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1 Introduction

The dynamical objects of M-theory are M2- and M5-branes. Two M5-branes interact by

M2-branes extending between them. Their intersections are the one-dimensional bound-

aries of the M2-branes, which form self-dual strings charged under the self-dual B-field.

These are soliton solutions of the so-called 6-dimensional N = (2, 0) theory. This theory

is believed to encode parallel transport of self-dual strings and therefore to be related to
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gauge theories containing higher form gauge fields. Such higher gauge theories are consid-

ered as candidates to describe the effective dynamics of multiple M5-brane systems and

discussed from various perspectives.

The worldvolume effective theory of multiple M5-branes is described by the 6-dimen-

sional N = (2, 0) supersymmetric theory [2–4]. The authors of [5] constructed a nonabelian

on-shell N = (2, 0) tensor multiplet, which is based on a 3-algebra gauge structure. This

direction was further investigated in [6], where a 5-dimensional superconformal action was

proposed, as a candidate to study the dynamics of N = (2, 0) self-dual nonabelian tensors

in 6 dimensions. In [7] an action for a nonabelian 2-form in 6 dimensions, whose equation

of motion gives a self-duality constraint on the field strength, was proposed. It contains

manifest Lorentz symmetry in 5 dimensions and upon dimensional reduction it leads to 5-

dimensional Yang-Mills theory accompanied with some higher derivative corrections. As for

supersymmetrization of higher gauge theories, the authors of [8] proposed a supersymmetric

nonabelian self-dual gauge theory of 2-form fields in 6 dimensions, which reduces to a

single M5-brane, if the gauge group is abelian. Ref. [9] considers a generalization of higher

gauge theory, which models finite gauge transformations encoded in principal 2-bundles

on 2-spaces (categorified spaces). The authors argue, that the 3-Lie algebra model of the

6-dimensional N = (2, 0) worked out in [5] can be interpreted in their proposed generalized

higher gauge theory setting. In [10] the authors worked out a closed and nonabelian gauge

algebra for a chiral 2-form potential in 6 dimensions, with one spatial direction compactified

on a circle. It was shown that the resulting transformation law is nonlocal along the circle

direction, but reduces to Yang-Mills theory in 5 dimensions for small circle radia.

From these investigations we understand that there are two main obstructions to ob-

tain a local action with manifest Lorentz symmetry [7, 8, 10]. One originates from the

difficulty to formulate the theory with nontrivially interacting tensor field and the other is

the difficulty to construct the action for the self-dual tensor field [11–14]. In this paper, we

focus on the first problem.

Along this line, the authors of [15] have proposed a generalization of parallel transport

of point-like objects to parallel transport of string-like objects. This higher parallel trans-

port leads to a gauge theory of a 2-form gauge field. In their approach, the surface swept

out by one-dimensional objects is reparametrization invariant, allowing for the introduction

of a so-called Wilson surface, the higher analogue of the Wilson line in Yang-Mills theory.

The requirement of the consistency of this Wilson surface directly leads to the so-called

crossed module as governing structure. This idea was further investigated in the context of

semistrict Lie 2-algebra structures [16], which is a generalization of the differential crossed

module. Related self-dual string solutions were constructed in [17].

However, in the construction based on the differential crossed module, the 3-form field

strength H is not covariant under gauge transformations, unless the 2-form field strength

is zero (called fake curvature condition). Then, as is discussed in [15], an action with

nonabelian gauge symmetry cannot be formulated except for a topological action of BF

type. As a result, the theory becomes topological or essentially free.

In [1] a modification of the gauge transformation law of a differential crossed module

was proposed in order to circumvent the fake curvature condition. The higher field strengths

– 2 –



J
H
E
P
0
7
(
2
0
1
6
)
1
2
5

defined in [1] transform covariantly under the modified gauge transformations without fake

curvature condition, leading to topologically nontrivial nonabelian gerbes.

Our aim is to obtain a nonabelian, gauge symmetric, interacting and local field theory

of a higher gauge field. From the point of view of the action principle, it is desirable to

have a gauge invariant local action with a term quadratic in the field strengths, to obtain

a unitary theory after quantization. However, so far a satisfactory theory has not been

constructed. One way to obtain a dynamical theory of a 2-form gauge field is to require

off-shell covariance of the 3-form field strength under gauge symmetry, i.e., covariance

without fake curvature condition. If we can define a gauge symmetry, that closes off-shell,

with or without introducing auxiliary fields, we may write an interacting action. Instead of

starting from the action, one can analyze field strengths and equations of motion directly

and require consistency under gauge symmetries [18, 19]. See also [20–22].

1.1 Off-shell covariantization

If the field strengths transform off-shell covariantly, i.e., by adjoint transformation without

employment of the equations of motion, the quadratic action is invariant under the gauge

transformation. In this paper, we analyze a way to construct such an off-shell covariant

field strength, called off-shell covariantization hereafter.

For this construction, we use the supermanifold method on a so-called QP-manifold [23,

24], which we explain in detail in section 2. We consider a QP-manifold Mn = T ∗[n]N =

T ∗[n](W [1]⊕V [2]), where W and V are vector spaces. In general, this structure induces a

symplectic Lie n-algebra. The QP-structure on this space includes the differential crossed

module and the semistrict Lie 2-algebra. Gauge fields, gauge transformations and field

strengths are constructed by associating supercoordinates on the QP-manifold to fields on

the spacetime Σ [21, 25, 26]. Consistent field strengths and gauge symmetries are deter-

mined by a geometric datum of the corresponding QP-manifold, which is called Hamiltonian

function (also called homological function). However, in general, gauge symmetries of field

strengths are on-shell covariant and we cannot avoid the fake curvature condition.

The procedure of off-shell covariantization can be performed by the following steps.

1. By solving the master equation of the QP-manifold Mn, we obtain relations among

the structure constants, which induce a symplectic Lie n-algebra.

2. Derive the field strengths and gauge transformations according to the standard pro-

cedure.

3. Covariantize by imposing an appropriate constraint on the conjugate auxiliary fields,

which reduces the symplectic Lie n-algebra to a nontrivial extension of a Lie 2-algebra.

We allow to impose additional constraints on the structure constants, if necessary.

4. Investigate the remaining gauge symmetry. Note that on-shell closure of the gauge

algebra is guaranteed by construction.

By taking a proper constraint, the reduced field strengths become off-shell covariant under

the residual gauge symmetry.
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The organization of this paper is as follows. In section 2, we briefly introduce the con-

cept of QP-manifolds used in this paper. In section 3, we discuss an (n + 1)-dimensional

higher gauge theory based on a general QP-manifold structure onMn. We consider canoni-

cal transformations onMn to classify equivalent higher gauge theories for generic n. We see

that for generic n, the theory is equivalent to a higher gauge theory induced by a semistrict

Lie 2-algebra. We also find that we can consider extra terms in the Hamiltonian function

of a QP-structure for n ≤ 5. In section 4, we discuss the n = 4 case in detail. We compare

our results with the theory given in [1]. This case is of particular interest for physics, since

it can be related to the multiple M5-brane system compactified on S1 [1, 8, 10]. In section

5, we discuss the n = 5 case. Section 6 is devoted to discussion.

2 Higher gauge theory and QP-manifolds

In this section, we briefly introduce higher gauge theories and the QP-manifold method.

Then, we examine Hamiltonian functions and possibilities of deformations of these theo-

ries. Finally, we explain canonical transformations of the QP-manifold as a preparation to

discuss higher gauge structures.

2.1 Higher gauge theory

Higher gauge theories are characterized by the appearance of higher form gauge fields and

their nontrivial interaction. For our purpose in this paper, the existence of a 1-form gauge

field A and 2-form gauge field B is sufficient.

In ref. [15] (and references therein), the authors discussed the crossed module given

by a pair of Lie groups G,H corresponding to the gauge fields Aa and BA. In addition to

the operations on the two Lie groups, the crossed module contains two maps t : H → G

and α : G→ Aut(H), which satisfy compatibility conditions. Here, we briefly review their

construction.

Let g and h be the Lie algebras corresponding to G and H. The corresponding in-

finitesimal object is called a differential crossed module, which is a pair of two Lie algebras

g and h with two homomorphisms t : h→ g and α : g→ Der(h), corresponding to t and α.

Let ga ∈ g and hA ∈ h be the bases of the respective Lie algebras with Lie brackets

given by

[ga, gb] =− f cabgc, [hA, hB] = f̃CABhC , (2.1)

where f cab and f̃CAB are structure constants. The maps t and α are defined as

t(hA) = taAga, (2.2)

α(ga)hA = αBaAhB, (2.3)

with coefficients taA and αBaA. For the relations between the structure constants we refer to

appendix A.
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A systematic derivation leads to the field strengths associated to the ordinary and the

higher gauge field,

F a = dAa − 1

2
fabcA

b ∧Ac − taABA, (2.4)

HA = dBA + αAaBA
a ∧BB, (2.5)

and their gauge transformations,

δAa = dεa − fabcAbεc + taAµ
A, (2.6)

δBA = dµA + αAaBA
a ∧ µB − αAaBεaBB, (2.7)

where εa and µA are ordinary and higher gauge parameter, respectively.

In general, one finds that the 3-form field strength is not covariant under gauge transfor-

mations, leading to the so-called fake curvature condition. Therefore, one cannot introduce

the corresponding kinetic term in the Lagrangian of such higher gauge theories. This is the

problem we want to address in this paper. We show how to get to off-shell covariantized

higher gauge theory by an extension of the crossed module ansatz.

2.2 QP-manifolds and canonical transformations

A QP-manifold of degree n is defined by a triple (M, ω,Θ). M is an N-manifold, which is

a graded manifold with a nonnegative Z-grading. ω is a graded symplectic form of degree

n, which induces a graded Poisson bracket {−,−} of degree −n. Θ is a function of degree

n+ 1 onM, which satisfies the classical master equation, {Θ,Θ} = 0, [23, 24]. Θ is called

Hamiltonian function or homological function. From this Hamiltonian, the homological

vector field Q is obtained by

Qf = {Θ, f}, (2.8)

where f ∈ C∞(M). The classical master equation is equivalent to the nilpotency condition

on the homological vector field, Q2 = 0.

We consider graded manifolds Mn = T ∗[n]N = T ∗[n](W [1] ⊕ V [2]) for n ∈ N, where

W and V are vector spaces.1 As we shall see, these vector spaces are related to the two

vector spaces in the definition of the crossed module.

Let qa and QA be local coordinates on W [1] and V [2] with degree 1 and 2, respec-

tively. The degree is identified with the ghost number in the BRST-BV formalism of the

corresponding field theory. The conjugate coodinates with respect to the fiber T ∗[n] are

denoted by (pa, PA) and are of degree (n − 1, n − 2). Therefore, the local coordinates on

Mn are (qa, QA, pa, PA) with degree (1, 2, n − 1, n − 2). Coordinates of odd degree are

Grassmann odd quantities.

We consider the graded symplectic form ω,

ω = (−1)nδqa ∧ δpa + δQA ∧ δPA. (2.9)

1W corresponds to g∗ and V to h∗, respectively.
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The corresponding Poisson bracket {−,−} on functions f, g ∈ C∞(Mn) is given by

{f, g} =
f
←−
∂

∂qa
∂g

∂pa
+ (−1)n

f
←−
∂

∂pa

∂g

∂qa
+

f
←−
∂

∂QA
∂g

∂PA
− f
←−
∂

∂PA

∂g

∂QA
. (2.10)

Note that we define the right derivative by f
←−
∂

∂X = (−1)|X|(|f |−|X|) ∂f∂X , where |f | is the degree

of the function f .

A canonical transformation δα is defined by adjoint action of a function α of degree n as

eδαf = f + {f, α}+
1

2
{{f, α}, α}+ · · · . (2.11)

It preserves the Poisson bracket,

{eδαf, eδαg} = eδα{f, g}, (2.12)

for any function f, g ∈ C∞(Mn). Since the generator of the canonical transformation α is

of degree n, it is degree-preserving.

For details on the conventions related to QP-manifolds and graded differential calculus,

we refer to [27].

2.3 Higher gauge theory from QP-manifolds

We construct a gauge field theory on an (n + 1)-dimensional spacetime Σ using the BV-

AKSZ formalism [28, 29]. For this, we consider the graded manifold T [1]Σ with local

coordinates (σµ, θµ) of degree (0, 1), where σµ are coordinates on the base manifold Σ

corresponding to the spacetime, and θµ are coordinates on the fiber.

The gauge fields are obtained by a pullback map a∗ and a degree preserving map ã∗ as

in [22]. Given a map between graded manifolds, a : T [1]Σ→Mn, the pullback of elements

of C∞(Mn) by a∗ gives superfields. For example, a coordinate z of degree k onMn induces

a superfield of degree k,

Z(σ, θ) ≡ a∗(z) =

n+1∑
j=0

1

j!
θµ1 · · · θµjZ(j)

µ1···µj (σ). (2.13)

We denote the degree by |Z| = k. We also denote the j-th component by Z(j)(σ, θ) ≡
1
j!θ

µ1 · · · θµjZ(j)
µ1···µj (σ). This map automatically introduces corresponding gauge fields,

ghosts and antifields in the BV formalism.

For the correspondence to physical fields, another degree, called form degree, deg(Φ)

is introduced. We assign form degrees to (σµ, θµ) as (0, 1). (|Φ| − deg(Φ)) is called

ghost number.

Since θµ is of form degree 1, Z
(j)
µ1···µj has ghost number (k− j). The ghost number zero

component Z
(k)
µ1···µk is a k-form gauge field. A positive ghost number component is a ghost

and a negative ghost number component is an antifield. Especially, the ghost number 1

part Z
(k−1)
µ1···µk−1

is the gauge parameter for the field Z
(k)
µ1···µk .

– 6 –
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The super field strength corresponding to a coordinate z is defined by

F Z ≡ d ◦ a∗(z)− a∗ ◦Q(z), (2.14)

where d = θµ∂µ is the superderivative. The corresponding physical field strength is the

degree |z|+ 1 part of the super field strength F Z ,

Fz = (d ◦ a∗(z)− a∗ ◦Q(z))||z|+1, (2.15)

where ||z|+1 denotes taking the degree |z|+ 1 part.

We can define a degree-preserving map, ã : T [1]Σ →Mn, such that, for a function of

degree k on the target space, the pullback ã∗ chooses the component of k-th order in θµ in

the superfield expansion, i.e.,

ã∗(z) =
1

k!
dσµ1 ∧ · · · ∧ dσµkZ(k)

µ1···µk(σ), (2.16)

where we identify the degree 1 coordinate θµ with the basis of the differential forms dσµ.

A degree k coordinate corresponds to a k-form gauge field. For example,

ã∗(qa) ≡ Aa = Aaµdσ
µ, (2.17)

ã∗(QA) ≡ BA =
1

2
BA
µνdσ

µ ∧ dσν . (2.18)

The corresponding field strengths Fz are defined by the map F :

Fz ≡ F (z) = d ◦ ã∗(z)− ã∗ ◦Q(z), (2.19)

i.e.,

F a ≡ (dã∗ − ã∗Q)qa = dã∗(qa)− ã∗({Θ, qa}), (2.20)

HA ≡ (dã∗ − ã∗Q)QA = dã∗(QA)− ã∗({Θ, QA}). (2.21)

The gauge transformation of the gauge fields corresponding to the coordinate z is

obtained by taking the degree |z| part of the super field strength2 [29],

δZ ≡ (d ◦ a∗(z)− a∗ ◦Q(z))
∣∣
|z|. (2.22)

We introduce a degree −1 map, ã(−1) : T [1]Σ→Mn, such that, for a function of degree k

on the target space, the pullback ã∗ chooses the component of (k− 1)-th order in θµ in the

superfield expansion, i.e.,

ã∗(−1)(z) = a∗(z)
∣∣
|z|−1 =

1

(k − 1)!
dσµ1 ∧ · · · ∧ dσµk−1Z

(k−1)
µ1···µk−1

(σ). (2.23)

Then, the gauge parameters have degree |z| − 1, thus, are of ghost number 1. We

denote the gauge parameters of each transformation as

εa ≡ ã∗(−1)(q
a), µA ≡ ã∗(−1)(Q

A), (2.24)

ε′a ≡ ã∗(−1)(pa), µ′A ≡ ã∗(−1)(PA). (2.25)

2In fact, this formula derives a BRST transformation. A gauge parameter is a Grassmann odd ghost.
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A gauge transformation is obtained by the following formula,

δã∗(z) ≡ (d ◦ ã∗(−1)(z)− ã∗(−1) ◦Q(z)). (2.26)

The de Rham differential of Fz satisfies

dFz = −F ◦Q(z) + ã∗ ◦Q2(z). (2.27)

Thus, from Q2 = 0, we get the Bianchi identity.

2.4 Constraints on the conjugate fields and residual gauge symmetry

In general, the QP-structure on the QP-manifold Mn = T ∗[n]N induces a substructure of

a symplectic Lie n-algebra on the non-graded space, T ∗(W ⊕ V ). It means that the gauge

algebra of the pullback of the independent coordinates,

ã∗(qa) = Aa, ã∗(QA) = BA, (2.28)

ã∗(pa) = Ca, ã∗(PA) = DA, (2.29)

is a subalgebra of this symplectic Lie n-algebra, where Ca is an (n−1)-form auxiliary gauge

field and DA is an (n− 2)-form auxiliary gauge field.

We understand that (2.19) gives a field strength with this gauge symmetry. Here,

we have gauge transformations with four independent gauge parameters (2.25). In order

to obtain higher gauge fields and gauge symmetry on the field strength level, we impose

constraints on the auxiliary gauge fields (Ca, DA), using the extra gauge degrees of freedom.

This reduces the intricate gauge structure to an extension of a differential crossed module.

In general, this extension goes beyond the structure of a semistrict Lie 2-algebra, which

brings us into the position to generate interesting higher gauge theories.

The simplest possibility is to constrain the auxiliary superfields such that Ca = DA =

0. Then, the theory reduces to the one analyzed in the literature [15], which is a differential

crossed module. To study covariantization, we consider a nontrivial reduction.

We start with superfields including ghosts and antifields by using the pullback, a∗(z) =

Z(σ, θ), of the embedding map, a : T [1]Σ → Mn, explained in subsection 2.3. From the

degree zero component part, we can read off the field strengths F a and HA in terms of

Aa = A(1)a and BA = B(2)A. After a restriction of the auxiliary fields, there remain gauge

symmetries related to Aa and BA. The residual gauge transformation is on-shell closed

by construction. By choosing a proper restriction, we can obtain off-shell covariant field

strengths. This procedure is applied in section 4.

3 Hamiltonian functions of higher gauge theories

3.1 Hamiltonian functions on the target space Mn

As mentioned before, on the manifold Mn the Hamiltonian function Θ is of degree n+ 1.

As we shall see, if the Hamiltonian function is linear in the conjugate coordinates (pa, PA),

it realizes a higher gauge theory with semistrict Lie 2-algebra structure. In this paper, we

want to consider deformations of this structure.
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We start with the most general Hamiltonian function onMn and expand it in conjugate

coordinates (pa, PA),

Θ =
∑
k

Θ(k), (3.1)

where Θ(k) is a k-th order function in (pa, PA).

We distinguish the following cases.

A) n ≥ 6: since the degrees of (pa, PA) are (n− 1, n− 2), the degree of Θ(k) for k ≥ 2 is

larger than 2n− 4. Therefore, if n ≥ 6, then Θ(k) = 0 for k ≥ 2 by degree counting,

i.e. the general form of the Hamiltonian function is

Θ = Θ(0) + Θ(1). (3.2)

B) n = 4, 5: in this case, Θ(k) = 0 for k ≥ 3 by degree counting. Therefore, the expansion

stops at second order,

Θ = Θ(0) + Θ(1) + Θ(2). (3.3)

Only for n ≤ 5 the Hamiltonian Θ provides interesting possibilities for deformations.

This case is interesting for physics, since it corresponds to a higher gauge theory in

5 and 6 dimensions. We discuss the cases n = 4, 5 in detail in section 4 and 5.

C) n = 2, 3: the Hamiltonian Θ contains more deformation terms. For n = 3, the local

coordinates on the graded manifold M3 are (qa, QA, pa, PA) with degree (1, 2, 2, 1).

By taking U = W ⊕ V ∗, T ∗[3](W [1] ⊕ V [2]) ' T ∗[3](U [1]), the QP-manifold defines

a Lie 3-algebra structure on U [16].

In the n = 2 case, since (qa, QA, pa, PA) is of degree (1, 2, 1, 0), the graded manifold

is M2 = T ∗[2](W [1] ⊕ V [2]) ' T ∗[2]E[1], where E → V ∗ is a trivial vector bundle on V ∗

with fiber W . Since V ∗[0] is regarded as base manifold, we can consider any function of

PA in the Hamiltonian. Then, this defines a Courant algebroid on E [30, 31].

3.2 Hamiltonian function of the semistrict Lie 2-algebra

First, we show that the Hamiltonian function Θ(1) reproduces a semistrict Lie 2-algebra

for general n. It contains the following terms,

Θ(1) = taAQ
Apa + (−1)n

1

2
f cabq

aqbpc + αBaAq
aQAPB + (−1)n

1

3!
TAabcq

aqbqcPA, (3.4)

where taA, f
c
ab, α

B
aA and TAabc are structure constants. This function defines a semistrict Lie

2-algebra, which is equivalent to a 2-term L∞-algebra [16].
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The classical master equation, {Θ(1),Θ(1)} = 0, implies the following conditions on the

structure constants,

1

2
fde[af

e
bc] −

1

3!
tdAT

A
abc = 0, (3.5)

tcAf
a
cb − taBαBbA = 0, (3.6)

1

2
αBcAf

c
ab + αB[a|C|α

C
b]A +

1

2
tcAT

B
cab = 0, (3.7)

3

2
f e[abT

A
cd]e + αA[a|B|T

B
bcd] = 0, (3.8)

αCa(At
a
B) = 0. (3.9)

For TAabc = 0, these relations reduce to the strict Lie 2-algebra, which is equivalent to the

differential crossed module [15].

The correspondence of the above structure induced by the Hamiltonian Θ(1) and the

semistrict Lie 2-algebra is given by the following bracket and derived brackets,

[g1, g2] = −{{g1,Θ(1)}, g2}
∣∣
W ∗
, (3.10)

t(h) = {Θ(1), h}
∣∣
W ∗
, (3.11)

α(g)h = {{g,Θ(1)}, h}, (3.12)

[g1, g2, g3] = −{{{g1,Θ(1)}, g2}, g3}, (3.13)

where g1, g2, g3 ∈W ∗ and h ∈ V ∗.3

For details and notation, see appendix A.

3.3 Canonical transformations on Mn

In this subsection, we consider canonical transformations on Mn. Two higher gauge

theories are equivalent if their defining Hamiltonians can be related by a canonical

transformation.

Let us identify all possible canonical transformations α. For this, we expand α in

conjugate coordinates (pa, PA),

α =
∑
k

α(k), (3.14)

where α(k) is a k-th order function in the conjugate coordinates. Since α(k) is of degree n,

by degree counting, we find that for n ≥ 5, α has two terms, α = α(0) + α(1). For n = 4,

α(2) is nonzero, i.e. α = α(0) + α(1) + α(2). For n = 2, 3, α contains more terms.

3We omit the pullback from the shifted vector space to the ordinary vector space for simplicity.
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In the following, we do not consider n ≤ 3 further. Then, the general forms of α(0),

α(1) and α(2) are

α(0) =
∑

µ+2ν=n,µ≥0,ν≥0
m(µ,ν)

=
∑

µ+2ν=n,µ≥0,ν≥0

1

µ!ν!
ma1···aµ,A1···Aνq

a1 · · · qaµQA1 · · ·QAν , (3.15)

α(1) = N +M + γ = NB
AQ

APB +M b
aq
apb +

1

2
γAabq

aqbPA, (3.16)

α(2) = β =
1

2
βABPAPB, (3.17)

where ma1···aµ,A1···Aν , NB
A , M b

a and γAab are constants and we defined N ≡ NB
AQ

APB,

M ≡M b
aq
apb and γ ≡ 1

2γ
A
abq

aqbPA. βAB is a symmetric constant.

The authors of [22] discuss transformations generated by terms corresponding to α(1)

above, as degree preserving coordinate transformations. In this section, we consider canon-

ical transformations of QP-manifolds on T ∗[n]N . Their effect on higher gauge theories will

be discussed in the next subsection. In the following, we investigate the canonical trans-

formations generated by each α(i), respectively.

i) α(0): the canonical transformation of a function f of degree k by

m(µ,ν) =
1

µ!ν!
ma1···aµ,A1···Aνq

a1 · · · qaµQA1 · · ·QAν . (3.18)

The first term is

{f,m(µ,ν)} =− (−1)k(n−1)
1

(µ− 1)!ν!

∂f

∂pa
maa1···aµ−1,A1···Aνq

a1 · · · qaµ−1QA1 · · ·QAν

− (−1)n(k−n)
1

µ!(ν − 1)!

∂f

∂PA
ma1···aµ,AA1···Aν−1q

a1 · · · qaµQA1 · · ·QAν−1 ,

(3.19)

where µ + 2ν = n. Investigation of higher order terms is not necessary. We observe

that this class of canonical tranformations decreases the order of the conjugate co-

ordinates. These transformations do not change the field strengths (2.20) and (2.21)

and the gauge transformations given in subsection 3.2. Therefore, we do not consider

transformations of this type in this paper.

ii) α(1): the canonical transformation generated by the term γ = 1
2γ

A
abq

aqbPA is

eδγpa = pa + (−1)nγAabq
b
A, (3.20)

eδγQA = QA +
1

2
γAabq

aqb. (3.21)

This transformation mixes elements of V and W .

The canonical transformation generated by N = NB
AQ

APB is an automorphism on

V and gives an exponential map of the matrix NB
A ,

eδNQA = (eN )ABQ
B, (3.22)

eδNPA = (e−N )BAPB. (3.23)
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The canonical transformation M = M b
aq
apb generates an automorphism on W , similar

to the action of N on V .

iii) α(2): we call this transformation a β-transformation. It is only possible for n ≤ 4 and

will be used in the discussion of the case n = 4, below.

4 Higher gauge theories in 5 dimensions

In the previous sections, we discussed the structure of the Hamiltonian and canonical

transformations on Mn. Here, we discuss the field theory for the specific case n = 4, i.e.

M4 = T ∗[4]N . In this case, Θ(2) can be included in the Hamiltonian function.

4.1 General form of the Hamiltonian function and Lie 4-algebras

In this subsection we describe the structure of the Hamiltonians based on M4. For this

we introduce local coordinates (qa, QA, pa, PA) of degree (1, 2, 3, 2), respectively. Since Θ

is of degree 5, the Hamiltonian function is at most a second order function in (pa, P
A), by

degree counting, and can be expanded as Θ = Θ(0) +Θ(1) +Θ(2). Note that Θ(2) is nonzero

only for n ≤ 5. Therefore, the concrete expressions are

Θ(0) =
1

5!
mabcdeq

aqbqcqdqe +
1

3!
mabcAq

aqbqcQA +
1

2
maABq

aQAQB, (4.1)

Θ(1) =
1

2
f cabq

aqbpc + taAQ
Apa + αBaAq

aQAPB +
1

3!
TAabcq

aqbqcPA, (4.2)

Θ(2) = saApaPA +
1

2
nABa qaPAPB, (4.3)

with additional structure constants mabcde, mabcA, maAB, saA and nABa . We decompose

the classical master equation, {Θ,Θ} = 0, by degree into

{Θ(0),Θ(0)} = 0, (4.4)

{Θ(0),Θ(1)}+ {Θ(1),Θ(0)} = 0, (4.5)

{Θ(1),Θ(1)}+ {Θ(0),Θ(2)}+ {Θ(2),Θ(0)} = 0, (4.6)

{Θ(1),Θ(2)}+ {Θ(2),Θ(1)} = 0, (4.7)

{Θ(2),Θ(2)} = 0. (4.8)

Concerning the solution of this system of equations we can distinguish four different cases.

I) Observe that if Θ(1) 6= 0 and Θ(0) = Θ(2) = 0, then the master equation induces a

semistrict Lie 2-algebra structure.

II) For Θ(1) 6= 0, Θ(0) 6= 0 and Θ(2) = 0, the semistrict Lie 2-algebra structure is

not deformed and the induced field strengths as well as the gauge structure are not

changed.

III) In the case, where Θ(1) 6= 0, Θ(2) 6= 0 and Θ(0) = 0, a deformation of the gauge

structure as an extension of the semistrict Lie 2-algebra is induced.

– 12 –
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IV) In the most general case (Θ(i) 6= 0 ∀i = 0, 1, 2), a deformation of the gauge structure

as well as the semistrict Lie 2-algebra structure itself is induced. Then, a new type

of 2-form gauge theory can be obtained.

In this paper, we focus on case III) and analyze extensions of higher gauge structures

that avoid the fake curvature condition.4 More general cases will be investigated in sepa-

rate publications.

Let us discuss the resulting classical master equation. Since there will be additional

contributions due to Θ(2), the conditions including the structure constants saA, nABa and

TAabc are given by

sa(AnBC)
a = 0, (4.9)

scAf bca + αAaBs
bB − tbBnABa = 0, (4.10)

1

2
sc(AT

B)
abc +

1

4
nABc f cab + α

(A
[a|C|n

B)C
b] = 0, (4.11)

sa(Aα
B)
aC +

1

2
taCn

AB
a = 0, (4.12)

t
[a
As

b]A = 0. (4.13)

A QP-structure with Θ = Θ(1)+Θ(2) onM4 = T ∗[4](W [1]⊕V [2]) induces the structure

of a symplectic Lie 4-algebra on T ∗(W ⊕ V ) 'W ⊕ V ⊕W ∗ ⊕ V ∗ ' g∗ ⊕ h∗ ⊕ g⊕ h.

For g ∈ W ∗, h ∈ V ∗, w ∈ W and v ∈ V we can introduce symmetric pairings of W ∗

and W , 〈−, −〉+, and antisymmetric pairings of V ∗ and V , 〈−, −〉−, induced from the

P-structure,

〈g, w〉+ ≡ {g, w} = {w, g}, (4.14)

〈h, v〉− ≡ {h, v} = −{v, h}. (4.15)

In this case, {Θ,Θ} = 0 is decomposed into

{Θ(1),Θ(1)} = 0, (4.16)

{Θ(1),Θ(2)} = 0, (4.17)

{Θ(2),Θ(2)} = 0. (4.18)

Equation (4.16) defines a semistrict Lie 2-algebra structure on W ∗ ⊕ V ∗ as discussed

in subsection 3.2. Thus, the above system of equations contains a semistrict Lie 2-

algebra ([−,−], [−,−,−], t, α) as subalgebra. Each operation of that subalgebra is defined

by (3.10)–(3.13).

Introducing Θ(2), we obtain two additional maps s : W → V ∗ and n : W ∗ × V → V ∗

corresponding to the new structure constants by the following graded Poisson bracket and

derived bracket,

s(w) = {Θ, w}|V ∗ , (4.19)

n(g)(v) = −{{g,Θ}, v}
∣∣
V ∗
, (4.20)

where g ∈W ∗, w ∈W and v ∈ V .5

4All relations between the structure constants are listed in appendix C.
5Note that we omit the pullbacks for simplicity.
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It is useful to define the following related operations s̃ : W × V → C and ñ : W × V ×
V → C,

s̃(w, v) = − {{w,Θ}, v}, (4.21)

ñ(w, v1, v2) = {{{w,Θ}, v1}, v2}, (4.22)

as well as s∗ : V →W ∗ and n∗ : V × V →W ,

s∗(v) = {Θ, v}, (4.23)

n∗(v1, v2) = {{v1,Θ}v2}, (4.24)

such that n∗(v1, v2) = n∗(v2, v1), where w ∈ W , v, v1, v2 ∈ V . The above operations are

not independent, since

s̃(w, v) = − 〈s(w), v〉− = 〈s∗(v), w〉+, (4.25)

ñ(g, v1, v2) = − 〈n(g)(v1), v2〉− = 〈n∗(v1, v2), g〉+. (4.26)

From the conditions (4.17) and (4.18) we obtain the following relations including the ad-

ditional operations s and n,

s̃(n∗(v1, v2), v3) + (v1, v2, v3 symmetric) = 0, (4.27)

〈[s∗(v), g], w〉+ + 〈α(g)s(w), v〉− − 〈t · n(g)(v), w〉+ = 0, (4.28)

〈[g1, g2, s∗(v1)], v2〉− + 〈n([g1, g2])(v1), v2〉− + 〈α(g1)n(g2)(v1), v2〉−
+ (g1, g2 antisymmetric, v1, v2 symmetric) = 0, (4.29)

〈α · s∗(v1)(h), v2〉− + 〈t(h), n∗(v1, v2)〉+ + (v1 ↔ v2) = 0, (4.30)

〈t · s(w1), w2〉+ − (w1 ↔ w2) = 0. (4.31)

Using the local coordinate expressions,

[pa, pb] = f cabpc, (4.32)

t(PA) = taApa, (4.33)

α(pa)PA = αBaAPB, (4.34)

[pa, pb, pc] = TAabcPA, (4.35)

s(qa) = saAPA, (4.36)

n(pa)(Q
A) = nABa PB, (4.37)

one shows that the equations (4.27)–(4.31) are equivalent to the equations (4.9)–(4.13).

4.2 Special solutions of the master equation

Here, we analyze the relations between the structure constants from the classical master

equation for vanishing Θ(0) and show that there exists a nontrivial solution. If we take

TAabc = 0, then the structure constants α, f and t in Θ(1) define a differential crossed

module. However, there are additional conditions on the structure constants s and n in
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Θ(2), given by (4.9)–(4.13) with TAabc = 0. In the following, we summarize solutions to the

master equation. See appendix B for details on the calculations.

From equation (4.13), we can define a symmetric constant by Gab ≡ taAsbA. In general,

Gab is not invertible. Then, we assume that there exists an invertible metric gab on W ,

and we define sAa ≡ gabsbA. Furthermore, we assume

sAa t
a
B = δAB. (4.38)

Introducing the matrix Pab = taAs
A
b , we can write Gab = Pac gcb, where gab is the inverse

matrix of gab. Under the assumption (4.38), P is a projector. Then, (4.10) becomes

nABa = sBb s
cAf bca + sBb s

bCαAaC . (4.39)

The crossed module relation (3.6) gives αAaB and nABa as

αAaB = sAb t
c
Bf

b
ca, (4.40)

nABa = 2sc(As
B)
b f bca. (4.41)

From (4.11), we obtain a condition on the structure of f ,

gdgs(Ag {sB)
e (δfc − Pfc )f ef [af

c
b]d} = 0, (4.42)

while the other conditions are satisfied automatically. The explicit form of the total Hamil-

tonian related to this solution of the classical master equation is given by

Θ =
1

2
f cabq

aqbpc + taAQ
Apa + αBaAq

aQAPB + saApaPA + scAsBb f
b
caq

aPAPB. (4.43)

In the special case, where Pab = δab , we find that Gab is invertible. Then, (4.42) is automat-

ically satisfied and (4.40) implies

sB(aα
A
b)B = 0. (4.44)

Finally, in this special case, (4.43) reduces to

Θ =
1

2
f cabq

aqbpc + taAQ
Apa + αBaAq

aQAPB + saApaPA + sCb s
bBαAaCq

aPAPB. (4.45)

Canonical transformations on M4. Let us consider the canonical transformations

eδα on M4, where the general form of the generator α (3.14) contains the term α(2) =
1
2β

ABPAPB, that we call β-transformation. The Hamiltonians (4.43) and (4.45) can be

generated by β-transformation from the differential crossed module. In general, we have

Pab sbA = saA. Twist by the canonical transformation

βAB = saAsBa = gabsAa s
B
b , (4.46)

we find

Θ = eδβΘ(1), (4.47)

for the Hamiltonian functions (4.43) and (4.45) by using the respective solution of the

classical master equation. Thus, we understand that this set of special solutions to the

master equation exhibits the structure of a differential crossed module. However, we will

show in the following subsections, that one can circumvent the fake curvature condition,

usually related to models based on the crossed model, by reducing the gauge freedom of

the auxiliary gauge fields.
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4.3 Constraints on the conjugate fields

Based on the general theory explained in subsection 2.4, we consider the restriction of the

5-dimensional theory.

The pullback a∗ maps the four coordinates to superfields as follows,

Aa ≡ a∗(qa), BA ≡ a∗(QA), (4.48)

Ca ≡ a∗(pa), DA ≡ a∗(PA), (4.49)

where (A,B,C,D) are of degree (1, 2, 3, 2). The QP-manifold structure on M4 induces

the structure of a symplectic Lie 4-algebra on T ∗(W ⊕ V ). The superfields inherit this

structure as gauge symmetry. The super field strengths are given by

F a = dAa − 1

2
fabcA

bAc − taABA − saADA, (4.50)

HA = dBA + αAaBA
aBB +

1

3!
TAabcA

aAbAc + sbACb + nABa AaDB, (4.51)

F (C)
a = dCa − f cabAbCc − αAaBBBDA −

1

2
TAabcA

bAcDA −
1

2
nABa DADB, (4.52)

F
(D)
A = dDA − taACa − αBaAAaDB, (4.53)

where F (C) and F (D) are the super field strengths of C and D, respectively. When we

substitute the component expansions to (4.50)–(4.53), then the corresponding degree |z|+1

parts are the field strengths:

F a = dAa − 1

2
fabcA

b ∧Ac − taABA − saADA, (4.54)

HA = dBA + αAaBA
a ∧BB +

1

3!
TAabcA

a ∧Ab ∧Ac + sbACb + nABa Aa ∧DB, (4.55)

F (C)
a = dCa − f cabAb ∧ Cc − αAaBBB ∧DA −

1

2
TAabcA

b ∧Ac ∧DA −
1

2
nABa DA ∧DB, (4.56)

F
(D)
A = dDA − taACa − αBaAAa ∧DB. (4.57)

The degree |z| parts of the component expansions of the super field strengths yield the

gauge transformations,

δAa = dεa − fabcAbεc − taAµA − saAµ′A, (4.58)

δBA = dµA + αAaB(Aa ∧ µB + εaBB) +
1

2
TAabcA

a ∧Abεc + sbAε′b

+ nABa (Aa ∧ µ′B + εa ∧DB), (4.59)

δCa = dε′a − f cab(Ab ∧ ε′c + εb ∧ Cc)− αAaB(BB ∧ µ′A + µB ∧DA)

− 1

2
TAabc(2A

b ∧DAε
c +Ab ∧Ac ∧ µ′A)− nABa DA ∧ µ′B, (4.60)

δDA = dµ′A − taAε′a − αBaA(Aa ∧ µ′B + εaDB). (4.61)
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The gauge transformations of the higher gauge field strengths are

δF a = fabcF
bεc, (4.62)

δHA = αAaBH
Bεa + nABa F

(D)
B εa + TAabcA

a ∧ F cεb

− αAaBF a ∧ µB − nABa F a ∧ µ′B. (4.63)

We look for nontrivial extensions of the crossed module inside a symplectic Lie 4-algebra,

that lead to off-shell covariant gauge structures. Such an extension can be obtained by

imposing a constraint on the gauge fields (Ca, DA).

One nontrivial choice is given by

Ca = −KabcF
b ∧Ac, DA = 0. (4.64)

Then, we obtain the field strengths F a and HA in terms of Aa and BA,

F a = dAa − 1

2
fabcA

b ∧Ac − taABA, (4.65)

HA = dBA + αAaBA
a ∧BB +

1

3!
TAabcA

a ∧Ab ∧Ac − sbAKbcdF
c ∧Ad. (4.66)

In general, the original gauge transformations of the fields (Aa, BA) transform the

constraint equations (4.64). However, there exist compensating gauge transformations of

the fields (Ca, DA) such that the conditions (4.64) remain satisfied.

For the special case given in equation (4.64), where TAabc = 0,

Kabc = gadt
d
Aα

A
bBs

B
c , (4.67)

we obtain the gauge fixed field strengths of Aa and BA decoupled from the Ca and DA

components,

F a = dAa − 1

2
fabcA

b ∧Ac − taABA, (4.68)

HA = dBA + αAaBA
a ∧BB − αAaBsBc F a ∧Ac, (4.69)

which is of the same form as the field strengths given in [1]. The detailed relations between

our formulation and the results given in [1] will be discussed below.

4.4 Off-shell covariantization

In this subsection, we show that we can off-shell covariantize the 3-form curvature in the

setting, where the underlying structure is a semi-direct product W ∗ = g = K n h. K is a

Lie algebra and ρ is a representation of K on the vector space V ∗ = h. This setting is in

accordance with the special set of solutions that we discussed in the previous subsection.

The commutator on g is defined as

[(x, y), (x′, y′)] = ([x, x′], ρ(x)y′ − ρ(x′)y), (4.70)
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where x, x′ ∈ K and y, y′ ∈ h. Furthermore, we define the maps α : g→ Der(h), t : h→ g

and s : g→ h by

α((x, y))y′ = ρ(x)y′, (4.71)

t(y) = (0,My), (4.72)

s(x, y) = M−1y, (4.73)

where M is an invertible matrix. This setting has been used in [1] in order to construct an

off-shell covariant higher gauge theory. We use the index convention ga = (gi, gA) ∈ Knh.

In order to discuss the covariantization of the 3-form curvature HA, we start with an

analysis of its gauge transformation,

δHA = αAaBH
Bεa − αAaBF a ∧ µB − nABa F a ∧ µ′B + nABa F

(D)
B εa (4.74)

≡ αAaBHBεa −4A, (4.75)

where we took TAabc = 0. We can decompose

4A = sAa t
b
Bf

a
jbF

j ∧ µB + (sbAsBa f
a
jb + sbBsAa f

a
jb)F

j ∧ µ′B
− nABj dDBε

j − nABj taBCaε
j − nABj αCaBA

a ∧DCε
j . (4.76)

For covariantization we make use of the freedom of the conjugate auxiliary fields Ca and

DA. The constraint (4.64) leads to

4A = sAa t
b
Bf

a
jbF

j ∧ µB + (sbAsBa f
a
jb + sbBsAa f

a
jb)F

j ∧ µ′B − nABj taACaε
j . (4.77)

We show in the following, that 4A vanishes, if the field configuration is restricted to a

hypersurface determined by the constraint. First, we introduce the gauge parameters ε̂a

and µ̂A corresponding to the remaining gauge symmetry and require, that the reduced

gauge transformation of the one-form gauge field is given by

δAa = D0ε
a − taAµA − saAµ′A ≡ D0ε̂

a − taAµ̂A, (4.78)

where we introduced D0ε̂
a ≡ dε̂a − fabcAbε̂c. Through application of the projector (1 − P)

to (4.78) we find

(1− P)D0ε = (1− P)D0ε̂. (4.79)

Making use of the equation

faba′Pa
′
d = Pac f cba′Pa

′
d , (4.80)

which can be derived from (4.42), we find

εa = ε̂a + (Pλ(ε̂))a (4.81)

for an arbitrary function λ(ε̂). λ(ε̂) has to be of order one in the gauge parameter ε̂ or zero.

Application of P to (4.78) leads to

saAµ′A + taAµ
A = taAµ̂

A + PabD0Pbcλ(ε̂)c. (4.82)
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In the next step, we solve the first constraint δDA = 0, which gives

Pbaε′b = Pba[d(sAb µ
′
A)− fdbcAc(sAd µ′A)] ≡ PbaD0s

B
b µ
′
B. (4.83)

Application of PD0 to (4.83) gives

Paa′D0Pba′ε′b = PabF if b′ibsBb′µ′B. (4.84)

Let us now investigate the covariance of the second constaint equation,

δCa = −gadtdAαAb′BsBc δ(F b
′ ∧Ac). (4.85)

Using the covariance condition following from the first constraint (4.84), we derive the

following condition on µ′ in terms of ε̂ and µ̂ from the projected part of (4.85)

PabF if b′ibsBb′µ′B = εjtaAt
c
Bn

AB
j Cc + fajbF

j ∧ tbB(sBd D0Pdc ε̂c − µ̂B). (4.86)

On the other hand, we can rewrite 4A by

4A = sAa f
a
jbF

j ∧ tbB(µ̂B + sBd D0Pdc λ(ε̂)c) + sbAsBa f
a
jbF

j ∧ µ′B − nABj tbBCbε
j . (4.87)

We find, that 4A = 0, if λ(ε̂)a = −ε̂a on the hypersurface determined by the two con-

straints. The remaining condition coming from the orthogonal projection of the second

constraint equation

(1− P)baδCb = −(1− P)bagbdt
d
Aα

A
b′Bs

B
c δ(F

b′ ∧Ac) = 0, (4.88)

imposes a restriction on (1 − P)ai ε
′
a = ε′i.

Finally, the gauge transformation of the two-form gauge field on the gauge-hypersurface

is derived to be

δBA = dµ̂A + αAjB(Aj ∧ µ̂B + ε̂jBB)− αAjBsBc ε̂cF j , (4.89)

by using (4.81), (4.82) and (4.83). Therefore, we showed that after imposing proper con-

straints, the field strengths transform covariantly under the residual gauge transformations

without fake curvature condition.

Let us summarize the form of the fields and their transformation properties on the

gauge-hypersurface,

F a = dAa − 1

2
fabcA

b ∧Ac − taABA, (4.90)

HA = dBA + αAaBA
a ∧BB − αAaBsBc F a ∧Ac, (4.91)

δ̂Aa = dε̂a − fabcAbε̂c − taAµ̂A, (4.92)

δ̂BA = dµ̂A + αAjB(Aj ∧ µ̂B + ε̂jBB)− αAjBsBc ε̂cF j , (4.93)

δ̂F a = fabcF
b(ε̂c − (P ε̂)c), (4.94)

δ̂HA = αAaBH
B(ε̂a − (P ε̂)a), (4.95)
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where we introduced δ̂ symbolizing the reduced gauge transformation δΦ
∣∣
constraint

= δ̂Φ for

any field Φ, which means that the diagram

Φ
δ−−−−→ δΦ

constraint

y yconstraint

Φ
δ̂−−−−→ δ̂Φ

commutes for any field Φ.

Next, we discuss the closure of the gauge symmetry algebra. For this, we write the

gauge transformation as

δ̃Aa = dε̃a − fabcAbε̃c + taAµ̃
A, (4.96)

δ̃BA = dµ̃A + αAjB(Aj ∧ µ̃B − ε̃jBB) + αAjBs
B
c ε̃

cF j , (4.97)

where the gauge parameters ε̃a and µ̃A are ordinary functions. We find, that two

gauge transformations δ̃1 and δ̃2 close to δ̃3 by [δ̃1, δ̃2] = δ̃3 with ε̃a3 = −fabcε̃b1ε̃c2 and

µ̃A3 = αAbB(ε̃b1µ̃
B
2 − ε̃b2µ̃B1 ), where δ̃i denotes the gauge transformation with respective gauge

parameters (ε̃i, µ̃i). More concretely, we derive

[δ̃1, δ̃2]A
a = dε̃a3 − fabcAbε̃c3 + taAµ̃

A
3 , (4.98)

[δ̃1, δ̃2]B
A = dµ̃A3 + αAjB(Aj ∧ µ̃B3 − ε̃

j
3B

B) + αAjBs
B
c ε̃

c
3F

j + ΛA, (4.99)

where

ΛA = αAjBf
j
kes

B
c Peb (ε̃b1ε̃

c
2 − ε̃b2ε̃c1)F k. (4.100)

The gauge transformation of Aa is off-shell closed. Off-shell closure of the gauge transfor-

mation of BA requires

αAjBf
j
kes

B
c Peb = αAjBf

j
kes

B
c t

e
Ds

D
b = 0, (4.101)

which is satisfied in our example. In general, it is sufficient if a gauge algebra is closed

on-shell, i.e., up to equations of motion. However, with condition (4.101) the gauge algebra

is closed without fake curvature condition.

The field strengths and gauge transformations, that we derived, are of a similar form

compared to the ones analyzed in [1]. To make this similarity more concrete, we provide a

brief discussion of the model proposed in [1] in the following subsection.

4.5 The Ho-Matsuo model

The authors of [1] constructed a covariant 3-form field strength which circumvents the fake

curvature condition. Here, we give a brief review of the algebra, gauge transformations and

field strengths constructed in [1], for comparison. Let (W ∗, V ∗, t, α) be a differential crossed

module with the additional map sHM : W ∗ → V ∗ and the following consistency conditions,

α(g)(sHM(g′))− α(g′)(sHM(g)) = sHM([g, g′]), (4.102)

α(g)((1− sHM · t)(h)) = 0, (4.103)

α([g, t · sHM(g′)])(sHM(g′′)) = 0, (4.104)
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where g, g′, g′′ ∈W ∗ and h, h′ ∈ V ∗. Representing the map sHM by

sHM(ga) = sBa hB, (4.105)

the conditions (4.102)–(4.104) become

αAaBs
B
b − αAbBsBa + sAc f

c
ab = 0, (4.106)

αAaDs
D
b t

b
B = αAaB, (4.107)

sBc α
A
dBf

d
aet

e
Ds

D
b = 0. (4.108)

The equations (4.106)–(4.107) are satisfied in the Lie 4-algebra model constructed in the

previous subsection. Equation (4.108) is required by the closure of the gauge transformation

of the 2-form gauge field (4.101). The field strengths of the 1- and 2-form fields are defined

as follows,

F aHM = dAa − 1

2
fabcA

b ∧Ac − taABA, (4.109)

HA
HM = dBA + αAaBA

a ∧BB − αAaBsBc F aHM ∧Ac. (4.110)

The gauge transformations of the 1-form and 2-form gauge fields are defined by

δHMA
a = dε̂a − fabcAbε̂c + taAµ̂

A, (4.111)

δHMB
A = dµ̂A + αAaBA

a ∧ µ̂B − αAaB ε̂aBB + αAdBs
B
a ε̂

aF dHM. (4.112)

5 Master equation in 6 dimensions

In this section we discuss the field theory on the graded manifold M5 = T ∗[5](W [1] ⊕
V [2]) with coordinates (qa, QA, pa, PA) of degree (1, 2, 4, 3). The most general form of the

Hamiltonian function is given by Θ = Θ(0) + Θ(1) + Θ(2), where

Θ(0) =
1

6!
mabcdefq

aqbqcqdqeqf +
1

4!
mabcdAq

aqbqcqdQA

+
1

4
mabABq

aqbQAQB +
1

3!
mABCQ

AQBQC , (5.1)

Θ(1) = −1

2
f cabq

aqbpc + taAQ
Apa + αBaAq

aQAPB −
1

3!
TAabcq

aqbqcPA, (5.2)

Θ(2) =
1

2
uABPAPB. (5.3)

Here, again we focus on the case Θ(0) = 0, which means that we have to consider the

following equation: {Θ(2),Θ(1)} + {Θ(1),Θ(2)} = 0. Since Θ(2) depends only on P , we

immediately get

1

2
({Θ(1),Θ(2)}+ {Θ(2),Θ(1)}) = taAu

ABpaPB + αBaAu
ACqaPBPC . (5.4)

This leads to the following conditions for the antisymmetric bilinear uAB:

taAu
AB = 0, α

[B
aAu

C]A = 0. (5.5)
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Since the structure constant saA does not appear in the algebra and there are no possibilities

to induce a nonzero tensor of type saA from the other structure constants, we cannot

formulate a model analogous to the one we constructed in 5 dimensions.6

6 Discussion

In this paper, we analyzed extensions of higher gauge theories based on a semistrict Lie

2-algebra. We made use of the QP-manifold description of symplectic Lie n-algebras and

constructed an off-shell covariant higher gauge theory. The gauge fields induced by the Lie

n-algebra inherit its structure as gauge symmetry. In order to obtain an off-shell covari-

antized higher gauge theory which circumvents the fake curvature condition, we restrict the

auxiliary gauge field configuration to an appropriate hypersurface. The restricted gauge

algebra has the structure of an extension of a (semistrict) Lie 2-algebra. We analyzed

the structure of the QP-manifold T ∗[n](W [1]⊕ V [2]), the general structure of its possible

Hamiltonians and its canonical transformations. It turned out that for n ≥ 6, i.e., for a

theory in 7 dimensions or higher, we only obtain a semistrict higher gauge theory. For

n ≤ 5, i.e., for a theory in 6 dimensions or lower, there is a freedom to introduce terms

into the Hamiltonian function, which change the field strengths nontrivially.

In this paper, we analyzed possible deformations by Θ(2). This is only possible in

dimensions less than 7. We examined the 5 dimensional theory in detail. Still in this

case, there are many choices for imposing conditions on the auxiliary gauge fields. We

concentrated on the case, where g = K n h and h = V ∗, where K is a Lie algebra and ρ is

a representation of K on V ∗. Then, we showed, that by the present method, we can obtain

a nontrivial off-shell covariant theory. In this case, the theory is the same covariantization

as the one given in [1]. Although this theory, which we constructed, exhibits abelian higher

gauge structure, we think that depending on the reduction procedure also nonabelian

solutions can be found.

As we discussed in the beginning of section 4, there are several directions to develop

the approach given in this paper. One way is to include the Θ(0) term. This works in

any dimension and, in general, does not change the field strengths F and H. However, it

changes the structures of the algebra. Another possibility is to include algebroid structures,

which introduces scalar fields in the theory.

It is interesting that we could obtain a 2-form gauge theory by reduction of a Lie

n-algebra structure. This was performed by imposing constraints on the auxiliary gauge

fields on the field theory level. There is also a possibility to interpret this reduction process

as gauge fixing of auxiliary gauge fields.
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A Differential crossed modules and semistrict Lie 2-algebras

First, we briefly explain the crossed module and differential crossed module [16, 32].

A crossed module is a pair of Lie groups G and H with homomorphisms t : H → G

and α : G→ Aut(H) satisfying

α(t(h))(h′) = hh′h, (A.1)

t(α(g)h) = gt(h)g−1, (A.2)

for all g ∈ G and h, h′ ∈ H.

Let g = Lie(G) and h = Lie(H) be the associated Lie algebras. The infinitesimal

object corresponding to the crossed module is called differential crossed module. It is a

pair of Lie algebras g and h with homomorphisms t : h → g and α : g → Der(h). The

differentials of the corresponding maps are underlined. t and α satisfy

t(α(g)h) = [g, t(h)], (A.3)

α(t(h))(h′) = [h, h′], (A.4)

for all g ∈ g and h, h′ ∈ h. Since t and α are homomorphims, we get

t([h, h′]) = [t(h), t(h′)], (A.5)

α([g, g′]) = [α(g), α(g′)], (A.6)

α(g)([h, h′]) = [α(g)h, h′] + [h, α(g)h′], (A.7)

for all g, g′ ∈ g and h, h′ ∈ h. A differential crossed module is equivalent to a strict Lie

2-algebra.

Let us denote the bases of the Lie algebras by ga ∈ g and hA ∈ h. Their Lie brackets are

[ga, gb] =− f cabgc, [hA, hB] = f̃CABhC , (A.8)

with structure constants f cab and f̃CAB, respectively. The maps t and α can be expressed as

t(hA) = taAga, (A.9)

α(ga)hA = αBaAhB, (A.10)
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with coefficients taA and αBaA, respectively. The structure constants f cab, f̃
C
AB, taA and αBaA

satisfy the following relations,

fde[af
e
bc] = 0, (A.11)

f̃DE[Af̃
E
BC] = 0, (A.12)

[gb, t(hA)]− t(α(gb)hA) = tcAf
a
cbga − taBαBbAga = 0, (A.13)

α(t(hA))hB − [hA, hB] = αCaBt
a
AhC − f̃CABhC = 0. (A.14)

From (A.14), we obtain

f̃CAB = taAα
C
aB. (A.15)

Therefore, f̃CAB is expressed by taA and αCaB, and the conditions of the differential crossed

module can be written by f cab, t
a
A and αCaB only. Since f̃CAB is antisymmetric, we obtain

taBα
C
aA + taAα

C
aB = 0. (A.16)

Using (A.6), we find

αBcAf
c
ab + αBaCα

C
bA − αBbCαCaA = 0. (A.17)

Finally, we can summarize all conditions as follows,

fde[af
e
bc] = 0, (A.18)

tcAf
a
cb − taBαBbA = 0, (A.19)

αBcAf
c
ab + αBaCα

C
bA − αBbCαCaA = 0, (A.20)

taBα
C
aA + taAα

C
aB = 0. (A.21)

These equations reproduce a differential crossed module.

A semistrict Lie 2-algebra, which is a generalization of a differential crossed module, is

a pair of vector spaces g and h with the following operations: An antisymmetric 2-bracket

[−,−] : g × g → g, a totally antisymmetric 3-bracket [−,−,−] : g × g × g → h and two

maps t : h→ g and α(−) : g× h→ h. These operations satisfy

[g, t(h)] = t(α(g)h), (A.22)

α(t(h))h′ = −α(t(h′))h, (A.23)

[g1, [g2, g3]] + [g2, [g3, g1]] + [g3, [g1, g2]] = t([g1, g2, g3]), (A.24)

α(g1)α(g2)h− α(g2)α(g1)h− α([g1, g2])h = [g1, g2, t(h)], (A.25)

α(g1)[g2, g3, g4]− α(g2)[g3, g4, g1] + α(g3)[g4, g1, g2]− α(g4)[g1, g2, g3]

− [g1, g2, [g3, g4]]− [g1, g3, [g4, g2]]− [g1, g4, [g2, g3]]

+ [g2, g3, [g4, g1]] + [g4, g2, [g3, g1]] + [g3, g4, [g2, g1]] = 0, (A.26)

for all gi ∈ g and hi ∈ h. If [−,−,−] = 0, the semistrict Lie 2-algebra becomes a strict Lie

2-algebra.
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If we choose bases ga ∈ g and hA ∈ h, then each operation can be expressed by

[ga, gb] =− f cabgc, (A.27)

t(hA) = taAga, (A.28)

α(ga)hA = αBaAhB (A.29)

[ga, gb, gc] = TAabchA. (A.30)

The structure constants f cab, t
a
A, αBaA and TAabc satisfy the following relations,

1

2
fde[af

e
bc] −

1

3!
tdAT

A
abc = 0, (A.31)

tcAf
a
cb − taBαBbA = 0, (A.32)

1

2
αBcAf

c
ab + αB[a|C|α

C
b]A +

1

2
tcAT

B
cab = 0, (A.33)

3

2
f e[abT

A
cd]e + αA[a|B|T

B
bcd] = 0, (A.34)

αCa(At
a
B) = 0. (A.35)

B Special solutions in 5 dimensions

In this subsection, we derive special solutions of the master equation {Θ(1) + Θ(2),Θ(1) +

Θ(2)} with TAabc = 0. For this, we assume that Gab ≡ taAs
bA is not invertible, in general.

Furthermore, we assume that there exists an invertible metric gab on W . We define sAa ≡
gabs

bA and introduce the matrix Pab = tbAs
A
a . We assume, that

sAa t
a
B = δAB, (B.1)

so that P is a projection, Pab Pbc = Pac . Then, from (4.10), we obtain

nABa = sBb s
cAf bca + sBb s

bCαAaC . (B.2)

Using the crossed module relations, we can represent αAaB as

αAaB = sAb t
c
Bf

b
ca. (B.3)

This relation leads to

nABa = 2sc(As
B)
b f bca. (B.4)

Next, we show that the expression for nABa satisfies all other equations. First, by multipli-

cation of (B.4) by saC we obtain

saCnABa = saC(scAsBb f
b
ca + scBsAd f

d
ca) = 2sa[Csc|A]sBb f

b
ca + 2sa[Csc|B]sAd f

d
ca. (B.5)

Therefore, we find sa(An
BC)
a = 0. Second, from (4.12) we derive

1

2
taCn

AB
a = taCs

c(As
B)
b f bca = −sc(AsB)

b taCf
b
ac = −sc(AαB)

cC , (B.6)
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where we used (B.3). Therefore, equation (4.12) holds. The equation (4.11) gives an

additional condition. Using (B.4), we get

1

4
nABc f cab = sd(AsB)

e f ec[af
c
b]d. (B.7)

Similarly, we derive

αAaCn
BC
b = sAe s

cBf efaP
f
d f

d
cb + sAe s

B
d f

e
faPfcfdcb. (B.8)

Combining both results leads to

α
(A
[aCn

B)C
b] = −s(Ae scB)Pfd f

e
f [af

d
b]c = −sd(AsB)

e Pfc f ef [af
c
b]d. (B.9)

Finally, we obtain

1

4
nABc f cab + α

(A
[aCn

B)C
b] = sd(AsB)

e (δfc − Pfc )f ef [af
c
b]d

= gdgs(Ag {sB)
e (δfc − Pfc )f ef [af

c
b]d} (B.10)

Therefore, we get the following additional condition,

gdgs(Ag {sB)
e (δfc − Pfc )f ef [af

c
b]d} = 0, (B.11)

which is satisfied in the example we used for off-shell covariantization in 5 dimensions.

C Master equation on M4

In this section, we show the general results of the calculation of the classical master equation

on T ∗[4]N , where N = E[1]⊕E′[2]. E and E′ are vector bundles over a smooth manifold

M . Note that this gives a symplectic Lie 4-algebroid, since we are allowing fibrations

over a manifold. In the main text, we worked with a sympletic Lie 4-algebra. The local

coordinates of T ∗[4]N are

(xi, qa, QA), (ξi, pa, PA)

of degree (0, 1, 2) and (4, 3, 2). The canonical Poisson bracket is defined by

{f, g} =
∂f

∂xi
∂g

∂ξi
− ∂f

∂ξi

∂g

∂xi
+
∂f

∂qa
∂g

∂pa
+
∂f

∂pa

∂g

∂qa
+

∂f

∂QA
∂g

∂PA
− ∂f

∂PA

∂g

∂QA
. (C.1)

The Hamiltonian function is given by

Θ = Θ(0) + Θ(1) + Θ(2), (C.2)

where

Θ(1) = τ iaq
aξi +

1

2
f cabq

aqbpc + taAQ
Apa + αBaAq

aQAPB +
1

3!
TAabcq

aqbqcPA, (C.3)

Θ(0) =
1

5!
mabcdeq

aqbqcqdqe +
1

3!
mabcAq

aqbqcQA +
1

2
maABq

aQAQB, (C.4)

Θ(2) = saApaPA +
1

2
nABa qaPAPB. (C.5)
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The classical master equation induces the following equations,

− τ i[a∂iτ
j
b] +

1

2
τ jc f

c
ab = 0, (C.6)

− 1

2
τ i[a∂if

d
bc] +

1

2
fde[af

e
bc] −

1

3!
tdAT

A
abc +

1

3!
sdAmabcA = 0, (C.7)

− τ ib∂itaA + tcAf
a
cb − taBαBbA + saBmbBA = 0, (C.8)

− τ i[a∂iα
B
b]A +

1

2
αBcAf

c
ab + αB[a|C|α

C
b]A +

1

2
tcAT

B
cab +

1

2
scBmcabA − nCB[a mb]CA = 0, (C.9)

τ i[a∂iT
A
bcd] +

3

2
f e[abT

A
cd]e + αA[a|B|T

B
bcd] +

1

4
seAmeabcd + nAB[a mbcd]B = 0, (C.10)

τ iat
a
A = 0, (C.11)

αCa(At
a
B) +

1

2
saCmaAB = 0, (C.12)

sa(AnBC)
a = 0, (C.13)

− τ ia∂isbA + scAf bca + αAaBs
bB − tbBnABa = 0, (C.14)

− 1

2
τ i[a∂in

AB
b] +

1

2
sc(AT

B)
abc +

1

4
nABc f cab + α

(A
[a|C|n

B)C
b] = 0, (C.15)

sa(Aα
B)
aC +

1

2
taCn

AB
a = 0, (C.16)

τ ias
aA = 0, (C.17)

t
[a
As

b]A = 0, (C.18)

τ i[f∂imabcde] +
5

2
fg[efmabcd]g +

10

3
m[abc|A|T

A
def ] = 0, (C.19)

τ i[d∂imabc]A +
1

4
teAmeabcd +

3

2
f e[cdmab]eA + TB[bcdma]BA +m[abc|B|α

B
d]A = 0, (C.20)

− τ i[a∂imb]AB +
1

4
f cabmcAB +

1

2
tc(Am|cab|B) +

1

2
(maC(Aα

C
|b|B) −mbC(Aα

C
|a|B)) = 0, (C.21)

ma(ABt
a
C) = 0. (C.22)
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