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1 Introduction

A dilaton is a (pseudo-)Goldstone mode associated with the spontaneous breaking of scale

invariance. The dilaton can be massless if the spontaneously generated scale is a flat

direction [1], or it can be a pseudo-Goldstone boson if the scale is an approximate flat

direction and there is some small explicit conformal breaking by a nearly marginal operator,

as in the Contino-Pomarol-Rattazzi mechanism [2–5]. The coupling of the nearly marginal

operator must remain small throughout its slow renormalization group (RG) running so as

to not break scale invariance too badly. This is why QCD-like theories do not have a light

dilaton [4–7], since the gauge couplings becomes large and rapidly running near the scale

of the condensate ΛQCD.

A theory consisting of particles with spins ≤ 1 is conformal if there are no dimensionful

couplings that appear in the theory (meaning that all operators are marginal) and if the

couplings do not run. To break conformal symmetry softly we can introduce an almost

marginal operator ∆ (O) = 4− ǫ, with ǫ ≪ 1, which introduces an explicit mass scale. In a

dual AdS5 description, where a Goldberger-Wise field [8] plays the role of the bulk field dual

to the almost marginal coupling, one can explicitly perform the calculation [4, 5] and see

that the dilaton/radion is light at the minimum of its potential.1 Here we want to study this

scenario using a purely 4D description. Seiberg duality [13, 14] and analytic continuation

1For other analyses of light dilatons see [9–12].
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in superspace [16–18] will allow us enough theoretical control to see that weakly gauging

a global symmetry of a particular conformal field theory (CFT) results in a light dilaton.

In SUSY gauge theories the R-current can mix with any global U(1), but if the theory

is also a CFT then there is a unique combination that enters the superconformal algebra

and fixes the dimension of an operator O in terms of its superconformal R-charge:

∆ (O) =
3

2
Rsc (O) . (1.1)

This is a useful tool in obtaining the edges of the “conformal window”. The unique, anomaly

free R-charge for quarks in supersymmetric QCD (SQCD) is given by R (Q) = 1−N/F , this

tells us that if we want free quarks, meaning quarks which have ∆ (Q) = 1 this requires that

F = 3N . Using Seiberg duality, to write down a theory of composite mesons we can simi-

larly reason that for a dual theory of free mesons F = 3N/2; this gives us the bounds on the

conformal window, 3N ≥ F ≥ 3N/2. Identifying the mesons in the magnetic theory with

bilinears of quarks in the electric theory we see that the R-charge of the meson receives cor-

rections associated with the anomalous dimension of the quarks at the infrared fixed point.

R(M) =
2

3
(2 + γ∗) (1.2)

When the meson of a conformal SQCD theory gets a VEV in the moduli space of

vacua, it plays the role of a massless dilaton. The natural question this raises is: can we

introduce additional, almost marginal, interactions that change the anomalous dimensions

of the quarks, such that we can find a unique vacuum, as in the Contino-Pomarol-Rattazzi

mechanism, where the meson is a light dilaton? We will see that by gauging a subgroup of

the flavor symmetry in SQCD this can indeed be accomplished.

In this paper we examine the almost marginal breaking of conformal symmetry by

weakly gauging (with strength g′) a flavor subgroup of SQCD. We show that while this

does cause singlet mesons in the magnetic theory to approach the unitarity bound, ∆ ≥ 1,

this theory does not have a stable vacuum. We then introduce soft SUSY breaking in order

to stabilize the vacuum and via the method of analytic continuation in superspace compute

the dilaton mass. We find that there is a soft mass induced at first order in g′2 due to

the one-loop running of the SUSY breaking mass which is the leading effect for a range of

SUSY breaking masses.

This paper is organized as follows. First, in section 2, we discuss the weakly gauged

version of SQCD and its dual; we then examine the RG flow of dual couplings at the

bottom edge of the conformal window, and find how the fixed point values for the Yukawa

couplings depend on g′. In section 3 we review the method of analytic continuation in

superspace, and use it to compute the vacuum state and the dilaton mass, which arises at

O
(

g′2
)

. In an appendix we list the renormalization group equations (RGEs) for weakly

gauged SQCD as well as the fixed point solutions at F = 3N/2.
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2 Weakly gauged SQCD and its dual

2.1 Review of SQCD

First we will briefly review the dual description of SQCD for F > N + 1. The matter

content for SQCD with N colors is given by the table below:

SU (N) SU (F ) SU (F ) U (1)B U (1)R

Q � � 1 1 F−N
F

Q � 1 � -1 F−N
F

. (2.1)

The R charge assignments are fixed by requiring that the anomaly associated with the

insertion of one R current and two gauge currents vanishes. This theory is asymptotically

free in the UV for F < 3N , and it becomes strongly coupled at an intrinsic scale Λ. A

low-energy effective description is available to us through the use of Seiberg duality [13, 14].

The matter content of the IR theory is:

SU (F −N) SU (F ) SU (F ) U (1)B U (1)R

q � � 1 N
F−N

N
F

q � 1 � − N
F−N

N
F

M 1 � � 0 2F−N
F

. (2.2)

This theory contains dual, or “magnetic”, quarks charged under the SU (F −N) as well as

meson fields identified with the quark bilinear M i
j = Q

i
nQ

n
j . This theory admits a unique

superpotential

W = λ qMq , (2.3)

where λ is the Yukawa coupling between dual quarks and mesons. For 3N ≥ F ≥ 3N/2 the

couplings approaches IR fixed points. For sufficiently small F this theory is weakly coupled

in the IR, and becomes strongly coupled at higher energies near the intrinsic scale Λ.

2.2 Weakly gauged SQCD

We now want to gauge a vector-like SU (N ′) subgroup of the SU (F ) × SU (F ) flavor

symmetry. Gauging a subgroup of the flavor symmetry will split the quarks into Q and

Q′. The charge assignments are given in the table below:

SU (N) SU (N ′) SU (F −N ′) SU (F −N ′) U (1)R

Q � 1 � 1 1 + N ′2−N2

N(F−N ′)

Q � 1 1 � 1 + N ′2−N2

N(F−N ′)

Q′
� � 1 1 N−N ′

N

Q
′

� � 1 1 N−N ′

N

. (2.4)

The U (1)R charges are assigned to make both gauge anomalies of the R-current vanish.

There are two additional U (1) anomaly free charges. One is just a baryon number under
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which all quarks have positive charge and all anti-quarks have a negative charge. The other

is a subgroup of the SU(F ) × SU(F ) flavor symmetry that is left-over after gauging the

vector-like SU (N ′) subgroup. The additional U(1)’s have been omitted from the table for

the sake of brevity. We now want to write down a weakly coupled dual description of this

theory, using Seiberg duality [13, 14], which will have five kinds of mesons made out of all

possible combinations of quarks and anti-quarks:

M i
j = Q

in
Qnj , M ′ k

ℓ = Q
′kpn

Q′
npℓ , (2.5)

M ′
�p = Q

in
Q′

npℓ , M ′p

�
= Q

′kpn
Qnj (2.6)

M ′
A = Q

′ipn
(T a)rpQ

′
nrj . (2.7)

where n = 1 . . . N is an SU(N) index, p, r = 1 . . . N ′ are SU(N ′) indices, and T a is a

generator of SU (N ′). For N < N ′, at a generic point on the mesonic branch of the moduli

space the gauge symmetry is broken fromSU(N) × SU(N ′) → SU(N) and the that are

F 2−N
′2+1 massless chiral superfields. In other words the moduli space is parameterized

by M , M ′, M ′
�
, and M ′

�
, while M ′

A is eaten. We will see later that the restriction to

N < N ′ is essential. The weakly coupled dual description of this theory is:

SU (F −N) SU (N ′) SU (F −N ′) SU (F −N ′) U (1)R

q � 1 � 1 N ′2−N2

N(F−N ′)

q � 1 1 �
N ′2−N2

N(F−N ′)

q′ � � 1 1 N ′

N

q′ � � 1 1 N ′

N

M 1 1 � � 2
(

1 + N ′2−N2

N(F−N ′)

)

M ′ 1 1 1 1 2N−N ′

N

M ′
�

1 � � 1 2− N ′

N + N ′2−N2

N(F−N ′)

M ′
�

1 � 1 � 2− N ′

N + N ′2−N2

N(F−N ′)

M ′
A 1 Adj 1 1 2N−N ′

N

.

(2.8)

This dual theory admits a unique superpotential:

W = λ1qqM + λ2qq
′M ′

� + λ3q
′qM ′

�
+ λ4q

′q′M ′ + λ5

(

q′T aq′
)

M ′a
A . (2.9)

In the limit of g′ → 0, we should find that all the Yukawa couplings are equal as in (2.3).

2.3 RG analysis

We want to examine the space of couplings (g, λi) with g′ kept perturbative, meaning

that we assume2 its strong couling scale Λ′ is much smaller that any other scale we are

interested in. With the number of flavors, F , close to 3N/2 the IR couplings (g, λi) are

also perturbative. We derive the RGEs, following ref. [19]. The superpotential is not

2We could also add spectators that only have SU(N ′) gauge couplings, if needed to adjust the β function.
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renormalized, so we only need to compute wavefunction renormalization. If we are exactly

at the fixed fixed point then the coupling will, of course, not run. For example, this implies

λ1 (µ) = λ1 (µ0)Z
− 1

2
q Z

− 1

2

q Z
− 1

2
m = λ1∗ (2.10)

Here the wavefunction renormalization factors are given by the following expressions:

Zq = 1 +

(

g2

8π2
2C2 (�)−

λ2
1

8π2

(

F −N ′
)

−
λ2
2

8π2
N ′

)

log
µ

µ0
, (2.11)

Zq = 1 +

(

g2

8π2
2C2 (�)−

λ2
1

8π2

(

F −N ′
)

−
λ2
3

8π2
N ′

)

log
µ

µ0
, (2.12)

Zm = 1−
λ2
1

8π2
(F −N) log

µ

µ0
. (2.13)

These wavefunction renormalization factors lead to the RGE:3

d

d lnµ
λ2
1 =

λ2
1

8π2

(

2λ2
1

(

F −N ′
)

+ λ2
2N

′ + λ2
3N

′ + λ2
1 (F −N)− 2g2 2C2 (�)

)

. (2.14)

It is useful, as a sanity check, to take the g′ → 0 limit where all of the Yukawa couplings

must be equal, and the RGE must be independent of N ′. Taking this limit we see that the

RGE is in fact independent of N ′ and agrees with the known result [19]:

d

d lnµ
λ2 =

λ2

8π2

(

2λ2F + λ2 (F −N)− 2g2 2C2 (�)
)

. (2.15)

Having obtained the RGEs, we can, for choices of (N,F,N ′), compute the value of the

fixed points as a function of g′. We find generically that for F ≥ 3N/2 the only Yukawa

couplings which vanish for a given value of g′ are those associated with the singlet mesons,

M and M ′. Thus these mesons can become free fields, or in other words they can reach

their unitarity bound. The singlet meson made out of the Q′s, M ′, always hits the unitarity

bound first; first, in this context, meaning for smaller values of g′. The solutions for the

fixed points are of the form:

λ2
i∗ = λ2

∗(g
′ = 0) + ai g

′2 (2.16)

Where λ∗(g
′ = 0) is the fixed point value of the Yukawa coupling in the absence of the

coupling g′. The presence of g′ splits the fixed point values of the Yukawa couplings, and

the fixed point values vary with g′. The meson with a Yukawa coupling with the largest

negative ai will be the first to hit the unitarity bound as g′ increases. We are assuming

that g′ is asymptotically free, so that (slowly) increasing g′ is associated with RG running

to lower energy scales.

2.4 Vacua

We now want to examine the space of vacua of this theory. We can introduce a VEV for the

scalar component of M ′, which we will ultimately identify with the dilaton, and investigate

3The complete set of RGEs are in appendix A.
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the theory below the scale of the M ′ VEV. This VEV generates a mass for the dual quarks,

q′ and q′. At scales below the VEV of M ′ these dual quarks can be integrated out of the

theory. We then have a low-energy effective theory with two gauge groups, SU (F −N)

with F −N ′ flavors, and SU (N ′) with an adjoint and F −N ′ flavors. To find the vacuum

note that for N < N ′ the SU(N ′) gauge group of our original theory (2.8) has more flavors

than colors, so an ADS superpotential is generated and the vacuum runs away: M ′ → ∞.

This runaway vacuum signals the breakdown of our effective theory since we cannot trust

the IR dual at large VEVs. In order to stabilize the vacuum at small VEVs we will have

to include a small soft SUSY breaking mass. One may have expected this since if SUSY is

unbroken then there is no cosmological constant and thus no potential for a dilaton without

conformal breaking. In which case the dilaton cannot be stabilized. Either spontaneous or

explicit SUSY breaking is needed (for an example with spontaneous SUSY breaking based

on the 3-2 model see [15]). Equivalently, with unbroken SUSY a dilaton must be massless

with a flat potential. In the next section we will include soft SUSY breaking, which we will

see can stabilize the vacuum at small VEVs.

3 Analytic continuation in superspace

We next want to include soft SUSY breaking in the dual theory via the method of analytic

continuation in superspace [16–18] in the presence of parametrically small SUSY breaking

mass terms. To do this we introduce non-vanishing F and D-term SUSY breaking spurions,

and compute soft masses in this SUSY breaking background. We first briefly review this

formalism in SQCD, closely following the discussion in [21]. The action for SQCD in the

UV is given by:

L =

∫

d4θ Q†ZeV Q+

∫

d2θ U WαWα . (3.1)

We can introduce SUSY breaking spurions given by scalar and gaugino masses in the

following way:

Z = Z
(

1− θ2θ̄2m2
UV

)

, (3.2)

U =
1

2g2
− i

θYM

16π2
+ θ2

mλ

g2
. (3.3)

The holomorphic scale associated with this theory is related to U by

Λh = µ e−
16π

2

b
U(µ) . (3.4)

We will be interested in the case where mUV , mλ ≪ Λ.

Now consider the action of anomalous rescalings on this theory. For the action to be

invariant under transformations Q → eAQ the wavefunction renormalization factor must

scale like a real vector superfield:

Z → e−(A+A†)Z . (3.5)

The holomorphic scale will also have a nontrivial transformation due to the axial anomaly:

Λh → e
2F

b
AΛh . (3.6)

– 6 –
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It is also convenient to introduce a redundant scale which is axially invariant:

Λ2 = Λ†
hZ

2F

b Λh . (3.7)

Mesons in the dual description are identified with quark bilinears in the electric theory.

This implies that the mesons in the IR theory transform under axial transformations as

M → e2AM . Imposing SUSY and axial invariance of the low energy action the Kähler

term for the meson is given by:

LK =

∫

d4θ
M †Z2M

Λ2
. (3.8)

Taylor expanding in superspace this gives the µ → 0 value of the meson mass. There are

nontrivial corrections at µ 6= 0 that we will discuss in the next section. We find the mass

of the meson given in terms of mUV is given by:

m2
M = 2

(

3N − 2F

3N − F

)

m2
UV (3.9)

We see at the bottom edge of the conformal window (F = 3N/2) there is no soft mass

associated with the meson. We now want to apply this type of analysis to weakly gauged

SQCD, including the effects of RG Evolution.

3.1 RG evolution of soft masses

We will need to evaluate soft masses at an arbitrary RG scale. In the electric description

of softly broken SQCD defined at a UV scale µ → ∞, SQCD is a free theory. As we lower

the RG scale, µ, we introduce corrections to the soft masses due to the presence of gauge

interactions. In the conformal window the corrections are fixed by anomalous dimensions.

Seiberg duality allows us to write down a low energy effective description of our theory

below the strong coupling scale Λ, at which the theories have to match. The mapping of soft

masses between UV and IR, without including anomalous dimensions given in eq. (3.9), is

correct when the UV theory is asymptotically free in the deep UV, and its dual, is IR free.

In our weakly gauged SQCD example, however, the IR theory flows to a non-trivial

fixed point, and in addition we are interested in renormalized masses at physical thresholds

rather than at µ = 0. Corrections to soft masses at arbitrary scales were computed in [18]

using the method of the superconformal compensator. The method of [18] is to couple

a SUSY gauge theory to a SUSY breaking supergravity background with a gauged R

symmetry via the superconformal compensator field φ. There are two U (1) symmetries in

this approach. In supergravity there is the gauged R symmetry, with a gauge field included

in the vector superfield VR. The current of this gauge symmetry is the lowest member of

the stress tensor supermultiplet. All matter fields have vanishing R charge under this

symmetry. There is another global R charge under which each matter field has charge R

and φ has charge R(φ) = −2
3 . The VEV of φ breaks these two U (1)s down to the diagonal

U (1) and it is this subgroup which corresponds to the usual anomaly free R charge. The

action, which is fixed by R-invariance is given by:

L =

∫

d4θ
(

φ†e−
2

3
VRφ

)(

Q†ZeV eVRRQ
)

+

∫

d2θUWαWα . (3.10)

– 7 –
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The SUSY breaking supergravity background associated with the vector superfield VR

and the superconformal compensator φ are given by:

VR = θ2θ̄2DR, φ = 1 + θ2Fφ . (3.11)

Regulating the theory necessarily introduces a scale, and this will introduce a nontrivial

dependence on φ through loops. It was pointed out in [18] that the additional dependence

on φ can be captured by shifting the RG scale in the following way:

µ2 → µ̂2 =
µ2

φ†e−
2

3
VRφ

. (3.12)

This identification feeds the SUSY breaking background information into the RG evolution.

Identifying the soft masses of these fields with the nonvanishing theta components of Z,

as in eq. (3.2), allows us to extract the SUSY breaking information by computing Z (µ̂).

In general Z can be written as the exponential of the integral of the anomalous di-

mension γ. The rescaling (3.12) introduces a change in the measure, d lnµ, of this integral

and the SUSY breaking information is fed in through this change of the measure. The full

analysis [18] yields:

m2 (µ) = − lnZ (µ̂) |
θ2θ

2=

(

2

3
−R−

1

3
γ

)

DR −
1

4

dγ

d lnµ
| Fφ |2 . (3.13)

Where γ = −d lnZ
d lnµ . We see that this agrees with results from SQCD in the conformal

window where R = 2
3 (2 + γ∗) and the fact that effects due to gauge interactions contribute

negatively to the R-charge of the meson. (This is what allows the dimension of meson

in the magnetic description of SQCD to reach the unitarity bound and for the meson to

become a free field.) Taking γ → 0 to relate the IR and UV masses, as in (3.9), we see

that we can identify the SUSY breaking parameters of the two approaches by

DR =
2F

b
m2

UV . (3.14)

3.2 Perturbatively generated mass

In SQCD below the scale Λ the anomalous dimension γ is O (1), and for sufficiently few

flavors γ is large enough that the meson hits the unitarity bound and becomes a free field.

By weakly gauging the flavor symmetry we have introduced two corrections to the mass

of the meson, as we can see from eq. (3.13). The first is that the anomalous dimension is

corrected by the presence of new gauge interactions giving a term of order g′2m2
UV . The

second is that with a non-zero mass we need to stop the RG evolution at µ∗ ∼ m(µ∗).

Dropping the |Fφ|
2 term for now, we find that meson mass is determined by its anomalous

dimension, which is a function of its Yukawa coupling:

m2
M ′(µ) = −

1

3

(

(F −N)
λ2
4 (µ)

8π2

)

2F

b
m2

UV (3.15)

To analyze contributions to the mass associated with the RG running we separate the

contributions to the mass into a g′ = 0 contribution, which is associated with the RG

– 8 –
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running, and the direct perturbative correction. We saw in section 2.3 that near the fixed

point, the couplings can be written as their g′ = 0 fixed point values and perturbative

corrections, thus

m2
M ′(µ) = −

(F −N)

3

(

λ2 (µ)

8π2
− a4

g′2(µ)

8π2

)

2F

b
m2

UV . (3.16)

In order to keep the equations relatively simple in the remainder of the paper we will work

in the large N limit with F = 3N/2. In appendix A we solve the RGEs at F in terms of

N and N ′, which gives

a4 =
(3N − 2N ′) (N ′ − 1)

(

4N
′2 −N (N ′ + 1)

)

3N3N ′
. (3.17)

Which leads to the mass of the meson M ′:

m2
M ′(µ)

m2
UV

= −
N

2

λ2 (µ)

8π2
+N a4

g′2(µ)

8π2
. (3.18)

Both of these terms come from the DR term in (3.13); we will see explicitly that the Fφ

term is subleading.

Next we want to find out when the first term in (3.18) is parametrically smaller than

the second, as a function of g′. To do this, we evaluate mM ′ at an RG scale given by the

perturbatively generated mass:

µ2
∗ = Na4

g′2

8π2
m2

UV . (3.19)

Now we need to compute approximate solutions to the RGEs4 of g and λ in the limit

g′ → 0. The RGEs associated with g and λ in dual SQCD (at large N) are given by:

dg2

d lnµ
= −

(

N

16π2

)2

g4
(

9λ2 − 3g2
)

, (3.20)

dλ2

d lnµ
=

N

16π2
λ2
(

7λ2 − 2g2
)

. (3.21)

It is easy to find approximate solutions with the boundary conditons g (Λ) → ∞ and

λ (Λ) → ∞, which means that, near the matching scale, the dual gauge coupling, and the

Yukawa coupling both become very large. The approximate solutions are:

g2 (µ) ≈
16π2

N

√

7

6 log Λ
µ

(3.22)

λ2 (µ) ≈
2

7
g2 (µ) +

3

14

N

16π2
g (µ)4 (3.23)

Given these approximate solutions we can now compute the parametric dependence

of the various mass terms. We find that the RG running term in (3.18) is parametrically

given by

ln

(

Λ2

g′2m2
UV

)−1/2

, (3.24)

4The RGEs for the couplings of the dual of SQCD are discussed in appendix A.1.
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while the (so far ignored) |Fφ|
2 term is suppressed by

dγ

d lnµ
∼

(

log
Λ

µ

)−3/2

, (3.25)

since we are close to an IR fixed point, and so can be neglected even for m2
UV ∼ |Fφ|

2.

Now we can find a bound on mUV that ensures that the perturbative correction is the

dominant one:

λ2 (µ∗)m
2
UV < g′2a4m

2
UV . (3.26)

This gives us a bound on the scale of SUSY breaking relative to the strong scale, Λ,

associated with the original SU (N). The SUSY breaking mass parameter must obey the

following inequality if the perturbative correction is to be the largest contribution:

m2
UV < Λ2 8π2

a4Ng′2
e−64π4/21(a

M′N g′2)2 ≪ Λ2 . (3.27)

This tells us that the SUSY breaking mUV can be much smaller than the strong scale

associated with our original gauge theory, so that our supersymmetric calculations are still

under control. In this range the leading perturbative contribution to the mass of the meson

is indeed given by:

m2
M ′ ≈ N a4

g′2

8π2
m2

UV . (3.28)

Note that this mass squared is positive in a region approximately given by 1
2N < N ′ < 3

2N .

3.3 Meson mass and vacuum

As we have seen, a small soft SUSY breaking mass for the original quarks generates a

mass for the meson, now we also want to see that this stabilizes the vacuum as well. The

potential is given by the sum of two terms, the first comes from the ADS term in the

superpotential (after rescaling to canonical normalization as in (3.8). (There will also be

quartic terms generated by soft SUSY breaking, but these will be subdominant for small

VEVs.) The second term in the potential is the mass term for the meson. Thus we want

to find the vacuum given the following form of the potential:

V (M) =
1

Λ′ 2M ′ 2

(

Λ′ 3N ′−2N

M ′N

)
2

N′−N

+N a4
g′2

8π2
m2

UV M
′2 . (3.29)

The VEV associated with the meson M ′ is given by the minimum of this potential:

〈M ′〉 =

(

8π2N N ′

(N ′ −N) a4 g′2

)

N
′−N

4N′−N

(

Λ′ 3N ′−2N

mN ′−N
UV

)
1

2N′−N

. (3.30)

We see that there is a clear hierarchy of scales within this theory:

Λ′2 ≪ 〈M ′〉2 ≪ Λ2 . (3.31)

We also note that the vacuum energy is parametrically small:

V ∼ g′ 2
(

m2N ′

UV Λ′ 6N ′−4N
)

1

2N′−N

. (3.32)
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3.4 Quark masses

We can also compute the mass of the dual quarks, q′. There are two contributions, one

is computed directly from the anomalous dimension, as we did for the meson, the second

contribution is a mass term generated by the superpotential through the meson VEV:

m2
q′ = −

1

3
γq′

2F

b
m2

UV + | λ4 |
2| 〈M〉 |2 . (3.33)

The anomalous dimension in terms of the Yukawa couplings and the dual gauge couplings

the mass becomes:

γq′ =

(

(

F −N ′
) λ2

3

8π2
+

λ2
4

8π2
+
(

N ′ − 1
) λ2

5

8π2
−

g2

8π2

N2 − 1

N
−

g′2

8π2

N ′2 − 1

N ′

)

. (3.34)

In terms of the coefficient functions from the RGE this expression is given by:

γq′ =
g′2

8π2

(

(

F −N ′
)

a3 + a4 +
(

N ′ − 1
)

a5 − ag
N2 − 1

N
−

N ′2 − 1

N ′

)

. (3.35)

Inserting our solutions for F = 3
2N we arrive at an expression for the mass of the quarks:

m2
q′ = N

g
′2

8π2

(2N + 1) (3N − 2N ′) (N ′ − 1)
(

N (N ′ + 1)− 4N
′2
)

3N4N ′
m2

UV + | λ4 |
2 〈M〉2

(3.36)

In the region in which the meson mass squared is positive, which is approximately 1
2N <

N ′ < 3
2N , the first term is negative, so we need the second term to dominate in order avoid

further tachyons. This will put a constraint on the scales Λ′ and the soft SUSY breaking

scale mUV . The function of N and N ′ that appears in the first term is bounded below by

-2, while the coefficient a4 ∼ O (1). Requiring that the second term dominates we arrive

at the bound:

Λ
′3 >

√

N

6π2
g′m3

UV , (3.37)

which ensures that the vacuum is stable. Note that the M ′ VEV , which spontaneously

breaks the conformal symmetry also breaks the chiral symmetry of the quarks, and that

the leading contribution to the quark masses is proportional to the dilaton coupling, as we

expect from general considerations.

4 Conclusions

We have shown that in the context of softly broken and weakly gauged SQCD, at the

bottom edge of the conformal window, we can perturbatively generate soft masses for the

singlet meson of the weakly coupled IR dual. There is a range of parameters where the

leading contribution to the meson mass is the weak gauge coupling itself. Since this meson

can play the role of a dilaton in the pure SQCD case when it is set to some arbitrary VEV in

the moduli space of vacua, we can recognize that this is an example of a purely 4D strongly

coupled CFT that exhibits the Contino-Pomarol-Rattazzi mechanism: an almost confor-

mally invariant theory where the leading cause of conformal breaking is a perturbation
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by an almost marginal operator. This also provides a concrete example of the dynamics

conjectured in ref. [22], where weakly gauging the flavor symmetry of a non-SUSY CFT

leads to spontaneous chiral symmetry breaking. The introduction of soft SUSY breaking

masses is necessary to stabilize the vacuum and produce a finite, nonzero VEV for the

meson/dilaton in our SUSY example, otherwise the a dilaton could only correspond to a

massless flat direction. The meson VEV can be arranged to be larger than the intrinsic

scale of the perturbative gauge coupling, and much smaller than the intrinsic scale of the

strong interactions, so that all the calculations are self-consistent. While we have concen-

trated on the special case F = 3N/2, our arguments are quite general, mainly relying on

the weak coupling of the dual theory, so they can be easily extended some distance into

the conformal window, i.e. for large N with F = 3N/2 + ǫN . It would also be interest-

ing to apply the RG analysis of soft masses to phenomenological models of SUSY where

composites of strongly coupled gauge theories appear in the low-energy theory, as happens

in [21] where the top quark is actually a meson of strong dynamics and the stop mass is

small due to conformal sequestering, relying crucially on the condition F = 3N/2. In that

case the perturbing weak gauge coupling is actually QCD, and it will be interesting to also

consider the effects of the gluino mass, which tends to increase the stop mass.
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A Renormalization group equations

In this section we give the explicit form of the RGEs for the gauge coupling, and Yukawa

couplings in the magnetic theory. It is instructive to first look at the case in which g′ = 0

as this will give us a sanity check for our RGEs.

There are two couplings in the dual of SQCD, the gauge coupling associated with the

SU (F −N) gauge group, as well as the Yukawa coupling which couples the dual quarks

to the mesons. Rescaling the couplings, x = Ñ λ2

8π2 and y = Ñ g2

8π2 , where Ñ = F −N , we

find the RGEs for x and y at leading order:

dy

d lnµ
= −

y2

Ñ

(

3Ñ − F + x
F 2

Ñ
− Fy

(

1−
1

Ñ2

))

(A.1)

dx

d lnµ
= x

(

x

(

1 + 2
F

Ñ

)

− 2y

(

1−
1

Ñ2

))

(A.2)

In the RGE for the gauge coupling we have neglected the denominator in the NSVZ β-

function. As we are looking for weekly coupled fixed points this is not a crucial omission.

We now derive the RGEs associated with our weakly gauged version of SQCD. It is

very important, as a sanity check that when we turn off the additional gauge coupling that

all the RGEs reduce to their appropriate limit; that is, as g′ → 0 all the Yukawa couplings

become equal and should reduce to the above RGE for x. All RGEs should be independent
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of N ′ in this limit. We similarly rescale the couplings, making the identifications u = Ñ g2

8π2 ,

v = Ñ
λ2

1

8π2 , w = Ñ
λ2

2

8π2 , x = Ñ
λ2

3

8π2 , y = Ñ
λ2

4

8π2 , z = Ñ
λ2

5

8π2 and α′ = Ñ g′2

8π2

du

d lnµ
= −

u2

Ñ

(

3Ñ − F + v
(F −N ′)

2

Ñ
+ (x+ w)

(F −N ′)N ′

Ñ
+ y

N ′

Ñ
+ z

N ′ (N ′ − 1)

Ñ

)

(A.3)

−
u2

Ñ

(

−uF

(

1−
1

Ñ2

)

− α
N ′2 − 1

Ñ

)

dv

d lnµ
= v

(

v

(

1 + 2
F −N ′

Ñ

)

+ (x+ w)
N ′

Ñ
− 2u

(

1−
1

Ñ2

))

(A.4)

dw

d lnµ
= w

(

(v + x)
F −N ′

Ñ
+ w

(

1 +
N ′

Ñ

)

+
y

Ñ
+ z

N ′ − 1

Ñ
− 2u

(

1−
1

Ñ2

)

− α
N ′2 − 1

N ′Ñ

)

(A.5)

dx

d lnµ
=

dw

d lnµ
(w ↔ x) (A.6)

dy

d lnµ
= y

(

y

(

1 +
2

Ñ

)

+ 2z
N ′ − 1

Ñ
+ (x+ w)

F −N ′

Ñ
− 2u

(

1−
1

Ñ2

)

− 2α
N ′2 − 1

N ′Ñ

)

(A.7)

dz

d lnµ
= z

(

z

(

1 + 2
N ′ − 1

Ñ

)

+ 2
y

Ñ
+ (x+ w)

F −N ′

Ñ
− 2u

(

1−
1

Ñ2

)

− 2α
2N ′2 − 1

N ′Ñ

)

(A.8)

We also will list the solutions of the perturbative contributions to the fixed points of

the the RGE for F = 3
2N . The fixed point solutions are of the form u = u∗ + agα

′. For

F = 3
2N and g′ = 0 the fixed point value is zero, so all solutions are O (α′). The ai each

correspond to a fixed point solution, ag is the O (α′) correction to the fixed point value of

the dual gauge coupling, and each ai is for the Yukawa coupling associated with each meson.

ag =
4 (N ′ − 1)

(

4N
′2 −N (N ′ + 1)

)

3N (N2 − 4)
(A.9)

a1 =
2 (N ′ − 1)

(

4N
′2 −N (N ′ + 1)

)

3N3
(A.10)

a2 = a3 =
(3N − 4N ′) (N ′ − 1)

(

N (N ′ + 1)− 4N
′2
)

6N3N ′
(A.11)

a4 =
(3N − 2N ′) (N ′ − 1)

(

4N
′2 −N (N ′ + 1)

)

3N3N ′
(A.12)

a5 =

(

N3−4N ′
) (

8 (N ′−1)N3+2NN ′ (1+(6−7N ′)N ′)+3N2
(

5N ′2−1
))

3N4 (N2 − 4)N ′
(A.13)
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[15] B. Bellazzini, C. Csáki, J. Hubisz, J. Serra and J. Terning, A Higgslike dilaton,

Eur. Phys. J. C 73 (2013) 2333 [arXiv:1209.3299] [INSPIRE].

[16] N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops

from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005

[hep-ph/9803290] [INSPIRE].

[17] N. Arkani-Hamed and R. Rattazzi, Exact results for nonholomorphic masses in softly broken

supersymmetric gauge theories, Phys. Lett. B 454 (1999) 290 [hep-th/9804068] [INSPIRE].

[18] M.A. Luty and R. Rattazzi, Soft supersymmetry breaking in deformed moduli spaces,

conformal theories and N = 2 Yang-Mills theory, JHEP 11 (1999) 001 [hep-th/9908085]

[INSPIRE].
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