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1 Introduction

Superconductivity is one of the most important phenomena in condensed matter physics

(CMP) which is characterized by the drop of electrical resistivity to zero at a critical

temperature Tc and an expulsion of the magnetic field from the interior of a sample [1, 2].

In 1957, Bardeen, Cooper, and Schrieffer published two articles which established

the conceptual and mathematical foundations of conventional superconductivity, for which

they later received their Nobel Prize in 1972 [3, 4]. According to the BCS theory, the

condensate is a Cooper pair of electrons bounded together by phonons. Therefore, the main

effective coupling in the BCS theory is the electron-phonon coupling which is considered

to be a weak coupling constant. High-temperature medium-coupled superconductivity

predicted for hydrides at high pressures indicates that high-temperature phonon-mediated

superconductivity can also be described by the BCS theory [5, 6]. However, there are

certain materials that exhibit unconventional superconductivity at high Tc cuprates and

thus, their explanation calls for new theories to be developed. It is by now clear that

the models for high-temperature superconductivity must be formulated as theories in the

strong coupling constant regime.

The Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence is one way to

describe the strong coupling constant regime [7, 8] and the AdS/CFT duality, indeed, pro-

vides us with a new theoretical framework to realize the physics of high Tc superconductors.

This duality, based on the holographic principle, establishes a relationship between gravi-

tational theories on AdS spacetime and a quantum field theory that lives on the conformal

boundary of the AdS spacetime. Applying the AdS/CFT to unconventional superconduc-

tors allows us achieve a dual gravitational description of a superconductor involving the
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mechanism of spontaneous breaking of Abelian gauge symmetry near the event horizon of

the black hole, which leads to the formation of a scalar hair condensate at a temperature

T less than a critical temperature Tc [9–15]. This concept leads to a major advance in

the study of holographic superconductors, which strongly depends on the properties of

AdS black holes. The presence of the AdS black holes with a dual role in the holographic

superconductor model provides a non-zero temperature for the boundary relativistic CFT

and forms a scalar hair condensation at the boundary. However, the real condensed mat-

ter systems are far from a relativistic one. Therefore, it is interesting to generalize these

holographic superconducting models to non-relativistic situations [16–22].

A generalization of the AdS/CFT correspondence to non-relativistic conformal field

theory (NR-CFT) was investigated for the first time in ref. [23]. The NR-CFT is invari-

ant under Galilean transformations with Schrödinger symmetry for systems govern ultra

cold atoms at unitarity, nucleon scattering, and family of universality classes of quan-

tum critical behavior. Among other novel results, it was further argued in ref. [24] that

non-relativistic CFT that describe multicritical points in certain magnetic materials and

liquid crystals may be dual to certain non-relativistic gravitational theories in the Lifshitz

space-time background.

Recently, Horava proposed a non-relativistic renormalizable theory of gravitation, the

so-called Horava-Lifshitz (HL) theory, which reduces to Einstein’s general relativity at large

distances [25]. Additionally, the HL theory may render a candidate for a UV completion

of Einstein’s theory. Also at short distances, the spacetime manifold is equipped with

an extra structure, of a fixed codimension-one foliation by slices of constant time which

defines a global causal structure [25, 26]. Moreover, HL gravity provides the minimal

holographic dual for Lifshitz-type field theories with anisotropic scaling (t→ λzt, x→ λx)

and dynamical exponent z [27]. In ref. [27] it was also shown that the Lifshitz spacetime is a

vacuum solution of the HL gravity. Meanwhile, another form of nonrelativistic holography

with HL gravity were also presented in [28, 29]. In these articles, authors investigated a

non-relativistic gravity theory (HL gravity) dual for any NR-CFTs which have the same

set of symmetry transformations such as time dependent spatial diffeomorphisms, spatially

dependent temporal diffeomorphisms, and the U(1) symmetry acting on the background

gauge field coupled to particle number. Specially, time dependent spatial diffeomorphisms

include the Galilean invariant. Therefore, both approaches in refs. [27] and [28, 29] of non-

relativistic holography demonstrate that the natural arena for non-relativistic holography

is non-relativistic HL gravity.

On the other hand, in ref. [30], it was shown that the IR action of the non-projectable

HL gravity exhibit asymptotically Lifshitz black hole. The main thrust of the above discus-

sion is that Lifshitz black hole background inherently satisfies Galilean invariant. Moreover,

from a holographic point of view, the Lifshitz black holes capture the non-relativistic be-

havior at finite temperatures for the boundary CFT [24]. The metric of the Lifshitz black

holes reproduce asymptotically the Lifshitz spacetime [24, 31].

In what follows, a holographic superconductor model is constructed by making use

of Lifshitz black hole solutions and the effects of the dynamical critical exponent, z, are

investigated on the properties of such holographic superconductors. To date, holographic

superconducting models have been generalized in a number of studies to non-relativistic
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situations by Lifshitz black hole backgrounds [17–19]. In our symmetry broken phase, there

is a Goldstone which may lead to nonzero conductivity at low frequencies. The real part

of conductivity, however, vanishes in these simple holographic models at zero temperature

and at low frequencies [17–19]. In this paper, we, therefore, consider a dual gravitational

description of a holographic superconductor using a particular form of unprecedented higher

derivative corrections, which involves couplings between the gauge field and the spacetime

curvature of the Lifshitz black hole. More precisely, we assume an action for the bulk

Abelian gauge field contains the Maxwell term as well as the coupling between the Weyl

tensor and the field strengths. The Weyl coupling, γ, is usually constrained by respecting

the causality of the dual field theory on the boundary and by preserving the positivity of

the energy flux in the CFT analysis [34–37].

For our purposes, the constraints imposed on the Weyl coupling in the Lifshitz back-

ground and in d dimensions will be initially explored by demanding that the dual CFT

should respect the causality and that the energy flux be positive in all directions for the

boundary CFT. Our results reduces to the one obtained in ref. [35] when the dynamical

exponent is z = 1 in four dimensions. Moreover, these results indicate that the upper

bound of the Weyl coupling in ref. [36] is modified by imposing the positivity condition on

the energy flux for the boundary CFT. We investigate the effects of the Lifshitz dynamical

exponent, z, and the Weyl coupling, γ, on the holographic superconductors in the Lifshitz

black hole background and in d dimensions, assuming that the back reaction effects are

negligible and take the probe limit. For 3 + 1 dimensions and z = 1 ref. [38] may be

consulted. We use the matching method of the field solutions, near the horizon and the

boundary, to study the response of a holographic superconductor to an external magnetic

field in the presence of Weyl corrections. The analysis reveals that the critical magnetic

field is affected by both the Lifshitz dynamical exponent and the Weyl coupling parameter.

We would also like to investigate numerically whether the universal relation between the

gap ω in the frequency dependent conductivity and the critical temperature Tc, ωg/Tc ≈ 8

obtained in [9], is stable under Weyl corrections in Lifshitz black hole background.

The paper is organized as follows. In section 2, we obtain the explicit constraints on

the Weyl coupling that respect the causality of the dual field theory on the boundary and

preserve the positivity of the energy flux in the CFT analysis. We show that the upper

bound of the Weyl coupling in ref. [36] is modified. The holographic superconductor is

then constructed using the Weyl corrections and the effects of z and γ are investigated on

the condensation and critical temperature of the holographic superconductor. Section 3

is devoted to the study of the properties of the Weyl holographic superconductors with

Lifshitz scaling in the presence of an external magnetic field. Then we move on to investi-

gate the electromagnetic fluctuations of the system and numerically calculate the electrical

conductivity using linear response theory in section 4. Finally, conclusions are presented

in section 5.

2 Weyl coupling and the condensate operator

This section begins with introducing the Lifshitz background before the Weyl supercon-

ductor is investigated. The Liftshitz black hole with the flat horizon takes the following
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form [24]:

ds2 = L2

(
−r2zf (r) dt2 +

dr2

r2f (r)
+ r2

d∑
i=1

dxi
2

)
(2.1)

with

f(r) = 1−
(
r0

r

)d+z

; r0 ≤ r < ∞ (2.2)

where, r0 and z are the black hole horizon and the dynamical exponent, respectively. It is

easy to show that the Liftshitz background has the following Lifshitz scaling symmetry at

the Liftshitz spacetime when f(r) = 1,

t→ λzt ; r → r

λ
; ~x→ λ~x (2.3)

The Liftshitz metric (2.1) also reduces to the Schwarzschild-AdSd+2 black hole metric

when z = 1. Under the transformation u = r0/r, the metric (2.1) can also be recast in the

following form:

ds2 = L2

(
−f (u) r2z

0

u−2z
dt2 +

du2

u2f (u)
+
r2z

0

u2

d∑
i=1

dx2

)
(2.4)

where, f (u) = 1− ud+z and the u coordinate maps the holographic direction to the finite

interval (0, 1]. Furthermore, the Hawking temperature of the Lifshitz black hole is given by:

TH =
z + d

4πL2
rz0 (2.5)

In the rest of this paper, we will set L = 1 to simplify the calculations. We will also

consider a Weyl correction of the Maxwell field and a charged complex scalar field coupled

via the following Lagrangian density:

LW = −1

4
[FµνFµν − 4γCµνρσFµνFρσ]− |Dµψ|2 −m2|ψ|2 (2.6)

where, Dµ = ∇µ − iAµ, Fµν = ∇µAν − ∇νAµ, and m is the mass of the scalar field,

ψ. Moreover, γ is a dimensionless constant with a limit on it while Cµνρσ is the Weyl

tensor. From this Lagrangian, the generalized scalar and vector equations of motion may

be expressed as follows:.

DµD
µψ −m2ψ = 0 (2.7)

∇µ [Fµν − 4γCµνρσFρσ] = i (ψ∗Dνψ − ψDν∗ψ∗) (2.8)

The non-vanishing components of the Weyl tensor in the Liftshitz background may also be

listed as follows:

Ctutu =

(
d

2

)
r2z

0 ξ(u)

u2z+2
; Ctitj =

(
d− 1

2

)
r2z+2

0 f(u)ξ(u)

u2z+2
δij (2.9)

Cuiuj = −
(
d− 1

2

)
r2

0ξ(u)

u4f(u)
δij ; Cijkl = − r4

0ξ(u)

u4
δijδkl
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where,

ξ (u) =
z

d+ 1

[
ud+z

(
d+ 2

z
− 1

)
+

2

d
(1− z)

]
(2.10)

Now, the constraints imposed on the Weyl coupling, γ as sought by demanding that the

dual CFT should respect both the causality [32] and the stability of the modes for the

vector field which indicates that the uniform neutral plasma is a stable configuration in

the dual CFT [33, 34]. To examine causality and the stability of the modes, the Ginzburg-

Landau terms (ψ = 0) are initially ignored in action (2.6) . Therefore, Maxwell’s equation

can be rewritten as follows:

∇µ (Fµν − 4γCµνρσFµν) = 0 (2.11)

The Fourier-space representation of the gauge field is:

Aa(t, x, yi, u) =

∫
d3q

(2π)3 e
iq.xAa(q, u) (2.12)

where, q.x = −ωt + qxx + qiyi with i = 1, 2, . . . , d − 1. It is also convenient to select the

momentum to be qµ = (ω, q, 0, · · · , 0) with (d − 1) zero components and the gauge field

Au(q, u) = 0. Substituting this term into eq. (2.11) and considering the Liftshitz black hole

background (eq. (2.4)), we find the following expressions:

0 = At
′′

+A
′
t

(
U1
′

U1
+
z − d+ 1

u

)
+
q

f

U2

U1
(qAt (u) + wAx (u)) (2.13)

0 = Ax
′′

+A
′
x

(
U2
′

U2
+
f ′

f
− z + d− 3

u

)
+
wu2z−2

f2
(qAt (u) + wAx (u)) (2.14)

0 = Ayi
′′

+A
′
yi

(
U2
′

U2
+
f ′

f
− z + d− 3

u

)
+Ayi (u)

(
w2

f2
u2z−2 − q2

f

U3

U2

)
(2.15)

0 = A
′
x −

(
U1

U2

w

q

u2z−2

f

)
A
′
t (2.16)

where, U1, U2, and U3 are defined as:

U1 =

(
−1

4
+ 2γ

(
d(d− 1)

2

)
ξ(u)

)
U2 =

(
1

4
+ 2γ

(
d− 1

2

)
ξ(u)

)
(2.17)

U3 =

(
1

4
− 2γξ(u)

)
According to the first two eqs. (2.13) and (2.16), one can decouple the equation of motion

for At(q, u) as follows:

A′′′t +H1 (u)A′′t +H2 (u)A′t = 0 (2.18)

where, H1 and H2 are obtained as follows:

H1 =
z1

u
+
f ′

f
+

2U ′1
U1
− U ′2
U2

(2.19)

H2 =
U ′′1
U1

+
U ′1
U1

[
z1

u
+
f ′

f
− U ′2
U2

]
+
z1

u

[
f ′

f
− 1

u
− U ′2
U2

]
+
U2q

2

U1f
+
ω2u2z−2

f2
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where, z1 = z − d+ 1. In order to investigate the causality at the CFT boundary and the

stability of quasi-normal modes in the bulk theory, the full wave functions (2.18) and (2.15)

need to be rewritten in the form of the Schrödinger equation ( See appendix A). By using

WKB approximation in the limit q →∞, V0(u) (eq. (A.3)) and W0(u) (eq.(A.3) ) will be

the effective potentials. One can easily examine the behaviors of V0(u) and W0(u) near

the boundary, i.e., u = 0 [32–34]. In order to verify the causality in the dual CFT, we

need to consider the following limitations on the expansion of the effective potentials at

the boundary: {
V0 (u→ 0) < 1

W0 (u→ 0) < 1
(2.20)

Moreover, in the WKB limit, the potential has a minimum near the horizon (u = 1).

These effective potentials, V0(u) and W0, show bound states with negative energies, which

correspond to unstable quasi-normal modes in the bulk theory. For stability, we demand

that the energy should be positive in all directions for a consistent CFT. For this purpose,

we should consider the following limitations on the expansion of V0(u) and W0(u) near

u = 1 [33, 34]. {
V0(u→ 1) > 0

W0 (u→ 1) > 0
(2.21)

We, therefore, need to investigate the gamma bound in different cases. Based on the

expansion of W0(u) and V0(u) potentials near the boundary and due to the causality

requirement (2.20), a limited range of the Weyl coupling is obtained for 0 < z < 1 , z = 1,

and z > 1 (See appendix B). The results show that there is no constraint on the Weyl

coupling for 0 < z < 1. For z = 1, the bound is obtained as follows:

γ4 < γ < γ1 (2.22)

Finally, we have the bound below for z > 1.

γ > γ2 and γ < γ3 (2.23)

where, γ1, γ2, γ3, and γ4 are defined as in appendix B. It should be noted that the above

bounds are the intersections of the bounds obtained from both potentials. On the other

hand, based on the large momenta limit of our effective potentials (2.21) and by expanding

these potentials close to the horizon ( See appendix B), the following Weyl coupling range

is again obtained for the three situations of d = 2z − 2 and d 6= 2z − 2.

γ5 < γ < γ6 for d > 2z − 2

No constraint for d = 2z − 2

γ6 < γ < γ5 for d < 2z − 2

(2.24)

where,

γ5 = − d (d+ 1)

4 (d− 1) (d+ z) (d− 2z + 2)
; γ6 =

d+ 1

4 (d− 1) (d+ z) (d− 2z + 2)
(2.25)
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The above bounds are valid for z 6= 1 and the constraint (2.22) is valid forz = 1. We are

now in a position to find a new bound on the Weyl coupling by intersecting both bounds

obtained from the effective potential expansion near the horizon and the boundary. Hence,

the bound γ for 0 < z < 1 can be expressed as:

γ5 < γ < γ6 (2.26)

Moreover, it will have the following range for z = 1.

γ4 < γ < γ1 (2.27)

Clearly, in the case of d = 2, the constraint on the coupling γ (−1/12 < γ < 1/12) is in

agreement with the result reported in ref. [35]. Moreover, in ref. [36], the authors show that

the limit on the parameter γ is −1/16 < γ < 1/24, where the upper bound is due to the

existence of an additional singular point when γ = 1/24 and the lower bound is because

of the causality constraint. In our work, the gamma bound is −1/16 < γ < 1/32, where

the upper bound is modified by considering the constraints on the effective potentials due

to the stability of the modes. When 1 < z and d = 2z − 2, the constraint on the Weyl

coupling is also given by:

γ > γ2 and γ < γ3 (2.28)

For z > 1, we cannot express the explicit relation for the gamma bound as a function of

(z, d) for d 6= 2z − 2; thus, one needs to compute the intersection of eqs. (2.23) and (2.24)

for this case. For z − 2 < d < 2z − 2, there is an explicit formula for the gamma bound

as follows:

γ2 < γ < γ5 (2.29)

Let us now return to the Weyl holographic superconductor. Considering the following

ansatz for the scalar and Maxwell fields:

ψ = ψ(u) ; Aµdx
µ = ϕ(u)dt (2.30)

the equations of motion (2.7) and (2.8) in the background (2.4) reduce to:

ψ
′′

(u) + ψ
′
(u)

[
f
′
(u)

f (u)
− d+ z − 1

u

]
+ ψ (u)

[
u2z−2ϕ2 (u)

r2z
0 f

2 (u)
− m2

u2f (u)

]
= 0 (2.31)

ϕ′′ (u) + ϕ′ (u)

[(
z − d+ 1

u

)
+
U ′d,z(u)

Ud,z(u)

]
− 2ψ2 (u)

u2Ud,z(u)f (u)
ϕ (u) = 0 (2.32)

where, without loss of generality, we may take ψ and ϕ to be real, the prime to denote

the derivative with respect to u, and Ud,z (u) = 1 − 4γd (d− 1) ξ(u). In order to analyse

these coupled differential equations, we need to have suitable boundary conditions to be

imposed on the conformal boundary u→ 0 and on the horizon u = 1 of the Liftshitz bulk.

The asymptotic behaviors of the scalar and gauge fields near the boundary u→ 0 are:

ψ (u) ∼ ψ1u
∆− + ψ2u

∆+ (2.33)

ϕ(u) ∼

{
µ− ρ(u/r0)(d−z) 1 ≤ z < d

µ− ρ ln (ur0) z = d

}
(2.34)
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where, ∆± =
(z+d)±

√
(z+d)2+4m2

2 , and ψ1, ψ2, µ, and ρ are constant parameters. According

to the AdS/CFT correspondence, µ will be identified as the chemical potential and ρ as

the total charge density in the dual theory. Moreover, ψ1 (ψ2) can be considered as the

source of the dual operator, O, with the scaling dimension ∆− (∆+). Since we require the

U(1) symmetry to be broken spontaneously, we should turn off the source, i.e., ψ1 = 0.

It is obvious that the Breitenlohner-Freedman (BF) bound for the scalar mass in the

Lifshitz background becomes m2 ≥ −1
4(z + d)2 for (d+ 2)- dimensions. We take ∆ = ∆+

throughout the paper. At the horizon, u = 1, the regularity gives the conditions ψ′(1) =

−m2ψ(1)/(z + d) and ϕ(1) = 0. Furthermore the expansions of the Taylor series near the

horizon are as follows:

ψ (u) = ψ (1)− ψ′ (1) (1− u) +
1

2
ψ′′ (1) (1− u)2 (2.35)

ϕ (u) = ϕ (1)− ϕ′ (1) (1− u) +
1

2
ϕ′′ (1) (1− u)2 (2.36)

From eqs. (2.31) and (2.32), and using the regularity conditions ϕ(1) = 0 and ψ′(1) =

−βm2/(z + d), we can compute the second derivatives of ψ(u) and ϕ(u) exactly at

the horizon,

ψ′′ (1) = β

[
m2

z + d

(
1 +

m2

2 (z + d)

)
+

α2

2r2z
0 (z + d)2

]
(2.37)

ϕ′′ (1) = α

[
(d− z − 1)−

U ′d,z(1)

Ud,z(1)
− 2β2

Ud,z(1)(d+ z)

]
(2.38)

where, α = −ϕ′ (1) < 0 and β = ψ (1) > 0. Thus, we can rewrite eq. (2.35) for the scalar

field and eq. (2.36) for the gauge field as follows:

ψ (u) = β +
m2β

z + d
(1− u) +

β

2

[
m2

z + d

(
1 +

m2

2 (z + d)

)
+

α2

2r2z
0 (z + d)2

]
(1− u)2 (2.39)

ϕ (u) = α (1− u)− α

2

[
(z − d+ 1) +

U ′d,z(1)

Ud,z(1)
+

2β2

Ud,z(1)(d+ z)

]
(1− u)2 (2.40)

We proceed with matching the solutions given by eqs. (2.39) and (2.40) with eqs. (2.33)

and (2.34) at an intermediate point u = ui. Taking into account the following relations:

ϕu∼0
∣∣
u=ui

= ϕu∼1
∣∣
u=ui

; ϕ′u∼0
∣∣∣
u=ui

= ϕ′u∼1
∣∣∣
u=ui

(2.41)

ψu∼0
∣∣
u=ui

= ψu∼1
∣∣
u=ui

; ψ′u∼0
∣∣∣
u=ui

= ψ′u∼1
∣∣∣
u=ui

(2.42)

we obtain

µ− ρ
(
ui
r0

)d−z
= α (1− ui) +

(1− ui)2α

2

[
z1 +

U ′d,z(1)

Ud,z(1)
+

2β2

Ud,z(1)(d+ z)

]
(2.43)

−(d− z)ρ

(
ui
r0

)d−z−1

= α

[
1 + (1− ui)

[
z1 +

U ′d,z(1)

Ud,z(1)
+

2β2

Ud,z(1)(d+ z)

]]
(2.44)
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ψ2ui
∆

β
− 1 =

m2 (1− ui)
z + d

+
(1− ui)2

4(z + d)2

[
2m2 (z + d) +m4 +

α2

r2z
0

]
(2.45)

∆ψ2ui
∆−1 = − m2

z + d
β − β

2(z + d)2

[
2m2 (z + d) +m4 − α2

r2z
0

]
(1− ui) (2.46)

From eqs. (2.43) and (2.44), and using eq. (2.5), we obtain:

β2 = κ
Ud,z(1)(z + d)

2 (1− ui)

(
Tc
T

) d
z

[
1−

(
T

Tc

) z
d

]
(2.47)

where, κ and Tc are given by:

κ = 1 + (1− ui)
(

(z − d+ 1) +
U ′d,z(1)

Ud,z(1)

)
(2.48)

Tc =
(z + d)

4π

[
(d− z)ud−z−1

i ρ

κα̃

] z
d

(2.49)

For T ∼ Tc, eq. (2.47) leads to

β =

√√√√κ
Ud,z(1)(z + d)

2 (1− ui)

[
1−

(
T

Tc

) z
d

]
(2.50)

On the other hand, by using eqs. (2.43) and (2.44), we have:

ψ2 = β
ui

1−∆
[
m2 (ui − 1)− 2 (z + d)

]
(z + d) [(∆− 2)ui −∆]

(2.51)

α̃ =
α

rz0
=

[
m2

(
m2 + 2 (z + d)

(
2− ui
1− ui

))
+

2∆δ (z + d)

(1− ui)

] 1
2

where, δ =
(
m2 (ui − 1)− 2 (z + d)

)
/ ((∆− 2)ui −∆). Since the (critical) temperature

must be positive, we need to consider the following constraint:

Max {0, um, uγ} < ui < 1 (2.52)

where,

uγ =
8
(
(z + 1) d− z2 + 2− z

)
(d+ z) (d− 1) γ + (d+ 1) (−2− z + d)

8 (d+ z) ((1/2 + z) d+ 1− z2) (d− 1) γ + (d+ 1) (−z + d− 1)
(2.53)

um =
∆
[
m4 + 6m2 (z + d) + 4(z + d)2

]
m2 (∆− 1) (m2 + 4z + 4d)−m

√[
m2(m2 + 4z + 4d)2 − 8∆ (∆− 2) (z + d)3

]
Therefore, we cannot choose an arbitrary value for ui because the matching point ui de-

pends on the Lifshitz scaling z, dimension d, scalar mass m, and Weyl coupling γ. These

constraints can also be used to ensure that β is real. It is interesting that when γ = 0

in (d + 2)-dimensions, the corresponding results recover the ones in ref. [20]. In addition,
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γ 0.04 0.05 0.06 0.07 0.08
z = 7

Tc 0.20364ρ
7
10 0.26784ρ

7
10 0.35834ρ

7
10 0.50364ρ

7
10 0.80202ρ

7
10

γ 0.029 0.032 0.035 0.038 0.041
z = 8

Tc 0.31504ρ
4
5 0.38425ρ

4
5 0.47793ρ

4
5 0.61410ρ

4
5 0.83527ρ

4
5

γ 0.022 0.023 0.024 0.025 0.026
z = 9

Tc 0.39497ρ
9
10 0.45733ρ

9
10 0.53710ρ

9
10 0.64313ρ

9
10 0.79175ρ

9
10

Table 1. Values of critical temperature Tc for different values of the Weyl coupling, γ, and Lifshitz

scaling, z.

when we choose γ 6= 0, d = 3, and ui = 0.5, the values for critical temperature approximate

those in ref. [38] for z = 1. The values for critical temperature are computed below for

various selected values of the Lifshitz scaling, z. The plots of temperature versus Lifshitz

scaling for different values of the Weyl coupling are presented in figure 1. These plots show

that the value for critical temperature, Tc, decreases as the Lifshitz scaling, z, increases

but it decreases as the Weyl coupling decreases when 0 < z ≤ 1 and −0.08 < γ ≤ 0.

Furthermore, in the case z − 2 < d < 2z − 2, the values for critical temperature, Tc, are

reported in table 1 for condensations with different values of Weyl coupling, γ, and dynam-

ical exponent, z, when d = 10. Clearly, the gradual increase in the Weyl coupling helps

an easier condensation to occur. We can also write the expression for the condensation

operator 〈O〉 = ψ2rH
∆ near the critical temperature T ∼ Tc as in the following:

〈O〉
1
∆ = λ

(
4π[Ud,z (1)]

z
2∆

d+ z

) 1
z

Tc
1
z

[
1−

(
T

Tc

) z
d

] 1
2∆

(2.54)

with

λ =

[
δ
√
κ(z + d) ui

1−∆√
2 (1− ui)

] 1
∆

(2.55)

Figure 2 shows the dependence of condensation on the coupling to the Weyl correction for

different values of z. Comparison of both sides of figure 2 reveals that the gap becomes

smaller as the Liftshitz scaling, z, and the Weyl coupling, γ, increase.

3 Effect of the external magnetic field on Weyl superconductors

This section investigates the effects of an external static magnetic field, B. For this pur-

pose, a magnetic field may be placed with other fields in the bulk. From the AdS/CFT

correspondence, it follows that the asymptotic value of this magnetic field corresponds to

a magnetic field added to the boundary field theory. Therefore, we make the following

ansats [39–42]:

Aµdx
µ = ϕ(u)dt+ (By) dx

ψ = ψ(y, u) (3.1)
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Figure 1. Value of critical temperature as a function of dynamical exponent, z, for the following

parametric values d = 2, ui = 0.5, and m2 = −0.5.

Figure 2. Value of condensate as a function of temperature for the solutions with z = 0.5 (left)

and z = 1 (right). In both plots, u and m2 are chosen to be (0.5) and (-0.5), respectively.
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Figure 3. Critical magnetic field as a function of temperature for different values of Weyl couplings

for z = 1. We assume m2 = −0.5, d = 2, and ui = 1/2.

This leads to the following equation of motion for the scalar field ψ(y, u):

ψ
′′

(u, y) + ψ
′
(u, y)

[
f
′
(u)

f (u)
− d+ z − 1

u

]
+ ψ (u)

[
u2z−2ϕ2 (u)

r2z
0 f

2 (u)
− m2

u2f (u)

]
(3.2)

+
1

r2
0f(u)2

[
∂2
y −B2y2

]
ψ(y, u) = 0

One can solve this equation by taking the following separable form for the scalar field:

ψ(y, u) = Q(y)P (u) (3.3)

Substituting eq. (3.3) into eq. (3.2) yields:

P ′′(u)

P (u)
+
P ′(u)

P (u)

[
f ′(u)

f(u)
+

1− d− z
u

]
+

[
u2z−2ϕ(u)2

r2z
0 f(u)

− m2

u2f(u)

]
(3.4)

− 1

r2
0f(u)

[
− Q′′(y)

Q(y)
+B2y2

]
= 0

The y dependent part of eq. (3.4) yields the quantum harmonic oscillator in one dimension

with the relevant frequency determined by B as follows:

Q′′(y) +B2y2Q(y) = cnBQ(y) (3.5)
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Figure 4. The value of the critical magnetic field as a function of the temperature for the solutions

with γ = −0.02, 0, 0.02, 0.03. The u, d and m2 are chosen to be (0.5), (2), and (-0.5), respectively.

where, cn = 2n+ 1 is a constant. In the stable state and in the lowest mode (n = 0), the

u dependent part of eq. (3.4) can be expressed by:

P ′′(u) + P ′(u)

[
f ′(u)

f(u)
+

1− d− z
u

]
+ P (u)

[
u2z−2ϕ(u)2

r2z
0 f(u)

− m2

u2f(u)
− B

r2
0f(u)2

]
= 0 (3.6)

Using the regularity condition, ϕ(1) = 0, one can obtain the following relation at the

horizon (u = 1):

P ′(1) =

(
−m2

z + d
+
B

r2
0

)
P (1) (3.7)

Moreover, based on eq. (3.6), eq. (3.7), and the regularity condition for ϕ, we have:

P ′′(1) =
1

(z + d)2

[
m2(z + d) +

m4

2
+
ϕ′(1)2

2r2z
0

+
Bm2

r2
0

+
B2

2r4
0

]
P (1) (3.8)
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On the other hand, at the boundary (u −→ 0), the asymptotic solution of eq. (3.6) can be

written as:

P (u) = I−u
∆− + I+u

∆+ (3.9)

where, as previously chosen, we set I− = 0 and ∆ = ∆+. In order to find the value of the

critical magnetic field, we need to take the matching method of solutions near the horizon

and the boundary. To do this, we consider the expansion of the P (u) near the horizon

(u = 1) as follows:

P (u) = P (1) + P ′(1)(1− u) +
1

2
P ′′(1)(1− u)2 + . . . (3.10)

Putting eqs. (3.7) and (3.8) into eq. (3.10), we have:

P (u) = P (1) +

(
−m2

z + d
+
B

r2
0

)
P (1)(1− u)

+
1

(z + d)2

[
m2(z + d) +

m4

2
+
ϕ′(1)2

2r2z
0

+
Bm2

r2
0

+
B2

2r4
0

]
P (1)(1− u)2 (3.11)

Matching this solution with eq. (3.9) with I− = 0 at some intermediate point u = ui, we

get the following relations:

Iu∆
i = P (1)

[
1 +

(
−m2

z + d
+
B2

r2
0

)
(1− ui)

]
(3.12)

+
P (1) (1− ui)2

2(z + d)2

[
m2(z + d) +

m4

2
+
ϕ′(1)2

2r2z
0

+
Bm2

r2
0

+
B2

2r4
0

]
I∆u∆−1

i = −P (1)ui

[
−m2

z + d
+
B

r2
0

]
(3.13)

−P (1)(1− ui)
(z + d)2

[
m2(z + d) +

m4

2
+
ϕ′(1)2

2r2z
0

+
Bm2

r2
0

+
B2

2r4
0

]
The above set of equations yields the following solution to the magnetic field B.

B =
r2

0

ζ

√ω + ζ2

(
ϕ′(1)

rz0

)2

− δ

 (3.14)

with

ζ = [(∆− 2)ui −∆] (ui − 1)

ω = 2(z + d)
[
2u2

i (z + d)− (mζ)2
]

δ =
[
(z + d)−m2(ui − 1)

]
(2ui + ∆(1− ui)) + ∆(1− ui)(z + d) (3.15)

The value of the magnetic field is assumed to be very close to the critical magnetic field

strength, Bc. Since the condensate is so small in this situation, one can ignore the quadratic

terms in ψ so that eq. (2.32) reduces to:

ϕ′′(u) + ϕ′(u)

[
(z − d+ 1)

u
+
U ′d,z(u)

Ud,z(u)

]
= 0 (3.16)
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Integrating the above equation in the interval [1, u], and using the asymptotic boundary

condition for ϕ in eq. (3.9), one can obtain:

ϕ′(u) =
C(u−z+d−1)

4dγ(d− 1)(d+ 2− z)ud+z+4 − 8γz(−1 + z)(d− 1)u4 − d− 1
(3.17)

where,

C =
(d+ 1)(d− z)ρ

rd−z0

(3.18)

Therefore, we compute ϕ′(u) at the horizon (u = 1) as follows:

ϕ′(1) =
1

rd−z0

[
(d+ 1)(d− z)ρ

4(d− 1)(d+ 1)(d− 2z + 2)γ − d− 1

]
(3.19)

Consequently, eqs. (3.14) and (3.19) give us the following value for the critical magnetic field

Bc =
(4πT
d+z )

2
z (TcT )

d
z

ζ


√√√√ω

(
T

Tc

) 2d
z

+

(
ζη

(Tc)
d
z

)2

− δ
(
T

Tc

) d
z

 (3.20)

with

η =

(
d+ z

4π

) d
z
[

(d+ 1)(d− z)ρ

4(d− 1)(d+ z)(d− 2z + 2)γ − d− 1

]
(3.21)

This result reveals the dependence of critical magnetic field on Weyl coupling, γ. However,

we find that the critical magnetic field, Bc decreases as T/Tc rises. Also, from figure 3 we

find that the critical magnetic field vanishes at T < Tc for γ < 0, at T = Tc for γ = 0

and for γ > 0 at T < Tc. Moreover, figure 4 shows that the critical magnetic field, Bc,

decreases as we amplify z for the fixed values of −0.02 ≤ γ ≤ 0.03. This implies that the

dynamical exponent, z, affects the critical magnetic field.

4 Electrical conductivity

In this section, we investigate the influence of the Weyl coupling, γ, and dynamical critical

exponent, z, on the electrical conductivity. To calculate the electrical conductivity in the

boundary field theory side, we need to consider the perturbation of the gauge field in the

bulk. Therefore, we must add a small perturbation δA = Ay(u)e−iωtdy to the gauge field

Aµ defined in the bulk geometry. The linearized equation of the perturbation Ay turns out

to be:

Ay
′′

+A
′
y

(
U2
′

U2
+
f ′

f
− d+ z − 3

u

)
+Ay

(
w2

f2
u2z−2 − 2ψ2

u2f

)
= 0 (4.1)

Near the horizon u → 1, we should consider the ingoing wave boundary condition for the

electromagnetic field fluctuation in order to compute the retarded Green’s function,

Ay(u) = (1− u)−
iω

4πT (1 +Ay1(1− u) +Ay2(1− u)2 + . . .). (4.2)
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Near the conformal boundary u → 0, the asymptotical expansion of Ay(u) takes the fol-

lowing form:

Ay(u) = A0 +A(d+z−2)ud+z−2 + . . . (4.3)

Note that in the case of z = 2, d = 2, a logarithmic term −A(0)ω2u2ln(κu) should be added

to the right hand side of (4.3), where κ is a constant. According to the linear response

theory, the conductivity is given by the following Kubo formula,

σ(ω) = lim
u→0

GR(ω,
−→
k = 0)

iω
(4.4)

where, the retarded Green’s function GR(ω,
−→
k = 0) for the operator dual to gauge field can

be computed through the recipe given in [43] (See appendix C). Therefore the electrical

conductivity for our model can be obtained as follows:

σ(ω) =
−i
ω

(d+ z − 2)
A(d+z−2)

A(0)
(4.5)

Now, we discuss the results for the conductivity obtained through the numerical solution

of eq. (4.1). The numerical results of the frequency dependent conductivity are illustrated

in figures 5 and 6 for different values of γ at z = 1, 2 in d = 2. It should be noted that in

d = 2, the gamma bound is −0.083 < γ < 0.083 for z = 1, and γ < −0.19 and γ > 0.38 for

z = 2, respectively.

In each plot, the blue (solid) and red (dashed) lines represent the real part and imag-

inary part of the conductivity σ(ω), respectively. The imaginary part has a pole at ω = 0,

which indicates that the real part contains a delta function according to the Kramers-

Kronig relation [44, 45]. It is easy to show that there exists a gap in the conductivity,

which rises quickly near the gap frequency ωg. The ratio of gap frequency over critical

temperature ω/Tc is unstable and running with the Weyl coupling γ in figure 5. In other

words, for z=1, the ratio ωg/Tc increases with the fall of the Weyl parameter γ. In addi-

tion, the ratio ωg/Tc > 8 for all values of γ, and goes to 8 that is similar to the standard

holographic superconductor model [9], as we amplify the parameter γ. This is in agreement

with the cases in Gauss-Bonnet gravity [44], in which ωg/Tc is always greater than 8. On

the other hand, figure 6 displays at z = 2, the ratio ωg/Tc < 8 for γ < −0.19. Especially,

for γ = −0.36, the value of ratio ωg/Tc ≈ 4 which is different from the previous results.

As a result, compared with the former models, it is interesting that ωg/Tc in our model is

closer to the weakly coupled BCS value of 3.5.

Furthermore, in figure 6 a gap in the conductivity with a frequency ωg becomes larger

when we decrease the values of γ, while in figure 5 the the gap will be larger by increasing γ.

For all cases considered here, we see from both figures that the real part of the conductivity

is suppressed in the case of z = 2, compared to the case of z = 1. It shows the anisotropic

effect of the background spacetime. In addition, we can clearly see from figure 6 that when

z = 2, the minimum of the imaginary part of the conductivity disappears, which means

that the energy gap is no longer obvious.
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Figure 5. The real (solid blue curve) and imaginary (dashed red curve) part of the AC conductivity

versus frequency of the Weyl model at T/Tc ≈ 0.105151 with ∆ = 2, z = 1, and d = 2 for different

γ = −0.08,−0.06,−0.02, 0, 0.02, 0.04, 0.06, 0.08 from top to bottom.
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Figure 6. The real (solid blue curve) and imaginary (dashed red curve) part of the AC conductivity

versus frequency of the Weyl model at T/Tc ≈ 0.0110567 with ∆ = 2, z = 2, and d = 2 for different

γ = −0.36,−0.33,−0.3,−0.27,−0.25,−0.2 from top to bottom.

5 Summary and conclusions

The present paper sought to gain an understanding of how the Weyl coupling, γ, and

the Lifshitz scaling z might affect the holographic superconductor. For this purpose the

holographic superconductor model was constructed in the presence of Weyl corrections to

the gravitational action in Lifshitz black-hole space-times.

Among the interesting results found were the bounds on the Weyl coupling using

certain constraints. These constraints were derived by considering that the causality is

respected in the dual field theory on the boundary and that the energy flux is positive in

the dual CFT analysis. In the logical range of Weyl coupling, we applied the matching

method to study the effect of Lifshitz scaling on the Weyl holographic superconductor. In

the probe limit, the calculations showed that critical temperature decreased with increasing

z for a fixed value of γ. This made condensation harder, while the critical temperature
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would be higher as we amplified the parameter, γ, for z to be constant. The results were

compared with those obtained from the numerical technique for z = 1 [38].

Finally, the effect of an external static magnetic field on the Weyl model of the holo-

graphic superconductor was investigated by adding a magnetic field in the bulk. The results

clearly revealed the dependence of the critical magnetic field on parameters γ and z. In this

case, the height of the critical magnetic field, Bc, was found to decrease with increasing z.

The critical magnetic field, Bc, was also observed to vanish faster for γ 6= 0 than for γ = 0.

Finally, we calculated the conductivity of holographic superconductors numerically and

find that the ratio ω/Tc is unstable and becomes larger when the Weyl coupling parameter

γ decreases at z = 1. However, for z = 2, the ratio ω/Tc will be smaller when the Weyl

coupling parameter γ decreases.
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A Effective potentials

The full wave functions (2.18) and (2.15) can now be rewritten in the form of the

Schrodinger equation. By defining At(u,q) = G1(u) Ψ1 (u,q) and making use of the

coordinate transformation, s′ = uz−1/f , one could rewrite eq. (2.18) in the form of the

Schrödinger equation as follows:

∂2
sΨ1(s) + V (s)Ψ1(s) = ω2 Ψ1(s) (A.1)

where, G1(s) satisfies the following equation:

∂sG1 −
[
s′′ +H1s

′

2s′2

]
G1 = 0 (A.2)

It is easy to introduce the effective potential V (s) in eq. (A.1) in the u coordinate as follows:

V (u) = V0 (u) q2 + V1 (u) (A.3)

where,

V1 =
f2u2−2z

4

[
U ′2
U2

[
3U ′2
U2
− 2f ′

f

]
− 2U ′′2

U2

]
+
f2u1−2z

2

[
z1U

′
2

U2
+
f ′ (d− 2)

f

]
(A.4)

+
f2u−2z

2
[z1 (−d+ 2) + d (1− d)]

V0 = −fU2u
2−2z

U1
(A.5)

On the other hand, we can repeat similar algebraic calculations for the transverse vector

mode satisfying eq. (2.15) by writing Ay (u) = G2 (u) Ψ2 (u,q). Therefore, we have:

∂2
sΨ2(s) +W (s)Ψ2(s) = ω2Ψ2(s) (A.6)
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where the effective potential, W , is defined as:

W (u) = W0 (u) q2 +W1 (u) (A.7)

with

W1 =
f2u2−2z

4

[
2U ′′2
U2
− U ′2
U2

[
U ′2
U2
− 2f ′

f

]]
(A.8)

+
f2u1−2z

2

[
2 (d+ z − 3)

U ′2
U2

+ (d+ 2z − 4)
f ′

f

]
+
f2u−2z

4
(d+ 2z − 4) (d− 4)

W0 =
fU3u

2−2z

U2
(A.9)

where z2 = 4− 2d− z1. Moreover, the function G2 has to satisfy the following relation:

∂sG2 −

[
s
′′

+Ks
′

2s′
2

]
G2 = 0 (A.10)

where, K =
[
U2
′

U2
+ f ′

f −
z+d−3
u

]
.

B Potential expansion

One can expand the effective potential V0 (u) near the boundary as follows:

V0 '
∞∑
n=0

∑
a+b+c=n

−u
2−2z+n

a!b!c!

[
f (a)U2

(b)

(
1

U1

)(c)
∣∣∣∣∣
u=0

]
(B.1)

where, a, b, and c may consist of the fractional derivative. According to eq. (2.17), the

highest degree of polynomial U1 and U2 is d+ z. Therefore, the non-vanishing terms of the

above expansion can generally be written as follows:

V0 ' −
U2f

U1

∣∣∣∣
u=0

u2−2z − 1

(d+ z)!

(
f (d+z)U2

U1
+
fU

(d+z)
2

U1
+
fU2U

(d+z)
1

U2
1

)∣∣∣∣∣
u=0

ud+2−z (B.2)

In the following, we obtain ranges of the Weyl coupling in the three cases of 0 < z < 1,

z = 1, and z > 1 based on the causality requirement (2.20). It is obvious that all the

powers of u will be positive for 0 < z < 1. So, there is no constraint on the Weyl coupling

at u → 0. Moreover, for z > 1, the first order of expansion is divergent at the boundary.

In order to satisfy the causality at the boundary, the first term must be positive. It forces

the following condition on the Weyl coupling range:

γ > γ2 =
d(d+ 1)

8z(d− 1)(z − 1)
(B.3)

When we consider z = 1, however, the first term will be identity and the other terms can

be important. From the causality constraint, i.e., V0(u) < 1, the second term in eq. (B.2)

must be negative, i.e.,

γ < γ1 =
1

4(d+ 1)(d− 1)
(B.4)
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In a similar fashion one can get the following non-equality expressions from the W0(u)

expansion near the boundary by substituting {U1, U2} with {U2, U3}.

γ > γ4 =
−1

4(d+ 1)
if z = 1

γ < γ3 =
−d(d+ 1)

16z(z − 1)
if z > 1

(B.5)

For 0 < z < 1, the results of the intersection of the bounds show that in the case of

0 < z < 1, there is no constraint on the Weyl coupling. Moreover, the gamma bound for

z > 1 is given by γ > γ2 and γ < γ3, while for z = 1, the bound is γ4 < γ < γ1. We

also consider another constraint on the expansions of V0(u) and W0(u) near the horizon to

produce a positive energy in all directions for a consistent CFT. The expansion of V0(u)

near the horizon is as follows:

V0 ' −
U2f

U1

∣∣∣∣
u=1

−
[
U ′2f

U1
+
(
f ′ − 2(z − 1)f

) U2

U1
− U2U

′
1f

U1

]∣∣∣∣
u=1

(u− 1) + . . . (B.6)

Near the horizon, due to f(1) = 0, the first term vanishes and the second term always

vanishes at u = 1; thus, we can obtain the limitation on the Weyl coupling immediately

near the horizon, indicating the presence of the negative potential there. Therefore, one

needs to take U2(1)/U1(1) < 0 in V0 and U3(1)/U2(1) > 0 in W0 to obtain another range

of the Weyl coupling.

C The retarded Green’s function

Using the AdS/CFT correspondence and following prescription given in ref. [43], we can

calculate the retarded Green’s function. The action of gauge field with the Weyl correc-

tion is,

S =

∫
dd+2y

√
−g
[

1

4
∇µFµνAν −

1

4
∇µ(FµνAν)− 1

4
∇µFµνAµ +

1

4
∇ν(FµνAµ)

+γ∇µ(CµνρσAνFρσ)− γ∇ν(CµνρσFρσ)Aν

−γ∇ν(CµνρσAµFρσ) + γ∇ν(CµνρσFρσ)Aµ

]
= −

∫
dd+2y

√
−g
[

1

2
∇µ(Fµν)Aν − 2γ∇µ(CµνρσFρσAν)

]
+

∫
dd+2y

√
−g
[

1

2
∇µ(Fµν)Aν − 2γ∇µ(CµνρσFρσ)Aν

]
= −

∫
dd+2y

√
−g
[

1

2
∇µ(FµνAν)− 2γ∇µ(CµνρσFρσAν)

]
= −

∫
∂M

dd+1y
√
−h
[

1

2
FµνnµAν − 2γCµνρσFρσnµAν

]
(C.1)
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the action reduces to a surface term due to the bulk contribution vanishing so we can

obtain the action as follows

S = −1

2

∫
∂M

dd+1y
√
−hguugyy(1− 8γguugyyCuyuy)nuAy∂uAy

=
1

2

∫
∂M

dd+1y
1

ud+z−1
f(u)

(
1 + 8γ

(
d− 1

2

)
ξ(u)

)
Ay∂uAy (C.2)

Near the boundary (u → 0), we may neglect the Weyl correction and the action can be

written as follows

S = −1

2

∫
∂M

dd+1y
1

ud+z−1
f(u)Ay∂uAy|u→0 (C.3)

For the standard AdS/CFT correspondence we have

S =
1

2

∫
∂M

dd+1y
1

2π4
Ay(−k)GR(k)Ay(k)|u→ 0 (C.4)

by comparing (C.3) and (C.4) yields:

GR(ω, k→ = 0) = f(u)
1

ud+z−1

Ay(u, k)∂uAy(u, k)

Ay(u,−k)Ay(u, k)
(C.5)

Therefore we find that the Weyl correction has no effect on reterded Green’s function and

is the same as the Einstein theory for the standard Maxwell field.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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(2013) 123 [arXiv:1211.0005] [INSPIRE].

[30] M. Alishahiha and H. Yavartanoo, Conformally Lifshitz solutions from Hořava-Lifshitz
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