζ̃δΨ. Straightforward

manipulations yield the scalar products

δΨζ = +i
1+iJ

2

(
kµDµ+r(iH)J

)
Φ+

1−iJ
2

F−i1−iJ
2

e+i$(nµ−ikµ)DµΦ , (7.47)

ζ̃δΨ = +i
1−iJ

2

(
kµDµ+r(iH)J

)
Φ+

1+iJ

2
F+i

1+iJ

2
e−i$(nµ+ikµ)DµΦ . (7.48)
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Consequently, the condition ei$ ζ̃δΨ = M δΨζ holds if the following equations are satisfied

(1 + iJ)(1−MR[$])
(
kµDµ + r(iH)J

)
Φ = 0 ,

(1− iJ)(1 +MR[$])(nµDµΦ− Jk̃µDµΦ) = 0 ,

(1− iJ)(1−MR[−$])F = 0 .

(7.49)

In these formulae we recognize the boundary conditions that we derived previously

for the bosons. As a minor difference comparing (7.49) to the original boundary condi-

tion (7.11a), we notice a sign change in front of the term Jk̃µDµΦ. This sign difference, how-

ever, is irrelevant in the final boundary conditions, since the two terms in the second equa-

tion in (7.49) have to vanish independently. We note that both nµDµΦ and Jk̃µDµΦ belong

in Ker(1 +M [$]) and their relative normalization is not fixed by the boundary conditions.

We conclude that the supersymmetry invariance of the fermion boundary conditions

does not impose any new constraints when M is separately invariant. In the more general

case of a field dependent M one needs to consider extra contributions from the supersym-

metric variation of M .

Finally, regarding the variation of the bosons at the boundary, it is possible to prove

in complete generality the orthogonality condition δΦGD⊥Φ = 0. From the A-type

supersymmetry, the definition of δφ and δφ̃, and the boundary condition on the spinors

ei$ ζ̃Ψ = Ψζ, we deduce the boundary variation

δΦ =
1

2

(
(1 + iJ) + (1− iJ)e−i$M

)
εΨ = P

($,+)
M

1 + iJ

2
εΨ . (7.50)

Therefore, P
($,−)
M δΦ = 0 and δΦ belongs to Ker(1 −M [$]). From the orthogonality of

the two kernels Ker(1 ±M [$]), the condition δΦGD⊥Φ = 0 follows. Let us notice that

on-shell this orthogonality condition corresponds to Bs[δΦ,Φ] = 0 (see (6.16)).

Real multiplets. The supersymmetry transformations δψΣ and δψ̃Σ in a real multiplet

are very similar to the ones of the chiral fermions δψ and δψ̃. The only difference is the

contribution of the D-term

δψΣ = ϑ
[[
D − iσ(iH + kµVµ)− ikµ(jµ + i∂µσ)

]
ζ̃ + ie−i$(nµ + ik̃µ)(aµ − i∂µσ)ζ

]
,

δψ̃Σ = ϑ
[[
D − iσ(iH + kµVµ)− ikµ(jµ − i∂µσ)

]
ζ − ie+i$(nµ − ik̃µ)(aµ + i∂µσ)ζ̃

]
.

Repeating the evaluation of ei$ ζ̃δΨΣ = M δΨΣζ we obtain results similar to the chi-

ral multiplet case. Also in this case supersymmetry invariance of the fermion boundary

conditions does not impose any further constraints.

8 Boundary conditions II

In this section we study A-type boundary conditions in general (non-abelian) N = 2 su-

persymmetric CS/YM-matter theories. The corresponding actions on curved backgrounds
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and their supersymmetric variations V µ were obtained in section 5.2. Our analysis recov-

ers previously known results in special cases, e.g. flat space, and extends them to general

A-type backgrounds T , in particular backgrounds with a solid torus topology.

We discuss first the conditions arising from the supersymmetric variation in the gauge

sector. The corresponding conditions in the matter sector are presented separately.

8.1 Gauge sector

8.1.1 Description and summary of results

From the supersymmetric variation of the Yang-Mills and Chern-Simons actions, respec-

tively, we obtain the boundary terms

e2 V ⊥YM = Tr

[
− i

4
ε γ⊥γρψΣ (F̂ρ + 2iσVρ) +

i

2
ε γ⊥γρψΣ ∂ρσ

+
i

4
ε̃ γ⊥γρψ̃Σ (F̂ρ + 2iσVρ) +

i

2
ε̃ γ⊥γρψ̃Σ ∂ρσ

+
1

2
ε γ⊥ψΣ (iD + σ(iH)) +

1

2
ε̃ γ⊥ψ̃Σ (iD + σ(iH))

]
, (8.1)

V ⊥CS = +
i

4π
κac

[
ε⊥νρ (εγρψ

a
Σ − ε̃γρψ̃a

Σ)Ac
ν + 2(εγ⊥ψa

Σ + ε̃γ⊥ψ̃a
Σ)σc

]
. (8.2)

In the gauge sector analysis we will also include a term coming from the vector-matter

couplings

V ⊥matter ⊃ −i〈φ̃ taφ〉
[
εγ⊥ψaΣ + ε̃γ⊥ψ̃aΣ

]
. (8.3)

{ta} is a basis for the generators of the gauge groups in play, and 〈φ taφ̃〉 denotes the

action of the adjoint fermions λ = λata and λ̃ = λ̃ata in the representation of each of the

matter fields φ and φ̃. Recall that we use bold indices a to describe general quiver gauge

theories. In the multi-index a = (a,m) m labels the nodes of the quiver theory, and a the

generators of the gauge group Sm at the node m. For any set {ta} of generators we set

Tr[tatc] = Gac, and κac = Gac ⊗ κmn. For canonically normalized generators Gac = δac.

The expressions in (8.1)–(8.3) are a collection of all the terms in V ⊥YM+matter and

V ⊥CS+matter that are functions of the spinors ψΣ and ψ̃Σ of the N = 2 vector multiplets.

In what follows, we refer to the sum of (8.1) and (8.3) as V ⊥gs YM , and the sum of (8.2)

and (8.3) as V ⊥gsCS (gs stands for gauge sector).

To analyze the supersymmetric variations V µ
gs YM and V µ

gsCS we need to disentangle

the geometric and spinorial structures. This can be achieved, as before, by using the

projectors P, P̃, and the A-type projection on ε and ε̃. On the anti-commuting spinors

ΨΣ = (ψΣ, ψ̃Σ) we impose the general boundary condition

ei$ ζ̃ΨΣ = M ΨΣζ . (8.4)

Supersymmetry will soon fix some of the properties of the matrix M , as we found for the

non-linear sigma model in section 7. Nevertheless, the case of the non-linear sigma model

and the case of the general gauge theory discussed here exhibit conceptually different

properties. Let us highlight the origin of these differences.

– 47 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
6

In the boundary condition (8.4), the spinors of the vector multiplets ψΣ, ψ̃Σ have been

arranged conveniently as a doublet ΨΣ. The same doublet can be formed in non-linear

sigma models out of the fermions in the chiral superfields. In that case we can also form

naturally a corresponding doublet of bosons Φ = (φ, φ̃). This is also possible for abelian

real superfields, where the role of Φ is played by the complex combination of the dual

photon and the real scalar σ. In the case of a non-abelian gauge theory, however, there is

no obvious natural bosonic Φ that we can associate to ΨΣ. As a result, we cannot proceed

identically to the non-linear sigma model case thinking in terms of a generalized target

space structure on the gauge indices.

An alternative approach is suggested by the 2-form

Bv[V, δA] = Gmn ε
⊥ρν Vm

ρ δAn
ν , (8.5)

that appears in the on-shell boundary value problem for vectors. In (8.5) both V and δA
are 1-forms on the boundary. For example, Bv appears in the Euler-Lagrange variation of

CS theories, (6.13), as well as in the supersymmetric variation V ⊥CS , (5.39),

Bv[δA,A] ∝ κac ε
⊥νρ δAa

ρAc
ν = κac ε

⊥νρ (ε̃γρψ̃
a
Σ − εγρψa

Σ)Ac
ν . (8.6)

In this equation Bv couples the two components of Aν in the boundary directions to a com-

bination of the spinors. It is therefore natural to think in terms of doublets distinguished

by the spacetime indices of vectors parallel to the boundary.

Similar manipulations can be employed in V ⊥YM using the identity γµγν = gµν + γµν

to rewrite the kinetic terms as follows

V ⊥YM ⊃ + 1
4e2 Gac ε

⊥νρ (εγρψ
a
Σ − ε̃γρψ̃aΣ)F̂cν − i

4e2 Gac (εψaΣ − ε̃ψ̃aΣ) g⊥νF̂cν (8.7a)

− 1
2e2 Gac ε

⊥νρ(εγρψ
a
Σ+ε̃γρψ̃

a
Σ)Dνσc + i

2e2 Gac (εψaΣ+ε̃ψ̃aΣ) g⊥νDνσc . (8.7b)

The first two terms in (8.7a) and (8.7b) have the same structure as Bv in (8.5) (up to a

difference in ± signs).

Introducing the notation

I±(Ψ,V) ≡ 1

2
ε⊥νρ

[
εγρψ

a ± ε̃γρψ̃a
]
GacVc

ν (8.8)

we show in the next subsection (see eqs. (8.25), (8.28)) that I±(ΨΣ,V) is closely related to

Bv[εΨΣ, PUV], where PU is a certain projector depending on a matrix U that has only gauge

indices and satisfies UTGU = G and U2 = 1. The interplay between A-type supersymmetry

and the geometry of the form Bv fixes the relation between U and M by setting

M = 12×2 ⊗ U =

(
U 0

0 U

)
, ei$ ζ̃ψaΣ = Uac ψ

c
Σζ , ei$ ζ̃ψ̃aΣ = Uac ψ̃

c
Σζ . (8.9)

Note that unlike the boundary conditions in the non-linear sigma model case, (6.9), (7.15),

in (8.9) the gauge indices of ψΣ and ψ̃Σ do not mix.
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With these boundary conditions and the standard, by now, manipulations on spinor

bilinears we arrive at compact expressions for V ⊥gsCS and V ⊥gs YM . In order to keep the

notation simple and most transparent, let us quote the pertinent results in the case of a

single gauge group. In Chern-Simons-matter theories we obtain

V ⊥gsCS =
κ

2π

[
(PUA)aGac − i

(
σaGac −

2π

κ
〈φ taφ̃〉

)
Uac

][
εψcΣ + ε̃ψ̃cΣ

]
, (8.10)

where PUA = k̃µAµ + iUkµAµ. In the case of Yang-Mills theories

V ⊥gs YM = +
i

2e2

[
− i

2

(
PU F̂

)a
Gac +D⊥σaGac

− Uab
(
Db − iσb( iH + kµVµ )

)
Gac + 2e2 Uac〈φ taφ̃〉

][
εψcΣ + ε̃ψ̃cΣ

]
+

1

2e2
Gac

[
ja⊥ − (PUDσ)a

][
εψcΣ − ε̃ψ̃cΣ

]
, (8.11)

where

PU F̂ = k̃µ(F̂µ + 2iσVµ) + iUkµF̂µ , PUDσ = k̃µDµσ + iUkµDµσ , (8.12)

j⊥ = − i
2
ε⊥νρFνρ = − i

2
F̂⊥ . (8.13)

When the gauge group has an abelian component, a FI term can also be added to the

Lagrangian. Since the variation of this term is of the type

V ⊥FI = +
1

2
ξ(εγ⊥λ̃− ε̃γ⊥λ) = − i

2
ξ
[
εγµψ̃Σ + ε̃γµψΣ

]
, (8.14)

we can easily include the FI parameters in (8.11) by considering the shift D → D − ξ.
In summary, without assuming any further constraints on the spinors ΨΣ other

than (8.9), the most generic boundary conditions on the bosonic fields of the gauge multi-

plet are

CS− theories : PUA− iU
(
σ − 2π

κ
〈φ t φ̃〉

)
= 0 , (8.15)

YM− theories : D⊥σ− i
2
PU F̂−U

(
D−iσ( iH+kµVµ )

)
+2e2 U〈φ t φ̃〉=0 (8.16)

j⊥ − PUDσ = 0 . (8.17)

As a special solution, one can further impose PUV = 0 both in CS and YM theories.

In the next subsection we show that this is equivalent to requiring I± = 0. This projection,

which is natural from the point of view of the Euler-Lagrange variations in Chern-Simons

theory (6.15), selects a Lagrangian submanifold of Bv, as we explain in the next section.

The remaining conditions yield:

• In the case of CS theory, (8.15) reduces to the algebraic equation of motion of the

auxiliary field D,

δLCS−matter ⊃
(
− κ

2π
σa + 〈φ taφ̃〉

)
δDa = 0 . (8.18)
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• In the case of YM, the condition F̂⊥ = 0 translates into ε⊥µνFµν = 0, where the free

indices are constrained to run over the boundary indices by anti-symmetry. Then,

F̂⊥ = 0 is satisfied if the non-abelian connection is flat at the boundary, namely

F = 0 at the boundary. In components, the boundary condition on σ becomes

∂⊥σ
a − i[A⊥, σ]a = Uab

(
Db − iσb( iH + kµVµ )

)
− 2e2〈φUabtbφ̃〉 . (8.19)

The contribution from a FI term (5.40) can be incorporated by a shift of D.

8.1.2 Technical details

Let us elaborate further on the details that led to the above boundary conditions. The

key quantity is I±(Ψ,V) defined in (8.8). We re-express this quantity using the A-type

projection on ε and ε̃. Leaving the label Σ of the spinors implicit, the resulting expression is

I±(Ψ,V) =

= +1
2
ζ̃ε
Ω ε⊥νρk̃ρkν

[[
− ei$ ζ̃ψm ∓ e−i$ψ̃mζ

]
(iVk)−

[
+ ψmζ ± ζ̃ψ̃m

]
Vn
k̃

]
Gmn ,

(8.20)

or equivalently in matrix notation (with ε⊥νρk̃ρkν = +1)

I± = +
1

2

ζ̃ε

Ω
Gmn

(
−ei$ ζ̃ψm ∓ e−i$ψ̃mζ

+ψmζ±ζ̃ψ̃m

)T (
0 +1

−1 0

) (
Vn
k̃

(iVn
k )

)
. (8.21)

It is clear that I± is similar in form to Bv evaluated on specific complex combinations of

the components of V and the spinors. We mentioned in section 6.1.2 that the most general

solution to the equations Bv = 0, are the Lagrangian submanifolds of the two-form Bv.
In special cases the general A-type boundary conditions (8.15)–(8.17) are solved by these

Lagrangian submanifolds. We proceed to examine this aspect more closely.

Starting with I−, which appears in the CS case, we notice that we can rewrite the

fermions in (8.21) as follows(
−ei$ ζ̃ψm + e−i$ψ̃mζ

+ ψmζ − ζ̃ψ̃m

)
=

= −

(
e+i$/2 0

0 e−i$/2

)
(ζ̃Ψ)m ei$/2+

(
e−i$/2 0

0 e+i$/2

)
σ1 (Ψζ)m e−i$/2 . (8.22)

Then, imposing the boundary condition ei$ ζ̃Ψ = M Ψζ, on the spinors ψ and ψ̃ we obtain

1

2

ζ̃ε

Ω

(
−ei$ ζ̃ψm + e−i$ψ̃mζ

+ ψmζ − ζ̃ψ̃m

)
= −1

2

(
1− σ1 e

+iσ3
$
2 M−1e−iσ3

$
2

)
e+iσ3

$
2 (εΨ) ei$/2 .

The last expression can be written as a projector P−M acting on εΨ with

P±M ≡ +
1

2

(
1± σ1 e

+iσ3
$
2 M−1e−iσ3

$
2

)
. (8.23)
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The matrix M , which acts on the doublet Ψ = (ψm, ψ̃m), is of the general form M =

R(2×2)⊗U , where U acts on the gauge indices and R is a 2-by-2 matrix. P±M is a projector

only if R = ±1. Choosing R = +1 for concreteness, (the R = −1 choice is very similar),

PM becomes

P±U = +
1

2
(1± σ1 ⊗ U) , (8.24)

and the matrix U is required to be orthogonal with respect to G, and to satisfy U2 = 1.

The quantity I− takes the final form

I− = +ei$/2 e+iσ3
$
2

(
εψm′

εψ̃m′

)T
(iσ2)

(
1 Um

m′

Um
m′ 1

)
Gmn

(
Vn
k̃

iVn
k

)
, (8.25)

(iσ2) =

(
0 +1

−1 0

)
. (8.26)

Since U is orthogonal with respect to G, the condition I− = 0 can be achieved by setting

Vn
k̃

+ Un
c iVc

k = 0 . (8.27)

Notice that the dependence on the phase $ has disappeared in the above manipulations.

The calculation of I+ proceeds along similar lines. In this case, the relevant combina-

tion of spinors in (8.21) can be recast as

1

2

ζ̃ε

Ω

(
−ei$ ζ̃ψm − e−i$ψ̃mζ

+ψmζ + ζ̃ψ̃m

)
= −σ3(1 + σ1 e

+iσ3
$
2 M−1e−iσ3

$
2 ) e+iσ3

$
2 (εΨ) ei$/2 ,

yielding the final expression

I+ = +ei$/2 e+iσ3
$
2

(
εψm′

εψ̃m′

)T
σ3 (iσ2)

(
1 Um

m′

Um
m′ 1

)
Gmn

(
Vn
k̃

iVn
k

)
. (8.28)

In conclusion, with R = +1, both conditions I+ = 0 and I− = 0 lead to (8.27).

Considering instead the choice R = −1 would lead to Vn
k̃
− Un

c iVc
k = 0. Clearly, this

choice is equivalent to the substitution U → −U .

We noted in the previous subsection that by setting I± = 0 in V ⊥CS or V ⊥YM we are led

to a special solution of the boundary conditions (8.15)–(8.17) where PUV = 0:

• In CS theories, where V = A, this is equivalent to a single boundary condition on

the gauge field

An
k̃

+ Un
c iAc

k = 0 . (8.29)

• In YM theories, where V = F̂ ,Dσ, one obtains two separate boundary conditions:

one on the non-abelian field strength and another one on Dµσ

F̂n
k̃

+ Un
c iF̂c

k = k̃µDµσn + Un
c ik

µDµσc = 0 . (8.30)

These equations are natural covariant generalizations of corresponding boundary con-

ditions in flat space that set components parallel to the boundary of the dual field

strength F̂µ and Dµσ to zero.
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8.2 Matter sector

Next we focus on terms that arise from the supersymmetric variation of the matter sector

of the gauge theory. These terms are functions of the spinors ψ and ψ̃ of the chiral and anti-

chiral multiplet. The relevant boundary contributions can be summarized in the expression
√

2 V ⊥matter =+ε
[
γ⊥γνψaDν φ̃c̄−(rc̄H−(zc̄−qc̄σ)) γ⊥ψa φ̃c̄−iV ⊥ψaφ̃c̄+i γ⊥ψ̃c̄F a

]
Gac̄

− ε̃
[
γ⊥γνψ̃c̄Dνφa−(raH−(za−qaσ)) γ⊥ψ̃c̄ φa+iV ⊥ψ̃c̄φa−i γ⊥ψaF̃ c̄

]
Gac̄ . (8.31)

The effects of a gauge invariant superpotential W can be incorporated, as already done

in (5.14), by considering the on-shell relations

Gac̄F̃
c̄ = ∂aW , F aGac̄ = ∂c̄W̃ . (8.32)

In (8.31) the chiral and anti-chiral superfields transform in arbitrary representations of

the gauge group. In the bold multi-indices a = (a,m), a is a color index and m a flavor

index. The metric G is the scalar product in the combined flavor/color index space. In

non-abelian theories σ acts on φ (φ̃) and ψ (ψ̃) according to their representations. We will

make a slight abuse of notation where the specifics of this action are suppressed.

By making use of the standard identity γ⊥γν = g⊥ν+i ε⊥νργρ and the fact that V ⊥ = 0

at the boundary, V ⊥matter can be rewritten in the form:

√
2 V ⊥matter = +i

[
ε⊥νρεγρψ

aDν φ̃c̄ + (iH)εγ⊥ψa rc̄φ̃c̄
]
Gac̄

+
[
εψaD⊥φ̃c̄ + (zc̄ − qc̄σ) εγ⊥ψa φ̃c̄

]
Gac̄ + i εγ⊥ψ̃c̄Gc̄a F

a

−i
[
ε⊥νρε̃γρψ̃

c̄Dνφa + (iH)ε̃γ⊥ψ̃c̄ raφa
]
Gc̄a

−
[
ε̃ψ̃c̄D⊥φa + (za − qaσ) ε̃γ⊥ψ̃c̄ φa

]
Gc̄a + i ε̃γ⊥ψaGac̄F̃

c̄ . (8.33)

The analysis of V ⊥CS and V ⊥YM selected boundary conditions in the gauge sector on the

basis of the two form Bv. Even though V ⊥matter can still be thought of as V ⊥NLs, on the basis

of the flavor indices, in this subsection we will not follow the approach of section 7. Instead,

we will explore the extension of the manipulations of the previous subsection 8.1 to the

matter sector. Accordingly, we assume from the start the following boundary conditions

on the matter fermions

ζγ⊥ζ

Ω
(ζ̃Ψ) = M(Ψζ) , M =

(
S 0

0 S̃

)
. (8.34)

The matrices S and S̃ act on the representation space of the matter. They are required to

have the properties S2 = S̃2 = 1, and STGS̃ = G. M acts diagonally on the doublet Ψ =

(ψa, ψ̃c̄), i.e. representations do not mix. This is the same type of ansatz that emerged in the

gauge sector. Here two possibly different S and S̃ are allowed because of the two chiralities.

With standard manipulations of the spinor bilinears, we recast V ⊥matter in terms of two

independent spinor components εψ and ε̃ψ̃,
√

2 V ⊥matter = +εψaGac̄

[
iP
S̃
Dφ̃c̄ +

(
D⊥φ̃c̄ − S̃c̄

n̄(zn̄ − qn̄σ)φ̃n̄
)

+ ie−i$F̃ c̄
]
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+ε̃ψ̃c̄Gc̄a

[
iPS Dφa−

(
D⊥φa−Sa

m(zm − qmσ)φm
)
+iei$F a

]
. (8.35)

We defined

PS Dφa ≡ Dk̃φ
a + iSa

m (Dkφm − irm(iH)φm) , (8.36)

P
S̃
Dφ̃c̄ ≡ Dk̃φ̃

c̄ + iS̃c̄
n̄ (Dkφ̃n̄ + irn̄(iH)φ̃n̄) . (8.37)

The projectors PS and P
S̃

are the analog of PU in the gauge sector. For matter charged

under the R-symmetry, we see that the terms in V ⊥matter proportional to the R-charges,

±r(iH), correctly combine with the covariant derivatives along the Killing vector.

The expression (8.35) allows us to read off the following general boundary conditions

on the matter sector

chiral : iP
S̃
Dφ̃c̄ +

(
D⊥φ̃c̄ − S̃c̄

n̄(zn̄ − qn̄σ)φ̃n̄
)

+ ie−i$F̃ c̄ = 0 , (8.38)

anti− chiral : iPS Dφa −
(
D⊥φa − Sa

m(zm − qmσ)φm
)

+ iei$F a = 0 . (8.39)

A special solution of these boundary conditions is obtained by imposing the conditions

PSDφ = P
S̃
Dφ̃ = 0. Then, setting to zero the remaining terms in (8.38), (8.39) we obtain

D⊥φ̃− S̃(z − qσ)φ̃+ ie−i$F̃ = 0 , D⊥φ− S(z − qσ)φ− iei$F = 0 . (8.40)

where the term (z − qσ) in (8.40) corresponds to the standard real mass.

In euclidean space, we may consider S = 1, then PSDφ = 0 would become D+φ = 0,

with D+ a covariantized holomorphic derivative along the coordinates of the boundary,

which in this case would be a plane. The same is true for P
S̃
Dφ̃ = 0 if φ̃ is regarded as a

field independent of φ. Thus, PSDφ = P
S̃
Dφ̃ = 0 are the natural generalization to curved

space of such boundary conditions.

The covariant derivatives in PS and P
S̃

contain both the dynamical gauge fields A and

the R-symmetry connection A
(R)
µ . Regarding the dependence on A

(R)
µ , we may borrow part

of the discussion in section 7.1.3 to understand the precise form of Dk and Dk̃. As simple

illustrating examples, let us consider the case of A-type backgrounds with twisted spinors.

The twisted R-symmetry gauge field is such that Dk becomes

Dkφm − irm(iH)φm = kµ∂µφ
m − ikµ(Aµφ)m . (8.41)

For the ellipsoid and the manifolds with SU(2) × U(1) symmetry that we introduced in

section 3.5, we may also use k̃µA
(R)
µ = 0 at the equator to obtain Dk̃ in the simplified form

Dk̃φ
a = f kµ∂µφ

m + vµ∂µφ
m − ik̃µ(Aµφ)m . (8.42)

In that case the boundary condition PSDφ = 0 reads

PSDφ =
[
f kµ∂µφ+ vµ∂µφ− ik̃µ(Aµφ)

]
+ iS

[
kµ∂µφ− ikµ(Aµφ)

]
= 0 . (8.43)

A similar result holds for P
S̃
Dφ̃ = 0.21

21The action of S on (Aµφ)m and of S̃ on (Aµφ̃)n̄ should not be confused with the separate action of U

that was defined in the gauge sector.
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The expressions (8.41)–(8.43) hold under a set of simplifying assumptions for the back-

ground fields. Let us also notice that the covariant derivative normal to the boundary, D⊥,

simplifies under the additional assumption A
(R)
⊥ = 0, and reads D⊥ = ∂⊥ − iqA⊥. For

a generic A-type background, the full convariant derivatives, including the R-symmetry

gauge fields, should be considered.

Finally, we should stress that the boundary conditions PSDφ = 0 and P
S̃
Dφ̃ = 0 are

genuinely complex. The reality condition on the bosonic fields of the chiral matter, φ̃ = φ?

and F̃ = F ?, would impose a restricted set of boundary conditions. Considering φ̃ = φ?, we

find either Dkφ = Dk̃φ = 0 or S? = −S̃, provided the latter is compatible with STGS̃ = G.

Higgs-like solutions can be defined as the solutions of (z− qσ) = 0, where the gauge group

is broken to U(1)rankS. Then, the boundary conditions Dkφ = 0 and Dk̃φ = 0 imply that

φ is constant at the boundary, hence each U(1) can be Higgsed by the vevs of the charged

matter fields. Together with D⊥φ− iei$F = 0 and its complex conjugate, we recover the

ordinary Dirichlet and Neumann22 boundary conditions for chiral fields.

8.3 Closure under supersymmetry

We conclude the analysis of the above boundary conditions, both in the gauge and the

matter sector, with a study of their transformation under supersymmetry. We already

looked at this problem when we discussed the boundary conditions of Lagrangian branes,

and similar comments continue to apply here. In particular, the variation of the boundary

conditions on the fermions are algebraic, and it is immediate to check whether they are

closed under supersymmetry or not. For CS theories, the variation of the boundary con-

ditions on Aµ and σ are also simple and both turn out to be algebraic. In YM theories,

the boundary conditions on the bosons are boundary conditions on the derivatives, hence

their analysis requires specific information about the details of the background.

8.3.1 Gauge sector

The boundary conditions on the fermions ψΣ and ψ̃Σ are

ei$ ζ̃ψa
Σ = Ua

m ψm
Σ ζ , ei$ ζ̃ψ̃c = Uc

n ψ̃
nζ . (8.44)

The supersymmetric variation of the fermions δψΣ and δψ̃Σ under the A-type supersym-

metry, θ = θ̃, is

δψΣ = ϑ
[[
D − iσ(iH + kµVµ)− ikµ(jµ + i∂µσ)

]
ζ̃ + ie−i$(nµ + ik̃µ)(aµ − iDµσ)ζ

]
,

δψ̃Σ = ϑ
[[
D − iσ(iH + kµVµ)− ikµ(jµ − i∂µσ)

]
ζ − ie+i$(nµ − ik̃µ)(aµ + iDµσ)ζ̃

]
,

and the conditions we would like to check (assuming the matrix U is invariant) are

ei$ ζ̃δψa
Σ = Ua

m δψm
Σ ζ , ei$ ζ̃δψ̃c = Uc

n δψ̃
nζ . (8.45)

22In the presence of a superpotential, the Neumann condition D⊥φ = 0 (where F = 0) is eventually

promoted to a ‘domain wall’ condition D⊥φ− iei$F = 0, when F is integrated-out.
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Both conditions are satisfied if

nµjµ = k̃µDµσa + iUa
m kµDµσm ,

nµDµσa + k̃µ(jaµ + σaVµ) + iUa
m kµjmµ = Ua

m

[
D − iσ(iH + kµVµ)

]m
.

(8.46)

Closer inspection reveals that in YM theories, (8.45) reduces to a subset of the boundary

conditions that we found in section 8.1 and 8.1.2. Since the vector-matter couplings cannot

appear in δψΣ and δψ̃Σ, the conditions (8.45) cannot lead to the most general boundary

conditions (8.16), (8.17). Instead, they lead to the boundary conditions

nµjµ = PUDσ , D⊥σ +
(
k̃µ(jµ + σVµ) + iUkµjµ

)
= U

[
D − iσ(iH + kµVµ)

]
. (8.47)

In CS theories, consider the boundary condition An
k̃

+ Un
c iAc

k = 0. The condition

on the fermions ψΣ and ψ̃Σ is the same as in YM, and therefore (8.45) leads to additional

constraints on D, and on the derivatives of A and σ, which are precisely given by (8.47).

On the other hand, the variation of the gauge boson at the boundary is

δAµ = −θ
[
nµ(ei$ ζ̃ψΣ + e−i$ψ̃Σζ)− ik̃µ(ei$ ζ̃ψΣ − e−i$ψ̃Σζ) + kµ(ψΣζ − ζ̃ψ̃Σ)

]
. (8.48)

Consequently, the special boundary condition δAn
k̃

+ Un
c iδAc

k = 0 is trivially satisfied:

δAn
k̃

+ Un
c iδAc

k = −i(ei$ ζ̃ψn − e−i$ψ̃nζ) + iUn
c (ψc

Σζ − ζ̃ψ̃c
Σ)

= +i(e−i$ψ̃nζ − Un
cζ̃ψ̃

c
Σ)− i(ei$ ζ̃ψn − Un

c ψ
c
Σζ) = 0 . (8.49)

Finally, the scalar field σ, which is auxiliary in CS theories, but dynamical in YM

theories, exhibits the supersymmetric variation

δσ = iθ(ζψΣ + ζ̃ψ̃Σ) . (8.50)

We notice that the boundary conditions on the spinors relate the ζ and ζ̃ component of

each fermionic field, and thus do not fix (8.50). We could impose δσ = 0 by requiring

ζ̃ψ̃Σ = ψΣζ . (8.51)

In that case, out of four fermionic variables (two for ψΣ and two for ψ̃Σ), the boundary

conditions (8.45) would fix two in terms of the rest, and by imposing (8.51) only one would

remain unconstrained.

8.3.2 Matter sector

The supersymmetric variation of the matter fermions δψ and δψ̃ under the A-type super-

symmetry, θ = θ̃, is

δψα = +ϑ F ζα + ϑ
[
i
(
kµDµφ− ir(iH)φ− (z − qσ)φ

)
ζ̃α + i

(
e−i$(nµ + ik̃µ)Dµφ

)
ζα

]
,

δψ̃α = +ϑ F̃ ζ̃α + ϑ
[
i
(
kµDµφ̃+ ir(iH)φ̃+ (z − qσ)φ̃

)
ζα − i

(
e+i$(nµ − ik̃µ)Dµφ̃

)
ζ̃α

]
.
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The conditions we want to check are in this case

ei$ ζ̃δψa
Σ = Sa

m δψm
Σ ζ , ei$ ζ̃δψ̃c̄ = S̃c̄

n̄ δψ̃
nζ . (8.52)

A short calculation leads to the constraints

iPSDφ+
(
D⊥φ+ S(z − qσ)φ

)
− ie+i$F = 0 , (8.53)

iP
S̃
Dφ̃−

(
D⊥φ̃− S̃(z − qσ)φ̃

)
− ie−i$F̃ = 0 . (8.54)

Compare these formulae with the boundary conditions (8.38) and (8.39). The two sets of

conditions do not coincide, because several signs do not match. They hold simultaneously

under the restriction,

PSDφ = P
S̃
Dφ̃ = 0 , (8.55)

(z − qσ)φ = (z − qσ)φ̃ = 0 , (8.56)

D⊥φ− iei$F = D⊥φ̃+ ie−i$F̃ = 0 . (8.57)

This restricted set of conditions, can be further constrained by imposing the reality condi-

tion φ̃ = φ?, as we mentioned at the end of section (8.2).

Acknowledgments

We are grateful to Francesco Benini, Lorenzo Di Pietro, Jorge Russo, Alessandro Tomasiello

and Alberto Zaffaroni for insighful discussions. We are also grateful to CERN and the

organizers of the TH-Institute on “Recent Developments in M-theory” for the hospitality

during the completion of this work. At the final stages of the preparation of the paper, FA

presented the results of this work at the University of Amsterdam, and he is grateful to Jan

de Boer, Diego Hofman, Nabil Iqbal and Joao Gomes for warm hospitality and stimulating

discussion. This work was supported in part by European Union’s Seventh Framework Pro-

gramme under grant agreements FP7-REGPOT-2012-2013-1 no 316165, and by European

Union’s Horizon 2020 Programme under grant agreement 669288-SM-GRAV-ERC-2014-

ADG. FA acknowledges support from STFC through Consolidated Grant ST/L000296/1.

A Conventions

Clifford algebra. The flat space γ matrices are

γ1 = −

(
0 1

1 0

)
, γ2 = −

(
0 −i
i 0

)
, γ3 = +

(
1 0

0 −1

)
. (A.1)

These γ matrices satisfy the relation γaγb = δab + i εabcγc. In particular, γab ≡ 1
2 [γa, γb] =

i εabcγc. Spinors χa and χb are contracted as follows,

χaχb ≡ χαa Cαβχ
β
b with C =

(
0 −1

+1 0

)
, (A.2)
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and also

χa γ
µ χb ≡ χαa Cαβ (γµ)βσ χ

σ
b . (A.3)

Note the properties Cαβ = −Cβα and (Cγ)αβ = (Cγ)βα. Thus, for anticommuting spinors

χγµζ = −ζγµχ whereas for commuting spinors χγµζ = +ζγµχ.

The Fierz Identity for anticommuting spinors is

(χdγ
µχc) (χbγµχa) = − (χdχc) (χbχa)− 2 (χdχb) (χcχa) . (A.4)

For commuting spinors we have instead

(χdγ
µχc) (χbγµχa) = + (χdχc) (χbχa)− 2 (χdχb) (χcχa) . (A.5)

Differential geometry. Given an euclidean metric ds2 = gµνdx
µdxν , the frame fields

are defined by ds2 = eaµδabe
b
ν . The inverse frame fields are eµa = gµνδabe

b
ν , with gµν the

inverse metric. The Levi-Civita covariant derivative ∇µ acting on 1) a spinor χ, 2) a vector

field Vν , and 3) a 1-form field Aν is

∇µ χ ≡ ∂µχ+ 1
4ωµabγ

abχ ,

∇µVν ≡ ∂µVν + ΓνµαVα ,

∇µAν ≡ ∂µAν − ΓαµνAα ,

(A.6)

where Γνµα is the Levi-Civita connection, and we have defined the spin connection ωµ out of

∇̃µeaν ≡ ∂µeaν + (ωµ)ab e
b
ν − Γρµνe

a
ρ = ∇µeaν + (ωµ)ab e

b
ν = 0 . (A.7)

Supersymmetry transformations from [3]. We list the transformations rules of the

components of the generic multiplet S,

δC = iεχ+ iε̃χ̃ ,

δχ = εM − ε̃(σ + (z − rH)C)− γµε̃ (DµC + iaµ) ,

δχ̃ = ε̃M̃ − ε(σ − (z − rH)C)− γµε (DµC − iaµ) ,

δM = −2ε̃λ̃+ 2i(z − (r − 2)H)ε̃χ− 2iDµ(ε̃γµχ) ,

δM̃ = +2ελ− 2i(z − (r + 2)H)εχ̃− 2iDµ(εγµχ̃) ,

δaµ = −i(εγµλ̃+ ε̃γµλ) +Dµ(εχ− ε̃χ̃) ,

δσ = −ελ̃+ ε̃λ+ i(z − rH)(εχ− ε̃χ̃) ,

δλ = +iε(D + σH)− iεµνργρεDµaν − γµε((z − rH)aµ + iDµσ − Vµσ) ,

δλ̃ = −iε̃(D + σH)− iεµνργρε̃Dµaν + γµε̃((z − rH)aµ + iDµσ + Vµσ) ,

δD = Dµ(εγµλ̃− ε̃γµλ)− iVµ(εγµλ̃+ ε̃γµλ)−H(ελ̃− ε̃λ)

+(z − rH)(ελ̃+ ελ− iH(εχ− ε̃χ̃)) + ir
4 (R− 2V 2 − 6H2)(εχ− ε̃χ̃) .
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B Factorization of bilinears

In this section we explain the details of the manipulations of V ⊥NLσ that were used to obtain

the final formula (7.11b) in section 7.1. Let us recall the two basic inputs of this discussion:

1) the main contributions to V ⊥NLσ that we want to analyze:

V1 + V2 = +
[
εγ⊥γµψaDµφ̃c̄ − ε̃γ⊥γµψ̃c̄Dµφa

]
Kac̄ (B.1)

V3 = −
[
ε γ⊥ψa φ̃c̄ − ε̃ γ⊥ψ̃c̄ φa

]
Kac̄ (B.2)

V4 = −
[
εγ⊥ψ̃c̄W a + ε̃γ⊥ψaW̃ c̄

]
Kac̄ , (B.3)

and 2) the decomposition of the spinors with the use of the projectors P and P̃:

ε = 1
Ω(ζ̃ε)ζ , ε̃ = 1

Ω(ε̃ ζ)ζ̃ ,

ψ = 1
Ω(ζ̃ψ)ζ + 1

Ω(ψζ)ζ̃ , ψ̃ = 1
Ω(ζ̃ψ̃)ζ + 1

Ω(ψ̃ζ)ζ̃ .
(B.4)

We begin by studying V1 + V2. From (B.4) we get

V1 + V2 =
[

+ ε γ⊥γνψaDν φ̃c̄ − ε̃ γ⊥γνψ̃c̄Dνφa
]

=
(ζ̃ε)

Ω2

[
(ζγ⊥γνζ) (ζ̃ψa) + (ζγ⊥γν ζ̃) (ψaζ)

]
Gac̄Dν φ̃c̄ +

− (ε̃ ζ)

Ω2

[
(ζ̃γ⊥γνζ) (ζ̃ψ̃c̄) + (ζ̃γ⊥γν ζ̃) (ψ̃c̄ζ)

]
Gc̄aDνφa .

By using the knowledge of the bosonic bilinears (3.22), we obtain23

V1 + V2 =
(ζ̃ε)

Ω2
(ζζ̃)

[
(ψaζ)D⊥φ̃c̄ + (ζ̃ψ̃c̄)D⊥φa

]
Gac̄ (B.5)

+
(ζ̃ε)

Ω2
(ζγ⊥γν‖ζ)

[
(ζ̃ψa)Dν‖φ̃c̄ − e−2i$(ψ̃c̄ζ)Dν‖φa

]
Gac̄ (B.6)

+
(ζ̃ε)

Ω2
(ζγ⊥γν‖ζ̃)

[
(ψaζ)Dν‖φ̃c̄ − (ζ̃ψ̃c̄)Dν‖φa

]
Gac̄ . (B.7)

In order to simplify our formulae, it is now convenient to use the matrix notation where

(ψa, ψ̃c̄) → ΨI and (φa, φ̃c̄) → ΦI . Each vector will be denoted by a corresponding bold

symbol: Φ, Ψ, W, and K. The change of variables for (ψaζ) and (ψ̃c̄ζ) results in

(ψaζ)Gac̄Dν φ̃c̄ = 1
2(Ψζ)T (1− iJ)GDνΦ ,

(ψ̃c̄ζ)Gac̄Dνφa = 1
2(Ψζ)T (1 + iJ)GDνΦ .

(B.8)

For the scalar products involving ζ̃ we shall use the boundary condition ei$ ζ̃Ψ = MΨζ,

and write

(ζ̃ψa)Gac̄Dν φ̃c̄ = 1
2(ζ̃Ψ)T (1− iJ)GDνΦ = 1

2e
−i$(Ψζ)TMT (1− iJ)GDνΦ ,

(ζ̃ψ̃c̄)Gac̄Dνφa = 1
2(ζ̃Ψ)T (1 + iJ)GDνΦ = 1

2e
−i$(Ψζ)TMT (1 + iJ)GDνΦ .

(B.9)

23In (B.6) and (B.7), the sum over ν‖ is understood to run over the indices of the boundary M2.

– 58 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
6

From (B.8) and (B.9), it is a simple exercise to show that V1+V2 can be put in the following

form

V1 + V2 =

[
1

Ω
(ζ̃ε) (Ψζ)T

]
(ζζ̃)

Ω

[
1− iJ

2
+ e−i$MT 1 + iJ

2

]
G (D⊥Φ)

+ e−i$
[

1

Ω
(ζ̃ε) (Ψζ)T

] [
ei$MT 1− iJ

2
− 1 + iJ

2

]
G (kµDµΦ)

− i
[

1

Ω
(ζ̃ε) (Ψζ)T

] [
1− iJ

2
− e−i$MT 1 + iJ

2

]
G (k̃µDµΦ) .

We can then introduce the projectors P
($,±)
M , and by using the properties:

P
($,+)

MT J = J P
($,−)

MT , P
($,−)

MT J = J P
($,+)

MT ,

P
($,+)

MT G = GP
($,+)
M , P

($,−)

MT G = GP
($,−)
M ,

(B.10)

we arrive at the final expression

V1 + V2 = +(εΨ)T
[
(1− iJ)GP

($,+)
M (D⊥Φ) + i(1− iJ)GP

($,−)
M (k̃µDµΦ)

]
(B.11)

+(εΨ)T
[
e−i$(1 + iJ)GP

($,−)
M (kµDµΦ)

]
. (B.12)

We rearrange V3 and V4 with similar manipulations. In the case of V3 we find

V3 =
[
− ε γ⊥ψaφ̃c̄ + ε̃ γ⊥ψ̃c̄φa

]
Gac̄ (B.13)

= −(ζ̃ε)

Ω2
(ζγ⊥ζ)

[
(ζ̃ψa)φ̃c̄ + e−2i$(ψ̃c̄ζ)φa

]
Gc̄a (B.14)

=

[
−(ζ̃ε)

Ω
(Ψζ)T

]
(ζγ⊥ζ)

Ω

[
e−i$MT 1− iJ

2
+ e−2i$ 1 + iJ

2

]
GΦ (B.15)

= +ie−i$(εΨ)T (1 + iJ)GP
($,−)
M J Φ . (B.16)

In the case of V4 we find

V4 =
[
− ε̃ γ⊥ψaW̃ c̄ − ε γ⊥ψ̃c̄W a

]
Gac̄ (B.17)

= −(ζ̃ε)

Ω2
(ζγ⊥ζ)

[
−e−2i$(ψaζ)W̃ c̄ + (ζ̃ψ̃c̄)W a

]
Gc̄a (B.18)

=

[
−(ζ̃ε)

Ω
(Ψζ)T

]
(ζγ⊥ζ)

Ω

[
−e−2i$ 1− iJ

2
+ e−i$MT 1 + iJ

2

]
GW (B.19)

= −e−i$(εΨ)T (1− iJ)P
(−$,−)

MT GW . (B.20)
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