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1 Introduction

One of the aim in the subject of string phenomenology is to find out the true vacuum of

string theory which contains the standard model (SM) as the effective theory. Moreover,

in the framework of string models, the masses and mixing angles of the four-dimensional

(4D) chiral matter fields would be dynamically generated, although they are fundamental

parameters in the SM. It is then expected that the masses of quarks and leptons in the SM

are clues to find out the realistic string models by comparing the theoretical values with

the observed ones.

Since the coupling constants in the 4D effective theory, such as Yukawa couplings,

are determined by the overlap integrals of wavefunctions in the internal manifold such as

the Calabi-Yau (CY) manifold, they are affected by the geometrical structures behind the

4D spacetime. Therefore, we concentrate on the behaviors of matter wavefunctions on

some curved backgrounds in this paper. Such an approach to construct string models on
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various geometrical backgrounds would give us a guiding principle to determine the internal

geometry, especially the CY manifold.

In the type IIB string theory, the non-Abelian gauge groups appear from D-branes

whose low-energy effective action is described as the supersymmetric Yang-Mills (SYM)

theory. As one of the simplest setup, one usually considers the toroidal background. For

example, the authors of ref. [1] derived the wavefunctions for chiral matter zero-modes

and identified their degeneracy by employing the Yang-Mills fluxes on D-branes, that is,

magnetized D-branes.

It is then argued that the number of zero-modes are interpreted as that of generations

for the chiral matter fields, which is determined by the magnetic flux configurations. Be-

cause of the quasi-localized profiles of wavefunctions, one can obtain, e.g., a hierarchical

structure of the Yukawa couplings. Recently, it has been shown that the obtained Yukawa

couplings possess some discrete flavor symmetries [2, 3], especially in the ten-dimensional

(10D) SYM theory compactified on three factorized tori, T 2 × T 2 × T 2, with magnetic

fluxes [2–4] and it yields some semi-realistic patterns of quark and lepton masses and

mixing angles with supersymmetric [2–4] and non-supersymmetric [5] flux configurations.

On the other hand, there are some studies for the local magnetized D7-brane models

on the curved backgrounds such as P1, P1 × P1 and P2 [6] and the authors of ref. [6] show

the explicit matter wavefunctions. So far, the local models are considered to be embedded

in some global CY threefold. Since the analytical metric of any explicit CY threefold

is not known at the moment, it is a challenging issue to compute matter wavefunctions

analytically in a global model. In this paper, we try to evaluate them in a certain local

model on the conifold which may be embedded into some class of CY manifold.

In order to obtain the local description of chiral matters in an explicit CY manifold, we

adopt the Klebanov-Witten model in which the geometry is described by the AdS5 × T 1,1

due to the stack of a large number of D3-branes placed at the tip of conifold [7]. These

conical singularities are ubiquitous in string theory. For example, when a large number

of D3-branes are placed at the same point in the internal space, such conical singularities

appear due to the backreaction [8]. Also, a statistical analysis has shown such conical

singularities are common in the landscape of string theory [9]. As a local model included

in the Klebanov-Witten background, we consider the probe D7-branes which wrap the

certain cycles in the conifold, and study the matter wavefunctions living on them. When

the D-branes wrap some cycles, the stability of them can be verified by the existence of

the kappa-symmetry [10–13], which is a useful probe to search for the local calibrated

cycles. Since the kappa-symmetry is accompanied by the local supersymmetry on the

geometrical background, the wrapped D-branes preserve at least N = 1 supersymmetry.

These techniques are developed especially on the AdS5 × T 1,1 background in ref. [14].

By employing them, we will find the phenomenologically attractive D-brane models,

that is, spacetime filling ones, although the different D-brane configurations from those

we adopt have attracted lots of attention so far in the light of AdS/CFT correspondence.

(See for more details, e.g., refs. [14, 15].) Therefore, in this paper, we consider spacetime

filling D7-branes which wrap the supersymmetric four-cycles on AdS5 × T 1,1 and then

the magnetic fluxes are inserted from the phenomenological point of view. Then, the
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Dirac and Laplace equations in terms of the induced metric on D7-brane are analytically

solved, which lead to localized chiral zero-modes with certain degeneracies, yielding some

hierarchical structures in the low energy effective theory.

This paper is organized as follows. In section 2, we review the Klebanov-Witten model

and the kappa-symmetry. The decomposition of fields on D7-branes is also explained in this

section for a latter convenience. Then, the analytic solutions are derived in section 3 for

the Laplace and Dirac equations on D7-branes with magnetic fluxes. In section 4, we show

some phenomenological aspects of localized zero-modes in some effective descriptions with

five and four spacetime dimensions. Finally we conclude in section 5. The kappa-symmetry

condition is summarized in appendix A, and the explicit forms of spin connections relevant

to our analysis are shown in appendix B.

2 Supersymmetric brane probes on the conifold

In this section, we briefly review the supersymmetric embedding of D7-brane, which wrap a

certain four-cycle in compact Calabi-Yau three-fold in order to study the matter field wave-

function living on the D7-brane. As an illustrative model, we focus on the Klebanov-Witten

background caused by the stack of a large number of D3-branes, and introduce magnetized

D7-branes there, assuming the backreaction to the background spacetime is negligible.1 Al-

though the original Klebanov-Witten model is established on the non-compact Calabi-Yau

manifold, i.e., the conifold, we assume that the conifold is locally described in a certain

limit of some global Calabi-Yau manifold throughout this paper. The supersymmetric

embedding of D7-brane is ensured from the analysis of a local fermionic symmetry called

kappa-symmetry which implies that the D7-brane has at least N = 1 supersymmetry. Fi-

nally, we obtain the eight-dimensional (8D) SYM action as a low energy effective limit of

the Dirac-Born-Infeld action for the D7-brane.

2.1 Klebanov-Witten model

Before discussing the detail of the Klebanov-Witten model, we show the geometry of coni-

fold which is defined as the complex three-dimensional hypersurface in C4,

z1z2 − z3z4 = 0, (2.1)

in terms of the four holomorphic coordinates za, a = 1, 2, 3, 4 on C4. From the above

defining equation of the conifold, there is a conical singularity at the origin. It is well known

that the metric of the conifold is described as a cone metric of T 1,1, which is the one of

five-dimensional Sasaki-Einstein manifolds with cohomogenety one, and has homogeneous

metric on S2 × S3. The explicit form of a cone metric of T 1,1 is written as

ds2 = dr2 + r2ds2T 1,1 ,

ds2T 1,1 =
1

6

2
∑

i=1

(dθ2i + sin2 θidφ
2
i ) +

1

9

(

dψ +
2

∑

i=1

cos θidφi

)2

, (2.2)

1See for the backreaction of D7-brane, e.g., ref. [16].
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where r is the coordinate of AdS5, while θi, φi and ψ are the coordinates of T 1,1 with

0 ≤ θi < π, 0 ≤ φi < 2π and 0 ≤ ψ < 4π. Since the cone metric is Ricci-flat and Kähler as

can be seen in the definition of the Sasaki-Einstein manifolds, the conifold is a non-compact

Calabi-Yau manifold. As mentioned before, we assume the conifold is a local description

of certain Calabi-Yau threefold.

We proceed to review the type IIB supergravity solution, Klebanov-Witten model [7].

In this model, one starts with a stack of Nc D3-branes at the tip of conifold with gsNc ≫1,

where gs is the string coupling and Nc is the number of D3-branes. It causes the warped

geometry near the conical singularity, and then the ten-dimensional spacetime becomes

AdS5 × T 1,1 around the conical singularity supported by the Ramond-Ramond self-dual

five-form flux F (5). In the near-horizon limit, such supergravity solution is written as,

ds210 = h(r)−1/2d2x1,3 + h(r)1/2(dr2 + r2ds2T 1,1),

h(r) =
L4

r4
,

gsF
(5) = d4x ∧ dh−1 +Hodge dual,

L4 =
27

4
πgsNcα

′2, (2.3)

where α′ is the regge slope, dx21,3 is the line-element in the four-dimensional spacetime, h(r)

is the warp factor given by the backreactions of D3-branes. As discussed in section 4.3, a

construction method for global Calabi-Yau is known and one includes the situation that

the local conifold can be glued to the global compact Calabi-Yau manifold in the large

radius limit of r.

2.2 Kappa-symmetry for AdS5 × T 1,1

In this section, we focus on the spacetime filling D7-brane wrapping the non-trivial four-

cycle in the conifold2 and their worldvolume coordinates are denoted by

ξµ = (x0, x1, x2, x3, θ1, φ1, θ2, φ2), (2.4)

where θi, φi with i = 1, 2 are the coordinates of T 1,1 given in eq. (2.2). In general, BPS

configurations of the brane probe must satisfy the following condition for a worldvolume

kappa-symmetry,

Γκǫ = ǫ, (2.5)

where Γκ is the kappa-symmetry matrix,

Γκ = − i

8!
√−g

ǫµ1···µ8γµ1···µ8 , (2.6)

in the case of D7-brane, ǫ denotes Killing spinor for Klebanov-Witten background (2.4)

and γµ1···µ8 is the antisymmetrized product of the gamma matrices pull-backed into the

2We can also consider the spacetime filling D5-brane embedded in the conifold, where the induced metric

on the D5-brane is described by the projective space. In this case, wavefunction as well as the Yukawa

couplings are obtained in ref. [6].
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worldvolume of D7-brane. The explicit form of Killing spinors and kappa-symmetry matrix

in arbitrary dimensions are summarized in appendix A. The kappa-symmetry condition

ensures the invariance under the local supersymmetry transformations for dilatino and

gravitino. As discussed in ref. [14], the eq. (2.5) is solved in such a way that the transverse

position of the D7-brane expressed by r and ψ changes depending on its worldvolume

coordinates θi and φi with i = 1, 2 as

r3 =
c2

(

sin θ1
2

)n1+1 (

cos θ12

)1−n1
(

sin θ2
2

)n2+1 (

cos θ22

)1−n2
,

ψ = n1φ1 + n2φ2 + const., (2.7)

where n1 and n2 are integers and c is a constant, which determine the allowed region in the

direction of AdS5 [14]. In eq. (2.7), r is the specific function of the angles θi implying a non-

zero minimal value of r for |ni| ≤ 1 with i = 1, 2. On the other hand, when θi → 0 and/or

π, the radial direction r diverges and the D7-brane wrapping such four-cycle extends over

the non-compact direction of the conifold.

In general, the holomorphic coordinates za for a = 1, 2, 3, 4 appeared in eq. (2.1) can

be written in terms of the worldvolume coordinates as

z1 = r3/2e
i
2
(ψ−φ1−φ2) sin

θ1
2
sin

θ2
2
, z2 = r3/2e

i
2
(ψ+φ1+φ2) cos

θ1
2
cos

θ2
2
,

z3 = r3/2e
i
2
(ψ+φ1−φ2) cos

θ1
2
sin

θ2
2
, z4 = r3/2e

i
2
(ψ−φ1+φ2) sin

θ1
2
cos

θ2
2
. (2.8)

Therefore the induced metric of the D7-brane,

ds2D7 =
1

6

2
∑

i=1

(dθ2i + sin2 θidφ
2
i ) +

1

9
(C1(θ1)dθ1 + C2(θ2)dθ2)

2

+
1

9
(C1(θ1) sin θ1dφ1 + C2(θ2) sin θ2dφ2)

2, (2.9)

where

Ci(θi) ≡
ni + cos θi

sin θi
(i = 1, 2), (2.10)

is rewritten in terms of the holomorphic coordinates za, that will be explicitly shown later

in eq. (3.3) for n1 = n2 = 1.

2.3 Mode expansions and dimensional reduction

In this subsection, we describe mode expansions of scalars, spinors and vectors with respect

to the internal coordinates following ref. [6]. We first consider the 10D U(N) SYM as a

low energy effective theory of D9-branes. The Lagrangian density is written as

L10D = − 1

4g2
Tr{FMNFMN}+

i

2g2
Tr{λ̄ΓMDMλ}, (2.11)

where λ is the Majorana-Weyl spinor, g is the gauge coupling, M,N = 0, . . . , 9 and the

trace is denoted for the adjoint representation of U(N) gauge group. The field strength

and covariant derivative are defined as

FMN = ∂MAN − ∂NAM − i[AM , AN ],

DMλ = ∂Mλ− i[AM , λ]. (2.12)

– 5 –



J
H
E
P
0
7
(
2
0
1
6
)
0
5
4

We can derive the 8D SYM action for the spacetime filling D7-brane, reduced from the 10D

one. The dimensional reduction from 10D to 8D is achieved by integrating the functions

depend on transverse coordinate out, then the 8D worldvolume effective action for a D7-

brane is obtained from the 10D one (2.11) for a D9-brane. From 10D to 8D, the gauge

boson AM is decomposed into a complex scalar φ, a 4D spacetime vector Aµ (µ = 0, 1, 2, 3)

and an extra-dimensional vector Am (m = 4, 5, 6, 7), those are mode-expanded as

φ(x, x′) =
∞
∑

i=−∞

φ(i)(x)Φ(i)(x′),

Aµ(x, x
′) =

∞
∑

i=−∞

A(i)
µ (x)A(i)(x′),

Am(x, x
′) =

∞
∑

i=−∞

φ(i)
m (x)A(i)

m (x′), (2.13)

where x is the 4D Minkowski spacetime coordinate and x′ is the extra-dimensional coordi-

nate on the D7-brane worldvolume, respectively.

Next, in order to describe the mode expansion of the spinor field, we take the 10D

gamma matrices as shown in ref. [6],

Γµ = γµ ⊗ 1 ⊗ 1, Γm = γ5 ⊗ γ̃m−3 ⊗ 1, Γp = γ5 ⊗ γ̃5 ⊗ τp, (2.14)

where p = 8, 9. The 4D Minkowski gamma matrices are expressed as

γ0 =

(

0 −1

1 0

)

, γ1 =

(

0 σx

σx 0

)

, γ2 =

(

0 σy

σy 0

)

, γ3 =

(

0 σz

σz 0

)

, (2.15)

and then γ5 = iγ0γ1γ2γ3. On the other hand, the Euclidean gamma matrices for the

internal coordinates of D7-brane are

γ̃1 =

(

0 −i1

i1 0

)

, γ̃2 =

(

0 σz

σz 0

)

, γ̃3 =

(

0 σx

σx 0

)

, γ̃4 =

(

0 σy

σy 0

)

, (2.16)

and in this case γ̃5 = γ̃1γ̃2γ̃3γ̃4. The other directions described by the Pauli matrices,

τ8 = σx and τ9 = σy.

In this notation, the 10D Majorana-Weyl spinor λ can be decomposed as

λ = (λ1 + λ4)⊕ (λ2 + λ3), (2.17)

where

λ1 = ξ+1 (x)ψ
+
1 (x

′)θ+1 (u),

λ2 = ξ+2 (x)ψ
−
2 (x

′)θ−2 (u),

λ3 = ξ−3 (x)ψ
−
3 (x

′)θ+3 (u),

λ4 = ξ−4 (x)ψ
+
4 (x

′)θ−4 (u), (2.18)
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u is the transverse coordinate to the D7-brane, and the signs in the subscript of each

factor express the chirality of spinor component the factor is contained with respect to the

space(time) it feels. In the dimensional reduction from 10D to 8D as in the bosonic case,

we assume the third factors in eq. (2.18) which depend on the transverse coordinate u to

the D7-brane are treated as constants in this paper.

The 10D gauge coupling is contained in the second term of eq. (2.11) with the covariant

derivative of eq. (2.12) such as

∫

d10x{λ̄Γ0ΓM [AM , λ]}, (2.19)

which leads to the 4D Yukawa coupling for the transverse vector Ap and/or the internal

vector Am, via the overlap integral of the extra dimensional factors shown in eqs. (2.13)

and (2.18). For more details, see ref. [6] and references therein.

Since the SYM gauge fields are represented by adjoint matrices of U(N), we denote

them as Φab with the U(N) index a, b = 1, · · · , N . If the magnetic fluxes are turned on

for the U(1) subgroups, the original U(N) breaks down to U(N1) × U(N2) × · · · × U(Nn)

with N = N1 + N2 + · · · + Nn, and bifundamental representations of the product groups

appear from the off-diagonal components of Φab. For example, when the flux Fab ∝
diag(m1, . . . ,mN ) with m1 = · · · = mN1 ≡ M(N1) and mN1+1 = · · · = mN ≡ M(N2) is

turned on for the U(1) subgroup of U(N1 +N2), it induces the gauge symmetry breaking

U(N1+N2) → U(N1)×U(N2) and bifundamental fields (N1, N̄2), (N̄1,N2) are generated.

In the Laplace and Dirac equations, the bifundamental field (N1, N̄2) ((N̄1,N2)) feels

M(N1) −M(N2) (M(N2) −M(N1)) units of flux. Then, as in the case of magnetized tori [1],

we expect the appearance of multiple chiral zero-modes, whose degree of degeneracy are de-

termined by the number of flux themselves, are identified as the generation of matter fields.

3 Wavefunctions on the D7-branes with magnetic fluxes

In this paper, we restrict ourselves to the case (n1, n2) = (1, 1), for simplicity and the

extension to the general integers n1 and n2 is straightforward. From eq. (2.7) with n1 =

n2 = 1, the transverse position of the D7-brane expressed by coordinates r and ψ are

dependent to its internal coordinates θi and φi as

r3 =

(

c

sin θ1
2 sin θ2

2

)2

,

ψ = φ1 + φ2, (3.1)

in other words, it corresponds to the case that the D7-brane is spreading on the z1 = c

plane with the holomorphic coordinates shown in eq. (2.8). In this case the worldvolume

coordinates of D7-brane are z3 and z4, those are expressed as

z3 = c cot
θ1
2
eiφ1 , z4 = c cot

θ2
2
eiφ2 . (3.2)

– 7 –
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By substituting eq. (3.1) into eq. (2.9), the induced metric is given by

ds2D7 =
4(|z3|2 + 3

2c
2)

9(|z3|2 + c2)2
|dz3|2 +

4(|z4|2 + 3
2c

2)

9(|z4|2 + c2)2
|dz4|2 +

4(z̄3z4dz3dz̄4 + z3z̄4dz̄3dz4)

9(|z3|2 + c2)(|z4|2 + c2)
. (3.3)

Note that from eq. (3.1),

r3 =
(|z3|2 + c2)(|z4|2 + c2)

c2
, (3.4)

the radial coordinate r has a non-zero minimal value rmin = c2/3 in the limit |z3|, |z4| → 0 as

we mentioned before. However, r diverges in the large radius limit |z3|, |z4| → ∞, because

the D7-brane extends to the region of global Calabi-Yau manifold, which is outside the

boundary of near horizon limit. In what follows, we assume that the volume of D7-brane

is almost determined by the four-cycle in the near horizon limit. Therefore, we define the

finite value zmax as the boundary of near-horizon limit. In the limit |z3|, |z4| −→ |zmax|,
the radial coordinate r reaches rmax = L3 =

(|zmax|2 + c2)2

c2
.3

On the D7-brane, the Kähler form is given by pulling back from the original one in 10D,

J = igij̄dz
i ∧ dz̄j̄

= −1

6
Q1Ω11 −

1

6
Q2Ω22 −

1

9
cot

θ1
2
cot

θ2
2
(Ω12 +Ω21) , (3.5)

where

gij̄ =
c2

3(|zi|2 + c2)2
δij̄ +

2

9

(

z̄i
|zi|2 + c2

)(

zj
|zj |2 + c2

)

, (3.6)

and

Qi =
3

2
+ cot2

θi
2
,

Ωij = dθi ∧ sin θjdφj . (3.7)

As discussed in the introduction, we introduce the two-form fluxes satisfying the Bianchi

identity, i.e.,

F = M1Q1Ω11 +M2Q2Ω22, (3.8)

which are quantized on the basis of two-cycles (θi, φi) as

∫

(θ1,φ1)
F = 2πM1V1 =: 2πN1,

∫

(θ2,φ2)
F = 2πM2V2 =: 2πN2, (3.9)

with the volumes V1 and V2 of local two-cycles in the D7-brane given by

V1 =
L2

9

∫ π

θmin
1

dθ1 sin θ1Q1, V2 =
L2

9

∫ π

θmin
2

dθ2 sin θ2Q2, (3.10)

3Now it is assumed the maxima of z3 and z4 are the same as each other, for simplicity.
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where θmin
1 and θmin

2 are determined by |z3| = |z4| = |zmax| with eq. (3.2) as mentioned

before. The Dirac quantization condition requires Mi = Ni/Vi (Ni ∈ Z) with i = 1, 2 and

the explicit forms of the field strengths are

Fz3z̄3 = −2iM1
|z3|2 + 3

2c
2

(|z3|2 + c2)
, Fz4z̄4 = −2iM2

|z4|2 + 3
2c

2

(|z4|2 + c2)
, (3.11)

those are supplied by

A = iM1

(

− c2

2z3(|z3|2 + c2)
+

1

z3
ln(|z3|2 + c2)

)

dz3

−iM1

(

− c2

2z̄3(|z3|2 + c2)
+

1

z̄3
ln(|z3|2 + c2)

)

dz̄3

+iM2

(

− c2

2z4(|z4|2 + c2)
+

1

z4
ln(|z4|2 + c2)

)

dz4

−iM2

(

− c2

2z̄4(|z4|2 + c2)
+

1

z̄4
ln(|z4|2 + c2)

)

dz̄4. (3.12)

As for the two-form fluxes (3.8), there are two possibilities to satisfy the supersymmet-

ric condition along the D-flat direction. First case is the supersymmetric fluxes
∫

J∧F = 0

without any vacuum expectation values (VEVs) of matter fields, that is, M1 = −M2

for the same size of local two-cycles V1 = V2 in the D7-brane. Second case is the non-

supersymmetric fluxes
∫

J ∧ F 6= 0, i.e., M1 6= −M2 for V1 = V2, which are expected

(assumed) to be canceled by some non-vanishing VEVs of charged scalar fields under the

fluxed U(1) symmetry. In the following, we consider these two supersymmetric cases.

Along the line of ref. [6], we solve the equations of motion for scalars and fermions in

the next subsections. Before going to the detail of them, in the following, we comment

on a shift of the number of magnetic fluxes, referred to as twisting, that encodes possible

curvature effects in transverse directions to D-branes. The equation of motion for the scalar

mode obeys the Laplace equation,

− D̃mD̃
mΦ = m2Φ, (3.13)

where D̃m is the covariant derivative, D̃mΦ = ∇mΦ − i[Am,Φ]. One of scalar modes for

the extra-dimensional space comes from the 4D gauge fields (vector degree of freedom in

Minkowski spacetime) of the D7-branes and it has a value in the tangent bundle of the

D7-brane. The other is coming from the transverse scalar mode (position moduli) which

has a value in the normal bundle. The dimensional reduction of the maximal SYM theory

from 10D to 8D preserving the supersymmetry decomposes its field contents to an 8D

gauge boson, a gaugino, a complex scalar and its superpartner fermion. In flat space, these

transform under the representation for SO(3, 1)× SO(4)×U(1)R and fermions have ±1/2

charge under U(1)R. The new central U(1) charge embedded in SO(4) in general gives

rise to the twisted SYM theory on the D7-branes [17], in order to allow the four scalar

superchages in 4D Minkowski spacetime. In our case, these isometies are determined by the

way of locating D7-branes in the conifold shown in eq. (2.7). When a nontrivial curvature
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of the normal bundle exists, there appears an additional effect in the covariant derivatives

and the equations of motion are modified. The additional terms are proportional to the

Kähler form which consequently shift the effective number of magnetic fluxes felt by each

field. Such effects are called twisting.

On the other hand, the vector modes in the extra-dimensional space, called the internal

vector modes (Wilson-line moduli), correspond to the scalar degrees of freedom in 4D

Minkowski spacetime. Their equations of motion are extracted as

D̃mD̃
mΦn + 2iFm

nΦm − [∇m,∇n]Φn = −m2Φm, (3.14)

from which we find these modes do not receive the twisting due to the structure of the

tangent bundle.

Finally, the equation of motion for the fermion obey the Dirac equation,

ΓmD̃mΨ = 0, (3.15)

where the covariant derivative D̃m includes the spin connection term. The fermionic modes

are also affected by the twist, i.e., the shift of magnetic flux.

In this paper, we start from 10D SYM action (2.11) and dimensionally reduce it to

8D one on the D7-brane which should preserve a supersymmetry ensured by the kappa-

symmetry. We do not identify the explicit forms of twisting for fields on D7-branes (2.13)

and (2.18) in the AdS5 × T 1,1 local spacetime around the tip of conifold, but show the

shifts of magnetic fluxes which realize the supersymmetric spectrum in our local model.

(See table 1.) Then we count the numbers of zero-modes which localize toward the tip

by adopting the effect of the twisting in each sector and study their wavefunctions in the

conifold region. Because our analysis is valid only in such a region inside the boundary of

near horizon limit, in the following, we just abandon the other zero-modes which localize

toward the opposite side to the tip of conifold, and focus on analyses for those localize

toward the tip. Note that, when the conifold is embedded into a global CY space, the

fields localize against the tip should be in general affected by the detailed structure of CY.

Furthermore, it might be also possible that the embedding yields new zero-modes outside

the boundary of near horizon limit. Since D7-branes are located in a kappa-symmetric

way in the local conifold region, the structure of 4D N = 1 supersymmetry would be also

captured by focusing on the massless bosons and fermions as analyzed later.

3.1 Bosons

3.1.1 Transverse scalar modes

We first analyze the wavefuntions of untwisted scalar modes without considering the curva-

ture effects contained in ∇, as we mentioned below eq. (3.13). It is interpreted that those

effectively shift the number of fluxes which is discussed later. The scalar spectrum for

the extra-dimensional part on the D7-brane, transverse scalar mode and Minkowski vector

mode are derived by solving the Laplace equation,

− gmnDmDnΦ = −2
∑

i,j=3,4

gziz̄jDziDz̄jΦ−
∑

i,j=3,4

gz̄izj [Dz̄i , Dzj ]Φ = m2Φ, (3.16)
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where Dzi = ∂zi − iAzi is the covariant derivative, Dz̄i is its Hermitian conjugate, and the

eigenvalue m2 corresponds to a mass-squared of the eigenmode. For the supersymmetric

fluxes, M1 = −M2, the term in eq. (3.16) with the commutator of Dz and Dz̄ satisfies

∑

i,j=3,4

gz̄izj [Dz̄i , Dzj ]Φ = −i
∑

i,j=3,4

gz̄izjFzj z̄iΦ = 0. (3.17)

On the other hand, for the non-supersymmetric cases, M1 6= −M2, the term (3.17) is

nonvanishing but it is canceled by the non-zero VEVs of some scalar fields at the Lagrangian

level, then subtracted from the mode equation (3.16). Therefore, in both cases, the equation

DziΦ = 0 or Dz̄iΦ = 0 (i = 3, 4) determines wavefunction for a massless zero-mode. Our

goal is obtaining the particular solution of them. (In local P2 model [6] with supersymmetric

fluxes, eq. (3.17) becomes non-zero and there is only massive scalar mode after twisting.)

By solving the parts of zero-mode equations Dz3Φ1 = 0, Dz̄3Φ2 = 0, Dz4Φ3 = 0 and

Dz̄4Φ4 = 0, we obtain

Φ1 = f(z̄3)e
M1

(

− ln c2 ln z3+Li2(−
|z3|

2

c2
)

)

(

z3
|z3|2 + c2

)

M1
2

,

Φ2 = g(z3)e
−M1

(

− ln c2 ln z̄3+Li2(−
|z3|

2

c2
)

)

(

z̄3
|z3|2 + c2

)−
M1
2

,

Φ3 = h(z̄4)e
M2

(

− ln c2 ln z4+Li2(−
|z4|

2

c2
)

)

(

z4
|z4|2 + c2

)

M2
2

,

Φ4 = k(z4)e
−M2

(

− ln c2 ln z̄4+Li2(−
|z4|

2

c2
)

)

(

z̄4
|z4|2 + c2

)−
M2
2

, (3.18)

where g(z3) and k(z4) (f(z̄3) and h(z̄4)) are holomorphic (anti-holomorphic) functions

constrained by the normalization of wavefunctions. In the exponents, Li2(z) represents the

dilogarithm (Spence) function defined by

Li2(z) = −
∫ 1

0

ln(1− zt)

t
dt, (3.19)

where z is a complex number, which has a cut along the real axis of z from 1 to∞. This sort

of integral is also employed in Feynman parameter integrals for a one-loop amplitude [18,

19]. Using two of four functions in eq. (3.18), we can construct two ansatzes, Φ = Φ1Φ3 or

Φ2Φ4, for the scalar wavefunction.

When we impose the periodic boundary condition Φ(θi, φi + 2π) = Φ(θi, φi), wave-

functions are proportional to the integer power of zi and/or z̄i. Therefore, the arbitrary

functions in eq. (3.18) are constrained as

f(z̄3) =
∑

p∈Z

Afp z̄
p+M1(− ln c2+1/2)
3 ,

g(z3) =
∑

p′∈Z

Agp′z
p′−M1(− ln c2+1/2)
3 ,
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h(z̄4) =
∑

q∈Z

Ahq z̄
q+M2(− ln c2+1/2)
4 ,

k(z4) =
∑

q′∈Z

Akq′z
q′−M2(− ln c2+1/2)
4 , (3.20)

where the integers p, p′, q, q′ and real constants Af,g,h,kp,p′,q,q′ are determined by the normaliza-

tion condition discussed later. By substituting eq. (3.20) to eq. (3.18), each mode of the

bosonic zero-mode wavefunctions Φ13,pq≡Φ1,pΦ3,q and Φ24,p′q′ ≡Φ2,p′Φ4,q′ is rewritten to be

Φ1,p = Afpe
M1Li2(−

|z3|
2

c2
) (|z3|2 + c2

)−
M1
2 |z3|2M1(− ln c2+1/2)z̄p3 ,

Φ2,p′ = Agp′e
−M1Li2(−

|z3|
2

c2
) (|z3|2 + c2

)

M1
2 |z3|−2M1(− ln c2+1/2)zp

′

3 ,

Φ3,q = Ahq e
M2Li2(−

|z4|
2

c2
) (|z4|2 + c2

)−
M2
2 |z4|2M2(− ln c2+1/2)z̄q4,

Φ4,q′ = Akq′e
−M2Li2(−

|z4|
2

c2
) (|z4|2 + c2

)

M2
2 |z4|−2M2(− ln c2+1/2)zq

′

4 . (3.21)

Since the different modes of wavefunctions Φ13,pq (Φ24,p′q′) are orthogonal to each other,

i.e.,
∫

dz23dz
2
4
√
gΦ†

13,p1q1
Φ13,p2q2 = 0 for p1 6= p2 or q1 6= q2 (similarly for Φ24,p′q′) due to the

periodicity, they are independent solutions for the Laplace equation (3.16) labelled by the

integers p, p′, q and q′. We will see below that the normalization and validity conditions of

wavefunctions in the conifold region restrict the allowed integers for p, p′, q and q′, and the

number of possible combinations of these integers corresponds to the degeneracy of zero-

modes, which is identified as the number of bosonic generations. The different types of nor-

malization conditions with and without fluxes are categorized into the following three cases.

• M1 = −M2 ≡ M 6= 0. First, we show the normalization of Φ13,pq with the

supersymmetric fluxes M1 = −M2 ≡ M 6= 0. The normalization condition is defined by
∫

d2z3d
2z4

√
gΦ†

13,piqi
Φ13,pjqj = δpipjδqiqj , (3.22)

which is explicitly calculated as

1 =
16π2c2

27
(Afp)

2(Ahq )
2

∫

dr3dr4e
2MLi2(−

r23
c2

)e−2MLi2(−
r24
c2

) 2r23 + 2r24 + 3c2

(r23 + c2)M+2(r24 + c2)−M+2

×r
2p+1+4M(− ln c2+1/2)
3 r

2q+1−4M(− ln c2+1/2)
4 . (3.23)

From the asymptotic expansion of the dilogarithm function in the limit r ≫ 1,

Li2

(

−r2

c2

)

≃ −π2

6
− 1

2

(

ln

(

r2

c2

))2

+O
(

c2

r2

)

, (3.24)

the factor e−2MLi2(−r24/c
2) (e2MLi2(−r23/c

2)) in the integrand of the eq. (3.23) diverges in the

limit r4 ≫ c (r3 ≫ c) if the flux M is chosen as a positive (negative) value. Therefore the

bosonic wavefunction with the supersymmetric flux is always non-normalizable. A similar

analysis can be performed for the other wavefunction Φ24,p′q′ , and the result is the same

as Φ13,pq.
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• M1 = M2 ≡ M 6= 0. In contrast to the supersymmetric fluxes, here we consider

the non-supersymmetric flux M1 = M2 ≡ M 6= 0, that is, the different sign of M2 in

eq. (3.8) from the supersymmetric one, such as

F = MQ1Ω11 +MQ2Ω22, (3.25)

which leads to the non-zero Fayet-Iliopoulos (FI) term. We assume such a non-vanishing FI

term is canceled by some VEVs of charged scalar fields under the fluxed U(1) symmetry.4

Because of the sign flip −M2 → M2 from the previous supersymmetric caseM1 = −M2 6= 0,

the bosonic wavefunction becomes normalizable as shown below.

At the beginning, we discuss about the upper bound of p and q to have normalizable

solutions, and next we show the lower bound of them. First of all, our analysis relies on

the approximation that the tail of wavefunction outside the boundary of near horizon limit

does not cause sizable effects. Thus, the wavefunction have to be localized around the

tip of cone, otherwise it cannot be controlled. The bosonic wavefunction in this case is

asymptotically given in the limit R = r3 = r4 ≫ c as

Φ̂13,pq ≡ 4πR(
√
g)1/2|Φ13,pq| ∝ Rp+q−4M ln c2−2e−M(ln(R2/c2))2

= Rp+q−2M ln(c2R2)−2c2M ln(R2/c2), (3.26)

by employing eq. (3.24) and then the extremal condition of Φ̂13,pq is achieved by the fol-

lowing relation,

p+ q − 2− 8M lnR∗ = 0, (3.27)

where R∗ represents the extremal point, around which the wavefunction localizes. In order

to obtain the localized wavefunction around the tip of cone, we require R∗ ≪
√

cL3/2 − c2,5

i.e.,

p+ q < 8M ln
√

cL3/2 − c2 + 2, (3.28)

which shows a validity condition of the bosonic wavefunction in the local conifold region.

With the typical parameters such as the string coupling gs and the number of D3-

branes Nc given by

gs = 0.1, Nc = 100, (3.29)

ensuring that the backreaction of D7-brane is negligible, the horizon scale L is taken as

7.3 ≤ L ≤ 146, (3.30)

in the unit of MPl = 1, within the range of the string scale Ms = 1/(2π
√
α′), 1016GeV ≤

Ms ≤ 2×1017GeV. For example, when we choose the string scale as Ms ≃ 1.08×1017GeV,

the validity condition (3.28) is evaluated as

p+ q < 2 + 0.8N (L ≃ 13.5), (3.31)

4As candidates for such charged fields, we can consider a Green-Schwarz field if the fluxed U(1) is anoma-

lous or bifundamental fields which are charged under both the focused U(1) and another U(1) appearing

from the other possible source. We assume that a backreaction of the present D7-brane configuration to

such VEVs are absent or negligible.
5rmax = L3 ≫

(R2

∗+c2)2

c2
.
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with c = 1 and quantized fluxes N = N1 = N2. The certain choice of L determines the

value of θmin and quantized fluxes N can be calculated by eq. (3.9).

On the other hand, the lower bounds of p and q are determined by the convergence

condition of the normalization factors derived from eq. (3.23) with the flipped sign of M2.

Around the origin of r3 and r4, the integrand of eq. (3.23) is asymptotically given by

c−4M−8(2r23 + 2r24 + 3c2)r
2p+1+4M(− ln c2+1/2)
3 r

2q+1+4M(− ln c2+1/2)
4 , (3.32)

and the normalizable bosonic wavefunction requires

p > −1− 2M

(

− ln c2 +
1

2

)

, q > −1− 2M

(

− ln c2 +
1

2

)

. (3.33)

For the string scale Ms ≃ 1.08× 1017GeV, the lower bounds (3.33) are expressed as

p > −1− 0.05N, q > −1− 0.05N (L ≃ 13.5). (3.34)

The existence of upper and lower bounds for p and q implies that there is finite number of

degenerate zero-modes, those are distinguished by different combinations of p and q from

each other allowed by the condition (3.31) and (3.34) with the fixed number of flux N .

To confirm the above statements, we exhibit the bosonic wavefunction Φ̂13,pq on the

R = r3 = r4 hypersurface as shown in figure 1, where the parameters are chosen as

c = 1, N = 1, L ≃ 13.5, Ms = 1.08× 1017GeV, (3.35)

in the unit MPl = 1 with the typical parameters (3.29) and normalization factors are

computed numerically. In figure 1, the wavefunctions drawn by the blue dot-dashed and

the red-solid curves are those out of control, because each one localizes outside the boundary

of near horizon limit, R∗ >
√

cL3/2 − c2 ≃ 7. Such an observation is consistent with the

above argument leading to eq. (3.27). Therefore, as shown in figure 1, in this case there are

fifteen independent zero-mode solutions, such as (p, q) = (±1,±1), (±1, 0), (0,±1), (0, 0),

(−1, 2), (−1, 3), (0, 2), (2,−1), (2, 0) and (3,−1), those yield fifteen generations of massless

scalars. A similar analysis for the other wavefunction Φ24,p′q′ but with the replacement

M2 → −M2 can be performed, and the result is the same as Φ13,pq.

Finally we focus on the effect of twisting. If the cycle wrapped D7-brane has nontrivial

normal bundle, it causes the Laplace equation and the Dirac equation twist. In the twisted

equation of motion, magnetic fluxes that the bifundamental matter fields feel shift as

N → N+16 if we consider a minimal twist in the conifold region. Accordingly, the number

of zero-modes is changed. This effect is also applied for the following zero-flux case.

• M1 = M2 = 0. The bosonic wavefunctions without the flux, i.e., M1 = M2 = 0 are

normalized by
∫

d2z3d
2z4

√
gΦ†

13,pqΦ13,pq =
16π2c2

27
(Afp)

2(Ahq )
2

∫

dr3dr4
2r23 + 2r24 + 3c2

(r23 + c2)2(r24 + c2)2
r2p+1
3 r2q+1

4

= (Afp)
2(Ahq )

2 4π
4c2(p+q)(−pq − 2p− 2q)

27 sin(pπ) sin(qπ)
, (3.36)

6We here assign that the magnetic flux is shifted as N → N + 1, but actually the explicit form of

shifting is determined locally by the configuration of D7-brane. For example, N → N − 3 for bosons and

N → N ± 3/2 for fermions in P
2 [6].
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Figure 1. The typical bosonic wavefunction Φ̂13,pq for the non-supersymmetric fluxesN1 = N2 = 1,

on the R = r3 = r4 hypersurface. The black dotted (p = q = 0) and the brown dashed (p = q = 1)

curves are localized at the point inside the boundary of near horizon limit, R . 7 in contrast to the

blue dot-dashed (p = 1, q = 2) and red solid curves (p = q = 2), those are localized outside it.

where zi = ri exp[iθi] for i = 3, 4. Then we obtain the normalization factors,

AfpA
h
q =

√

27 sin(pπ) sin(qπ)

4π4c2(p+q)(−pq − 2p− 2q)
. (3.37)

Note that the integrals in eq. (3.36) are performed over the radius coordinates r3 and r4
from 0 to infinity. Then the following equality can be utilized in the evaluation of the

integral in eq. (3.36):

∫

dr
r2K+1

(r2 + c2)L+1
= c2K−2L

∫ π
2

0
sin2K+1 θ cos2L−2K−1 θ

= c2K−2LΓ(K + 1)Γ(L−K)

2Γ(L+ 1)
. (3.38)

The normalization condition requires the allowed range of p and q as −1 < p < 0 and

−1 < q < 0, otherwise the normalization factor diverges. As a result, these range do

not include integers p and q, and there are no normalizable modes in this case. A similar

analysis leads to the same result also in the case of Φ24,p′q′ .

We are interested in the wavefuncitons inside the bonundary of near horizon limit.

The integration range in eq. (3.36) should be modified to that from 0 to rmax, and some

normalizable modes appear inside the region we consider. In the present case, however,

the validity condition as it stands cannot be applied because the wavefuntions shown in

eq. (3.26) become (p + q)-th power of R and they do not have any extremal point. Al-

ternatively, we count only monotonically decreasing functions, i.e., the wavefunctions with

negative exponent, as normalizable zero-modes. By employing such modified condition and

the convergence condition (3.33), there are three independent zero-mode solutions without

a flux, such as (p, q) = (0, 0), (0, 1) and (1, 0).
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3.1.2 Minkowski vector modes

The extra-dimensional wavefunctions of the 4D gauge fields on D7-branes (vector degrees of

freedom in 4D Minkowski spacetime) also obey eq. (3.21), the same one as transverse scalar

modes. Because the vector field in Minkowski spacetime is real valued, the wavefunction

of each component should take a real number, that is, only (p, q) = (0, 0) is allowed. As a

result, there is a single zero-mode solution for the Minkowski vector mode. Note that the

wavefunction with (p, q) = (0, 0) becomes a constant, that implies the 4D gauge field does

not localize in the world-volume of D7-branes where it originates.

3.1.3 Internal vector modes

Next, let us focus on the wavefunction for the internal vector modes given by the eq. (3.14).

We impose the gauge fixing condition,

D̃mΦ
m = gz3z̄3 (Dz3Φz̄3 +Dz̄3Φz3) + gz3z̄4 (Dz3Φz̄4 +Dz̄4Φz3)

+gz4z̄3 (Dz4Φz̄3 +Dz̄3Φz4) + gz4z̄4 (Dz4Φz̄4 +Dz̄4Φz4) , (3.39)

and especially concentrate on the solutions that both Φz3 = Φz4 = 0 and Dz3Φz̄3 =

Dz4Φz̄3 = Dz3Φz̄4 = Dz4Φz̄4 = 0 hold (also flipping with z3 ↔ z̄3 and z4 ↔ z̄4). For the case

of supersymmetric fluxes, the equation of motion (3.14) implies that the vector modes which

satisfying the above conditions are just the zero-mode solutions as shown in eq. (3.18),

Φz3 = A(z3)(z3, z4)e
−M1

(

− ln c2 ln z̄3+Li2(−
|z3|

2

c2
)

)

(

z̄3
|z3|2 + c2

)−
M1
2

×e
−M2

(

− ln c2 ln z̄4+Li2(−
|z4|

2

c2
)

)

(

z̄4
|z4|2 + c2

)−
M2
2

(M1,M2 ≤ 0),

Φz4 = A(z4)(z3, z4)e
−M1

(

− ln c2 ln z̄3+Li2(−
|z3|

2

c2
)

)

(

z̄3
|z3|2 + c2

)−
M1
2

×e
−M2

(

− ln c2 ln z̄4+Li2(−
|z4|

2

c2
)

)

(

z̄4
|z4|2 + c2

)−
M2
2

(M1,M2 ≤ 0),

Φz̄3 = A(z̄3)(z̄3, z̄4)e
M1

(

− ln c2 ln z3+Li2(−
|z3|

2

c2
)

)

(

z3
|z3|2 + c2

)

M1
2

×e
M2

(

− ln c2 ln z4+Li2(−
|z4|

2

c2
)

)

(

z4
|z4|2 + c2

)

M2
2

(M1,M2 ≥ 0),

Φz̄4 = A(z̄4)(z̄3, z̄4)e
M1

(

− ln c2 ln z3+Li2(−
|z3|

2

c2
)

)

(

z3
|z3|2 + c2

)

M1
2

×e
M2

(

− ln c2 ln z4+Li2(−
|z4|

2

c2
)

)

(

z4
|z4|2 + c2

)

M2
2

(M1,M2 ≥ 0), (3.40)
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where

A(z3)(z3, z4) =
∑

p′,q′∈Z

A
(z3)
p′,q′z

p′−M1(− ln c2+1/2)
3 z

q′−M2(− ln c2+1/2)
4 ,

A(z4)(z3, z4) =
∑

p′,q′∈Z

A
(z4)
p′,q′z

p′−M1(− ln c2+1/2)
3 z

q′−M2(− ln c2+1/2)
4 ,

A(z̄3)(z̄3, z̄4) =
∑

p′,q′∈Z

A
(z̄3)
p′,q′ z̄

p+M1(− ln c2+1/2)
3 z̄

q+M2(− ln c2+1/2)
4 ,

A(z̄4)(z̄3, z̄4) =
∑

p′,q′∈Z

A
(z̄4)
p′,q′ z̄

p+M1(− ln c2+1/2)
3 z̄

q+M2(− ln c2+1/2)
4 . (3.41)

The integers p′, q′ and real constants A
(z3,z4,z̄3,z̄4)
p′,q′ are determined by the normalization

condition that
∫

d2z3d
2z4

√
ggij̄Φab

i Φba

j̄ = 1. (3.42)

In the case of non-supersymmetric flux M1 = M2 ≡ M , a relation Φz3 = Φz4 is expected

with A(z3) = A(z4) ≡ A(z) and similarly Φz̄3 = Φz̄4 with A(z̄3) = A(z̄4) ≡ A(z̄) those are

suggested by the symmetry under the exchange of z3 and z4. There is a constant solution

for a normalizable zero-mode wavefunction with the vanishing flux, and for M1,M2 ≥ 0,

the left-hand side of eq. (3.42) is deformed to

∫

d2z3d
2z4 (gz3z̄3 + gz4z̄4 − gz3z̄4 − gz4z̄3) Φ

2
z̄3

=

∫

d2z3d
2z4

[

R1(|z3|, |z4|)z̄2p3 z̄2q4 +R2(|z3|, |z4|)(z3z̄4 + z̄3z4)z̄
2p
3 z̄2q4

]

, (3.43)

where R1 and R2 are real-valued functions which take non-vanishing values only if p =

q = 0. The wavefunction of the vector mode is asymptotically given in the limit R = r3 =

r4 ≫ c as

Φ̂z̄3,pq ≡ 4πR (gz3z̄3 + gz4z̄4 − gz3z̄4 − gz4z̄3)
1/2Φz̄3,pq ∝ R−4M ln c2e−M(ln(R2/c2))2

= R−2M ln(c2R2)c2M ln(R2/c2), (3.44)

and then the extremal condition of Φ̂z3,pq is achieved by the following relation,

R∗ = 1, (3.45)

where R∗ represents the extremal point under c ≪ 1, around which the wavefunction lo-

calizes. In order to obtain the localized wavefunction around the tip of cone, we require

R∗ ≪
√

cL3/2 − c2, i.e.,

1 <
√

cL3/2 − c2, (3.46)

which exhibits a validity condition of the vector mode in the local conifold region. As a

result, there exist single internal vector zero-mode with (p, q) = (0, 0) in the local conifold

region only if eq. (3.46) and c ≪ 1 are satisfied.
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3.2 Fermions

In order to describe the Dirac equations, we write down the induced D7-brane metric

ds2D7 = e21 + e22 + e23 + e24 with respect to the vierbein bases,

e1 =
1

√

6(C2
1 + C2

2 )
(C2dθ1 − C1dθ2),

e2 =

√

1

9
+

1

6(C2
1 + C2

2 )
(C1dθ1 + C2dθ2),

e3 =
1

√

6(C2
1 + C2

2 )
(C2 sin θ1dφ1 − C1 sin θ2dφ2),

e4 =

√

1

9
+

1

6(C2
1 + C2

2 )
(C1 sin θ1dφ1 + C2 sin θ2dφ2), (3.47)

and they are also written in terms of the holomorphic coordinates,

e1 = −|z3||z4|c√
6ρ

[

z̄3dz3 + z3dz̄3
|z3|2(|z3|2 + c2)

− z̄4dz4 + z4dz̄4
|z4|2(|z4|2 + c2)

]

,

e2 = −i
|z3||z4|c√

6ρ

[

z̄3dz3 − z3dz̄3
|z3|2(|z3|2 + c2)

− z̄4dz4 − z4dz̄4
|z4|2(|z4|2 + c2)

]

,

e3 = −
√

1

9
+

c2

6ρ

[

z̄3dz3 + z3dz̄3
|z3|2 + c2

− z̄4dz4 + z4dz̄4
|z4|2 + c2

]

,

e4 = −i

√

1

9
+

c2

6ρ

[

z̄3dz3 − z3dz̄3
|z3|2 + c2

− z̄4dz4 − z4dz̄4
|z4|2 + c2

]

, (3.48)

where ρ = |z3|2 + |z4|2. We denote the coefficients of these bases, that is, the vierbein eαm
itself with the subscripts like α = 1, 2, 3, 4 and m = z3, z̄3, z4, z̄4. In this subsection, the

Greek indices represent the local Lorenz frame, while the Roman indices label the complex

coordinates of the D7-brane worldvolume in extra dimensions. The vierbeins in the dual

basis are defined as êα = emα ∂m and then we obtain

ê1 = −3|z3||z4|
c
√
6ρ

[ |z3|2 + c2

|z3|2
(z3∂z3 + z̄3∂z̄3)−

|z4|2 + c2

|z4|2
(z4∂z4 + z̄4∂z̄4)

]

,

ê2 = i
3|z3||z4|
c
√
6ρ

[ |z3|2 + c2

|z3|2
(z3∂z3 − z̄3∂z̄3)−

|z4|2 + c2

|z4|2
(z4∂z4 − z̄4∂z̄4)

]

,

ê3 = − 1

2ρ
√

1
9 + c2

6ρ

[

(|z3|2 + c2)(z3∂z3 + z̄3∂z̄3) + (|z4|2 + c2)(z4∂z4 + z̄4∂z̄4)
]

,

ê4 = i
1

2ρ
√

1
9 + c2

6ρ

[

(|z3|2 + c2)(z3∂z3 − z̄3∂z̄3) + (|z4|2 + c2)(z4∂z4 − z̄4∂z̄4)
]

. (3.49)

The zero-mode Dirac equation for the spinor field Ψ on the D7-brane includes spin

connections when the background geometry has a non-zero curvature,

iemν γ̃
ν

(

∂m +
1

8
[γ̃α, γ̃β]wmαβ − iAm

)

Ψ = 0, (3.50)
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where Ψ = ((ψ+
1 ), (ψ

−
2 )) ≡ (Ψ1,Ψ2,Ψ3,Ψ4) with the extra-dimensional part of Majorana-

Weyl fermions ψ+
1 and ψ−

2 defined in eq. (2.18). By imposing the Majorana condition

λ∗ = Bλ (B = Γ2Γ4Γ7Γ9), λ3 (λ4) is written in terms of λ2 (λ1). Thus, we solve the Dirac

equation (3.50) for ψ+
1 and ψ−

2 and then, ψ−
3 and ψ+

4 are calculated by them. The explicit

form of spin connections are summarized in appendix B. Since the ten-dimensional gamma

matrices are taken as eq. (2.14), the Dirac equation (3.50) decomposed on this basis is

explicitly rewritten as

iemν γ̃
ν

(

∂m +
1

8
[γ̃α, γ̃β ]wmαβ − iAm

)

Ψ =















0 0 D+11 D+12

0 0 D+21 D+22

D−11 D−12 0 0

D−21 D−22 0 0





























Ψ1

Ψ2

Ψ3

Ψ4















, (3.51)

which leads to the following simultaneous differential equations,

D+11Ψ3 +D+12Ψ4 = 0,

D+21Ψ3 +D+22Ψ4 = 0,

D−11Ψ1 +D−12Ψ2 = 0,

D−21Ψ1 +D−22Ψ2 = 0. (3.52)

In the following, we concentrate on the upper right elements of the Dirac operator acting

on Ψ3 and Ψ4 in eq. (3.51), those are explicitly written as

D+11 = −A
[

∂z3 +
M1

z3
ln(|z3|2 + c2)

]

+ B
[

∂z4 +
M2

z4
ln(|z4|2 + c2)

]

− E +M ′,

D+12 = −iC
[

∂z̄3 −
M1

z̄3
ln(|z3|2 + c2)

]

− iD
[

∂z̄4 −
M2

z̄4
ln(|z4|2 + c2)

]

+ iF ,

D+21 = −iC̄
[

∂z3 +
M1

z3
ln(|z3|2 + c2)

]

− iD̄
[

∂z4 +
M2

z4
ln(|z4|2 + c2)

]

+ iF ,

D+22 = −Ā
[

∂z̄3−
M1

z̄3
ln(|z3|2+c2)

]

+B̄
[

∂z̄4−
M2

z̄4
ln(|z4|2+c2)

]

−E−M ′, (3.53)

where

A =
6|z3||z4|(|z3|2 + c2)

c
√
6ρz̄3

, B =
6|z3||z4|(|z4|2 + c2)

c
√
6ρz̄4

,

C =
|z3|2(|z3|2 + c2)

ρ
√

1
9 + c2

6ρz3

, D =
|z4|2(|z4|2 + c2)

ρ
√

1
9 + c2

6ρz4

,

E =
3
(

|z3|2|z4|2(|z3|2 − |z4|2) + c2(|z4|4 − |z3|4)
)

2ρc
√
6ρ|z3||z4|

+
|z3||z4|c

(

|z4|2 − |z3|2
)

4ρ2
√
6ρ

(

1
9 + c2

6ρ

) ,

F =
2|z3|4 + 10|z3|2|z4|2 + 2|z4|4 − 3ρc2

12ρ2
√

1
9 + c2

6ρ

−
c2

(

ρ2 + 6|z3|2|z4|2 + 3ρc2
)

72ρ3
(

1
9 + c2

6ρ

)3/2
,

M ′ =
3c2

|z3||z4|c
√
6ρ

(

M1|z4|2 −M2|z3|2
)

. (3.54)
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By comparing eq. (3.52) with those led to eq. (3.18) in the bosonic case, the following

forms of the fermionic wavefunctions Ψ3 and Ψ4 are expected:

Ψ3 = F (z3, z4, z̄3, z̄4)e
M1

(

− ln c2 ln z3+Li2(−
|z3|

2

c2
)

)

e
M2

(

− ln c2 ln z4+Li2(−
|z4|

2

c2
)

)

×
(

z3
|z3|2 + c2

)

M1
2
(

z4
|z4|2 + c2

)

M2
2

,

Ψ4 = K(z3, z4, z̄3, z̄4)e
−M1

(

− ln c2 ln z̄3+Li2(−
|z3|

2

c2
)

)

e
−M2

(

− ln c2 ln z̄4+Li2(−
|z4|

2

c2
)

)

×
(

z̄3
|z3|2 + c2

)−
M1
2
(

z̄4
|z4|2 + c2

)−
M2
2

, (3.55)

where F (z3, z4, z̄3, z̄4) and K(z3, z4, z̄3, z̄4) are functions whose holomorphic and anti-

holomorphic part are fixed respectively as follows. By substituting eq. (3.55) into eq. (3.52),

we obtain
[

A∂z3F

F
− B∂z4F

F
+ E

]

Ψ3 + i

[

C ∂z̄3K
K

+D∂z̄4K

K
−F

]

Ψ4 = 0,

i

[

C̄ ∂z3F
F

+ D̄∂z4F

F
−F

]

Ψ3 +

[

Ā∂∂z3K

K
− B̄∂z̄4K

K
+ E

]

Ψ4 = 0. (3.56)

Then we consider such a case that all the coefficients of Ψ3 and Ψ4 vanish independently

to each other, that leads to

∂z3F =

[

2

3(|z3|2 + c2)
− 1

4|z3|2
− 1

2(2ρ+ 3c2)

]

z̄3F,

∂z4F =

[

2

3(|z4|2 + c2)
− 1

4|z4|2
− 1

2(2ρ+ 3c2)

]

z̄4F,

∂z̄3K =

[

2

3(|z3|2 + c2)
− 1

4|z3|2
− 1

2(2ρ+ 3c2)

]

z3K,

∂z̄4K =

[

2

3(|z4|2 + c2)
− 1

4|z4|2
− 1

2(2ρ+ 3c2)

]

z4K. (3.57)

The functions F and K satisfying eq. (3.57) can be described as

F (z3, z4, z̄3, z̄4) = G(z̄3, z̄4)(|z3|2 + c2)
2
3 (|z4|2 + c2)

2
3 (2ρ+ 3c2)−

1
4 z

− 1
4

3 z
− 1

4
4 ,

K(z3, z4, z̄3, z̄4) = H(z3, z4)(|z3|2 + c2)
2
3 (|z4|2 + c2)

2
3 (2ρ+ 3c2)−

1
4 z̄

− 1
4

3 z̄
− 1

4
4 , (3.58)

where G(z̄3, z̄4) and H(z3, z4) are anti-holomorphic and holomorphic functions, constrained

by the normalization conditions of fermions. In the same way as the bosonic one, we impose

their form as G(z̄3, z̄4) = z̄a3 z̄
b
4 and H(z3, z4) = za3z

b
4.

Finally, the explicit forms of the fermionic wavefunctions are

Ψ3=G(z̄3, z̄4)e
M1

(

− ln c2 ln z3+Li2(−
|z3|2

c2
)

)

e
M2

(

− ln c2 ln z4+Li2(−
|z4|2

c2
)

)

(

z3
|z3|2 + c2

)

M1

2

(

z4
|z4|2 + c2

)

M2

2

× (|z3|
2 + c2)

2

3 (|z4|
2 + c2)

2

3 (2ρ+ 3c2)−
1

4 z
− 1

4

3 z
− 1

4

4 ,
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Ψ4=H(z3, z4)e
−M1

(

− ln c2 ln z̄3+Li2(−
|z3|2

c2
)

)

e
−M2

(

− ln c2 ln z̄4+Li2(−
|z4|2

c2
)

)

(

z̄3
|z3|2+c2

)−
M1

2

(

z̄4
|z4|2+c2

)−
M2

2

× (|z3|
2 + c2)

2

3 (|z4|
2 + c2)

2

3 (2ρ+ 3c2)−
1

4 z̄
− 1

4

3 z̄
− 1

4

4 , (3.59)

whereas Ψ1 and Ψ2 have no solution satisfying eq. (3.56).

When we impose the periodic boundary condition Ψ3,4(θi, φi + 2π) = Ψ3,4(θi, φi),

wavefunctions are proportional to the integer power of zi and/or z̄i. Therefore, the arbitrary

functions in eq. (3.59) are constrained as

G(z̄3, z̄4) =
∑

a,b∈Z

AGa,bz̄
a+M1(− ln c2+1/2)−1/4
3 z̄

b+M2(− ln c2+1/2)−1/4
4 ,

H(z3, z4) =
∑

a′,b′∈Z

AHa′,b′z
a′−M1(− ln c2+1/2)−1/4
3 z

b′−M2(− ln c2+1/2)−1/4
4 , (3.60)

where the integers a, a′, b, b′ and real constants AG,Ha,b are determined by the normalization

condition in the same way as the bosonic wavefunction. By substituting eq. (3.60) to

eq. (3.59), each mode of the zero-mode fermionic wavefunctions is rewritten to be

Ψ3,ab = AGa,be
M1Li2(−

|z3|
2

c2
)eM2Li2(−

|z4|
2

c2
)(|z3|2 + c2)−

M1
2

+ 2
3 (|z4|2 + c2)−

M2
2

+ 2
3 (2ρ+ 3c2)−

1
4

×|z3|2M1(− ln c2+1/2)− 1
2 |z4|2M2(− ln c2+1/2)− 1

2 z̄a3 z̄
b
4,

Ψ4,a′b′ = AHa′,b′e
−M1Li2(−

|z3|
2

c2
)e−M2Li2(−

|z4|
2

c2
)(|z3|2 + c2)

M1
2

+ 2
3 (|z4|2 + c2)

M2
2

+ 2
3 (2ρ+ 3c2)−

1
4

×|z3|−2M1(− ln c2+1/2)− 1
2 |z4|−2M2(− ln c2+1/2)− 1

2 za
′

3 zb
′

4 , (3.61)

Since the different modes of wavefunctions Ψ3,ab (Ψ4,a′b′) are orthogonal to each other, i.e.,
∫

dz23dz
2
4
√
gΨ†

3,a1b1
Ψ3,a2b2 = 0 for a1 6= a2 or b1 6= b2, (similarly for Ψ4,a′b′) due to the

periodicity, they are independent solutions for the Dirac equation (3.51) labelled by the

integers a, a′, b and b′. We will see below that the normalization and validity conditions of

wavefunctions in the local conifold region restrict the allowed integers for a, a′, b and b′ as

in the bosonic case, then the number of possible combinations of them corresponds to the

degeneracy of zero-modes, which is identified as the number of fermionic generations. We

estimate the normalization conditions in three cases, the vanishing fluxes M1 = M2 = 0,

the supersymmetric fluxes M1 = −M2 ≡ M 6= 0 and the non-supersymmetric fluxes

M1 = M2 ≡ M 6= 0 in the following.

• M1 = −M2 ≡ M 6= 0. The fermionic wavefunctions with the supersymmetric

fluxes are non-normalizable as it is in the bosonic case, which can be understood as follows.

The normalization condition of Ψ3,ab in this case is given by
∫

d2z3d
2z4

√
gΨ†

3,aibi
Ψ3,ajbj = δaiajδbibj , (3.62)

which is explicitly calculated as

1 =
16π2c2

27
(AGab)

2

∫

dr3dr4e
2MLi2(−

r23
c2

)e−2MLi2(−
r24
c2

) (2r23 + 2r24 + 3c2)1/2

(r23 + c2)
2
3
+M (r24 + c2)

2
3
−M

×r
2a+4M(− ln c2+1/2)
3 r

2b−4M(− ln c2+1/2)
4 . (3.63)
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From the asymptotic expansion of the dilogarithm function in the limit r ≫ 1,

Li2

(

−r2

c2

)

≃ −π2

6
− 1

2

(

ln

(

r2

c2

))2

+O
(

c2

r2

)

, (3.64)

the factor e−2MLi2(−r24/c
2) (e2MLi2(−r23/c

2)) in the integrand of Eq . (3.63) diverges in the limit

r4 ≫ c (r3 ≫ c) if the flux M is chosen as positive (negative) value. Therefore we find that

the fermionic wavefunction Ψ3,ab with the supersymmetric fluxes is also non-normalizable.

A similar analysis for Ψ4,a′b′ leads to the same results as Ψ3,ab.

• M1 = M2 ≡ M 6= 0. The non-supersymmetric choice of fluxes (3.25) gives rise

to flip M2 in the supersymmetric one to −M2. It causes the fermionic wavefunction Ψ3,ab

(Ψ4,a′b′) to be a normalizable one when the flux M is positive (negative) due to the nature

of dilogarithm function. Here, we assume that the flux induced FI-term is canceled by

some VEVs of charged scalar fields as mentioned before.

Also in the analysis of fermionic wavefunctions, it has to be taken into account the

validity of them in local conifold region inside the boundary of near horizon limit discussed

in section 3.1. Without loss of generality, we focus on Ψ3,ab with the non-supersymmetric

fluxes, which is asymptotically given in the limit R = r3 = r4 ≫ c as

Ψ̂3,ab ≡ 4πR(
√
g)1/2|Ψ3| ∝ Ra+b−4M ln c2− 1

3 e−M(ln(−R2/c2))2

= Ra+b−2M ln(c2R2)− 1
3 c2M ln(R2/c2), (3.65)

by employing eq. (3.24) and then the extremal condition of Ψ̂3,ab is achieved by the following

relation,

a+ b− 1

3
− 8M lnR∗ = 0, (3.66)

where R∗ is the extremal point. In order to obtain the localized wavefunction around the

tip of cone, we require R∗ ≪
√

cL3/2 − c2, that is,

a+ b < 8M ln
√

cL3/2 − c2 +
1

3
, (3.67)

which represents a validity condition of the fermionic wavefunction in the local conifold

region. In the same way as bosonic case, the lower bounds of a and b are determined as

a > −2M

(

− ln c2 +
1

2

)

, b > −2M

(

− ln c2 +
1

2

)

. (3.68)

With the parameters given by

c = 1, N = 1, L ≃ 13.5, Ms = 1.08× 1017GeV, (3.69)

the fermionic wavefunction Ψ̂3,ab on the R = r3 = r4 hypersurface are drawn in figure 2 by

computing normalization factors in a numerical way. In figure 2, the wavefunction drawn

by the red-solid curve is the one out of control, because it localizes outside the boundary

of near horizon limit, R∗ >
√

cL3/2 − c2 ≃ 7. Such an observation is consistent with the

above argument leading to eq. (3.66). In figure 2, we find three independent zero-mode

solutions in this case, those correspond to (a, b) = (0, 0), (1, 0) and (0, 1). A similar analysis

for the other wavefunction Ψ4,a′b′ but with the negative flux M < 0 can be performed, and

the result is the same as Ψ3,ab.

– 22 –



J
H
E
P
0
7
(
2
0
1
6
)
0
5
4

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

R

Y
`
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Figure 2. The fermionic wavefunction Ψ̂3,ab with nonzero FI term and N1 = N2 = 1 on the R =

r3 = r4 hypersurface. The black dotted (a = b = 0) and the blue dashed (a = 0, b = 1) curves are

localized at the point below the horizon scale R ≃ 7 in contrast to the red solid curve (a = 1, b = 1).

The curve parameterized in a = 1, b = 0 is the same as the blue dashed curve (a = 0, b = 1).

• M1 = M2 = 0. In the case of vanishing fluxes, the normalization condition of Ψ3,ab

is expressed as

1 =
16π2c2

27
(AG

a,b)
2

∫

dr3dr4(r
2
3 + c2)−

2

3 (r24 + c2)−
2

3 r2a3 r2b4 (2r23 + 2r24 + 3c2)
1

2 (3.70)

=
2
√
2π2c

2

3

27
(AG

a,b)
2

∫

dr3
r2a3

(r23 + c2)
2

3

[

−4c2+2bcsc(bπ)Γ(−b− 1

3
)

Γ( 2
3
)Γ(−b)

2F1

(

−1

2
,−b− 1

3
,−b;

r23
c2

+
3

2

)

+ 8−b (2r
2
3 + 3c2)1+bΓ(−b)Γ(2b+ 1)

Γ(b+ 2)
2F1

(

2

3
, b+

1

2
, b+ 2;

r23
c2

+
3

2

)]

,

where the integral over the infinite region as in the bosonic case is convergent only if

−1
2 < a, b < −1

3 are satisfied. As a result, these range do not include integers a and b, and

there are no normalizable modes in this case. A similar analysis for Ψ4,a′b′ leads to the

same result as Ψ3,ab.

As we discussed at the end of the section 3.1, the original validity condition cannot be

applied to wavefunctions in the zero-flux case, and we modify it such that the exponents

of R in the wavefunctions are restricted to be negative. Taking this condition and the

convergence condition of the normalization factors (3.68) into account, there are no zero-

mode solutions with any integers a and b. However, by introducing the effect of twisting,

the situation changes. Actually, by shifting the number of fluxes, at least one fermionic

zero-mode is allowed by the above conditions. In particular, there appears a zero-mode

solution with (a, b) = (0, 0) for the minimal shift N → N +1/2 where the half-integer twist

is demanded by double-valuedness of the spinor.

4 Phenomenological aspects

In this section, we show some phenomenological aspects of localized zero-modes, derived

in the previous section, in the low-energy effective theories with five and four spacetime

dimensions.
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flux shift untwisted twisted total zero-modes

transverse scalar 0 3 3

Minkowski vecor - 1 - 4

internal vector - 0 -

fermions(Ψ3,Ψ4) (1,-1/2) (0,0) (3,1) 4

Table 1. An examle for the twist which generates the equal numbers of bosonic and fermionic

zero-mode with the ansatz (3.29), (3.35) for (gs, Nc, c, L,Ms) and N = 0.

Before entering upon a discussion of the detail, let us comment on the correspondence

between obtained zero-modes in the previous section and supersymmery. In the local

conifold region, 4D N = 1 supermultiplets are categorized into single vector multiplet

V = {Aµ, η2} and triple chiral multiplets Φi = {Ai, ηi} (i = 1, 3, 4) where η2 (ηi) comes

from a component of 10D Majorana-Weyl fermion λ2 (λi). Here, λ1,4 sector corresponds

to the fermionic partners of internal vector modes and λ2,3 sector is identified as the

partner of transverse scalars and gauge bosons of 4D SYM, respectively. From the result of

section 3 with the ansatz (3.29) and (3.35) without a flux, there are three generations for

the transverse scalar, single Minkowski vectors and no solutions for the internal vectors. In

order to achieve supersymmetric spectrum, four fermionic zero-modes have to be generated,

for example, three fermions Ψ3 with the twist N → N + 1 and a single fermion Ψ4 with

the twist N → N −1/2 (displayed in table 1). As mentioned before, we assign the twisting

so as to realize the supersymmetric spectrum. In any case, the twist can cause a mixture

of bases for the Majorana-Weyl fermions Ψi in 4D N = 1 supermultiplets. In such a

case, supersymmetric models which contain the fermionic partners of internal vector modes

would be also possible, where the Yukawa interaction terms are yielded in the form of λ1λ1φ

for the transverse modes φ or λ1λ2Am for the internal vector modes Am. For more details,

see ref. [6] and references therein. In section 4.2, we will show the particular example of

the triple overlap integrals which would appear in such Yukawa interaction terms.

4.1 Wavefucntions on AdS5

First, we discuss the properties of matter wavefunction from the viewpoint of five-

dimensional (5D) effective theory. In the near-horizon limit, the effective 5D background

metric is extracted as

ds25 =
r2

L2
d2x1,3 +

L2

r2
dr2, (4.1)

which is also rewritten in terms of r = Le−y/L,

ds25 = e−2y/Ld2x1,3 + dy2, (4.2)

where L corresponds to the inverse of AdS5 curvature. As pointed out in refs. [20, 21],

the our set-up is similar to those of Randall-Sundrum like model [22, 23] where the IR

brane is located at the tip of conifold, while the Planck brane is included in the remaining

Calabi-Yau manifold. In our setup, the locations of the IR brane or the Planck brane for
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AdS5 coordinate are taken as yH or ypl respectively, and correspondingly, rmin and rmax

can be rewritten by ymax = −L ln
(

c2/3/L
)

and ymin = −2L lnL. Note that the matter

fields localize towards the ymax rather than the tip of conifold. On the other hand, the

Planck brane can be located at any points including ypl < ymin under the assumption that

the structure of AdS5 space also holds out of the near horizon region.

As shown in sections 3.1 and 3.2, the obtained wavefunctions of bosons and fermions

are normalizable with non-supersymmetric fluxes. Figures 1 and 2 show that these wave-

functions on the hypersurface |z3| = |z4| localize towards the tip of conifold. In such a case,

they are also rewritten in terms of the coordinate y,

Φ13,pq ∝ e
2MLi2

(

1−L3/2

c
exp(− 3y

2L)
)

+ 3y
2L
M (

L
3
2 e−

3y
2L − c

)2M(− ln c2+ 1
2)+

1
2
(p+q)

,

Φ24,pq ∝ e
−2MLi2

(

1−L3/2

c
exp(− 3y

2L)
)

−
3y
2L
M (

L
3
2 e−

3y
2L − c

)−2M(− ln c2+ 1
2)+

1
2
(p+q)

, (4.3)

for bosons and

Ψ3,ab∝e
2MLi2

(

1−L3/2

c
exp(− 3y

2L )
)

+ 3y
2L

M− 2y
L

(

2Le−
3y
2L + 1

)− 1

4

(

L
3

2 e−
3y
2L − c

)2M(− ln c2+ 1

2
)+ 1

2
(a+b−1)

,

(4.4)

Ψ4,ab∝e
−2MLi2

(

1−L3/2

c
exp(− 3y

2L )
)

− 3y
2L

M− 2y
L

(

2Le−
3y
2L + 1

)− 1

4

(

L
3

2 e−
3y
2L − c

)−2M(− ln c2+ 1

2
)+ 1

2
(a+b−1)

,

for fermions. Eqs. (4.3) and (4.4) show that the wavefunctions of bosons and fermions have

the exponential form determined by the U(1) flux. It is known that exponential profile of

wavefunctions for graviton [22, 23] and matter [24, 25] zero-modes can yield a weak-Planck

hierarchy and Yukawa hierarchies of quarks and leptons, respectively, in the framework

of AdS5 supergravity [26]. In our case, the exponential forms of bosons and fermions

are originated from the U(1) magnetic flux which suggests us to obtain some hierarchical

structures of overlap integrals between boson and fermions as shown in the next subsection.

Especially, the wavefunction of matter fields in the direction of AdS5 are approximately

estimated as

Φ13,pq ∝







e
y 3M

L

(

ln(L
3
2 c)− 1

4M
(p+q)

)

−y2 9M
4L2 (y ≪ −L) ,

ey
9M
2L

+(M ln y)(−2 ln c2+1+ 1
2M

(p+q)) (y ≃ ymax) ,

Φ24,pq ∝







e
−y 3M

L

(

ln(L
3
2 c)+ 1

4M
(p+q)

)

+y2 9M
4L2 (y ≪ −L) ,

e−y
9M
2L

−(M ln y)(−2 ln c2+1− 1
2M

(p+q)) (y ≃ ymax) ,
(4.5)

for bosons and

Ψ3,ab ∝







e
y 3M

L

(

ln(L
3
2 c)− 1

4M
(a+b+ 7

6
)
)

−y2 9M
4L2 (y ≪ −L) ,

ey(
9M
2L

− 2
L)+(M ln y)(−2 ln c2+1+ 1

2M
(a+b−1)) (y ≃ ymax) ,

Ψ4,ab ∝







e
−y 3M

L

(

ln(L
3
2 c)+ 1

4M
(a+b+ 7

6
)
)

+y2 9M
4L2 (y ≪ −L) ,

e−y(
9M
2L

+ 2
L)−(M ln y)(−2 ln c2+1− 1

2M
(a+b−1)) (y ≃ ymax) ,

(4.6)
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for fermions. Although, in the effective AdS5 supergravity [26] the bulk masses of the

matter fields are proportional to their graviphoton charges which are free parameters, in

our setup, we identify the origin of such parameters as the generation numbers associated

with the U(1) flux as can be seen in eqs. (4.5) and (4.6).

Next let us consider an example which would solve the gauge hierarchy problem where

the matter fields, especially, the Higgs fields localize around y = yH due to a suitable choice

of magnetic fluxes, while the graviton localize towards the CY manifold, characterized by

y = ypl. As shown in refs. [22, 23], when the VEVs of 5D original and 4D effective Higgs

fields are denoted by v0 and v, respectively, they are related as

v = e−
yH−ypl

L v0. (4.7)

Although, in the case with ypl = ymin and yH = ymax, the Higgs VEVs between yH and ypl
are not so suppressed such as v ≃ (c2/3v0)/L

3, the hierarchy between electroweak (EW)

and Planck scale can be explained if ypl takes more smaller values under the assumption

that the effective AdS5 description is valid even outside the near horizon limit.7 It is

remarkable that these features are determined by the localization profile of matter fields

around the tip of conifold.

4.2 Overlap integrals

In section 3.1 and 3.2, we have studied the matter wavefunction and its properties. Here

we consider the overlap integrals among bifundamental fields starting from the 8D U(N)

SYM theory by introducing the following magnetic fluxes,

Fab =









M1(N1)1N1

M1(N2)1N2

. . .









Q1Ω11+









M2(N1)1N1

M2(N2)1N2

. . .









Q2Ω22, (4.8)

where 1Ni is an Ni × Ni unit matrix. These magnetic fluxes break U(N) gauge group as

U(N) → U(N1) × U(N2) × · · ·U(Nn) with
∑n

a=1Na = N . As mentioned in section 2.3,

each bifundamental field (Ns, N̄t), ((N̄s,Nt)) for s, t = 1, . . . , n, (s 6= t) in the off-diagonal

components of U(N) feels M1(Ns) − M1(Nt) and M2(Ns) − M2(Nt) ( M1(Nt) − M1(Ns) and

M2(Nt) −M2(Ns)) units of fluxes, because the covariant derivative for these fields includes

a commutation relation as shown in eq. (2.12).

In the following, we discuss about overlap integrals among a single boson and two

fermion wavefunctions, those might be involved in the Yukawa interaction in the 4D effec-

tive theory or some operators beyond the leading SYM approximation.

The overlap integrals of extra-dimensional wavefunctions are given by

Y(ai,bi)(aj ,bj)(pk,qk) =

∫

d2z3d
2z4

√
gΨM1†

aibi
ΨM2
ajbj

ΦM3
pkqk

, (4.9)

where ΨM
ab and ΦM

pq denote the fermionic and bosonic wavefunctions (3.61) and (3.21), re-

spectively, each one labeled by a pair of integer (a, b) = (ai, bi), (aj , bj) and (p, q) = (pk, qk)

7In other words, we implicitly consider such a global CY space that the assumption here is valid.
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characterizing its generation, and a flux number M1,M2.M3 defined below. The sub-

scripts i, j and k indicate a specific generation among those allowed by the normalization

and validity conditions for bosons (3.28), (3.33) and fermions (3.67), (3.68), respectively.

All of these wavefunctions belong to bifundamental representations under a certain pair

among the product subgroups of the original U(N) group broken by the flux. Because each

bifundamental field feels a difference of two fluxes, the above flux number M carrying such

information is defined as Mu ≡ {Mu
1 ,M

u
2 } = {M1(Nsu )

−M1(Ntu )
,M2(Nsu )

−M2(Ntu )
} for

su, tu = 1, . . . n, where (su, tu) 6= (su′ , tu′), u 6= u′ and (u, u′ = 1, 2, 3). In the following, we

analyze the behavior of overlap integrals (4.9) for some choice of fluxes from a phenomeno-

logical point of view, although we do not specify a full embedding of all the matter fields

into these bifundamental representations. (See refs. [4, 27] for a concrete example of the

full embedding in the case of factorizable tori.)

We consider the model with non-supersymmetric fluxes written by eq. (3.25), namely

M s
1 = M s

2 with s = 1, 2 and 3. As for the overlap integrals between the boson ΦM3

24,p′kq
′
k
and

the fermions ΨM1†
3,aibi

, ΨM2
3ajbj

, the integrand in eq. (4.9) is expressed as

√
gΨM1†

3,aibi
ΨM2

3ajbj
ΦM3

24,p′kq
′
k
= J(|z3|2, |z4|2)× z

ai+p
′
k

3 z
bi+q

′
k

4 z̄
aj
3 z̄

bj
4 , (4.10)

where M1
1 ,M

2
1 > 0, M3

1 < 0 and J(|z3|2, |z4|2) denotes the real function. In eq. (4.10), non-

vanishing overlap integrals require that they are entirely real valued. Such a requirement

is satisfied under

ai + p′k = aj , bi + q′k = bj . (4.11)

Similarly, for the other combination of zero-modes, ΨM1†
3,aibi

ΨM2

4,a′jb
′
j
ΦM3
13,pkqk

, the overlap inte-

grals with M1
1 ,M

3
1 > 0 and M2

1 < 0 are non-vanishing under the following condition

ai + a′j = pk, bi + b′j = qk, (4.12)

and so on.

Then we analyze one particular example and show the values of overlap integrals

evaluated by eq. (4.9) explicitly. Being aware of the observed three generations of SM

fermions, in the following, we adopt the three fermionic wavefunctions drawn in figure 2,

those satisfy validity conditions and are labeled by i, j = 1, 2, 3. By choosing the several

numbers of fluxes with the fixed volume V1 = V2 ≡ V of D7-brane parametrized by

c = 1, L ≃ 13.5,Ms = 1.08× 1017GeV,

M1V = M2V = {1, 1},M3V={−2,−2}, (4.13)

the following pair of integers are allowed by eqs. (3.67) and (3.68),

(ai, bi) = (0, 0), (0, 1), (1, 0), (aj , bj) = (0, 0), (0, 1), (1, 0), (4.14)

yielding three generations for each fermionic zero-mode. In this case, there are potentially

non-zero overlap integrals between twenty-one generations of boson and three generations
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of fermions, those are characterized by eqs. (3.28) and (3.33) as

(p′k, q
′
k) = (−1,−1), (−1, 0), (−1, 1), (−1, 2), (−1, 3), (−1, 4),

(0,−1), (0, 0), (0, 1), (0, 2), (0, 3)

(1,−1), (1, 0), (1, 1), (1, 2),

(2,−1), (2, 0), (2, 1)

(3,−1), (3, 0),

(4,−1). (4.15)

Among them, we find the overlap integrals for fourteen pairs of integers vanish. The

remaining seven pairs,

(p′k, q
′
k) = (0, 0), (0, 1), (1, 0), (−1, 0), (−1, 1), (0,−1), (1,−1), (4.16)

have a possibility to yield non-vanishing overlap integrals. Hereafter the seven generation

numbers k = 0, 1, 2, 3, 4, 5, 6 (i, j = 0, 1, 2) indicate (the first three of) the seven pairs of

integers (4.16), respectively, e.g., Y203 = Y(1,0)(0,0)(−1,0) for Yijk with i = 2, j = 0 and k = 3.

Assuming non-vanishing vacuum expectation values (VEVs) for bosons ΦM3

24,p′kq
′
k
de-

noted by 〈Hk〉, we find the fermion masses are given by the eigenvalues of the following

mass matrices,

Mij =
6

∑

k=0

Yijk〈Hk〉, (4.17)

where

Yij0 =









Y000 0 0

0 Y110 0

0 0 Y220









, Yij1 =









0 Y011 0

0 0 0

0 0 0









, Yij2 =









0 0 Y022

0 0 0

0 0 0









,

Yij3 =









0 0 0

0 0 0

Y203 0 0









, Yij4 =









0 0 0

0 0 0

0 Y214 0









,

Yij5 =









0 0 0

Y105 0 0

0 0 0









, Yij6 =









0 0 0

0 0 Y126

0 0 0









. (4.18)

For example, the following ratios of bosonic VEVs,

〈Hk〉
〈H0〉

= (1, 9, 7, 1, 7, 1, 8), (4.19)

lead to fermion mass ratios (m1,m2,m3)/m3 = (1.13×10−3, 2.20×10−2, 1) which have the

similar structure for down-type quark mass ratios compared with the observed ones [28]

(md,ms,mb) /mb = (1.17×10−3, 2.27×10−2, 1). As we see in this simple example, the ana-

lytic form of wavefunctions and their overlap integrals are important tools for constructing

particle physics models involving D7-branes on the conifold. We leave such model building

for future works.
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4.3 The possible embeddings of conifold into the global CY

In earlier discussions, when the global CY manifold is described by the conifold metric, the

cycle of D7-brane involved in the conifold has an infinite volume caused by the noncompact

radial direction of AdS5, r ∈ [0,∞]. According to it, the magnetic flux possessed by such

a D7-brane (3.8) diverges. Note that it is only valid in near-horizon limit in Klebanov-

Witten background. In order to avoid this problem, it is significant to consider the local

description of the conical geometry in the global compact CY.

Here we briefly review the recent development of constructing such a compact CY.

One of the method for the construction is proposed by Batyrev in ref. [29] by employing

the toric variety, where the compact Calabi-Yau is embedded as a hypersurface in the

ambient complex four-dimensional compact toric variety defined by a reflexive polytope in

the terminology of toric construction. Especially, such reflexive polytopes which include

the compact Calabi-Yau threefolds is systematically found by Kreuzer and Skarke [30],

where the number of them are estimated as 473800776 using a computational code. The

software package known as PALP [31] was released and the list of the detail data can be

found on the web page [32]. See a review in ref. [33] for a more detailed discussion.

It is expected that the local configuration considered in this paper is achieved as a

certain limit of global CY. Though in a different context, the flux configurations on D7-

branes in 4D toric variety is discussed in refs. [34–36].

5 Conclusion

In this paper, we have studied the zero-mode wavefunctions on local D7-brane with and

without a magnetic flux in the AdS5 × T 1,1 background where the large number of D3-

branes are placed at the tip of conifold, so called the Klebanov-Witten model [7]. We

have considered the case that the D7-branes wrap the internal cycles in the conifold in

a kappa-symmetric way, which ensures the stability of D7-brane. The kappa-symmetry

condition determines the induced metric of such D7-brane. We have explored the zero-mode

wavefunctions by solving the Laplace and Dirac equations employing the explicit metric.

If some magnetic fluxes are turned on in the internal cycles wrapped by D7-branes, the

charged fields in general have degenerate zero-modes [1] identified with the generation of

matter fields living on the D7-brane. We have found that they are exponentially localized

around the tip of conifold due to the nature of dilogarithm function.

Especially, in view of the 5D effective theory, the wavefunctions of matter fields in

AdS5 have the exponential form depending on the number of magnetic fluxes they feel.

In section 4, we have analyzed the detailed form of wavefunctions localized near the tip

of conifold due to the magnetic fluxes, whereas the graviton localizes towards the CY

manifold. Such a situation can yield various small mass scales compared with the Planck

scale when the localized fields obtain non-vanishing vacuum expectation values [22, 23],

which is quite interesting from the viewpoint of phenomenological model building. It is

remarkable that, in the terminology of AdS5 supergravity [26] compactified on S1/Z2,

the so-called bulk mass [24, 25] (proportional to a graviphoton charge) of matter fields is
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determined effectively, in our conifold setup, by the magnetic fluxes. Note also that the

bulk mass is one of the key parameters in the particle-physics model building on AdS5.
8

We have assumed, throughout this paper, that the conifold background could be glued

to a certain global CY manifold in order to determine the compact cycle of D7-brane in

terms of the global description. We expect that the resultant wavefunctions do not receive

sizable corrections from the global CY manifold. This assumption seems to be appropriate

since we have obtained wavefunctions for some flux configurations satisfying the validity

conditions, which extract profiles localized toward the tip of conifold and converging to

zero in the direction of global CY.

It is important to study the global embedding of our local results by employing the

Batyrev’s method and the Kreuzer-Skarke list mentioned in section 4.3, because such a em-

bedding allows us to identify the exact cycles of D-branes along the direction of the global

CY. An extension to the warped deformed and/or resolved conifold is also interesting.

There is a work studying supersymmetric D7-branes on the warped deformed conifold tak-

ing kappa-symmetry condition into account with H-flux [39]. On the other hand, extensions

to the geometry with the other types of Sasaki-Einstein manifold, such as AdS5×Y p,q and

AdS5×La,b,c, can be tried referring to a kappa-symmetric embedding [15, 40] (see also [41]

for a comprehensive review).

Although our analyses in this paper is mainly motivated by the case that D7-branes

yield (a part of) SM fields, as discussed in ref. [42], a semi-realistic spectrum can be

realized on D3-branes at the orbifold singularity at the bottom of a warped throat such as

the conifold. These D-brane configurations are also interesting from the cosmological point

of view in a model building on the conifold. The additional D7-branes play important roles

in the context of Kähler moduli stabilization. On these warped backgrounds, it has been

pointed out a possibility of brane inflation on the warped deformed conifold [43] as well

as a natural inflation on the warped resolved conifold [44]. Our results for general fields

on D7-branes will be applicable to various phenomenological/cosmological scenarios on the

conifold including them. We will study these issues elsewhere.
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A Kappa-symmetry

The Killing spinor on AdS5 is given by

ǫ = r
Γ∗
2

(

1 +
Γr
2L2

xαΓxα(1− Γ∗)

)

η, (A.1)

8The exponential localization of fields are quite useful for phenomenological/cosmological model building

in (a slice of) AdS5. For example, refs. [37, 38] addressed most phenomenological and cosmological issues

in the modern particle physics in a single model based on the AdS5 supergravity.
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with

Γ∗ = iΓx0x1x2x3 , (A.2)

and the stable Dp-branes on the background AdS5 × T 1,1 are properly embedded in the

kappa-symmetric way. As stated in ref. [45], the kappa-symmetric conditions are equivalent

to the following condition,

Γκǫ = ǫ, (A.3)

where

Γκ =
1

(p+ 1)!
√−g

ǫµ1···µp+1(τ3)
p−3
2 iτ2 ⊗ γµ1···µp+1 , (A.4)

with the pull-back γ̃µ1···µp+1 of the Gamma matrices. The D7-brane considered in this

paper satisfies the above condition (A.3) which is summarized in ref. [14].

B Spin connections

By solving Cartan structure equations,

dea + wab ∧ eb = 0, (B.1)

we obtain the nonvanishing spin-connections as follows:

w12
z3 = i

z̄3
6ρ|z3|2(|z3|2 + c2)

[

−2|z3|4 + |z3|2|z4|2 − 3c2|z4|2
]

, w12
z̄3 = w12

z3 ,

w12
z4 = i

z̄4
6ρ|z4|2(|z4|2 + c2)

[

−2|z4|4 + |z3|2|z4|2 − 3c2|z3|2
]

, w12
z̄4 = w12

z4 ,

w13
z3 =

c|z4|z̄3
2ρ

√
6ρ|z3|(|z3|2 + c2)

√

1
9 + c2

6ρ

[

|z3|2 + c2
]

, w13
z̄3 = w13

z3 ,

w13
z4 = − c|z3|z̄4

2ρ
√
6ρ|z4|(|z4|2 + c2)

√

1
9 + c2

6ρ

[

|z4|2 + c2
]

, w13
z̄4 = w13

z4 ,

w14
z3 = i

c|z4|z̄3
6ρ

√
6ρ|z3|(|z3|2 + c2)

√

1
9 + c2

6ρ

[

−2ρ+ 3(|z3|2 − c2)
]

, w14
z̄3 = w14

z3 ,

w14
z4 = −i

c|z3|z̄4
6ρ

√
6ρ|z4|(|z4|2 + c2)

√

1
9 + c2

6ρ

[

−2ρ+ 3(|z4|2 − c2)
]

, w14
z̄4 = w14

z4 ,

w23
z3 = −i

c|z4|z̄3
2ρ

√
6ρ|z3|(|z3|2 + c2)

√

1
9 + c2

6ρ

[

|z3|2 − c2
]

, w23
z̄3 = w23

z3 ,

w23
z4 = i

c|z3|z̄4
2ρ

√
6ρ|z4|(|z4|2 + c2)

√

1
9 + c2

6ρ

[

|z4|2 − c2
]

, w23
z̄4 = w23

z4 ,

w24
z3 =

c|z4|z̄3
6ρ

√
6ρ|z3|(|z3|2 + c2)

√

1
9 + c2

6ρ

[

2ρ+ 3(|z3|2 + c2)
]

, w24
z̄3 = w24

z3 ,

w24
z4 = − c|z3|z̄4

6ρ
√
6ρ|z4|(|z4|2 + c2)

√

1
9 + c2

6ρ

[

2ρ+ 3(|z4|2 + c2)
]

, w24
z̄4 = w24

z4 ,
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w34
z3 = −i

c2z̄3

36ρ2(|z3|2 + c2)
(

1
9 + c2

6ρ

)

[

ρ+ 3(|z4|2 + c2)
]

, w34
z̄3 = w34

z3 ,

w34
z4 = −i

c2z̄4

36ρ2(|z4|2 + c2)
(

1
9 + c2

6ρ

)

[

ρ+ 3(|z3|2 + c2)
]

, w34
z̄4 = w34

z4 . (B.2)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References
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