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1 Introduction

One of the celebrated facts of string theory is that it defines a consistent theory of quantum

gravity in ten target spacetime dimensions. At the perturbative level, this is a direct

consequence of the restrictions imposed by coupling a two-dimensional conformal field

theory (CFT) to worldsheet gravity. Dualities support this picture and also broaden it

in certain respects. For example, the long distance behavior of M-theory is formulated

in eleven dimensions, and in F-theory, there is still a ten-dimensional spacetime but one

which can be phrased in terms of an underlying twelve-dimensional geometry.

Of course, there are many two-dimensional CFTs with a conformal anomaly different

from that required for the critical superstring. The condition of conformal invariance means

that coupling to worldsheet gravity leads to spacetime profiles for some of the target space

fields of the theory, including non-trivial profiles for the dilaton and various fluxes [1, 2].

This is a theory of non-critical strings.

From the viewpoint of effective field theory, one actually expects that the long distance

physics of one-dimensional extended objects will always be governed by an effective theory

of long strings. That is to say, at energies far below that set by the tension, we expect to

have a consistent description in terms of a non-critical string theory. The theory of effective

long strings has developed over several years, see for example [3–6] and references therein.

Potential applications of non-critical string theory include the ambitious task of un-

derstanding string theory on time dependent backgrounds. Another aspect of working in
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Figure 1. Depiction of energy scales for 2D effective string theories derived from string compact-

ification. In the deep infrared, we have a 2D conformal fixed point coupled to gravity, leading

to an effective string theory. At somewhat higher energy scales, this description passes over to a

gauged linear sigma model coupled to extra sectors and gravity, and at even higher energy scales

this description also breaks down and is replaced by a 10D supergravity theory. This is in turn

replaced at even higher energies by a corresponding UV completion in string theory.

a super-critical string theory is that the exponential degeneracy in the ground state leads

to a large number of Ramond-Ramond fluxes, which in turn makes it possible to easily

engineer de Sitter vacua. For some examples along these lines, see e.g. [7–10].

But as a low energy effective theory, significant care must be taken in any such approach

because once we exit the regime of a perturbative α′ expansion, higher order effects in the

non-linear sigma model beta functions can make any reliable target space interpretation

difficult to maintain, except in special solvable cases such as linear dilaton backgrounds

and “quintessential” variants such as those pursued in e.g. [10]. Almost inevitably, there is

an energy scale on the worldsheet above which large gradients in the target space obscure

any conventional spacetime interpretation.

In this paper we provide a general proposal for how to ensure a UV complete starting

point for such 2D effective string theories. Moreover, the breakdown at high energies will be

understood as the regime in which the 2D effective theory grows into a higher-dimensional

theory of quantum gravity, which is in turn UV completed by the physical superstring!

The basic idea is that we will first begin with a well-known UV complete theory: string

theory in ten spacetime dimensions. We shall, however, then compactify to two dimen-

sions. When decoupled from gravity, this will provide the basic starting point for a two-

dimensional effective quantum field theory. At low energies, we either enter a gapped phase,

or a conformal field theory. Assuming we flow to a CFT in the IR, coupling to gravity leads

to a non-critical string theory. The important point is that the appearance of a singularity

in the high-momentum behavior of correlators simply tells us that we are exiting the purely

two-dimensional realm, and instead must pass back to the original worldsheet theory with

interpretation in ten spacetime dimensions. See figure 1 for a depiction of the energy scales

involved in the interpretation of our theory. See also reference [11] for an early discussion

of using the low energy limit of string theory to generate another worldsheet theory.

Aside from these general conceptual motivations to explore the UV consistency of non-

critical superstrings, there are additional reasons to be interested in compactifications of
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string theory to two dimensions. First of all, in limits where gravity is decoupled — as

can happen in numerous F-theory constructions — we can expect to arrive at a large class

of novel two-dimensional quantum field theories. It is widely expected that general (0, 2)

models will be of relevance in a worldsheet formulation of heterotic flux vacua, though

the explicit construction of such models has proven a remarkably durable obstacle to this

programme. Further, we will encounter particular classes of gauged linear sigma models

involving all of the possible simple gauge groups, including the entire exceptional series. If

nothing else, this provides a much broader arena for constructing candidate vacua.

Additionally, much as in higher dimensional quantum field theories, it is natural to

expect that the geometry of extra dimensions will provide insight into the strong coupling

dynamics of such systems. This has been explored to some extent in certain cases such as

references [12–15]. As a final motivation, there is also an intriguing connection between the

supersymmetric quantum mechanics of M-theory on a (non-singular) K3-fibered Calabi-Yau

fivefold and refined Gromov-Witten invariants of the base Calabi-Yau threefold [16] (see

also [17]). Owing to the close connection between M-theory on X and F-theory on S1×X,

the effective two-dimensional theories studied here provide an even further refinement on

these general considerations. The case of M-theory compactified on a smooth Calabi-Yau

fivefold was studied in great detail in reference [18].

With these motivations in mind, our task in this paper will be to lay the groundwork

for all of these potential applications by setting up the general formalism of string compact-

ification to two dimensions. In particular, we will focus on the effects of having a non-trivial

gauge theory sector, and possibly additional extra sectors as well. Indeed, to the best of

our knowledge, most of the early literature on string compactification to two dimensions

has focussed on the comparatively simpler class of manifolds with no singularities and only

abelian gauge symmetry. For a guide to this earlier work, see e.g. [19–22].

Compared with these cases, here we expect to have a rich set of quantum field theories

with N = (0, 2) supersymmetry coupled to a 2D N = (0, 2) supergravity theory. Though

sharing some similarities with the structure of the heterotic N = 2 string (see e.g. [23]),

there are a few important differences. For example, generically higher derivative corrections

will eliminate any gauged U(1) R-symmetry once we couple to gravity. Additionally, some

of the tight constraints typically found in the case of N = 2 strings will be significantly

weakened since we shall only demand that our worldsheet theory make sense as a low

energy effective theory.

Now, since part of our aim is to maintain an explicit UV completion of any proposed

2D non-critical string theory, we first treat in detail the cases of perturbative string theories

with a non-abelian gauge theory sector and at least (0, 2) supersymmetry in two dimensions.

This includes compactification on a Calabi-Yau fourfold of the type I superstring, and the

heterotic Spin(32)/Z2 and E8 × E8 string theories.

For all of the perturbatively realized theories in which we compactify, we inherit a 2D

gauge theory from the dynamics of a spacetime filling 9-brane. Much as in the case of com-

pactifications in higher dimensions, the low energy dynamics of this 9-brane is governed by

a supersymmetric Yang-Mills theory wrapped over a Calabi-Yau space. As such, supersym-

metric vacua are described by solutions to an appropriate Hermitian Yang-Mills equation.
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We determine the explicit zero mode content for a general supersymmetric background and

also determine the leading order interaction terms for this theory.

Once we proceed to the broader class of non-perturbatively realized vacua, it will

prove convenient to immediately pass to the F-theory formulation of 2D theories where we

compactify on an elliptically fibered Calabi-Yau fivefold. An important aspect of the latter

class of models is that there is typically a limit available where we decompactify the base

of the elliptic model, but some of the 7-branes still wrap compact divisors. This allows

us to decouple our (0, 2) quantum field theory sectors from gravity, providing a systematic

way to build up the data of the conformal field theory defined by the intersecting 7-branes

of the compactification.

In our F-theory models there is some geometric localization of the corresponding zero

modes — They can either descend from bulk modes of a 7-brane or be localized at the inter-

section of pairwise intersections of 7-branes. Additionally, we find that there are interaction

terms localized on subspaces. These can localize on a Kähler threefold, a Kähler surface,

a Riemann surface and a point. The last case is somewhat special to two-dimensional

theories and comes about from the intersection of four 7-branes in the compactification. It

defines a quartic interaction term in the two-dimensional effective theory.

In both the heterotic and F-theory constructions, the higher-dimensional theory admits

an action which is supersymmetric on-shell, that is to say, we must impose the equations

of motion for the supersymmetry algebra to fully close. Another aim of our work will

be to develop a manifestly off-shell formulation for these theories when treated as a 2D

theory with off-shell (0, 2) supersymmetry. In this 2D theory, we explicitly retain all of the

Kaluza-Klein modes. This has been successfully carried out for four-dimensional supersym-

metric theories, as in reference for 10D Super Yang-Mills theory [24] (see also [25]) and in

reference [26] for intersecting 7-branes, but as far as we are aware has not been attempted

for 2D theories. We find that in the case of the 9-brane action, the 10D Majorana-Weyl

spinor constraint can sometimes obstruct the construction of such an off-shell formalism

in two dimensions, but that assuming the presence of an additional Z2 symmetry of the

geometry, there is indeed an off-shell formalism for the 9-brane. For intersecting 7-branes

in a local F-theory construction, this symmetry is automatically present, and allows us to

always construct an off-shell action. An additional benefit of this method of constructing

the higher-dimensional theory is that we can then easily read off the zero mode content

and leading order interaction terms of the resulting effective theory in two dimensions.

In addition to the “GLSM sector” there are generically other chiral degrees of freedom

in the 2D effective theory (see figure 2 for a depiction). The necessity of these sectors can be

argued for in a few different ways. First of all, we will see from a detailed calculation of the

zero modes inherited from just the GLSM sector that the spectrum is typically anomalous.

This is a sharp indication that additional modes must be present to define a consistent

gauge theory. One way that this shows up in a compactification is through the two-

dimensional Green-Schwarz mechanism, i.e. we have a two-dimensional two-form potential

which transforms non-trivially under gauge transformations. The presence of such a two-

form potential also means there is a tadpole in the effective theory, and this in turn means

additional spacetime filling branes must be included to cancel this tadpole. By construction,
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Figure 2. Depiction of the non-gravitational sector of the 2D model obtained from string com-

pactification. Generically, this consists of a 2D gauged linear sigma model (GLSM) coupled to

additional extra sectors. These extra sectors can sometimes be strongly coupled conformal field

theories in their own right, leading to a rich class of novel 2D theories.

the light degrees of freedom on these branes have gauge and gravitational anomalies that

are just right to cancel the anomalies from the GLSM sector. In most cases, this extra sector

is strongly coupled and does not admit a simple characterization as a GLSM. For example,

in a typical perturbative heterotic string compactification, we will need to introduce some

number of N additional spacetime filling fundamental strings. The limit where all of these

strings are coincident leads us to an additional sector which is expected to be well-described

by the N -fold symmetric orbifold of the usual first quantized heterotic string worldsheet.

For F-theory compactifications, we find that the analogue of these extra sectors for

the perturbative heterotic string are described by spacetime filling D3-branes wrapped on

cycles normal to the directions of the 7-branes. When the point of intersection of the

D3-brane and the 7-brane carries an exceptional gauge symmetry, we again generically get

a strongly coupled extra sector. In F-theory, we can also consider D3-branes wrapping

two-cycles which are also common to the 7-branes. The avatar of these contributions in

the type I and heterotic constructions are five-branes wrapped over four-cycles.

The rest of this paper is organized as follows. In section 2 we give a broader overview

of why we expect compactifications of string theory to two dimensions to give us non-

critical string theories. In section 3 we consider the special case of compactifications of

perturbative superstring theories, starting with the case of the type I and heterotic string

theories. This includes a general set of rules for extracting the zero mode content in the

presence of a non-trivial supersymmetric vector bundle. Next, in section 4 we turn to the

case of F-theory compactifications and intersecting 7-branes. Motivated by the success-

ful analyses of higher-dimensional cases, we shall primarily focus on the local picture of

intersecting 7-branes. In both the perturbative and F-theory constructions, we will gener-

ically encounter gauge theoretic anomalies, indicating that there are additional degrees of

freedom in our models. In section 5 we give a general discussion of tadpole cancellation,

and the prediction that there should be extra sectors coupled to our GLSM. We follow

this in section 6 with a preliminary analysis of the dynamics of these extra sectors. After

giving these general results, in section 7 we turn to some explicit examples illustrating

the overall thread of our analysis. For the 9-brane theories we focus on variants of the
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“standard embedding” constructions. We find that for the Spin(32)/Z2 heterotic theory,

the addition of spacetime filling fundamental strings (needed for anomaly cancellation) is

supersymmetric, while for the E8 × E8 theory, these spacetime filling strings break su-

persymmetry. For the F-theory models, we focus on some examples of “rigid GLSMs”

which are the two-dimensional analogue of non-Higgsable clusters encountered in higher-

dimensional F-theory vacua. Section 8 contains our conclusions. We defer a number of

technical elements, such as the explicit construction of the off-shell 2D effective action for

the 9-brane and intersecting 7-brane theories, to a set of appendices.

Note added. As we were preparing this work for publication, reference [27] appeared

which has some overlap with the discussion presented here on F-theory compactified on an

elliptically fibered Calabi-Yau fivefold. In some places the holomorphy conventions for the

resulting 2D effective theory for intersecting 7-branes are somewhat different. Nevertheless,

to the extent we have been able to compare our results with those found in [27], the broad

conclusions appear to be compatible.

2 Effective strings from string compactification

Consider a compactification of a perturbative string theory to R1,d−1 with d > 2 spacetime

dimensions. The low energy physics is described by an effective theory of d-dimensional

(super)gravity coupled to some general quantum field theory. The effective action, and the

vacuum of the effective theory depend on the vacuum expectation values of the moduli

fields that encode the choice of background geometry and fluxes. The presence of the

moduli is quite useful to the technically minded string theorist: it allows for controlled

approximations (e.g. string perturbation theory, or a large volume expansion, or both),

and the moduli dependence of various physical quantities can shed light on various strong

coupling limits. The resolution of the conifold singularity in type II compactifications to

four dimensions with eight supercharges is a beautiful example of the latter.

In the case of d = 2, the situation is quite different. We may obtain the dimensionally

reduced action as before, but we must be careful in the interpretation of this action because

we no longer have the freedom to work in a fixed vacuum specified by the expectation values

of the moduli: indeed, the ground state wave-function will now be obtained by integrating

the non-linear sigma model fields over the full moduli space. Since the moduli space is

typically non-compact and singular, this is a challenging enterprise! It may be that there

are d = 2 scalar potential terms that fix some (or maybe all) of the moduli and thereby

alleviate this particular problem, but based on experience in d = 4 we might guess that

proving this is the case in any particular compactification will not be simple. Alternatively,

we can take a suitable decoupling limit (in essence a decompactification limit) that will

allow us to fix moduli to particular values and focus on the gauge theory sector; F-theory

is particularly well-suited for such an approach.

The gauge theory sector will have similar features. For instance, if there is a Higgs

branch in the theory, then we cannot choose a vacuum with some fixed perturbative gauge

group; we must integrate over the Higgs branch. Fortunately, there we are on more familiar
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ground. If we focus on the gauge sector, we can describe it as a gauged linear sigma model

(GLSM), and in many cases (though by no means all!) we can argue that the resulting

path integral leads to a sensible unitary QFT with a normalizable ground state and low

energy behavior described by some compact and unitary CFT. In many GLSMs there is a

parameter regime where we can approximate the unitary CFT by a non-linear sigma model

over some smooth compact manifold.

Before we can ascertain the low energy dynamics of the GLSM sector, we should be

careful to check that our d = 2 gauge theory is anomaly-free. This may strike the reader

as a pedantic sort of concern: of course it will be anomaly-free if we made a sensible com-

pactification in the first place. Here again low-dimensional compactifications provide some

(well-known) surprises. The basic origin of these is the ten-dimensional Green-Schwarz

coupling
∫
B2 ∧X8. It is indeed the case, that “if we made a sensible compactification,”

then any anomaly in the GLSM will be cancelled by the dimensional reduction of the GS

term, e.g.
∫
R1,1 B2

∫
M X8, where M is our compactification manifold. However, precisely

when
∫
M X8 6= 0, or equivalently, there is a gauge anomaly in the GLSM sector, the reduced

term yields a tadpole for B2. We must cancel this tadpole by introducing appropriate R1,1-

filling strings or branes, which will then in turn carry extra chiral degrees of freedom, so

that the combined anomaly of the GLSM and this “extra” sector will vanish.1

Let us now explain the sense in which we expect our two-dimensional effective theory

to give an effective string theory. First of all, provided we have engineered a stable string

compactification, we have the important feature that at low energies, the gauge theory

sector will flow in the deep infrared to either a gapped phase or a conformal fixed point.

Since we typically can eliminate the former possibility, we are in some sense guaranteed that

the vast majority of our models flow to some sort of unitary CFT in the infrared. In the

most “trivial case” this will be some collection of free fields, but even this leads to a rather

non-trivial theory when coupled to worldsheet gravity: string theory in flat space! With

this in mind, we generically expect to have a rather rich physical theory on a target space.

In this discussion, it is also important to account for the fermionic degrees of freedom.

Much as in the case of the physical superstring, these lead to a degeneracy in the ground

state which has the spacetime interpretation of p-form potentials in the target space.

It is fairly clear that the resulting theory will be a supercritical string, simply because

the central charge of the complete matter CFT will typically be very large. Thus, the Weyl

mode ϕ of the two-dimensional metric g = e2ϕĝ, will be a dynamic field and will have the

“wrong sign” kinetic term, signaling a target-space of signature (1, Deff−1). Moreover, there

will be a non-trivial dilaton profile, giving an effective string coupling constant geff ∼ e−ϕ,

so that we must worry about the strong-coupling dynamics for ϕ → −∞. Fortunately,

we have an interpretation for this limit: this is precisely the UV regime for our two-

dimensional theory that is acting as the worldsheet for the effective string, and we know

that the proper interpretation for that theory is in terms of the physics of our UV complete

higher-dimensional theory of gravity!

1Tadpole cancellation might come at the price of breaking spacetime supersymmetry. We will see

below that this is not an idle concern; for instance such breaking takes place for the standard embedding

compactification of the E8 × E8 heterotic string on an irreducible Calabi-Yau fourfold.
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As we have already mentioned in the Introduction, one of the primary motivations for

studying compactifications of the physical superstring to two dimensions is that we then

get a non-critical string theory propagating on a more general class of target spaces. To

concretely describe the theory, we need to specify two ingredients: the complete matter

theory, including any “extra” sectors from space-filling strings or branes, as well as the

(0, 2) supergravity theory.

The supergravity that perhaps springs most clearly to mind is the (2, 2) supergrav-

ity used to construct N = 2 critical string theories (see e.g. [23, 28, 29]). However, that

cannot be the case in the situation at hand, simply because the latter involves gauging

R-symmetries of the matter theory, and our matter theory has no R-symmetries to gauge!

The resolution was already discussed in the context of IIA and IIB compactifications on

4-folds in [21]: there are dilaton supergravities with (2, 2) and (0, 4) supersymmetry in two

dimensions that do not involve gauging R-symmetries, and the (0, 2) truncation of the latter

will be the appropriate supergravity for our compactifications. While we will not pursue the

details of this construction here, there is one important aspect of the story: the ghost mea-

sure for this supergravity has central charges cL = −26 and cR = −26 + 23. The factors of

−26 are the familiar bc ghosts of diffeomorphisms, while 22 = 2×11 is the contribution from

two right-moving βγ ghosts of superdiffeomorphisms, but this is supplemented by a contri-

bution of +1 to cR from a right-moving Weyl fermion that also descends from the gravitino.

Finally, the ten-dimensional dilatino contributes another right-moving Weyl fermion. All

in all, the contribution to the gravitational anomaly from the dilaton supergravity sector is

∆(cL − cR) = −24 . (2.1)

Just as our theory is free of gauge anomalies, it will also be free of the gravitational

anomaly: the sum of contributions to cL − cR from the matter, “extra,” and supergravity

sectors will cancel. Once we have such a generally covariant theory, we can confidently

fix to superconformal gauge, where we will obtain a superconformal theory with the Weyl

mode, the dilaton, and the dilatinos combining in a (0, 2) super-Liouville sector. This

will be the conformal field theory that will act as the worldsheet theory for our effective

super-critical string.

We expect that when a target space interpretation will be available for this theory, it

will have non-trivial time dependence (because of the time-like Weyl mode and geff ∼ e−ϕ)

and may well be equipped with gauge degrees of freedom corresponding to a current algebra

in the CFT.

Another interesting feature of our effective string theory is that as we proceed up in

energy scale on the worldsheet, i.e. as we get closer to the string tension scale, the effective

dimension, which will be related to the central charge, will at first appear to grow before the

whole formalism breaks down and we instead replace the effective string theory by another

effective theory: that of a compactification of the physical superstring on a ten-dimensional

spacetime. At even higher energy scales, this in turn must be replaced by the worldsheet

description of the model (in the case of the perturbative type I and heterotic models).

This is certainly far from a complete solution to the dynamics of these effective strings.

To name just one of the issues, our understanding of the starting point theories is certainly
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not complete in any sense. However, we believe it is valuable to recognize that many

super-critical string theories can be completed in this way at least in principle. It will

be very interesting to see which aspects of strong coupling we can understand based on

what we do know about M/F/string theory. In that sense, we can expect that examples

with supersymmetry should help the analysis. In this work, we take a very minimalist

point of view of preserving the smallest amount of two-dimensional supersymmetry where

holomorphy can play a powerful role. With that, we turn to a discussion of (0, 2) worldsheet

supersymmetry, focusing on the gauge sector.

2.1 Elements of N = (0, 2) theories

Let us briefly summarize some of the elements of N = (0, 2) supersymmetric quantum field

theories in two dimensions which we will be using throughout this work. In appendix A we

also present the gauged linear sigma model (GLSM) for theories with non-abelian gauge

groups. Perhaps surprisingly, we have been unable to locate a convenient reference for this

seemingly basic result.

Our aim in this section will be to set our conventions, and in particular, to emphasize

the holomorphic structure we expect to be present in any candidate effective action. First

of all, in building a (0, 2) GLSM, we have modes in a vector multiplet, Fermi multiplet,

and chiral multiplet.2

For the chiral multiplets and Fermi multiplets, we use conventions similar to those

in [30]:

CS: Φ = φ+
√

2θ+ψ+ − iθ+θ
+
∂+φ (2.2)

F: Λ = λ− −
√

2θ+G − iθ+θ
+
∂+λ− −

√
2θ

+
E, (2.3)

where E(Φ) is a holomorphic function of the CS multiplets, and G is an auxiliary field.

Following standard terminology, we refer to the λ− as left-movers and ψ+ as right-movers.3

An F-term will be represented in terms of a Grassmann integral over half the super-

space, i.e. θ+, and a D-term is given by integrating over both θ+ and θ
+

. Minimal kinetic

terms for the chiral multiplets and Fermi multiplets are given by the D-terms:

CS: − i

2

∫
d2θ Φ∂−Φ (2.4)

F: − 1

2

∫
d2θ ΛΛ. (2.5)

In what follows, we shall often have occasion to work with fields transforming in non-trivial

representations and bundles. Then, we shall introduce a canonical pairing (·, ·) to capture

this more general possibility. When we couple to gauge fields, the derivative ∂− is promoted

to a gauge supercovariant derivative ∇−.

2The real “vector multiplet” is quite similar to that found in N = 1, d = 4 superspace. As there, the

field strength lives in a derived fermionic superfield with lowest component a gaugino.
3Another delightful confusion involves the spin of these fields: λ− has spin +1/2 and ψ+ has spin −1/2.

These recondite issues have to do with ancient preferences and holomorphy conventions.
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An important point to emphasize is that as far as we are aware, there is no simple way

to impose a reality condition such as Λ† = Λ on Fermi multiplets and retain a non-trivial

kinetic term. We shall instead later show how to obtain a variant of this constraint in some

special cases.

One of the items we will be most interested in is the structure of possible F-terms.

These arise from the Ek(Φ) terms just mentioned, as well as the interaction:

LF =

∫
dθ+W, (2.6)

where we have introduced a quantity W which we shall refer to as the “superpotential”:

W =
1√
2

ΛkJk(Φ), (2.7)

where Jk(Φ) is a holomorphic function of the chiral multiplets.

By applying the supercovariant derivative D+ (see appendix A for details) we also

obtain a necessary condition for off-shell supersymmetry of our action:

D+W =
∑
k

Ek(Φ)Jk(Φ) = 0. (2.8)

This condition needs to be satisfied for any choice of field configuration and therefore leads

to non-trivial constraints on the structure of any coupling constants in the theory, i.e.

background parameters.

By expanding out in terms of component fields (and including the kinetic terms for

the various fields), we find that the F-term couplings Jk and Ek lead to terms in the scalar

potential of schematic form
∑

k

[
|Ek|2 + |Jk|2

]
. Thus, the F-term conditions for a d = 2

supersymmetric vacuum are:

Jk(Φ) = 0 and Ek(Φ) = 0 (2.9)

for all k. There will also be D-term potential terms from the gauge interactions.

There are a few additional comments we can now make with regards to the absence of

a Fermi multiplet with a Majorana-Weyl spinor. The essential difficulty we inevitably face

is that there is a clear clash between the requirements of holomorphy, and those of unitarity

(i.e. an appropriate reality condition). However, let us suppose that we have a collection of

Majorana-Weyl spinors, and with them, a corresponding Z2 symmetry of the theory. With

this in mind, we can at first double the number of degrees of freedom for our fermionic

sector to a set of Fermi multiplets Λ(even) and Λ(odd). We do not, however, double any of

the other degrees of freedom, and simply decompose for example the term J(Φ) into an

even and odd piece. In this enlarged theory, we can now introduce a formal superpotential

term which enforces the holomorphic structure of the theory, and which we refer to as Wtop:

Wtop = Ω(odd)(Λ(even)J (odd) + Λ(odd)J (even)), (2.10)

and where we take the E-fields for both sets of Λ’s to be trivial. Observe that the F-term

equations of motion are now enforced by independently varying the two Λ’s. We can be
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more economical, however, and simply work with the single Fermi multiplet Λ(even), but

with a modified E-field. The choice of E-field is set by the condition that we reproduce

the correct holomorphic structure of the vacuum, so we set:

E(even) =
1

Ω(odd)

∂Wtop

∂Λ(odd)
= J (even). (2.11)

Then, we are free to eliminate Λ(odd) altogether and just use the physical F-term:

W =
1√
2

Ω(odd)Λ(even)J (odd). (2.12)

So in this sense, we still get to set J (even) = 0, and this is protected by holomorphy.

For our present purposes, we will be interested in higher-dimensional brane systems

which we wish to represent in terms of an off shell two-dimensional effective field theory.

In other words, we will try to retain the full Kaluza-Klein tower of higher dimensional

modes, but assembled according to corresponding (0, 2) supermultiplets. We will also

demand that higher-dimensional gauge symmetries are manifest in our formulation. Such

an off-shell formulation will allow us to succinctly state which of our interaction terms are

expected to be protected by supersymmetry (i.e. are holomorphic F-terms) and which are

expected to receive quantum corrections (i.e. the non-holomorphic D-terms).

Indeed, one of the important features of this formulation is that it provides us with a

way to characterize the quasi-topological (in the sense that it depends on complex structure

moduli) theory associated with the internal brane dynamics. From this perspective, the

supercharges of the 2D (0, 2) theory can also be interpreted as the BRST charges of the

topological theory:

Q2D = QBRST. (2.13)

The condition that we have an off-shell supersymmetric action then corresponds to the

condition that we have indeed performed the twist correctly. Moreover, the physical states

of the theory, i.e. those in the BRST cohomology simply label possible ground states of the

2D effective theory.

3 GLSMs from perturbative string vacua

Motivated by the possibility of constructing UV complete non-critical strings, we now

turn to a particularly tractable class of examples obtained from compactifications to two

dimensions of perturbative string theories. Since we are interested in theories which also

admit a gauge theory sector, we shall primarily focus on compactifications of the type I, and

heterotic superstrings. An important feature of these models is the presence of a spacetime

filling 9-brane with respective gauge group Spin(32)/Z2, and E8×E8, so we can expect that

upon compactification this gauge theory sector will give rise to a large class of (0, 2) GLSMs.

In this section we will focus on the 9-brane sector by itself. In later sections we turn to

the effects internal fluxes have on the presence of tadpoles and extra sectors. To this end,

we first recall that in flat space, this theory has gauge group G and N = 1 supersymmetry
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with a single Majorana-Weyl spinor transforming in the 16 of Spin(1, 9). The action in

flat space has two leading order terms:

L10D =
1

4g2
YM

∫
d10x

(
TrF IJFIJ + 2iχΓIDIχ

)
, (3.1)

where DI is the covariant derivative, FIJ = [DI , DJ ] is the non-abelian field strength for our

10D Yang-Mills theory, and the χ are the 10D Majorana-Weyl gauginos which transform in

the adjoint representation of G. As written, the theory is of course non-renormalizable, and

we should view this as just the leading order contribution to the full theory (with scattering

amplitudes controlled by the string worldsheet anyway). There is also the gravitational

sector of the theory, which includes the metric, the Neveu-Schwarz two form potential, and

the heterotic dilaton (which controls the gauge coupling of the Yang-Mills sector).

Suppose now that we compactify this 10D gauge theory to two dimensions. The

simplest way to retain N = (0, 2) supersymmetry is to compactify on an irreducible Calabi-

Yau fourfold M equipped with a principal G-bundle P .4 Indeed, doing this enables us to

retain a covariantly constant spinor so that we maintain low energy (0, 2) supersymmetry

in the two uncompactified directions. Since we have a manifold of SU(4) holonomy, the

fundamental representation of SO(8) must decompose to the 4⊕4. This in turn forces the

following decomposition of eight-dimensional representations for SO(8):

SO(8) ⊃ SU(4)×U(1) (3.2)

8s → 1+2 ⊕ 1−2 ⊕ 60 (3.3)

8c → 4−1 ⊕ 4+1 (3.4)

8v → 4+1 ⊕ 4−1. (3.5)

We now turn to the decomposition of the supercharges, as well as the mode content of

the 10D Super Yang-Mills theory. First of all, both the 10D gauginos and the supersym-

metry parameters transform in the 16 of SO(1, 9). Additionally, we have the gauge field

which transforms in the 10 of SO(9, 1). We begin with the decomposition expected from

compactification on a general eight-manifold:5

SO(9, 1) ⊃ SO(1, 1)× SO(8) (3.6)

16→ 8s− ⊕ 8c+ (3.7)

16′ → 8s+ ⊕ 8c− (3.8)

10→ 1++ ⊕ 1−− ⊕ 8v0, (3.9)

where we use the subscripts + and − to indicate a right-moving or left-moving chiral spinor

of SO(1, 1), and we double this to indicate the 2D vector field. Decomposing further into

4By “irreducible” we mean that the smooth compact manifold has a Kähler metric with holonomy

exactly SU(4).
5Using the triality automorphism, we can shift the role of the 16 and 16′. We choose the present chirality

convention to conform with our conventions for N = (0, 2) supersymmetry in two dimensions.
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irreducible representations of SU(4) ×U(1), we have:

SO(1, 9) ⊃ SO(1, 1)× SU(4)×U(1) (3.10)

16→ 1−,+2 ⊕ 1−,−2 ⊕ 6−,0 ⊕ 4+,−1 ⊕ 4+,+1 (3.11)

16′ → 1+,+2 ⊕ 1+,−2 ⊕ 6+,0 ⊕ 4−,−1 ⊕ 4−,+1 (3.12)

10→ 1++,0 ⊕ 1−−,0 ⊕ 40,+1 ⊕ 40,−1, (3.13)

so we indeed recognize that descending from the 16 there are two singlets under SU(4)

which specify the N = (0, 2) supercharges of our system.

The decomposition we have given for the supercharges also holds for the 10D gaugino.

Doing so, we see that the 2D gauginos descend from the 1−,+2 ⊕ 1−,−2 as left-movers

with (0, 2) superpartners 1++,0 ⊕ 1−−,0. Additionally, we see that there are right-movers

transforming in the 4+,−1⊕4+,+1 with (0, 2) superpartners 40,+1⊕40,−1. A curious feature

of working in two dimensions is that we also recognize left-moving fermions in the 6−,0 ,

which have no bosonic partners.

An important subtlety with 10D Super Yang-Mills theory is that the 16 is actually a

Majorana-Weyl spinor. This issue is reflected in the fact that the 6−,0 is actually a real

representation of SU(4). Indeed, counting up the fermionic degrees of freedom, we therefore

expect the 6−,0 to descend to a Majorana fermion in two dimensions. This will have impor-

tant consequences when turn to the construction of supermultiplets and interaction terms.

In the heterotic models, we must impose a workaround to get everything fully off-shell.

One way to do this which is suggested by the related F-theory models is to assume the

presence of a geometric Z2 symmetry for our Calabi-Yau and gauge bundles. Doing so

automatically leads to a split of the form content into an equal number of even and odd

modes. Turning to the decomposition of the 6, we can then take just the even modes, and

use these to assemble a Fermi multiplet. When we turn to the construction of the effective

action, we will revisit this point in great detail.

In order to respect the structure dictated by the higher-dimensional geometry, we shall

find it convenient to view our multiplets in terms of differential (p, q) forms, that is, forms

with p holomorphic indices and q anti-holomorphic indices. More formally, we view them as

elements of Ωp,q(adP ), that is, as (p, q) forms on M valued in the adjoint bundle associated

to P . Returning to our decomposition of representations of Spin(1, 9) to SO(1, 1)× SU(4),

we can now see how to assemble the various modes into superfields which transform as dif-

ferential forms on the internal space. First of all, we can see that there is the 2D non-abelian

vector multiplet. We also introduce a collection of chiral multiplets valued in Ω0,1(adP ):

D(0,1) = ∂A +
√

2θ+ψ(0,1) + . . . . (3.14)

where we have used the shorthand ∂A = ∂+A. The top component is the (0, 1) component

of the gauge covariant derivative for the corresponding vector bundle. There is a related

chiral multiplet valued in Ω0,2(adP ) that we can construct from D(0,1) corresponding to

the overall (0, 2) field strength:

F(0,2) = F(0,2) +
√

2θ+∂Aψ(0,1) + . . . . (3.15)
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Additionally, we see that there is a Fermi multiplet which transforms as a (0, 2) differ-

ential form on the Calabi-Yau fourfold which we refer to as Λ(0,2). Here, we face an issue

which leads to some tension in maintaining a purely off-shell formalism for the theory. The

point is that really, we must get out six real rather than six complex degrees of freedom

to maintain the 10D Majorana-Weyl spinor condition. This in turn shows up in our 2D

effective theory as the statement that we expect the Fermi multiplet to contain a Weyl

rather than Majorana-Weyl spinor. Nevertheless, there is a simple (seemingly somewhat

ad hoc) workaround for this issue which is actually automatically implemented in F-theory

constructions.

Along these lines, suppose that our geometry also admits a discrete Z2 symmetry under

which the holomorphic four-form transforms as Ω→ −Ω and such that there are an equal

number of Z2 even and odd (0, 2) differential forms.6 Then, for example, we can introduce

a further splitting as:

F(0,2) → F(even)
(0,2) + F(odd)

(0,2) , (3.16)

in the obvious notation. By a similar token, we can then introduce a Z2 even Fermi multi-

plet which transforms as a (0, 2) differential form with expansion in components given by:

Λ
(even)
(0,2) = λ

(even)
−,(0,2) −

√
2θ+G(even)

(0,2) − iθ
+θ

+
∂+λ

(even)
−,(0,2) −

√
2θ

+F(even)
(0,2) . (3.17)

Observe that here, we have also specialized the form of the contribution E which is a func-

tion of chiral superfields to be that of the even field strength. Indeed, as we will shortly see,

to maintain a canonical notion of holomorphy for our 10D action, it will be necessary to

shuffle some of the holomorphic data into the E-field of the Fermi multiplet, and some into

the F-term interactions. To avoid overloading the notation, we shall sometimes suppress

the superscript of even and odd, leaving it implicit.

Let us make an additional comment about the situation where we do not have such a

Z2 symmetry. In such situations, the resulting effective field theory will still retain (0, 2)

supersymmetry, but we do not expect a manifestly off-shell formalism in terms of weakly

coupled Fermi multiplets. We leave it to future work to develop an off-shell formalism for

this case as well.

Let us now turn to the structure of our 10D gauge theory. At the level of the F-terms,

we expect the superpotential to be invariant under complexified gauge transformations, i.e.

we introduce chiral multiplets g = expC in the complexification of the adjoint representa-

tion so that the overall effect of a gauge transformation is:

D(0,1) 7−→ e−CD(0,1)e
+C and Λ(0,2) 7−→ e−CΛ(0,2)e

+C . (3.18)

Supersymmetric vacua are parameterized by the F-terms modulo complexified gauge trans-

formations, or equivalently, by imposing F- and D-terms modulo unitary gauge transfor-

mations. In the latter case, the bosonic component of C is taken to be pure imaginary.

6To give an explicit example where we expect to have such a Z2 symmetry, consider the special case

of an elliptically fibered Calabi-Yau fourfold M → X with X the base. This has a Weierstrass model

y2 = x3 +fx+g, where f and g are sections of OX(−4KX) and OX(−6KX), with KX the canonical bundle

of X. We observe that the holomorphic four-form of M can be written as ΩM = dx
y
∧ ΩX with ΩX the

(meromorphic) three-form of the base. Now, the defining equation of M enjoys the Z2 symmetry y → −y
under which ΩM → −ΩM .
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In appendix B we present a complete construction of the 2D off-shell effective action

such that its supersymmetric vacua reproduce the equations of motion of the 10D Super

Yang-Mills theory. One term which is not immediately apparent in this approach is a

non-local Wess-Zumino term involving the vector multiplet. It is required in order for our

superspace formulation to remain gauge invariant in arbitrary gauge (i.e. not just Wess-

Zumino gauge). As we shall present all results in Wess-Zumino gauge, we shall omit this

term. For further details on this point, as well as further discussion of the formulation of

10D Super Yang-Mills theory in 4D N = 1 superspace, see reference [24] (see also [25]).

Similar issues also occur for the superspace formulation of intersecting 7-branes.

Modulo these caveats, the superspace formulation provides a quite elegant way to for-

mulate the off-shell content of 10D Super Yang-Mills theory on a Calabi-Yau fourfold. We

begin with the on shell equations of motion, which we obtain by setting the supersymmetric

variation of the 10D gauginos to zero:

ΓIJFIJ = 0. (3.19)

Focusing on just the internal degrees of freedom, this becomes:

ω ∧ ω ∧ ω ∧ F(1,1) = 0 and F(0,2) = F(2,0) = 0, (3.20)

where we have introduced the Kähler form ω for the Calabi-Yau fourfold M , and decom-

posed the 2-form field-strength according to type. These are of course the Hermitian Yang-

Mills equations. When the principal bundle P is associated to some complex vector bundle

V, then the second condition is the statement that V is a holomorphic vector bundle. The

DUY theorem [31] then implies that the first condition is satisfied if and only if V is stable

with respect to ω. We show in appendix B that the first constraint arises from a D-term

of the 2D theory, while the second constraint is a holomorphic F-term constraint. Indeed,

while we expect the stability conditions for vector bundles to receive various quantum cor-

rections as we pass to small volume, the purely holomorphic terms are protected by (0, 2)

supersymmetry. This fact is neatly summarized by the corresponding F-term interaction:

WM = − 1√
2

1

g2
YM

∫
M

Ω ∧ Tr(Λ
(even)
(0,2) ∧ F(odd)

(0,2) ), (3.21)

where Ω is the holomorphic four-form of the Calabi-Yau fourfold. The F-term equations of

motion (obtained by varying with respect to Λ) then give the condition F
(odd)
(0,2) = 0, while

the condition F
(even)
(0,2) = 0 comes about from the condition that the E-field of the Fermi

multiplet vanishes.

We can also write the D-terms for our system. In this case, we must exercise some

caution since we can expect terms not protected by holomorphy to receive large quantum

corrections. However, at least at large volume we can deduce the form of these interaction

terms. Summarizing the contributions from appendix B, we have:

Stot = SD + SF (3.22)

SD = − 1

g2Y M

∫
d2yd2θ

∫
M

Tr

(
1

8
∗Υ ∧Υ− i

2
∗ D(0,1) ∧ [∇−,D(0,1)]−

1

2
∗ Λ

(even)

(0,2) ∧ Λ
(even)

(0,2)

)
(3.23)
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SF = − 1√
2

1

g2Y M

∫
d2ydθ+

∫
M

Tr
(

Ω ∧ Λ
(even)

(0,2) ∧ F(odd)

(0,2)

)
+ h.c. (3.24)

Both the F- and D-term constraints directly follow from the bosonic potential obtained

from integrating out all auxiliary fields. This is given by:

UBosonic =
1

4g2
YM

∫
M

(
||F(1,1)||2 + ||F(0,2)||2

)
, (3.25)

where the norm on the differential forms includes a Hodge star and complex conjugation

operation. So for a supersymmetric vacuum where UBosonic = 0, we need both F(0,2) and

ω ∧ ω ∧ ω ∧ F1,1 to vanish.

Here, we have clearly made use of the fact that we have a Z2 symmetry (obtained by

tuning moduli of the fourfold) which allows us to split up the mode content and retain a

Fermi multiplet. If we suspend the conditions of unitarity, we do not need this additional

constraint, and we can also write the conditions arising from the holomorphic interactions

again in terms of a single overall superpotential, now involving a (0, 2) differential form:

Wtop = −
∫
CY4

Ω ∧ Tr(Λ(0,2) ∧ F(0,2)), (3.26)

and where we set the E-field of Fermi multiplet (0, 2) differential form to zero. Again, this

generates the holomorphic equation F(0,2) = 0. The price one pays for doing this, however,

is that the resulting theory should really be treated as a topological one, since the unitarity

condition imposed by the 10D Majorana-Weyl constraint is now absent.

Lastly, we can ask to what extent we expect our off-shell presentation of the 10D

theory to really remain decoupled from the gravitational degrees of freedom of the system.

Indeed, we observe that the off-shell variation of the superpotential term gives us:

D+WM = − 1√
2

1

g2
YM

∫
M

Ω ∧ Tr(F(even)
(0,2) ∧ F(odd)

(0,2) ), (3.27)

which does not vanish off-shell, a priori. Indeed, the condition F(0,2) = 0 is an on-shell

constraint. Even so, the structure of this term is topological (essentially a holomorphic

analogue of an instanton density) of the type introduced by Donaldson and Thomas in

reference [32].

What this term tells us is that there must be geometric moduli coupled to our theory.

From the standpoint of string compactification, it is clear that this must be so, because

there will necessarily be moduli fields associated with the complex structure and Kähler

deformations of the geometry. Indeed, from that perspective our present split into “gauge

theory + everything else” is somewhat artificial in a two-dimensional model. Including

these contributions from the moduli, we indeed expect our on-shell action to vanish. If we

view the complex structure moduli as parameters of our gauge theory, then the condition

D+Wgauge = 0 means that we must tune these parameters to be vanishing for any choice of

vector bundle (really an on-shell condition). The perhaps surprising point is that even for
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intersecting 7-branes in F-theory, a similar phenomenon will be encountered so there is no

complete decoupling limit: Some remnant of the geometric moduli must always be included.

Now, in practice, we of course would like to restrict our attention to the gauge theory

sector. To do so, it is convenient to introduce a Fermi multiplet which functions as a

Lagrange multiplier. Along these lines, we introduce a Fermi multiplet Π a (4, 0) form on

the Calabi-Yau fourfold such that the complex structure moduli appears via:

D+Π = Ω. (3.28)

The superpotential is then of the form:

W = WM+Wbkgnd = − 1√
2

1

g2
YM

∫
M

Ω∧Tr(Λ
(even)
(0,2) ∧F

(odd)
(0,2) )+

1√
2

1

g2
YM

∫
M

Π∧Tr(F(even)
(0,2) ∧F

(odd)
(0,2) ).

(3.29)

and then D+W = 0 off-shell (by construction).

3.1 Zero mode spectrum

Suppose then, that we have succeeded in constructing a stable holomorphic vector bundle

on our Calabi-Yau fourfold. We would now like to determine the corresponding zero mode

spectrum for our system. We begin by assuming that we have a solution to the Hermitian

Yang-Mills equations, and with it, a corresponding vector bundle with structure group K

with commutant H inside of the parent gauge group G. Starting from the principal G

bundle adP , we decompose according to representations of H and bundles of K:

adP → ⊕
i
(τi, Ei), (3.30)

i.e. for each representation τi of H, there is a corresponding bundle Ei.
Expanding around this background, we now see that for a stable vector bundle, we get

precisely one vector multiplet and gaugino — as expected — in the adjoint representation of

H. Additionally, we have the fluctuations of the supermultiplets D(0,1) and Λ(0,2). Consider

first the zero mode fluctuations for D(0,1). These are counted by appropriate bundle valued

cohomology groups, and they naturally pair up between the representation τi and τ∗i

δD(τi)
(0,1) ∈ H

1
∂
(CY4, Ei) (3.31)

δD(τ∗i )

(0,1) ∈ H
1
∂
(CY4, E∨i ) ' H3

∂
(CY4, Ei)∗, (3.32)

in the obvious notation.

Let us now turn to the zero modes for the Fermi multiplets. As we have already

mentioned, for the bulk 10D theory, the tension between the 10D Majorana-Weyl constraint

and holomorphy in the 2D N = (0, 2) theory means that to get a truly off-shell action, we

need to assume an accidental Z2 symmetry, and work in terms of Λ
(even)
(0,2) . However, once

we pass to the zero mode content, there is always a Z2 symmetry present given by passing

from the representation τ to its dual τ∗. With this in mind, we can either view the Fermi
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multiplets as transforming in the representation τ or τ∗. For ease of presentation, we shall

only write the modes in representation τ :

δΛ
(τi)
(0,2) ∈ H

2
∂
(CY4, Ei). (3.33)

Note that by Serre duality, we also have H2
∂
(CY4, Ei) = H2

∂
(CY4, E∨i )∗, so we could have

alternatively counted the Fermi multiplets in terms of the representation τ∗i . This prescrip-

tion is sufficient provided that τ and τ∗ are distinct representations. However, when they

are not, we also see that the bundle E is self-dual. Under the conjugation map: E → E∨

defined by the canonical pairing on these representations, we can therefore restrict to the

Z2 even sector of this map. We shall present an explicit example of this type when we count

the Fermi multiplets associated with vector bundle moduli, and also when we consider the

standard embedding for the E8 × E8 heterotic string.

We can also assemble the count of zero modes into an overall holomorphic Euler char-

acteristic:

χ (CY4, Ei) = h0(Ei)− h1(Ei) + h2(Ei)− h3(Ei) + h4(Ei) (3.34)

= −h1(Ei) + h2(Ei)− h3(Ei), (3.35)

where in the second line we used the fact that for a stable vector bundle, h0(Ei) = h4(Ei) =

0. So, more explicitly, we have:

χ (CY4, Ei) = −#(δD(τi)
(0,1)) + #(δΛ

(τi)
(0,2))−#(δD(τ∗i )

(0,1)) (3.36)

χ
(
CY4, E∨i

)
= −#(δD(τ∗i )

(0,1)) + #(δΛ
(τi)
(0,2))−#(δD(τi)

(0,1)). (3.37)

A helpful method for calculating such holomorphic Euler characteristics is in terms of the

Hirzebruch-Riemann-Roch index formula:

χ (CY4, Ei) =

∫
CY4

ch(Ei)Td(CY4), (3.38)

where ch(Ei) is the Chern character class for Ei and Td(CY4) is the Todd class of the

tangent bundle for the Calabi-Yau fourfold. See appendix D for further details.

3.2 Gauge anomalies

Having determined the zero mode content which descends from our 2D effective field theory,

it is natural to ask whether our 2D GLSM is free of anomalies. Actually, we expect that in

general the gauge theory will be anomalous. The reason is that in the effective action there

is a term of the form B2∧X8(F,R) where X8(F,R) depends on the characteristic classes of

the gauge bundle and tangent bundle. Since B2 transforms under gauge transformations,

and there is no a priori reason for
∫
M X8 to vanish, we see that we should expect the GLSM

sector to have an equal and opposite anomaly. We will revisit these terms in section 5,

where we will discuss tadpole cancellation. For now we will derive the overall contribution

to the anomalies from the GLSM sector. In particular, our plan in this subsection will be

to repackage these contributions in terms of topological quantities.
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To this end, we study the contribution to the gauge anomalies from matter fields trans-

forming in a representation τ of the unbroken gauge group G, as well as their “partners”

transforming in the dual representation τ∗. The zero mode content is then controlled by

the Dolbeault cohomology for some holomorphic vector bundle E and its dual E∨. Overall,

we have the contribution to the gauge anomaly from modes in the representations τ and τ∗:

Igauge(τ and τ∗) = −Ind(τ)× χ(CY4, E). (3.39)

where here, Ind(τ) refers to the index of a representation, which in the conventions of the

present paper are such that the fundamental representation of SU(N) has index one.

This counts anomaly contributions from Weyl fermions in the corresponding represen-

tations. By including both τ and τ∗ from the decomposition we ensure that our counting

correctly takes into account the Weyl repackaging of the fermions corresponding to self-dual

bundles. Summing over all representations, we therefore obtain a manifestly topological

formula for the gauge theory anomaly.

A priori, there is no reason for these contributions to vanish, and we will see that in a

string compactification, this anomaly can either be viewed as being cancelled by a non-local

Green-Schwarz term or by the contributions from an extra sector.

3.3 Gravitational anomalies

Having discussed the gauge anomalies generated by the GLSM sector, we now turn to the

gravitational anomalies. First of all, there will be a contribution from the GLSM sector of

our theory. Its form is roughly similar to that already discussed for the gauge anomalies,

so we simply summarize with the relevant formula. With our normalization, where a Weyl

fermion contributes +1 to the central charge, this is given by:

Igravity(τ and τ∗) =
dim(τ)

12
× χ(CY4, E), (3.40)

with notation as in the previous subsection.

Consider next the “gauge singlet sectors.” The gauge singlets of the model consists of

possible moduli fields coming from integrating a two-form potential over an internal two-

cycle (counted by h1,1), as well as from the complex structure moduli (counted by h3,1)

and vector bundle moduli (counted by h1(EndV)). By (0, 2) supersymmetry, all of these

contributions assemble into chiral multiplets with corresponding right-moving fermionic

superpartners. Additionally, we can expect there to be Fermi multiplets which must be

accounted for as well. To count these contributions, we now observe that if we interpret

gravity as a gauging of translations, then we can count the various superpartners of the

gravitino which assemble into Fermi multiplets in a way quite similar to the method used

in the context of the Yang-Mills sector. Doing so, we see that instead of modes descending

from bundle valued (0, 1) gauge fields, we instead get fermions descending from bundle

valued (0, 2)-forms. This is all to the good, because it means the net contribution will

again assemble into a set of topological indices. Summarizing, we get the full gauge neutral

contribution to the anomaly as:

Igravity(neutral) = − 1

12

(
h1,3 − h1,2 + h1,1

)
− 1

12

(
h1(EndV)− 1

2
h2(EndV)

)
(3.41)
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=
1

12

(
χ1 +

1

2
χ (EndV)

)
. (3.42)

Again, the factor of 1/2 is taking into account the repackaging of the fermions into Weyl

representations.

3.4 Zero mode interactions

Now that we have arrived at a general formula for the zero modes in the presence of our

background vector bundle, it is natural to ask what are the resulting interactions. These

can be canonically split according to interactions which descend from 10D Super Yang-Mills

theory, stringy corrections, and those which arise from non-perturbative instanton effects

coming from 1-branes and 5-branes wrapping two-cycles and respectively six-cycles of the

internal geometry. At least at large volume and weak string coupling, these interaction

terms are expected to be a subleading effect, but they can be important in the IR phase

of the 2D theory. So, the best we can hope for is to deduce possible interaction terms

compatible with the symmetries of our effective field theory in two dimensions.

Along these lines, we shall focus on the dominant contributions coming from expanding

the F-term WM of equation (3.21) around our fixed background. At this point we encounter

an important subtlety in listing the F-term interactions. The key issue is that again, we

need to make sure our Fermi multiplets valued as (0, 2) differential forms are counted cor-

rectly, that is, we can just write the Fermi multiplets as transforming in a representation τ ,

but not in the dual representation τ∗. Rather, we absorb these would-be interaction terms

into the E-field for Λ
(τ)
(0,2). The procedure for deducing these interaction terms is actually

quite conveniently summarized by first writing down the fluctuations around the topolog-

ical F-term Wtop of equation (3.26). Doing so, we clearly get cubic F-term interactions of

the form:

Wtop,cubic =

∫
CY4

Ω∧(fαβγ δΛ
(α)
(0,2)∧δD

(β)
(0,1)∧δD

(γ)
(0,1))+

∫
CY4

Ω∧(fα∗β∗γ∗ δΛ
(α∗)
(0,2)∧δD

(β∗)
(0,1)∧δD

(γ∗)
(0,1)),

(3.43)

where we have integrated the zero mode profiles over the internal Calabi-Yau fourfold

directions. Here, α, β and γ are appropriate representations of the unbroken gauge group

H, and fαβγ is a Clebsch-Gordan coefficient for the decomposition descending from the

adjoint of G. So for the physical theory, we instead just write the contribution from the

representation α, and not its dual, but where we have to adjust the value of the E-field for

δΛ
(α)
(0,2) as per our discussion in section 2.

Now, in a higher-dimensional setting, we would stop at this cubic interaction term

since higher order interactions define irrelevant interaction terms suppressed by the cutoff.

However, in a general 2D model, such power counting arguments do not apply since formally

speaking, a free scalar has scaling dimension zero. From this perspective, we must expect

that integrating out Kaluza-Klein modes of the higher-dimensional system will lead to

additional correction terms. Let us illustrate this point by focussing on quartic interactions.

Using the propagator 1/(Ω ∧ ∂′A), i.e. where we omit the zero modes from the inverse, we

see that an exchange diagram involving Kaluza-Klein excitations generates the interaction
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term:

Wtop,quartic =

∫
CY4

hαβγδ (Ω ∧ δΛ(α)
(0,2) ∧ δD

(β)
(0,1)) ∧

1

Ω ∧ ∂′A
∧ (Ω ∧ δD(γ)

(0,1) ∧ δD
(δ)
(0,1)), (3.44)

i.e. we have a Massey product for the resulting cohomology groups. We can continue

iterating this process to include ever higher order Massey products. Indeed, we can continue

on to higher order intersection pairings by again contracting one of the Kaluza-Klein modes

from D(0,1) with one of the fluctuations from Λ(0,2). Doing so, we get the more general class

of interaction terms of the schematic form:

Wtop,(n) =

∫
CY4

(ΩδΛδD) ∧

(
ΩδDδD
∂
′
A

)n−1

∧ (ΩδDδD). (3.45)

As before, we can read off the physical F-term by starting with the topological F-term,

differentiating with respect to modes in the dual representation, and using that to set the

value for the E-field for the physical Fermi multiplets.

Based on this, one might naturally ask whether there is any suppression mechanism at

all for these higher order interaction terms. Indeed, there is: it is factors of gstring for the

string theory. Each successive power of ΩδDδD/∂′A comes from exchange of a massive gauge

boson of the 10D theory, and since each such propagator comes with an additional factor

of gstring, we consequently find an additional power of gstring so that W(n) ∼ (gstring)n−3.

When we pass to the F-theory realization of these interactions, we will effectively resum

these contributions, resulting in a leading order quartic coupling.

4 GLSMs from intersecting 7-branes

One of the interesting features of the perturbative string vacua encountered earlier is that

the dynamics of the GLSM are inevitably tied up with those of the gravitational sector

of the 2D model. Additionally, we saw one awkward feature of the 10D Majorana-Weyl

condition and the constraints it imposes on assembling the mode content into Fermi multi-

plets. With lower-dimensional branes we expect that most of these issues can be bypassed.

Our plan in this setion will be to construct a 2D GLSM describing intersecting 7-branes

coming from F-theory compactified on a Calabi-Yau fivefold.

Recall that to reach a two-dimensional supersymmetric Minkowski vacuum, we consider

F-theory compactified on a Calabi-Yau fivefold Y → B with base B a Kähler fourfold. The

geometry is described in Minimal Weierstrass form by the equation:

y2 = x3 + fx+ g (4.1)

where f and g are respectively sections of OB(−4KB) and OB(−6KB). There are 7-branes

localized along components of the discriminant locus ∆ = 0 where:

∆ = 4f3 + 27g2, (4.2)
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that is, these are 7-branes wrapped over Kähler threefolds. Additionally, there can be

intersections between these 7-branes along complex surfaces. At such intersections, we

expect additional localized matter, as well as interaction terms which couple the localized

matter to the bulk modes. Triple intersections of 7-branes occur along Riemann surfaces,

i.e. complex curves. Along these triple intersections, it is natural to expect additional

interaction terms to be localized. Four 7-branes can also form a quartic intersection at

points of the geometry, leading to additional interaction terms between our matter fields.

In addition to these geometric intersections, there can also be various gauge field fluxes

switched on along the worldvolume of the branes, which sometimes appear in combination

with “T-brane vacua” controlled by non-abelian intersections of 7-branes [33, 34] (see

also [35–39]).

So, compared with the case of the heterotic models just studied, there are necessarily a

few additional geometric ingredients to specify, such as where various fields and interaction

terms localize. An important benefit of this local approach, however, is that it is far more

straightforward to then evaluate possible wave function overlaps, i.e. to explicitly evaluate

possible interaction terms in the model.

With this in mind, our plan in this section will be to determine the low energy ef-

fective action for intersecting 7-branes wrapped on Kähler threefolds. A decoupling limit

is available when the Kähler threefold X is Fano, i.e. −KX > 0 and the normal bundle

has negative first Chern class. We organize our analysis according to the corresponding

codimension, proceeding first with the bulk theory, and then proceed to effects localized

on lower-dimensional subspaces.

4.1 Partial twist on a Kähler threefold

Since we are interested in models which preserve N = (0, 2) supersymmetry, our first

task is to understand the partial twist necessary for our bulk 7-brane wrapped on X to

preserve supersymmetry in the uncompactified directions. In some sense, we have already

accomplished this task via our study of 9-branes wrapped on a Calabi-Yau fourfold. We

shall therefore pursue two routes to determine the twist. First, we explain how the heterotic

results already obtained dictate the structure of the twist and bulk interaction terms.

Second, we perform an “intrinsic” computation which makes no reference to a possible

heterotic dual. Our procedure will be similar to that used for N = 4 Super Yang-Mills

theory on a Kähler surface [40], and for 7-branes wrapped on a Kähler surface [26] (see

also [41, 42]). For some discussion of 6D topological gauge theory on a Calabi-Yau threefold

see reference see reference [43].

Our primary goal is to make sure that all of the modes and interaction terms of the

eight-dimensional Yang-Mills theory can be organized according to two-dimensional (0, 2)

supersymmetry. As in the case of the 9-brane on a Calabi-Yau fourfold, there is one non-

local Wess-Zumino type term which must be included to really maintain supersymmetric

gauge invariance. This term is obtained by reduction of the term given in reference [24] (see

also [25]). We note, however, that in Wess-Zumino gauge (i.e. the gauge used throughout

this paper) this term vanishes.
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Having dispensed with this caveat, let us recall that in flat space, eight-dimensional

super Yang-Mills theory with gauge group G consists of an eight-dimensional vector boson,

a complex scalar, and fermions that transform in the 8s+1⊕ 8c−1 of SO(1, 7)×U(1)R where

U(1)R is the symmetric group of rotations transverse to the location of the 7-brane. All of

these fields transform in the adjoint representation of G, and under the U(1)R the complex

scalar has charge +2.

Let us first use our results from the heterotic analysis to derive the bulk mode content

and the structure of the bulk interactions. The key point is that although our Kähler

threefold X may embed in a base B which is not Calabi-Yau, the partial twist operates by

essentially altering the spin content of the various fields so that they are effectively living

in the local space OX(KX) → X which is Calabi-Yau. With this in mind, suppose that

we specialize our discussion of the 9-brane action to this particular Calabi-Yau fourfold.

Reduction of the bulk heterotic modes, and contracting with the holomorphic four-form

and the metric in the directions normal to X, we see that our bulk 9-brane modes Λ(0,2)

and D(0,1) now decompose as:

9-brane→ 7-brane (4.3)

Λ(0,2) → Λ(0,2) ⊕ Λ(3,1) (4.4)

D(0,1) → D(0,1) ⊕ Φ(3,0). (4.5)

The 10D Majorana-Weyl constraint reduces to the constraint that Λ(0,2) and Λ(3,1) are

not actually independent degrees of freedom, but instead, are describing a single Fermi

multiplet’s worth of degrees of freedom. Observe that here, we naturally have achieved

the desired Z2 symmetry used in the heterotic model to keep the bulk action off shell.

Here, this is reflected in the fact that the local holomorphic four-form on the total space

O(KX)→M → X is:

ΩM = dz ∧ ΩX (4.6)

and the Z2 symmetry acts as z → −z.

By a similar token, we can read off the physical F-terms for the 7-brane theory using

the bulk topological F-term used for the heterotic theory, in which we absorb the interaction

terms involving Λ(3,1) into the E-field for Λ(0,2). The bulk topological interaction terms for

the heterotic model now descend to:

Wtop,X = −
∫
X

Tr(Λ(0,2) ∧ D(0,1)Φ(3,0))−
∫
X

Tr(Λ(3,1) ∧ F(0,2)), (4.7)

so in the absence of any other interaction terms, we get the bulk F-term equations of

motion by varying with respect to the Fermi multiplets:

F(0,2) = F(2,0) = 0 and ∂Aφ = 0. (4.8)

When we want to work with a manifestly off-shell formalism which also preserves unitarity,

we instead just have Λ(0,2) with E-field set by:

E(0,2) =
∂Wtop,X

∂Λ(3,1)
= F(0,2), (4.9)
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and the associated physical F-term is just:

WX = − 1√
2

∫
X

Tr(Λ(0,2) ∧ D(0,1)Φ(3,0)). (4.10)

This also follows directly from the bosonic potential for the bulk modes, from whence we

get the BPS equations F(0,2) = F(2,0) = ∂Aφ = 0.

Let us now explain how to derive this same set of modes and interactions directly

using the partial topological twist intrinsic to the 7-brane theory itself. Recall that we are

interested in a 7-brane wrapping a Kähler threefold X. The structure group of the tangent

bundle is U(3), so we need to further decompose our representations according to the

subgroup SO(1, 1)×U(3)×U(1)R. Our task is to pick a homomorphism U(1)R → U(3) such

that the resulting spin content of the model organizes into manifest (0, 2) supermultiplets.

With this discussion in mind, let us now turn to the explicit partial twist for the 7-brane

theory wrapped on a Kähler threefold. We begin with the decomposition of Spin(1, 7) ×
U(1)R to Spin(1, 1)× Spin(6)×U(1)R:

Spin(1, 7)×U(1)R ⊃ Spin(1, 1)× Spin(6)×U(1)R (4.11)

8s+1 → 4+,+1 ⊕ 4−,+1 (4.12)

8c−1 → 4+,−1 ⊕ 4−,−1 (4.13)

8v0 → 1−−,0 ⊕ 1++,0 ⊕ 60,0 (4.14)

1+2 → 10,+2. (4.15)

Decomposing further according to the subgroup SU(3)X ×U(1)X/Z3 ⊂ Spin(6), we have:

Spin(1, 7)×U(1)R ⊃ Spin(1, 1)× SU(3)×U(1)X ×U(1)R (4.16)

8s+1 → 1+,+ 3
2
,+1 ⊕ 3+,− 1

2
,+1 ⊕ 1−,− 3

2
,+1 ⊕ 3−,+ 1

2
,+1 (4.17)

8c−1 → 1+,− 3
2
,−1 ⊕ 3+,+ 1

2
,−1 ⊕ 1−,+ 3

2
,−1 ⊕ 3−,− 1

2
,−1 (4.18)

8v0 → 1−−,0,0 ⊕ 1++,0,0 ⊕ 30,+1,0 ⊕ 30,−1,0 (4.19)

1+2 → 10,0,+2 (4.20)

1−2 → 10,0,−2. (4.21)

Our goal in specifying a twist is that the resulting U(1) charge for a spinor will then be a

scalar on the Kähler threefold. The twist is given by the generator:

Jtop = JX +
3

2
JR. (4.22)

With respect to this choice, the charge assignments for the various modes are:

Spin(1, 7)×U(1)R ⊃ Spin(1, 1)×U(3)X ×U(1)top (4.23)

8s+1 → 1+,+3 ⊕ 3+,+1 ⊕ 1−,0 ⊕ 3−,+2 (4.24)

8c−1 → 1+,−3 ⊕ 3+,−1 ⊕ 1−,0 ⊕ 3−,−2 (4.25)

8v0 → 1−−,0 ⊕ 1++,0 ⊕ 30,+1 ⊕ 30,−1 (4.26)
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1+2 → 10,+3 (4.27)

1+2 → 10,−3. (4.28)

At this point, we can begin to assemble our modes into appropriate vector, chiral and Fermi

multiplets. Along these lines, we observe that the fermions of the Fermi multiplets have

opposite chirality to those of the chiral multiplets. Additionally, for the fermions of the

chiral multiplets, we should expect that both the representation under U(3)X×U(1)top and

its dual both show up in the multiplet. Taking all of this into account, we therefore obtain:

V V(0,0) : 1−−,0 ⊕ 1++,0 ⊕ 1−,0 ⊕ 1−,0 (4.29)

CS Φ(3,0) : 1+,+3 ⊕ 10,+3 (4.30)

CS Φ(0,3) : 1+,−3 ⊕ 10,−3 (4.31)

CS D(0,1) : 3+,−1 ⊕ 30,−1 (4.32)

CS D(1,0) : 3+,−1 ⊕ 30,−1 (4.33)

F Λ(0,2) : 3−,−2 (4.34)

F Λ(3,1) : 3−,+2. (4.35)

Note that in the above, we have split up the contribution into the CS multiplets and their

complex conjugates. Additionally, the (3, 1) differential form is not an independent degree

of freedom separate from the (0, 2) differential form. The reason is that as we have already

remarked, the remnant of the 10D Majorana-Weyl constraint in the 7-brane theory means

these are not really independent degrees of freedom. Nevertheless, for the purposes of

writing out possible F-term interactions, it is helpful to keep it in mind, in particular for

determining the correct value of the E-field for Λ(0,2).

Summarizing, we have the supermultiplets transforming as differential forms of the

internal space. Including the possibility of a non-trivial principal G bundle, these modes

are sections of the following bundles:

Φ(3,0) ∈ OX(KX)⊗ adP (4.36)

D(0,1) ∈ Ω
(0,1)
X ⊗ adP (4.37)

Λ(0,2) ∈ Ω
(0,2)
X ⊗ adP (4.38)

Λ(3,1) ∈ Ω
(0,1)
X (KX)⊗ adP. (4.39)

Consider next the bulk equations of motion. As explained in detail in appendix C, the

bulk BPS equations of motion for the internal fields are:7

D-terms: ω ∧ ω ∧ F(1,1) +
[
φ, φ

]
= 0 (4.40)

F-terms: F(0,2) = F(2,0) = ∂Aφ = 0. (4.41)

7Readers familiar with the similar equations of motion for 7-branes on a Kähler surface found in refer-

ence [26] will note the absence of a factor of 1/2 in our commutator for [φ, φ]. This pre-factor can be altered

by an overall rescaling of the metric in the directions normal to the 7-brane. This is due to our conventions

for normalization of all fields which follows the ones commonly used in N = (0, 2) supersymmetric models.
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In appendix C we give the full off-shell 2D equation which reproduces these equations

of motion. In particular, the F-term equations of motion directly follow from the bulk

superpotential:

Wtop,X = −
∫
X

Tr(Λ(0,2) ∧ D(0,1)Φ(3,0))−
∫
X

Tr(Λ(3,1) ∧ F(0,2)). (4.42)

Observe that this is also compatible with the supersymmetric structure of the F-terms

obtained on the heterotic side. Indeed, by an appropriate reduction of 10D Super Yang-

Mills on OX(KX) → X, we realize precisely this structure. Again, to reach the physical

superpotential, we instead have a non-trivial value for the E-field in Λ(0,2) given by E(0,2) =

F(0,2) and simply have the superpotential:

WX = − 1√
2

∫
X

Tr(Λ(0,2) ∧ D(0,1)Φ(3,0)). (4.43)

4.1.1 Bulk zero modes

Much as in the case of compactifications of the heterotic string on a Calabi-Yau threefold,

we can consider the zero modes associated with a vacuum solution to the F- and D-terms

described above. For simplicity, we shall assume that the Higgs field is switched off. Then,

we simply need to solve the Hermitian Yang-Mills equations on a Kähler threefold X.

Assuming we have done so, we can consider a decomposition of the structure group for

adP as G ⊃ H × K where we assume the gauge field fluxes define a vector bundle with

structure group K, with commutant H. Decomposing the adjoint representation into

irreducible representations of H ×K, we then have:

adP → ⊕
i
(τi, Ei). (4.44)

Hence, for a zero mode fluctuation in a representation τi, the total number are counted as:

δΦ
(τi)
(3,0) ∈ H

0
∂
(X,KX ⊗ Ei) (4.45)

δD(τi)
(0,1) ∈ H

1
∂
(X, Ei) (4.46)

δΛ
(τi)
(0,2) ∈ H

2
∂
(X, Ei). (4.47)

Additionally, the matter fields in the dual representation are:

δΦ
(τ∗i )

(3,0) ∈ H
0
∂
(X,KX ⊗ E∨i ) (4.48)

δD(τ∗i )

(0,1) ∈ H
1
∂
(X, E∨i ) (4.49)

δΛ
(τ∗i )

(0,2) ∈ H
2
∂
(X, E∨i ). (4.50)

Observe that in the above, we have not included the contribution from the differential form

(3, 1), since the physical degrees of freedom are already fully accounted for by the (0, 2)

differential form.

– 26 –



J
H
E
P
0
7
(
2
0
1
6
)
0
4
5

We can assemble these zero mode counts into a pair of indices, i.e. holomorphic Euler

characteristics for the bundle Ei and its dual:

χ(Ei) = −#(δD(τi)
(0,1)) + #(δΛ

(τi)
(0,2))−#(δΦ

(τ∗i )

(3,0)) (4.51)

χ(E∨i ) = −#(δD(τ∗i )

(0,1)) + #(δΛ
(τ∗i )

(0,2))−#(δΦ
(τi)
(3,0)), (4.52)

where in the above, we have used the fact that for a stable vector bundle h0(Ei) = 0. This

can in turn be written in terms of characteristic classes defined on X using the Hirzebruch-

Riemann-Roch index formula. In the above, we implicitly assumed that E 6= OX . In

the special case where we have the trivial bundle, we have h0(E = 1, which counts the

contributions from the gauginos.

4.2 Matter localized on a surface

Much as in the case of higher-dimensional F-theory vacua, there can be various lower

dimensional subspaces where the elliptic fibration becomes more singular. Our plan in

this section will be to deduce the matter content and interactions which localize along a

collision of two 7-branes, each localized on a Kähler threefold, respectively X1 and X2.

First of all, we see that such an intersection takes place along a Kähler surface, i.e. a

complex dimension two subspace:

S = X1 ∩X2. (4.53)

We would like to understand what sort of matter fields localize at this intersection. The

structure is exactly the same as in six dimensional vacua, as well as four-dimensional vacua.

The modes will be charged under non-trivial representations of the bulk gauge groups G1

and G2, and so we can view these modes as generalized bifundamentals. Additionally, we

can determine the geometric content of these localized modes, i.e. what sort of differential

forms we expect to have localized on S.

To accomplish this, we shall follow a procedure similar to the one spelled out in [26].

We can model the intersection in terms of a parent gauge group Gparent ⊃ G1 × G2.

By activating a background for the adjoint valued (3, 0) form φ, we get modes which are

naturally trapped along a lower-dimensional subspace. Expanding around this background,

we also see that there will be interactions between the bulk modes and the modes trapped

at the intersection. Essentially, we just take WX from the bulk and view two of the three

fields in the interaction terms as localized fluctuations. When we do so, however, we need

to ensure that our mode content and interactions respect all symmetries of the system.

To actually deduce the form content for the modes, we now observe that in flat space,

these modes need to fill out a four-dimensional N = 2 hypermultiplet [26]. This can in

turn be organized as two four-dimensional N = 1 chiral multiplets, so upon decomposing

to (0, 2) multiplets, we learn that we should expect two chiral multiplets Q⊕Qc, and two

Fermi multiplets Ψ ⊕Ψc, where the superscript “c” serves to remind us that these modes

transform in the conjugate (i.e. dual) representation of the gauge group G1 × G2. The

matter fields will transform as differential forms valued in the bundles R1 ×R2 for Q and

Ψ, and in the dual bundle for Qc and Ψc. An important point is that when we package the
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Fermi multiplets into differential forms, we must ensure that just as in the context of the

heterotic models, that we properly count the total number of dynamical degrees of freedom.

This is the remnant of the 10D Majorana-Weyl constraint, but now for localized modes.8

What sort of differential forms should we expect our localized modes to be? The

answer comes by tracking down the effects of a vev for the scalars in the Q⊕Qc. When we

do so, we trigger a modification in the BPS equations of motion for the bulk (3, 0) form:

∂Aφ = δS ∧ 〈〈Qc, Q〉〉adP , (4.54)

where we have introduced an outer product 〈〈·, ·〉〉adP with values in KS⊗adP , and δS is a

(1, 1)-form delta function distribution with support along our surface S. There is a related

source term equation of motion for the bulk gauge fields:

ω ∧ ω ∧ F(1,1) + [φ, φ] = ω ∧ ω ∧ δS
(
µ(Q,Q)− µ(Qc, Qc)

)
(4.55)

with another outer product (i.e. moment map) µ(·, ·) specified by a choice of unitary struc-

ture on the bundle K
1/2
S ⊗R1 ⊗R2.

By inspection, then, we see that Q⊕Qc transform as sections of bundles:

Q ∈ K1/2
S ⊗R1 ⊗R2 and Qc ∈ K1/2

S ⊗R∨1 ⊗R∨2 , (4.56)

where in the above, we have introduce a choice of square-root for the canonical bundle on

S. Strictly speaking, all we really need is a spinC structure on S, which can be twisted by

an overall line bundle contribution descending from the gauge bundles R1 and R2. Indeed,

sometimes such contributions are inevitable due to the presence of the Minasian-Moore-

Freed-Witten anomaly [44, 45]. Returning to equation (4.54), we see that this equation of

motion comes about provided we couple the pullback of the bulk mode Λ(0,2) to the Q’s:

WS ⊃
1√
2

∫
S

〈Qc,Λ(0,2)Q〉. (4.57)

where 〈·, ·〉 is a canonical pairing between K
1/2
S ⊗R∨1 ⊗R∨2 and K

1/2
S ⊗R1 ⊗R2.

Consider next the Fermi multiplets which also localize on S. Just as for the bulk modes

encountered previously, in this case we expect there to be a reduction in the dynamical

degrees of freedom from the 10D Majorana-Weyl constraint. Indeed, in flat space we expect

to have a 4D hypermultiplet’s worth of degrees of freedom present. So, it will again be

necessary to introduce the device Wtop in our discussion of the mode content as well as the

interaction terms. To deduce the F-term interactions for these modes, we observe that a

necessary equation of motion is:

∂AQ = 0 and ∂AQ
c = 0, (4.58)

i.e. that the bulk gauge field from X can couple to these modes at all. For this to be so,

we must have F-term couplings of the form:

1√
2

∫
S

〈
Ψc,

(
∂ + A1 + A2

)
Q
〉

+
〈
Qc,

(
∂ + A1 + A2

)
Ψ
〉
, (4.59)

8We thank T. Weigand for alerting us to a previous misstatement on the mode counting.
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where Ai corresponds to the pullback of the chiral multiplet which transforms as a (0, 1)

gauge field on each bulk 7-brane.

This in turn fixes the form content of the modes. We must have:

Ψ ∈ Ω
(0,1)
S (K

1/2
S ⊗R1 ⊗R2) and Ψc ∈ Ω

(0,1)
S (K

1/2
S ⊗R∨1 ⊗R∨2 ). (4.60)

In this case, we also see that there is only one physically independent Fermi multiplet. In

what follows, we take it to be Ψ rather than Ψc.

To summarize then, along each intersection, we have localized matter fields, and these

fields transform in the following representations:

Q ∈ K1/2
S ⊗R1 ⊗R2 (4.61)

Qc ∈ K1/2
S ⊗R∨1 ⊗R∨2 (4.62)

Ψ ∈ Ω
(0,1)
S (K

1/2
S ⊗R1 ⊗R2) (4.63)

Ψc ∈ Ω
(0,1)
S (K

1/2
S ⊗R∨1 ⊗R∨2 ). (4.64)

We also have interaction terms between one bulk mode (i.e. its pullback onto the surface

S) and two matter fields:

Wtop,S =

∫
S

〈Qc,Λ(0,2)Q〉+
〈
Ψc,

(
∂ + A1 + A2

)
Q
〉

+
〈
Qc,

(
∂ + A1 + A2

)
Ψ
〉
. (4.65)

It is also of interest to work out the resulting contribution to the bosonic potential.

This leads to modified kinetic terms for the internal degrees of freedom, as reflected in the

bulk and surface localized contributions to the action. The energy density U localizes in

the internal directions as:

UBulk+Surface =
∥∥F(0,2)

∥∥2

X
+
∥∥∂Aφ− δS 〈〈Qc, Q〉〉adP∥∥2

X
(4.66)

+
∥∥ω ∧ ω ∧ F(1,1) + [φ, φ]− ω ∧ ω ∧ δS

(
µ(Q,Q)− µ(Qc, Qc)

)∥∥2

X
(4.67)

+
∥∥∂A1+A2Q

∥∥2

S
+
∥∥∂A1+A2Q

c
∥∥2

S
(4.68)

let us also note that there are additional corrections to this structure once we include

interactions localized along Riemann surfaces and points.

4.2.1 Localized zero modes

We can also use the analysis presented above to determine the zero mode content of our

localized zero modes. These are counted by the following cohomology groups:

δQ ∈ H0
∂
(K

1/2
S ⊗R1 ⊗R2) (4.69)

δQc ∈ H0
∂
(K

1/2
S ⊗R∨1 ⊗R∨2 ) (4.70)

δΨ ∈ H1
∂
(K

1/2
S ⊗R1 ⊗R2) (4.71)

δΨc ∈ H1
∂
(K

1/2
S ⊗R∨1 ⊗R∨2 ). (4.72)
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Here, we note that much as in our heterotic models, the modes Ψ and Ψc are not indepen-

dent degrees of freedom.

We can in turn introduce an index formula which counts appropriate combinations of

these zero modes:

χ(S,K
1/2
S ⊗R1 ⊗R2) = #(δQ)−#(δΨ) + #(δQc). (4.73)

Of course by Serre duality we could equivalently count the zero modes using the dual

representation.

4.3 Interactions localized on a curve and a point

Geometrically, we can also see that three components of the discriminant locus can intersect

along a Riemann surface. Although this is a “non-generic” intersection inside of a Kähler

threefold, it is rather natural in the context of an F-theory compactification because we

reach such configurations by Higgsing a parent 7-brane gauge theory. That is to say, we

can locally expand φ(3,0) around a non-zero value, and the breaking patterns will include

a cubic interaction between localized fluctuations trapped on pairwise intersections. This

follows the same analysis presented for example in references [26, 34, 46, 47]. Assuming,

therefore, that we have three Kähler surfaces S1, S2 and S3 inside of X, we would like to

determine what sorts of couplings will be present between three such fields at the common

locus of intersection, which we denote by Σ.

Owing to the structure of N = (0, 2) F-term interactions, we must couple a Fermi

multiplet with some number of chiral multiplets. To set conventions, we suppose that

we are given three Kähler surfaces with fields in the following bundle assignments on

corresponding surfaces Si:

Ψ1 ∈ Ω
(0,1)
S1

(K
1/2
1 ⊗ V1) (4.74)

Q2 ∈ K1/2
2 ⊗ V2 (4.75)

Q3 ∈ K1/2
3 ⊗ V3. (4.76)

Since we are assuming we have a gauge invariant interaction anyway, we can also assume

that tensor product of the restrictions of the Vi are trivial:

V1|Σ ⊗ V2|Σ ⊗ V3|Σ = OΣ. (4.77)

This leaves us with the task of studying the bundle:

B = Ω
(0,1)
S1

(K
1/2
1 )|Σ ⊗K1/2

2 |Σ ⊗K
1/2
3 |Σ. (4.78)

Now, by the adjunction formula, we can write:

K
1/2
1 |Σ ⊗K

1/2
2 |Σ ⊗K

1/2
3 |Σ = K

3/2
Σ ⊗ (N1 ⊗N2 ⊗N3)−1/2 , (4.79)

where the Ni denotes the normal bundle for Σ in the surface Si. On the other hand, the

very fact that we have a triple intersection of Kähler surfaces inside our threefold in the

first place means that N1 ⊗N2 ⊗N3 ' KΣ. So, we therefore learn that:

B = Ω
(0,1)
Σ (KΣ), (4.80)
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i.e. the triple intersection defines a (1, 1) volume form which can be integrated over the

Riemann surface.

As a brief aside, we note that such interaction terms should be expected: if we specialize

to the case of X = T 2 × S, we have the dimensional reduction of a 4D N = 1 theory

on a T 2, and it is well known that cubic Yukawa interactions localize at points of such

constructions [26].

Consider next the possibility of intersections localized at a point of the Kähler threefold

X. In the Calabi-Yau fivefold geometry, this originates from a quartic intersection of com-

ponents of the discriminant locus. The novelty with the present situation is that because of

the Higgsing patterns available in an intersecting 7-brane configuration, we can expect four

Kähler surfaces to intersect at a point.9 Indeed, as we already mentioned in the context

of heterotic constructions, such interactions are expected to be present upon integrating

some Kaluza-Klein modes. The novelty in F-theory is that these interactions appear to be

geometrically localized at a point. For this reason, we can write the general form of such

interactions, assuming of course that a gauge invariant interaction term is possible at all:

Wtop,p = hαβγδ

(
δΨ(α)δQ(β)δQ(γ)δQ(δ)

)
|p. (4.81)

4.4 Summary of interaction terms

Compared with the relatively concise form of the interaction terms presented for the het-

erotic models, for the F-theory models we see that there are various matter fields and

interaction terms localized along subspaces of the Kähler threefold. We now collect the

relevant F-term interactions in one place. The full Wtop is given by:

Wtop = Wtop,X +
∑
S

Wtop,S +
∑

Σ

Wtop,Σ +
∑
p

Wtop,p (4.82)

where:

Wtop,X = −
∫
X

Tr(Λ(0,2) ∧ D(0,1)Φ(3,0))−
∫
X

Tr(Λ(3,1) ∧ F(0,2)) (4.83)

Wtop,S =

∫
S

〈Qc,Λ(0,2)Q〉+
〈
Ψc,

(
∂ + A1 + A2

)
Q
〉

+
〈
Qc,

(
∂ + A1 + A2

)
Ψ
〉

(4.84)

Wtop,Σ =

∫
Σ

fαβγ δΨ
(α)δQ(β)δQ(γ) (4.85)

Wtop,p = hαβγδ

(
δΨ(α)δQ(β)δQ(γ)δQ(δ)

)
|p. (4.86)

Where in the above, we have omitted the implicit construction of W and the E-fields which

follows from Wtop.

Including the D-term interactions, we can assemble the full action:

Stotal = SD + SF (4.87)

9Strictly speaking, this will actually involve a branched cover of the original threefold X, and it is

the different sheets of the cover which are forming the quartic intersection. This is also true for cubic

intersections. This point has been explained in detail, for example, in references [34, 48].
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SD =

∫
d2yd2θ

∫
X

(
1

8

(
Υ,Υ

)
− 1

2

(
Λ(0,2),Λ(0,2)

)
(4.88)

− i

2

(
Φ(3,0) , [∇−,Φ(3,0)]

)
− i

2

(
D(0,1), [∇−,D(0,1)]

)
(4.89)

+ δS ∧
(
− i

2

(
Q,∇−Q

)
− i

2

(
Qc,∇−Qc

)
− 1

2

(
Ψ,Ψ

)))
(4.90)

SF =

∫
d2yd2θ+W + h.c. (4.91)

where the gauge coupling of the 2D GLSM is set by:

1

e2
= Vol(X), (4.92)

in 10D Planck units.

Finally, much as in the case of the heterotic models encountered previously, we observe

that the condition for off-shell supersymmetry will be violated, i.e. D+W 6= 0, even though

on-shell we have satisfied all supersymmetric equations of motion. Just as in the heterotic

context, the condition here is the same: we must couple our model to the geometric moduli

of the system so that this off-shell condition is retained. From the perspective of our local

gauge theory construction, one way to ensure this is to introduce an appropriate Fermi

multiplet Lagrange multiplier. Concretely, these can be extracted by following through the

dimensional reduction of the 9-brane action with superpotential term (Ω−Π)∧Tr(Λ(0,2) ∧
F(0,2)) and tracking the descent of Π into the intersecting 7-brane action.

4.5 Anomalies

In our discussion above, we have focussed on elements which can be calculated in various

local patches of an F-theory model. It is also of interest to study the question of whether

our resulting spectrum of states is indeed anomaly free. To address this question, we

strictly speaking need a more global picture on the contribution to both gauge anomalies

and gravitational anomalies. For some global F-theory vacua, this can be addressed using

the spectral cover construction (see e.g. [48–50]), though in some cases even this tool is

unavailable (i.e. if all interaction terms do not descend from the unfolding of a single

globally defined E8 singularity). For this reason, in this section we shall focus on the

contribution to anomalies from the local model (see also [27]).

With this in mind, let us calculate the contribution to the gauge anomalies due to

the bulk zero modes and the zero modes localized on a Kähler surface. Adopting similar

notation to that used in our analysis of 9-brane actions, we assume we have a zero mode

transforming in a representation τ and which transforms as a section of the bundle E . From

the bulk zero modes, we get the contribution:

IX(τ and τ∗) = −Ind(τ)× (χ(X, E) + χ(X, E∨)) . (4.93)

Observe that in contrast to the 9-brane theory studied in the previous section, the counting

of bulk Fermi multiplets is slightly different. For matter fields localized on a Kähler surface
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transforming in a non-trivial representation r and as a section of the bundle R, we also

find a contribution to the gauge anomaly, now given by:

IS(r and r∗) = −Ind(r)× χ(S,K
1/2
S ⊗R) . (4.94)

For the gravitational anomalies, we must include numerous fields in the reduction,

which will in turn require us to globally correlate the contributions from various fluxes.

We therefore defer a full treatment of such cases to particular examples, and also refer the

interested reader to reference [27].

5 Anomalies and tadpoles

In the previous sections we focussed on the GLSM sector generated by either a 9-brane or

a configuration of intersecting 7-branes. One of the interesting features of working in two

dimensions is that we have seen that a priori, there is no reason for the GLSM we have

so constructed to be anomaly free. Indeed, when we turn to explicit examples, we will

typically find that in isolation, the GLSM suffers from an anomaly.

From the perspective of a two-dimensional effective field theorist, there are two quite

related ways one might attempt to “repair” such an anomalous gauge theory. One way is

to simply introduce additional degrees of freedom. By ’t Hooft anomaly matching, these

contributions can in turn be captured by simply adding a non-local two-form potential

which transforms under a gauge transformation with parameter ε as:

δεB ∼ Tr(ε · dA). (5.1)

Indeed, this is simply the dimensional reduction of the famous Green-Schwarz mechanism

to two dimensions.

Of course, these two ways of cancelling anomalies are actually quite closely related.

For example, in the context of the perturbative type I and heterotic theories, we have a

coupling in the ten-dimensional action of the form:

SGreen-Schwarz ∝
∫
B2 ∧X8(F,R), (5.2)

where X8(F,R) depends on the 9-brane gauge field strengths as well as the background

curvatures of the model. When there is a non-zero background value for X8, we can

integrate it over our eight-manifold on which we have compactified. Doing so, we generate

a term given by integrating B2 over our 2D spacetime.

Now, as has been appreciated in other contexts for some time (see e.g. [19, 51, 52]),

this in turn generates a tadpole for the two-form potential which must be cancelled by in-

troducing additional branes which couple to this potential. For the type I theory, these are

spacetime filling D1-branes, and for the perturbative heterotic theories these are fundamen-

tal strings. These brane theories each enjoy an effective flavor symmetry from the ambient

9-brane, and as such, we expect them to contribute matter fields to the GLSM sector. More

precisely, we expect there to be additional 2D currents which contribute to the gauge theory.
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Turning next to F-theory, we can also see that we should in general expect there to be

a tadpole which will now be cancelled by D3-branes wrapped on two-cycles. An interesting

feature of these models is that we can have a D3-brane wrapping a two-cycle which either

intersects a 7-brane at a point, or we can have D3-branes wrapped over a two-cycle which

is also common to the 7-brane. In the former case, we get the F-theory analogue of the

spacetime filling 1-branes seen in the type I and heterotic models. In the latter case, we

get the F-theory analogue of five-branes of these models. One can of course incorporate

such ingredients also in our theories based on 9-branes.

Our plan in this section will therefore be to give a general discussion of the contribution

from tadpoles in the perturbative string models encountered previously. We then consider

the analogous contribution in F-theory models.

5.1 Perturbative vacua

In this subsection we consider anomaly cancellation and induced tadpoles for perturbative

vacua with 9-branes, i.e. we assume we have compactified the perturbative type I, or

heterotic string. Since we shall assume a perturbative vacuum, we exclude the presence of

five-branes. As we explain, these can be incorporated in a straightforward manner.

To start, we recall that the choice of gauge group implies that the anomaly polynomial

for d = 10 heterotic supergravity factorizes as:

I12 = Y4X8 (5.3)

where (see e.g. [53, 54]):

Y4 = trd,(d)R
2 − 1

30
TrF 2 (5.4)

X8 = trR4 +
1

4

(
trR2

)2 − 1

30
TrF 2 trR2 +

1

3
TrF 4 −

(
1

30
TrF 2

)2

. (5.5)

The first trace, trd,(d), is in the fundamental representation of SO(d).10 Tr is defined as

follows: for a simple Lie algebra it is the trace in the adjoint representation normalized so

that the longest root has length squared 2; for any semi-simple Lie algebra like e8⊕ e8 it is

given by a sum of the traces in the simple pieces. When it is not likely to cause confusion,

we will drop the qualifications on the traces.

In a compactification to two dimensions, the anomaly polynomial is given by taking

I12 and integrating over an eight-manifold. That is, we wind up with a formal four-form

(as appropriate for anomalies in two dimensions). In particular, we expect the structure

of the anomaly polynomial to be controlled by topological data of the internal manifold.

Along these lines, for a real vector bundle E, introduce the Pontryagin classes:

trF 2 = −2(2π)2p1(E) , trF 4 = 2(2π)4(p2
1(E)− 2p2(E)). (5.6)

10For us d = 10 is the starting point, but we will also be interested in d = 8 when we compactify.
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We also introduce related Pontryagin classes for the tangent bundle, which we write as pi.

Then, the resulting form of X8 for the perturbative theories with gauge group Spin(32)/Z2

and E8 × E8 are:
1

(2π)4
X

SO(32)
8 = 3p21 − 4p2 − 4p1 × p1(E) + 16p1(E)2 − 32p2(E) (5.7)

1

(2π)4
XE8×E8

8 = 3p21 − 4p2 − 4 (p1(E1) + p1(E2)) p1 + 8
(
p1(E1)2 + p1(E2)2 − p1(E1)p1(E2)

)
. (5.8)

These expressions can be simplified by using the solution to the Bianchi identity, which

requires (without 5-branes)

p1(M8) = p1(E) (5.9)

in SO(32) theories and

p1(M8) = p1(E1) + p1(E2) (5.10)

in the E8 × E8 theory. Using these simplifications and specializing further to the case of

holomorphic vector bundles where E ⊗ C = E ⊕ E , so that

pi (E) = (−1)ic2i(E), (5.11)

we write the eight-forms as:

1

(2π)4
X

SO(32)
8 = 8

(
−χ(M8) + 3c2(M8)2 − 8c4(E)

)
(5.12)

1

(2π)4
XE8×E8

8 = 8
(
−χ(M8) + 3c2(M8)2 − 12c2(E1)c2(E2)

)
(5.13)

where in the above, χ(M8) = c4(M8) is the Euler class on a complex manifold. For

additional details on Chern class manipulations see appendix D.

If M8 is an irreducible CY, then we can obtain the integrated versions of these classes:

1

192(2π)4

∫
M8

X
SO(32)
8 = 60− 1

3

∫
M8

c4(E) ,

1

192(2π)4

∫
M8

XE8×E8
8 = 60− 1

2

∫
M8

c2(E1)c2(E2) . (5.14)

Thus, for generic stable vector bundles on our eight manifold X8 will integrate to a non-

zero number. So, a two-form potential term is inevitable, and its participation in the

Green-Schwarz mechanism is also required. This also means there is a tadpole which must

be cancelled by some number of spacetime filling 1-branes. In a perturbative vacuum, we

determine the total number of such branes by integrating X8 over our eight manifold. In

appendix E we determine the precise normalization factor in the effective action, finding:

N1-branes = − 1

192(2π)4

∫
M8

X8 . (5.15)

An important feature of this constraint is that in a supersymmetric vacuum, N1-branes ≥ 0.

So in other words, we get a non-trivial restriction on the topology of the compactification

manifold and bundle. This is very much as in higher-dimensional models, except that here

it occurs in very standard constructions (like the standard embedding).

We might also wonder not only about signs but also integrality of N . As we will see

below, c4(E) will be divisible by six.11 Thus, in the SO(32) case there is no issue with

11This is familiar in the case of the tangent bundle from [52].
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integrality. On the other hand, in the case of the E8×E8 string it is unclear to us whether

c2(E1)c2(E2) is necessarily an even class.

5.2 Non-perturbative vacua

Let us now turn to a similar analysis for non-perturbatively realized vacua. One mild way

to extend the above results is to consider non-perturbative vacua in which for the type

I and heterotic models, Y4 is not cohomologically trivial. In these cases, we also have

spacetime five-branes wrapped over four-cycles, and our models are best viewed as some

limit of heterotic M-theory. Since we are then inevitably dealing with a non-perturbatively

realized vacuum, there seems little point in not simply passing directly to the F-theory

realizations of this and related models.

Along these lines, we can consider the issue of anomaly cancellation for these models

which is now accomplished through the presence of spacetime filling D3-branes. It is

straightforward to determine the homology class wrapped by the D3-branes. We simply

consider F-theory on the background S1 × CY5, and pass to the dual M-theory model on

a Calabi-Yau fivefold. There, the D3-branes are instead represented by spacetime filling

M2-branes. So, we can simply tally up the total homology class wrapped by these M2-

branes. This follows from the terms C3 ∧G4 ∧G4 and C3 ∧X8(R). The end result is that

the two-cycle wrapped by the D3-branes is:

[ΣD3] =
1

2

(
G4

2π
∧ G4

2π

)
− 1

48

(
p2(CY5)− 1

4
p1(CY5)2

)
. (5.16)

In general, we see that there can be D3-branes which wrap two-cycles also wrapped by

7-branes, and we can also have D3-branes which only intersect at a point. This gives rise

to different types of extra sectors.

6 Extra sectors

So far, our discussion has focussed on the physics associated with higher-dimensional 9-

branes (and for F-theory, 7-branes). We have also seen that an inevitable feature of these

models is the appearance of a tadpole for the two-form potential which is necessarily

cancelled by the presence of additional spacetime filling branes. By inspection, these branes

must couple to the relevant two-form potential, and as such, we can expect an additional

“extra sector” in addition to the 2D GLSM sector realized by the higher-dimensional branes.

In this section we switch perspective, and focus on the physics of the extra sector,

treating the higher-dimensional brane as a flavor symmetry for this sector. First, we

consider the special case of extra sectors in compactifications of type I string theory. Here,

the extra sectors are realized by probe D1-branes which fill the 2D spacetime and sit at

a point of the Calabi-Yau fourfold. We then turn to generalizations of these extra sectors

for both perturbative heterotic vacua and F-theory vacua. With these examples in mind,

we then make some general remarks about a curious tension between cancelling anomalies

and preserving supersymmetry.
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6.1 Perturbative type I models

Consider first the case of compactifications of perturbative type I strings on a Calabi-Yau

fourfold. In this case, there are no spacetime filling five-branes, but the tadpole for the

RR two-form indicates that there are N spacetime filling D1-branes. The spectrum of this

theory has been studied for example in [55], and in T-dual form has also been considered

in detail in [56].

Let us first recall the worldvolume theory for N D1-branes in flat space in type IIB

string theory. First, we observe that the worldvolume theory has N = (8, 8) worldvolume

supersymmetry. Recall that in type IIB string theory, the bosonic mode content for N

D1-branes in flat space consists of a U(N) gauge theory, with eight real scalars XI in the

adjoint of U(N) transforming in the 8v representation of SO(8). We also have sixteen

Majorana-Weyl fermions ΨA ⊕ Ψ̃A′ transforming in the 8s ⊕ 8c and the adjoint of U(N).

Consider next the worldvolume theory of the D1-brane in the type I theory. Owing

to the orientifold projection, the worldvolume theory now has (0, 8) worldvolume super-

symmetry. In addition to the 1 − 1 strings, we also have 9 − 1 strings stretched from the

spacetime filling 9-branes with gauge group Spin(32)/Z2 to the stack of D1-branes. Addi-

tionally, the mode content of the D1-brane theory will be different due to the presence of

the orientifold projection. The 1 − 1 strings for the gauge fields will now organize accord-

ing to an O(N) gauge theory.12 Moreover, the XI and ΨA transform in Sym2N, and the

Ψ̃A′ transform in the ∧2N = adjoint representation and are the (0, 8) gauginos. Finally,

we also have the 9 − 1 strings γ. These are left-moving fermions which transform in the

bifundamental representation (F,N), where here we have indicated the “flavor” 9-brane as

an SO(F ) gauge group with fundamental representation of dimension F .

To proceed further, it will be helpful to organize the various multiplets according to

a holomorphy convention compatible with N = (0, 2) supersymmetry. Along these lines,

we decompose the fields according to the subalgebra su(4) ⊂ so(8). By the same logic

applied to the bulk field theory, we can trace through the effects of the twisting operation

on these representations. Doing so, we find that the fields of our extra sector now combine

— as expected — into various (0, 2) supermultiplets. The real scalars XI and fermions ΨA

form a chiral multiplet X(0,1) which transforms in the 4 of SU(4) ⊂ SO(8) and the two-

index symmetric representation of O(N). We also have a Fermi multiplet Λ
(even)
(0,2) which

transforms in the 6 of SU(4), and the adjoint representation of O(N). Again, here the 10D

Majorana-Weyl constraint effectively halves the degrees of freedom which would have been

present for a (0, 2) differential form. The remaining light 1− 1 strings are the gauge fields

and gauginos valued in the adjoint representation of O(N).

We also have the 9 − 1 strings which transform in the bifundamental representation

(F,N) of SO(F )×O(N). At first sight, it appears difficult to write an off-shell (0,2) action

for these Majorana-Weyl fermions. However, the key is that these are left-moving degrees

of freedom without any potential terms. Thus, for all intents and purposes we can treat

12The fact that the gauge group is O(N) rather than SO(N) is due to the presence of an overall global

Z2 Wilson line which can be activated in the type I theory. Indeed, this Z2 discrete gauge symmetry

implements the type I analogue of the GSO projection for the heterotic fundamental string [55].
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them as a left-moving current algebra gauged by the SO(F )×O(N) gauge fields. Treated

in this form, we can write the requisite supersymmetric couplings. A WZW presentation of

this structure was explored in [57]. In what follows, we will not delve into such an off-shell

presentation. Instead, we will just discuss the free fermion presentation of this current

algebra, so that in this sector our supersymmetry will only close on-shell.

Let us now turn to interaction terms between the various modes of our extra sector.

We primarily focus on the F-terms, as they are protected by supersymmetry. To begin,

consider the interactions just involving the 1 − 1 strings. The bulk interaction terms

presented earlier allow us to write a corresponding F-term. For ease of exposition, we

present this using the topological version of the superpotential, and use the prescription

outlined in section 2 to read off the physical superpotential:

W 1−1
(top) = −Ω ∧ tr

(
Λ(0,2) ∧ X(0,1) ∧ X(0,1)

)
, (6.1)

in the obvious notation (in particular the tr is in the fundamental representation of O(N)).

Since the adjoint representation is just the two-index anti-symmetric representation, this

is gauge invariant.

Consider next the interactions which involve the 9 − 1 string γ. This is a Majorana-

Weyl spinor transforming in the bifundamental representation (F,N) of SO(F )×O(N). We

can clearly construct a bilinear γAγB with A and B indices in the fundamental of SO(F ),

and with O(N) indices contracted. These currents can then be easily coupled to an SO(F )

gauge field while preserving on-shell (0,2) supersymmetry. In the compactified theory, the

vector multiplet arises from the pullback of the 9-brane gauge field to the two-dimensional

worldvolume of the D1-branes.

What sorts of interactions can the γ have with the remaining D1 degrees of freedom?

Since the γ are left-moving fermions, as are the Λ(0,2), it is easy to see that there are no

direct Lorentz-invariant and gauge-invariant terms that couple the γ to Λ(0,2) or X(0,1) at

the two-derivative level.

An important feature is that even after compactifying the 9-brane theory, we should

still expect F = 32 in compactifications of the type I theory. The reason is that the D1-

brane is a pointlike object in the compactified space and as such, does not experience the

effects of the flux in the same way that bulk 9-brane modes do. More concretely, we see

that the couplings to the bulk 9-brane modes do not induce a mass term for the 9 − 1

strings. The result of compactification is therefore to gauge a subgroup H ⊂ Spin(F ). The

residual flavor symmetry is then given by the commutant. More precisely, we realize a

coset space Spin(F )/H.

6.1.1 Anomalies

Having discussed some aspects of the zero mode spectrum as well as the interaction terms,

let us now turn to anomalies associated with this extra sector. To make the computation,

we tabulate the fermions of the D1-brane sector. All of these are Majorana-Weyl and fall

into the following representations
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fermion chirality rep. of SO(8) × SO(F )×O(N)

ΨA right-moving (8s,1, Sym2N)

Ψ̃A′ left-moving (8c,1,∧2N)

γ left-moving (1,F,N)

Recall that for O(N) ind(N) = 2, ind(∧2N) = 2(N − 2), and ind(Sym2N) = 2(N + 2).

With that, we evaluate the anomalies.

First, we have the O(N) anomaly. Including an overall factor of 1/2 for the Majorana-

Weyl spinors, we obtain

ID1 =
1

2
[−8× 2(N + 2) + 8× 2(N − 2) + 2F ] = (F − 32) . (6.2)

Thus, as we expect, the only sensible choice is F = 32. Fortunately, that is precisely the

choice we need for our application to type I theories.

Now we reconsider the anomaly of our full theory, including the D1-brane sector. Let

us denote the “old” D9-brane anomaly that we found from the analysis above by Iold The

“new” anomaly, which includes the contribution from the 1–9 strings in the bifundamental

(32,N), is then given by

Inew = Iold −
1

2
× 2×N = Iold −N . (6.3)

This is a satisfying answer. Tracing through the logic which led us to consider an extra

sector in the first place, the term B2 ∧ X8 leads to a tadpole which can be cancelled

by introducing spacetime filling D1-branes. From a gauge theory perspective, we can

alternatively cancel the anomaly by introducing “by hand” an extra set of weakly coupled

states, namely those of the D1-brane.

We also compute the gravitational anomaly on the D1-brane world-volume:

cL − cR
12

=
1

12
× 1

2

[
−8

N(N + 1)

2
+ 8

N(N − 1)

2
+ 32N

]
= N . (6.4)

This is just right to cancel the “old” gravitational anomaly.

6.2 Perturbative heterotic extra sectors

Consider next the extra sectors associated with perturbative heterotic compactifications.

Just as in the case of the type I theory, the presence of the term B2 ∧ X8 indicates that

there will generically be spacetime filling fundamental strings in addition to the GLSM

sector generated by the original compactification.

Now, the worldvolume theory of a single fundamental string is extremely well-known.

It consists of a set of left-moving currents which couple to the pullback of the 9-brane gauge

field. Additionally, we have the standard embedding coordinates for the heterotic string

in the Calabi-Yau fourfold. This can also be given a rather explicit character using GLSM

techniques. Additionally, because multiple fundamental heterotic strings do not form a
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bound state, we can also determine the net contribution to the conformal anomalies for

multiple coincident heterotic strings:

(cL, cR) = (24N, 12N). (6.5)

In spite of this, the explicit microscopic characterization of multiple heterotic strings is

still somewhat subtle. Nevertheless, one can expect that at least in the large N limit, a

holographic dual description may emerge [58]. At any rate, we at least observe that the

gravitational anomaly matches that found for N D1-branes above.

6.3 F-theory extra sectors

Finally, we come to the case of F-theory extra sectors. As opposed to the constructions

encountered previously, in F-theory we should not expect a spacetime filling D1-brane or

F1-brane string to play the role of such an extra sector. One reason for this is that in

the corresponding tadpole cancellation conditions of F-theory, it is really the four-form

potential rather than a two-form potential which plays the key role in any analysis of

anomaly inflow. Additionally, the very notion of spacetime filling 1-branes in F-theory

is rather special and only holds for special configurations of the axio-dilaton. In general,

SL(2,Z) covariance obstructs the presence of such objects.

Based on this, we must seek the presence of such extra sectors in the form of D3-branes

wrapped on various cycles of an F-theory compactification. For two-cycles which are com-

mon to a 7-brane, the analogous contribution in heterotic and type I is a non-perturbative

five-brane. As such, the two-dimensional theories defined by these theories are expected to

be somewhat subtle. However, there are also two-cycles transverse to the 7-branes. These

are the F-theory analogues of the 1-branes encountered in other duality frames. Indeed,

these D3-branes have eight Neumann-Dirichlet mixed boundary conditions, and so will

contribute a comparable zero mode content to that of the probe D1-branes encountered in

compactifications of the type I string. Additionally, by considering the orientifold limit of

an F-theory compactification, we can see that a D3-brane wrapped in the normal direction

to a 7-brane becomes — after applying two T-dualities in the two directions transverse

to the 7-brane — a D1-brane, while the 7-brane becomes a 9-brane. So, we see that the

structure of this theory is actually quite close to that encountered in the type I construction.

There are also some important differences between these two constructions. Perhaps

the most significant is that in the limit where gravity is decoupled from the intersecting

7-brane configuration, the gauge theory dynamics of the D3-brane must also necessarily

decouple. This is simply because it is wrapping a non-compact curve of infinite volume,

so it instead behaves as a corresponding “flavor sector” for the 2D GLSM defined by the

7-branes. Nevertheless, at the point of intersection between the D3- and 7-branes, there

are additional localized currents. These are the analogue of the 9 − 1 strings encountered

in the type I construction.

Though more challenging to study, we can also consider the effects of moving the D3-

brane to special points of the intersecting 7-branes. For example, at various points of the

internal geometry, the elliptic fibration may become more singular, i.e. there is symmetry
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restoration along a subspace. When this occurs, there is a corresponding change in the

D3-brane sector. It would be interesting to determine further details of these models in

future work.

Now, in addition to these extra sectors, we can also in general expect D3-branes to

wrap two-cycles also common to a 7-brane. Even so, they may still be separated away from

the 7-brane, and so in this sense can be decoupled (the 3-7 strings being massive). When

these D3-branes are nearby a 7-brane, the 3-7 strings become light, and we get another

source of an extra sector. In the perturbative vacua studied previously, these are associated

with five-branes wrapped over a four-cycle (as such, they would not really be perturbative

vacua if we included them). In the flat space limit, these theories are given by a possibly

strongly coupled N = 2 supersymmetric system in four dimensions. What we are doing is

taking this strongly coupled system and wrapping it over a curve common to the 7-branes

and D3-branes. Again, this leads to a rather rich class of extra sectors which interact with

our GLSM sector. We defer a more complete analysis of these models to future work.

6.4 Anomalies versus supersymmetry

One of the general features of our 2D GLSMs is that in general, we do not expect the

gauge theory sector to be anomaly free by itself. Observe, however, that the gauginos and

Fermi multiplets contribute with one sign to the gauge anomaly, while the chiral multiplets

contribute with the opposite sign. This leads to a general question about whether the zero

mode sector can cancel anomalies supersymmetrically.

First of all, we can see that in perturbatively realized vacua, the contribution from

the extra sector currents contributes to the gauge anomaly with the same sign as Fermi

multiplets. That means that we can only use this sector to cancel an anomaly provided the

2D GLSM sector has a sufficient number of chiral multiplets. Otherwise, we would need

to add anti-branes instead, breaking supersymmetry.

Now, in non-perturbatively realized vacua, we can in principle get another contribution

to the anomaly. In heterotic M-theory, this would be given by M5-branes wrapped over a

four-cycle, and in F-theory it is given by D3-branes wrapped over a two-cycle common to

a 7-brane. In general, Consider the case of D3-brane modes which are also non-trivially

charged under a representation of the 7-brane gauge group. In general, these degrees of

freedom will be part of a strongly coupled extra sector, but we can nonetheless count them

via anomaly matching considerations.

In the special case where the 7-brane gauge group is perturbatively realized (i.e., it is of

SU , SO or Sp type) more can be determined. For example, in flat space, these modes must

organize according to 4D N = 2 hypermultiplets. Upon reduction to two dimensions, the

mode content will organize according to N = (0, 4) hypermultiplets and Fermi multiplets

(see e.g. [59, 60] for some recent discussions). So when we wrap on a curve, we can count

the net contribution to the anomaly via the bundle valued cohomology groups:

Q⊕Qc† ∈ H0(Σ,R), Ψ⊕Ψc† ∈ H1(Σ,R). (6.6)

for some bundle on the curve Σ, and where the Q’s denote N = (0, 2) chiral multiplets

and the Ψ’s denote N = (0, 2) Fermi multiplets. Observe that by an appropriate choice of
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bundle R, we can get more chiral multiplets than Fermi multiplets. So in principle, such

non-perturbative sectors can also participate in anomaly cancellation.

7 Examples

In the previous sections we introduced a general formalism for extracting two-dimensional

N = (0, 2) quantum field theories from a string compactification. In particular, we expect

that in most cases, these theories will flow to a fixed point (though it may be one in which

all fields are free). Our aim in this section will be to give a few examples illustrating these

general ideas. We of course expect there to be a non-trivial target space interpretation of

the resulting theories since in many cases we will reach a super-critical string theory with

a large target space dimension.

With this aim in mind, we first begin with examples of (2, 2) supersymmetry, and

explain how starting from such a locus we can reach a special class of (0, 2) models. This

is a common strategy in the (0, 2) literature. Next, we turn to examples constructed from

compactifications of perturbative strings on a Calabi-Yau fourfold. We focus on the case

of the “standard embedding” i.e. where we embed the spin connection of the Calabi-Yau

fourfold in the gauge group of the ten-dimensional Yang Mills theory. In particular, we

give a global count of the number of degrees of freedom and also verify that all gauge

and gravitational anomalies have indeed cancelled. Quite strikingly, we find that for the

E8×E8 heterotic theory, anomaly cancellation with a rank four gauge bundle always leads

to supersymmetry breaking.

After this, we turn to some examples from F-theory. Using methods from the spectral

cover construction of vector bundles, we can of course produce very similar structures to

that already seen on the heterotic side (see e.g. [27] for some examples). We shall, however,

aim to focus on some cases which are more “unique” to F-theory in the sense that the results

are more transparent in that duality frame. To this end, we consider the 2D analogue of

“non-Higgsable clusters” encountered in previous work in six [61] and four [62] dimensions.

In two dimensions, such structures are better viewed as “rigid” clusters since the notion

of Higgsing a symmetry in two dimensions is more subtle. We mainly focus on examples,

deferring a full classification to future work.

7.1 N = (2, 2) models

To give some examples, we begin with two-dimensional models with (2, 2) supersymmetry.

A straightforward way to engineer such examples is to start with a four-dimensional N = 1

supersymmetric field theory. Compactifying on a further T 2 then leads to (2, 2) supersym-

metry. The structure of interactions is then inherited from four dimensions. However, the

IR dynamics can be somewhat different as there are now non-trivial solitonic excitations

which can wrap along the cycles of the T 2.

From the perspective of string compactification, we get such examples by specializing

to the case of T 2 × CY3 for type I and heterotic models, and to T 2 × CY4 for F-theory

models. In these cases, we also see that the Fermi multiplets and chiral multiplets combine

to give (2, 2) chiral multiplets. Some detailed analyses of this special case has appeared for
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example in [63] to which we refer the interested reader for additional discussion. Amusingly

enough, we can take well-known constructions of the Standard Model of particle physics

obtained in previous work and simply reduce to two dimensions.

One important feature of all these models is that now, the Green-Schwarz mechanism

plays a less prominent role. In field theory terms, this is because now, all of our left-movers

naturally pair up with right-movers owing to (2, 2) supersymmetry. Indeed, returning to

our actual computation of the integrated X8 for perturbative type I and heterotic models,

we see that in the special case of perturbative models on T 2×CY3 the integral of X8 always

vanishes. For F-theory models, there is a related constraint, although now, we expect there

to still be spacetime filling D3-branes wrapped over two-cycles which are also common to

7-branes. That is, we expect there to typically be four (and not eight) Neumann-Dirichlet

boundary conditions for open strings stretched between D3-branes and 7-branes in models

with (2, 2) supersymmetry.

Let us make few additional qualitative remarks. First of all, we can see that in the F-

theory constructions, the cubic Yukawa couplings localized at points are now localized over

the T 2. This is as expected from our general considerations, where we saw that the triple

intersection of three Kähler surfaces in the Kähler threefold should lead to such localized

interactions. We also see, however, that there are generically no quartic intersections. If

we consider a mild tilting of the 7-branes (say by activating a flat Wilson line along the

T 2), we can engineer such structures as well.

As a particularly simple class of models, we can also see how the (2, 2) supersymmetric

CPN model arises in these sorts of constructions. Recall that this is described by a U(1)

gauge theory with N + 1 chiral multiplets of charge +1. Additionally, there is a Fayet-

Iliopoulos parameter which controls the overall size of the manifold.

Now, a curious feature of this model is that from a four-dimensional perspective, it

would appear to define an anomalous gauge theory in four-dimensions. What is really going

on in a string theory construction is that if we attempt to engineer a U(1) gauge theory

with (N+1) chiral multiplets, there will inevitably be an axionic multiplet which functions

as an additional chiral multiplet of charge −(N + 1), and serves as a “field dependent FI

parameter.”

With this in mind, let us now engineer an example of this type. We start in F-

theory compactified to four dimensions with a pairwise intersection between an SU(2)

7-brane wrapped on a del Pezzo surface S, and a non-compact I1 factor of the discriminant

which intersects the SU(2) locus along a P1. As is well-known from earlier work on 4D

compactifications, we can activate a supersymmetric bulk flux which breaks SU(2) to U(1),

and which (for a suitable choice of del Pezzo surface and bulk fluxes) does not generate any

bulk zero modes. Restricting the flux to a matter curve will then give us our zero modes

for the GLSM.

At the intersection curve, we have an enhancement to an SU(3) locus, so we expect

to have a hypermultiplet’s worth of degrees of freedom transforming in the fundamental

representation of SU(2). Now, by a suitable choice of flux through the SU(2) factor, we

break to U(1), and have no zero modes from the bulk. Restricting the flux onto the curve,

and activating the flux from the I1 flavor brane, we now see that the number of charge +1
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and −1 fields is given by a line bundle cohomology group:

charge + 1 chirals: H0(P1,O(+N − 1)) (7.1)

charge− 1 chirals: H0(P1,O(−N − 1)). (7.2)

So provided N > 0, we just have charge +1 chiral multiplets localized. If this is all

the matter fields, we necessarily find that the U(1) gauge theory is anomalous. This is

acceptable in the present context, because we will have a coupling to the dynamical FI

parameter anyway. Compactifying to two dimensions, we therefore obtain our CPN model.

Similar constructions can of course be performed in heterotic models as well.

Even at the level of zero modes, the effective dimension of the target space depends

on the energy scale at which we analyze the effective string theory. Observe that at higher

energy scales, we cannot treat the FI parameter ξ (and its axionic partner) as fixed. Doing

so, we get a new geometric interpretation: a non-compact complexified cone over CPN .

Starting from this construction, we can also consider activating non-trivial tiltings /

fluxes on the T 2 factor of the compactification. This corresponds in the N = (2, 2) model

to an operator deformation which moves us to a more general N = (0, 2) model.

7.2 Perturbative models with rank four bundles

Consider next some examples from perturbative strings on a Calabi-Yau fourfold. Canon-

ical examples of this type are given by the “standard embedding,” i.e. where we embed

the spin connection in the gauge connection. More generally, a particularly simple class of

solutions are obtained by picking a stable holomorphic rank 4 bundle E over our manifold

M . These of course include the standard embedding, where we take E = TM . In this

section we will study some aspects of the resulting compactifications for both the type I

and heterotic string. As some aspects of the analysis are different, we split our discussion

up according to whether the 10D gauge group is Spin(32)/Z2 or E8 × E8.

However, before we get into that, we tabulate a few simple computations regarding

the topology of the bundle. We restrict attention to E with ci(E) = ci(TM ) for i = 1, 2.

This leads to a significant simplification of various characteristic classes and results

χ(E) = 8− c4(E)

6
, χ(∧2E) = 12 +

2c4(E)

3
, χ(E ⊗ E∨) = 512 +

c4(M)− 4c4(E)

3
. (7.3)

7.2.1 Spin(32)/Z2 models

To begin, we consider the type I string theory or heterotic Spin(32)/Z2 string on a Calabi-

Yau fourfold equipped with a rank 4 stable holomorphic bundle E . In this case, we decom-

pose the adjoint representation according to the branching rule:

SO(32) ⊃ SO(24)× SO(8) (7.4)

adjSO(32) → (adjSO(24),1)⊕ (1, adjSO(8))⊕ (24,8v) (7.5)

for compactification on a generic eight-manifold. Specializing to manifolds with SU(4)

holonomy for the metric, we have:

SO(32) ⊃ SO(24)× SU(4)×U(1) (7.6)
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adjSO(32) → (adjSO(24),1)⊕ (1, adjSU(4)) (7.7)

⊕ (1,6+1)⊕ (1,6−1)⊕ (1,10) (7.8)

⊕ (24,4+1/2)⊕ (24,4−1/2). (7.9)

Associating 4 to forms valued in E and 6 to forms valued in ∧2E , we find the following

massless spectrum. Note that all fermions are counted as Weyl.

1. Moduli.

• CS: h1(T ) + h1(T∨) + h1(E ⊗ E∨);

• Fermi: h2(T ) + 1
2h

2(E ⊗ E∨). This is an integer by the result above.

• cL − cR = χ(T ) + 1
2 [χ(E ⊗ E∨)− 2] = 263− 2

3c4(E).13

2. SO(24)×U(1)-charged fields: 1+1.

• CS: h1(∧2E) + h3(∧2E);

• Fermi: h2(∧2E).

• cL − cR = χ(∧2E) = 12 + 2
3c4(E).

3. SO(24)×U(1)-charged fields: 24+1/2.

• CS: h1(E) + h3(E);

• Fermi: h2(E).

• cL − cR = χ(E) = 8− 1
6c4(E).

4. left-moving gauginos: cL − cR = 277.

5. d = 2 gravity: cL − cR = −24. As we discussed above, this is the contribution from

the gravitational sector of the bulk theory.

We now use

Ind(adjSO(24)) = 44, Ind(24) = 2, (7.10)

and find that the SO(24) × U(1) and gravitational anomalies are all proportional to each

other. Namely,

ISO(24) = −44− 2χ(E) = −60 +
c4(E)

3
,

IU(1) = −χ(∧2E)− 24× 1

4
χ(E) = −60 +

c4(E)

3
,

cL − cR
12

= 60− c4(E)

3
. (7.11)

These vanish if and only if c4(E) = 180.

The non-vanishing anomaly indicates that there must be additional degrees of freedom

present in the model. These are readily accounted for in the type I picture by introducing

13The −2 factor in the square bracket subtracts off h0(E ⊗ E∨) = h4(E ⊗ E∨) = 1.
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a suitable number of D1-branes. Based on our local gauge theory analysis, we see that the

9 − 1 strings are Fermi multiplets in the fundamental representation of the gauge group

SO(24). So, given N D1-branes of type I string theory, we expect a contribution to the

gauge theory anomaly:

Igauge(D1’s) = −Ind(24)× 1

2
×ND1 = −ND1. (7.12)

So, the net contribution to the gauge anomaly is:

Igauge(9-brane) + Igauge(D1’s) = −60 +
1

3
χ(CY4)−ND1. (7.13)

On the other hand, returning to equation (5.15), we have that:

ND1 = − 1

192(2π)4

∫
M

X8 = −60 +
1

3
c4(E) . (7.14)

So we cancel the anomaly, as expected, and we will preserve supersymmetry if c4(E) ≥ 180.

Though we have phrased the calculation in terms of type I string theory, it is clear

that there is a very similar calculation for the S-dual heterotic model. There, the additional

contribution to the gauge anomaly comes about from N spacetime filling fundamental

strings. This is again a chiral theory and its currents directly couple to the 9-brane.

7.2.2 E8 × E8 models

Let us now turn to the related calculation for a rank 4 bundle compactification of the

E8 × E8 heterotic string. Here, we shall encounter an interesting subtlety having to do

with tadpole cancellation: we will find that in these models, cancelling anomalies requires

us to add spacetime filling anti-fundamental strings. That is to say, these models will break

N = (0, 2) supersymmetry. Exploring the target space interpretation of this case would

clearly be especially interesting.

Let us begin by analyzing the zero mode content of the theory. In this case, we embed

the structure group SU(4) of E in one of the E8 factors. Since the other E8 is a spectator,

we will primarily focus on the “visible sector.”Of course, the net anomaly contribution

will depend on matter coming from both sectors, and if it is to be cancelled by the “extra

sector,” the anomalies in various symmetries must be proportional, just as we observed

above in the SO(32) example. The spectator E8 is the simplest anomaly to evaluate. Since

Ind(248) = 60, we simply have

IE8 = −60 . (7.15)

To examine the matter spectrum further consider the branching rules for the decom-

position of the adjoint representation:

E8 ⊃ SO(10)× SU(4) (7.16)

248→ (adjSO(10),1)⊕ (1,adjSU(4))⊕ (16,4)⊕ (16,4)⊕ (10,6). (7.17)

In this case, the relevant degrees of freedom transforming in a representation of the unbro-

ken SO(10) gauge group are counted by the Hodge numbers of the Calabi-Yau fourfold. In
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particular, we can count the number of CS multiplets and Fermi multiplets in the various

representations. In this case, there are some additional subtleties having to do with the

fact that we have Fermi multiplets which transform in self-dual bundles, i.e. E = E∨. This

fact means that there is an involution operation E → E∨, and so we can split up the modes

according to whether they are even or odd. As in our previous discussions of packaging

2D Majorana-Weyl fermions in terms of Fermi multiplets, this means to properly count

these degrees of freedom, we only retain the even sector. In practice, this means we have

to divide by two in tallying up the contribution to a gauge anomaly. With this caveat

dispensed with, we have:

Multiplet\Representation (adjSO(10),1) (16,4) (16,4) (10,6)

Fermi 0 h2(E) dual count h2
(even)(∧

2E)

Chiral Multiplet 0 h1(E) h1(E∨) h1(∧2E)

(7.18)

where in the above, the terminology “dual count” means the modes in the (16,4) have

already been accounted for by the modes in the (16,4).

We can also calculate the contribution to the various gauge and gravitational anomalies.

For purposes of exposition, we choose to focus on one particular case, i.e. that of the non-

abelian gauge anomalies for SO(10). Summing up the net contribution from the matter

charged in various representations, and using the formulae:

Ind(adjSO(10)) = 16, Ind(10) = 2, Ind(16) = 4 (7.19)

we get that the total gauge anomaly is:

ISO(10)(9-brane) = −16− 4χ(E)− 2× 1

2
χ(∧2E) = −60 . (7.20)

This matches the anomaly in the spectator E8, as it had to do.

So, the Green-Schwarz term will certainly render the theory anomaly free, and we can

introduce spacetime-filling strings to solve the tadpole. However, there is also a crucial

difference from the SO(32) case. From the general formulas for X8 given above in (5.14),

we see that for any E8 × E8 compactification that leaves the second E8 factor untouched

and uses a holomorphic bundle with c2(E1) = c2(M) and c1(E1) = 0

Nstrings = − 1

192(2π)4

∫
M
X8 = −60 . (7.21)

Thus, a solution of the tadpole necessarily breaks supersymmetry.

7.3 F-theory models

In this subsection we consider compactifications of F-theory on an elliptically fibered

Calabi-Yau fivefold. One of the advantages of F-theory based models is that in many

cases, there is a limit available in which the effects of gravity can be decoupled. To realize

a local model, we must consider a 7-brane wrapping a Fano threefold in a local geometry

such that the normal bundle has negative first Chern class.
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Before proceeding to specific examples, let us recall our general discussion given in

section 6.4. There, we observed that to have an anomaly free theory which preserves

supersymmetry, we typically need to introduce extra sectors from D3-branes wrapping

two-cycles in the base geometry. For D3-branes wrapped on a curve normal to a 7-brane,

we get additional Fermi multiplets, while for D3-branes wrapped on a curve common to a

7-brane, we get the possibility of additional chiral and Fermi multiplets.

For example, for an isolated 7-brane wrapped on a P3, we cannot activate a supersym-

metric background value for the gauge fields and Higgs field of the model. So, the only

zero mode contribution is from the gauginos of the model. As this is a negative contribu-

tion to the anomaly, we conclude that to cancel anomalies supersymmetrically, we need to

introduce D3-branes wrapping a curve of the P3.

In some sense, this example is not that representative since in general, a Fano threefold

will have non-trivial solutions to the Hermitian Yang-Mills equations (and their general-

ization involving non-trivial profiles for the Higgs fields). An example of this type is given

by X = P1 × P1 × P1.

More generally, we expect that just as in the analysis of 6D and 4D vacua , the

special case of local models with no local complex structure deformations (see e.g. [61,

62]) will provide useful building blocks for constructing more elaborate F-theory models.

These are often referred to as “non-Higgsable clusters” in higher dimensions, though in

two dimensions we shall instead use the term “rigid clusters” since the notion of a Higgs

branch is more subtle in two dimensions.

Our plan in the remainder of this subsection will be to discuss in greater detail the

specific examples of X = P3 and X = P1 × P1 × P1.

7.3.1 Local P3 model

One way to construct a P3 model is to take a decoupling limit involving F-theory with base

a P1 bundle over P3. The explicit characterization is given by a toric construction which is

itself described by a (2, 2) GLSM. This has a U(1)1 × U(1)2 gauge theory and fields ui, vi
of respective charges:

u1 u2 u2 u3 v1 v2

U(1)1 +1 +1 +1 +1 n 0

U(1)2 0 0 0 0 +1 +1

. (7.22)

The moment map constraints are then D1 = D2 = 0 modulo U(1)1 × U(1)2 gauge trans-

formations, where:

D1 = |u1|2 + |u2|2 + |u3|2 + |u4|2 + n |v1|2 − ξ1 (7.23)

D2 = |v1|2 + |v2|2 − ξ2. (7.24)

Without loss of generality, we can restrict to the case n ≥ 0. Geometrically, the local de-

scription is given by a geometry of the form OP3(nH)→ P3, where H is the hyperplane class

divisor of P3. An F-theory model over this base is given in minimal Weierstrass form as:

y3 = x3 + f(u, v)xz4 + g(u, v)z6 , (7.25)
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where [z, x, y] are homogeneous coordinates of the weighted projective space P2
[3,2,1], and

f(u, v) and g(u, v) respectively sections of OB(−4KB) and OB(−6KB). From the GLSM

presentation, we also have:

− [KB] = 2[S] + (4 + n)[F ] , (7.26)

where [S] is the divisor class associated to v2 = 0 and [F ] is the class associated to the

divisor u1 = 0. We can now write the general expression for f and g:

f =
k=M∑
k=−4

vk+4
1 v4−k

2 f16−kn(u) and g =

j=J∑
j=−6

vj+6
1 v6−j

2 g24−jn(u) , (7.27a)

where f16−kn and g24−jn are homogeneous polynomials in the ui with degree indicated by

their subscript. Moreover, the bounds M and J in the sums are given by 16− kn ≥ 0 and

24− jn ≥ 0. This means that

M = Min(4, [16/n]) , J = Min(6, [24/n]) . (7.28)

Let us now discuss some general features of this model and the associated geometry.

There are two generic locations where we expect 7-branes to localize, i.e. at v1 = 0 and

v2 = 0. These are roughly speaking the remnants of the two stacks of 9-branes present in

the heterotic construction, now realized in terms of the corresponding factors. From the

general structure of perturbative anomaly cancellation, we also see that there will be D3-

branes which will wrap the P1 fiber direction and sit at points of the P3. In general, we also

expect there to be D3-branes wrapped over two-cycles of the P3, which are in turn counted

by the class H ·H. In the dual heterotic M-theory description, the D3-branes wrapped over

the P1 fiber translate to spacetime filling M2-branes which also wrap the interval between

the two E8 factors. Additionally, we have M5-branes wrapped over the elliptic fiber and a

two-cycle of the P3. The total number of such M5-branes is the parameter n.

Let us now see show how to realize a rigid cluster for appropriate n. To this end, it is

enough to study the structure of the minimal Weierstrass model. For example, we see that

the value of n is bounded as:

0 ≤ n ≤ 24. (7.29)

The upper bound comes about because we require that the elliptic fiber remain in Kodaira-

Tate form. For the case n = 24, we have:

f = v4
1v

4
2f16(u) + v3

1v
5
2f40(u) + . . .+ v8

2f112(u) (7.30)

g = v7
1v

5
2g0(u) + v6

1v
6
2g24(u) + v5

1v
7
2g48(u) + . . .+ v12

2 g168(u). (7.31)

So by inspection, we see two E8 factors, one at v2 = 0 which is a rigid cluster, and another

at v1 = 0 which can be maximally unfolded. We interpret this as the situation in which we

activate a generic vector bundle on the non-rigid E8 factor. An interesting feature of this

construction is that the F-theory model provides us with a rather direct way to count the

vector bundle moduli on the heterotic side. Indeed, we can also recognize the dual geometry
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wrapped by the heterotic 9-brane. It is given by an elliptically fibered Calabi-Yau fourfold

with P3 base:

y2 = x3 + f16(u)x+ g24(u). (7.32)

Proceeding in this fashion down to lower values of n, we can also track the singular

fiber for all of the remaining cases. We shall refer to a “rigid cluster” as one for which the

local geometry is:

O(−nH)→ P3, (7.33)

with n > 0 (i.e. we can decouple gravity) and in which the elliptic fibration over the

threefold is always singular. This occurs in the range:

5 ≤ n ≤ 24. (7.34)

It is interesting to contrast this with the higher-dimensional case for 6D vacua studied in

reference [61]. There, the local geometry is O(−n)→ P1 with 3 ≤ n ≤ 12.

For each value of n, we can also deduce the order of vanishing for f , g and ∆. Conse-

quently, we can also read off the expected matter structure for these models. As in higher

dimensions, however, the fiber type does not directly translate to the realized gauge sym-

metry of the 2D model, because of possible quotients by outer automorphisms of a larger

algebra (i.e. monodromy).

So far, we have focussed on the geometric data associated with this model. We can

now ask to what extent we expect the resulting 2D theory to preserve supersymmetry. To

give a simple example, let us focus on the case of O(−24H) → P3, in which case there is

an E8 7-brane wrapped over an isolated P3. Now, the key point for us is that in the BPS

equations of motion,

ω ∧ ω ∧ F(1,1) + [φ, φ] = 0, ∂Aφ = 0, F(0,2) = 0, (7.35)

the positivity of the associated Lichnerowicz operator makes it impossible for us to find a

non-trivial vacuum solution. That is to say, the only zero mode content is an E8 vector mul-

tiplet. This contribution is negative, and so we can already anticipate that to cancel anoma-

lies supersymmetrically, we would need a D3-brane wrapped on a curve in the P3. Note

also that this D3-brane can be interpreted as being generated by a non-trivial flux of the

bulk 7-brane theory. We leave a more complete discussion of such sectors for future work.

7.3.2 Local P1 × P1 × P1 model

We now turn to a class of examples with X = P1 × P1 × P1. For starters, we setup some

notation. The homology ring for X is generated by the three divisor classes [S1], [S2], [S3],

where we label the three P1 factors of X, and Si = P1
(k)×P1

(l) with i 6= k and i 6= l. In what

follows we omit the square brackets from all divisor classes. In this notation, the canonical

class for X is:

KX = −2S1 − 2S2 − 2S3. (7.36)

The local geometry in the base is then captured by a general normal bundle which we take

to be:

N = O(−n1S1 − n2S2 − n3S3). (7.37)
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To have a decoupling limit, we require ni > 0 for all i. Since we are primarily interested

in examples, we shall specialize to the case ni all equal to some n > 0.

Now, following the related discussion in e.g. [61], we can calculate the order of vanishing

on X for f and g of the Weierstrass model. Along these lines, we assume that they do

vanish (i.e. we have a rigid cluster) and write the canonical class for the non-compact base

B given by the total space N → X as:

−KB = γX +D, (7.38)

where γ is a positive rational number and D is an effective divisor such that X · D ≥ 0.

Now, by adjunction, we have:

KX = X ·X +KB ·X, (7.39)

so:

−KX = (γ − 1)X ·X +D ·X (7.40)

or:

2S1 + 2S2 + 2S3 = n(1− γ) (S1 + S2 + S3) +D ·X. (7.41)

Since we have assumed D ·X ≥ 0, we can solve for γ to find:

γ =
n− 2

n
. (7.42)

As the order of vanishing for f , g and ∆ is simply given by the restriction of −4KB, −6KB

and −12KB, we can now read off the order of vanishing on X for each of these sections:

ordXf =

[
4(n− 2)

n

]
, ordXg =

[
6(n− 2)

n

]
, ordX∆ =

[
12(n− 2)

n

]
. (7.43)

So in this case, the range of possible values for n is:

0 ≤ n ≤ 12, (7.44)

and a rigid cluster is obtained for n > 2 (i.e. a singular elliptic fiber must occur over X).

Specializing now to the case of n = 12, we have an isolated E8 7-brane. To get a

supersymmetric vacuum, we now need to switch on an internal flux through X. One

choice is given by activating a U(1) valued flux in the Cartan of the SU(2) factor of

(E7 × SU(2)) /Z2 ⊂ E8. To get a choice of flux compatible with the BPS equations of

motion, we take the line bundle:

L = O(kS1 − kS2), (7.45)

where k > 0 is taken to be an integer. We can verify that this satisfies the stability condition

ω∧ω∧F(1,1) = 0 by noting that when the Kähler class is aligned as a multiple of S1+S2+S3,

kS1 − kS2 clearly has trivial intersection number with the two-cycle represented by ω ∧ ω.

Let us now analyze the zero mode content in the presence of this abelian flux. To this

end, we need to consider the breaking pattern:

e8 ⊃ e7 × su(2) (7.46)

– 51 –



J
H
E
P
0
7
(
2
0
1
6
)
0
4
5

248→ (133,1)⊕ (1,3)⊕ (56,2). (7.47)

So decomposing further to the u(1) factor, we have:

e8 ⊃ e7 × u(1) (7.48)

248→1330 ⊕ 10 ⊕ 1−2 ⊕ 1+2 ⊕ 56+1 ⊕ 56−1. (7.49)

To count the number of chiral multiplets and Fermi multiplets, we will need to evaluate

various line bundle cohomologies. At this point, it is helpful to recall:

Hm(X,O(q1S1+q2S2+q3S3)) = ⊕
k1+k2+k3=m

Hk1(P1
(1),O(q1))×Hk2(P1

(2),O(q2))×Hk3(P1
(3),O(q3)).

(7.50)

Now in our specific case, we always have q3 = 0 and q1q2 < 0. For example, if q1 > 0 and

q2 < 0, we need m = 1 and k1 = 0, k2 = 1, and k3 = 0. Now, we next observe that:

H1(X,O(tS1 − tS2)) = H0(P1,O(t))×H1(P1,O(−t)), (7.51)

which has dimension (t + 1)(t − 1) = (t2 − 1). Returning to the specific mode content of

our model, we note that the fluctuations from the chiral multiplets come from the Hodge

numbers h1 and h3, while that of the Fermi multiplets comes from h2. So, we never get a

contribution to the Fermi multiplets, and only get a contribution to the chiral multiplets.

The specific number in each representation of e7 × u(1) is:

Rep: 1−2 1+2 56+1 56−1

#CS: 4k2 − 1 4k2 − 1 k2 − 1 k2 − 1
. (7.52)

For k > 1, we indeed have a positive number of chiral multiplets. For example, the total

contribution to the E7 gauge anomaly is:

IE7 = −Ind(133) + Ind(56)×
(
2k2 − 2

)
= 24k2 − 60, (7.53)

where in the above we used the fact that Ind(133) = 36 and Ind(56) = 12. As expected,

IE7 > 0 for k > 1, so indeed, we expect to always cancel the anomaly supersymmetrically

through the presence of some spacetime filling D3-branes which wrap the non-compact

two-cycle normal to the 7-brane. In this case, the extra sector is a variant on the same

SCFT obtained from order k2 heterotic string worldsheet theories. It would be interesting

to directly calculate the chiral contribution to the GLSM anomaly from this sector.

Let us make a few additional qualitative remarks. First of all, we can see that the total

number of such D3-branes will be of order k2. Geometrically, we can see this by lifting the

gauge field flux to a four-form flux in the dual M-theory description given by compactifying

on a further circle. Since this is proportional to k, the eight-form G4 ∧ G4 will naturally

scale as k2. We also see that the bulk modes contribute no Fermi multiplets, so there are

no superpotential terms. Rather, we expect there to be possibly non-trivial couplings of

these bulk modes to chiral fermions originating from our D3-brane sector.
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8 Conclusions

In this paper we have used methods from string compactification to provide UV comple-

tions for non-critical string theories. We gave a general class of tools for analyzing 2D vacua

arising from compactifications of type I, heterotic strings and F-theory. In particular, we

introduced a quasi-topological 8D theory to analyze vacua generated by 9-branes, and a

quasi-topological 6D theory to analyze vacua obtained from intersecting 7-branes. One of

the important points from this analysis is that in addition to a set of sectors described by

gauged linear sigma models, there are generically spacetime filling branes which contribute

degrees of freedom to the 2D theory. These branes must be present to cancel gauge anoma-

lies, and are also required to eliminate the tadpole from a non-local two-form potential.

We have also presented some examples illustrating how to compute some details of the

resulting low energy effective theories, and we derived the full 2D off-shell action obtained

from the higher-dimensional gauge theory sector of the compactification. In the remainder

of this section we highlight some avenues of future investigation.

One of the general lessons from compactifications to two dimensions is that the GLSM

sector is often accompanied by additional sectors. In some sense, these sectors can be

decoupled from the other (gauge singlet) dynamics of the model. It would be interesting to

study such theories further, for example determining the operator content and correlation

functions of the system. This would clearly be important in determining the full target

space interpretation for these non-critical theories.

Indeed, one of the primary motivations for the present work was the goal of understand-

ing the behavior of non-critical string theories. With this in mind, it would be quite interest-

ing to study in detail even some simple examples of the kind encountered here to develop a

better understanding of these models. In particular, we expect that the apparent loss of uni-

tarity (i.e. when the target space equations of motion become singular) is simply an indica-

tion that we must return to our original 10D model. Establishing what sorts of non-critical

string theories admit such an embedding would be quite interesting to develop further.

As a particular subclass of models, it would be natural to study the special case of

6D SCFTs compactified on a Kähler surface. This gives rise to a special class of F-theory

models which should be possible to study using the techniques presented in this paper.

In particular, it should be feasible to extract protected quantities such as the anomaly

polynomial and the elliptic genus.

We have also presented evidence of irreducible building blocks, i.e. “rigid clusters”

for F-theory realizations of 2D SCFTs. It would be quite instructive to obtain a full

classification of the resulting GLSM sectors as well as the associated F-theory geometries.

This would also likely give insight into the class of non-critical models which admit an

embedding in the physical superstring.

Though we have emphasized the role of how naturally string compactifications combine

the features of 2D SCFTs coupled to gravity, it would of course be interesting to study

further the possibility of fully decoupling gravity. Along these lines, we expect a non-

commutative geometric structure to emerge in such a limit along the lines of reference [64].
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Another byproduct of our analysis is that we have also introduced a set of quasi-

topological actions for eight-dimensional gauge theory on a Calabi-Yau fourfold (in the case

of type I and heterotic strings) and six-dimensional gauge theory on a Kähler threefold. We

expect that the present perspective where off-shell 2D supersymmetry is maintained at all

stages should make it possible to develop a corresponding theory of enumerative geometric

invariants. Developing this in detail would also be quite exciting.

Finally, one of the important features of super-critical string theories is the relative ease

with which novel time dependent backgrounds for effective strings readily emerge. It would

be quite exciting to combine the analysis presented here with the general outline of ideas

given in references [7, 8] to obtain examples of effective de Sitter vacua from string theory.
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A Non-Abelian (0, 2) GLSMs

In this appendix we give a general discussion of two-dimensional GLSMs with N = (0, 2)

supersymmetry. Perhaps surprisingly, we have only been able to locate explicit Lagrangians

for models with abelian gauge groups. For this reason, we will present in some detail both

the structure of the superspace interactions, as well as the interactions in component fields.

We will make heavy use of this formalism when we turn to the off-shell actions for 10D

Super Yang-Mills theory and intersecting 7-branes.

To set our conventions, we introduce spacetime coordinates y0 for time, and y1 for

space. In our conventions, the metric for flat R1,1 is:

ds2 = −(dy0)2 + (dy1)2 = −4dy+dy−. (A.1)

where we have introduced the lightcone coordinates:

y+ =
1

2
(y0 + y1) and y− =

1

2
(y0 − y1). (A.2)

we choose this normalization so that our expressions for the lightcone derivatives do not

contain extraneous factors of two:

∂+ = ∂0 + ∂1 and ∂− = ∂0 − ∂1. (A.3)
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Let us now turn to the N = (0, 2) supersymmetry algebra on flat space. We have:

{Q+, Q+} = 2P+ (A.4)

{Q+, Q+} = {Q+, Q+} = 0 (A.5)

[Q+, P+] = [Q+, P+] = 0, (A.6)

where P+ = −i∂+.

It is helpful to give a geometric presentation of these symmetries. Along these lines,

we work in the corresponding 2D superspace with Grassmann coordinates θ+ and θ
+

, and

bosonic coordinates y0 and y1. In our conventions, we have:∫
dθ+ θ+ = 1 ,

∫
dθ+dθ

+
=

∫
d2θ . (A.7)

The supersymmetry generators and supertranslations are:

Q+ =
∂

∂θ+
+ iθ

+
∂+, Q+ = − ∂

∂θ
+ − iθ

+∂+ (A.8)

D+ =
∂

∂θ+
− iθ+

∂+, D+ = − ∂

∂θ
+ + iθ+∂+, (A.9)

where {D,Q} = 0.

We now introduce the various supermultiplets we shall use to build our 2D GLSM.

Along these lines, we start with the vector multiplet, and then turn to the remaining

multiplets. We assume that we have a gauge group G. To avoid overloading the notation,

we shall often suppress the explicit Lie algebra indices for its algebra. We use antihermitian

generators Tα for the Lie algebra, with commutators

[Ta, Tb] = fab
cTc (A.10)

with real structure coefficients fab
c. Our normalization for the generators is:

TrTαT β = −δαβ . (A.11)

The gauge bosons of the 2D theory are given by v+, v−, and their two antichiral

gauginos µ, µ. We take all component fields of the supermultiplets to be antihermitian.

Throughout, we shall work in Wess-Zumino gauge. In this gauge, we have:

Ξ = −iθ+θ
+
v+ V = v− − 2iθ+µ− 2iθ

+
µ+ 2θ+θ

+D . (A.12)

with D an auxiliary field whose presence is required for the supersymmetry algebra to close

off shell.

In order to write down a manifestly gauge invariant action, one has to modify the

superspace derivatives D+ and D+ to make them covariant with respect to gauge trans-

formations. The new derivatives are:

D+ = e−ΞD+e
Ξ = D+ − iθ

+
v+ =

∂

∂θ+
− iθ+

D+ (A.13)
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D+ = eΞD+e
−Ξ = D+ + iθ+v+ = − ∂

∂θ
+ + iθ+D+ , (A.14)

where D+ denotes the covariant derivative:

D+ = ∂+ + v+ . (A.15)

They are chosen in such a way that the anticommutation relation {D+,D+} is preserved:

{D+,D+} = 2iD+ . (A.16)

We also gauge the partial derivative ∂− by defining

∇− = ∂− + V = D− − 2iθ+µ− 2iθ
+
µ+ 2θ+θ

+D . (A.17)

Gauge transformations are parameterized by the chiral superfield χ. On the vector

superfield Ξ, they act as

δχΞ = χ+ χ+ [χ− χ,Ξ] . (A.18)

Not all components of χ are independent. First, we want to keep Wess-Zumino gauge,

meaning δχΞ should not contain any terms besides θ+θ
+
. . . . This constraint partially

fixes the parameter χ to

χ =
1

2
ρ− i

2
θ+θ

+
∂+ρ (A.19)

with ρ being the antihermitian parameter the gauge transformation

δρv+ = ∂+ρ+ [v+, ρ] . (A.20)

This is exactly the expected transformation for a gauge connection. Further, the “naive”

supersymmetry transformation

∂εΞ = (εQ+ − εQ+)Ξ (A.21)

spoils the Wess-Zumino gauge, though we can repair this by taking the modified transfor-

mation rule:

δεΞ = (εQ+ − εQ+ + δχ)Ξ = 0 with χ = iθ+εv+ . (A.22)

Hence, we find that Ξ is a singlet under supersymmetry transformations.

The remaining gauge transformations of V are:

δχV = ∂−(χ− χ)− [χ− χ, V ] . (A.23)

As expected, they result in the right transformations

δρv− = ∂−v− + [v−, ρ] and δρµ = [µ, ρ] (A.24)

for the vector potential v− and the gauginos if restricted to the residual gauge trans-

formation (A.19). For the supersymmetry transformation of V , the compensating gauge

transformations is already fixed by (A.22):

δεV = (εQ+ − εQ+ + δχ)V (A.25)
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resulting in

δεv− = −2i(εµ+ εµ) δεµ = ε

(
1

2
F+− − iD

)
δεD = εD+µ− εD+µ δεµ = ε

(
1

2
F+− + iD

)
. (A.26)

In the above, we introduced the field strength F−+:

F−+ = [D−, D+] = ∂−v+ − ∂+v− + [v−, v+] , (A.27)

which is part of the (Fermi) supermultiplet Υ:

Υ = [∇−,D+] = −2iµ+ iθ+
(
F−+ + 2iD

)
− 2θ+θ

+
D+µ . (A.28)

Let us now turn to the remaining multiplets of a N = (0, 2) GLSM. This will consist of

a chiral multiplet (CS multiplet) and a Fermi multiplet. A chiral multiplet Φ is defined by

the condition that we have a (complex) scalar for the lowest component, and that it obeys

the condition D+Φ = 0. In a gauge theory, this is replaced by the condition D+Φ = 0. In

components, we have:

Φi = φi +
√

2θ+ψi+ − iθ+θ
+
D+φ

i, (A.29)

where i denotes an index indicating the representation under a gauge group.

A peculiarity of N = (0, 2) supersymmetry in two dimensions is that we can have a

multiplet with no dynamical bosonic degrees of freedom. The aptly named Fermi multiplet

is given by the expansion:

Λm = λm− −
√

2θ+Gm −
√

2θ
+
Em − iθ+θ

+
D+λ

m
− , (A.30)

where m is a representation index, and the E’s are themselves holomorphic functions of

the chiral superfields, i.e. we have E(Φ), with a corresponding expansion into components.

The Λ’s satisfy:

D+Λm =
√

2Em. (A.31)

Having introduced the relevant multiplets, we now construct manifestly supersymmet-

ric actions for these fields. The action consists of D- and F-terms, i.e. we integrate over the

full superspace or just half of it. In particular, the kinetic terms descend from the D-terms,

while interactions protected by supersymmetry descend from the F-terms.

Let us begin with the D-terms for the model. The D-term for the 2D gauge field

involves the covariant field strength Υ,

Sgauge = − 1

8e2

∫
d2yd2θTr

(
ΥΥ
)

= − 1

e2

∫
d2yTr

(
1

4
F 2 +

1

2
D2 + iµD+µ

)
. (A.32)

Consider next a collection of chiral multiplets transforming in a representation R of

the gauge group G. We introduce a canonical pairing (·, ·) for R∗ and R, with R∗ the dual

representation. The kinetic term is:

SΦ,kin = − i
2

∫
d2yd2θ

(
Φ,∇−Φ

)
, (A.33)
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In components, we have:

SΦ,kin =

∫
d2y

((
D+φ,D−φ

)
+ i(ψ+, D−ψ+) +

√
2(ψ+, µ−φ)−

√
2(φµ−, ψ+)− (φ,Dφ)

)
.

(A.34)

Consider next the kinetic terms for the Fermi fields. Assuming we have a multiplet Λ

transforming in a representation R of the gauge group the kinetic term is:

SΛ,kin = −1

2

∫
d2yd2θ

(
Λ,Λ

)
. (A.35)

Its expansion in components is:

SΛ,kin =

∫
d2y

(
i(λ−, D+λ−) + (G,G)− (E(φi), E(φi))−

(
λ−,

∂E

∂φi
ψi

+

)
−
(
ψ+ i

∂E

∂φi
, λ−

))
.

(A.36)

Let us now turn to the F-terms for the model. In general, these F-terms can be written

as an integral over a superpotential W :

SF =

∫
d2ydθ+W + h.c. (A.37)

The superpotential will involve various interactions between the Fermi multiplets and the

chiral multiplets:

W =
1√
2

ΛmJ
m(Φi)|

θ
+

=0
, (A.38)

where Jm are holomorphic functions of the chiral fields with expansion:

Jm(Φi) = Jm(φi) +
√

2θ+ψi+
∂Jm

∂φi
− iθ+θ

+
D+J

m(φi). (A.39)

In order for supersymmetry to close off-shell, we must also require D+W = 0, or:

EmJ
m = 0. (A.40)

In practice, this imposes further restrictions on the space of admissible couplings in a given

model.

Finally, in the special case where our gauge group has abelian factors, we can also

introduce a complex parameter t:

t = ξ + i
η

2π
(A.41)

consisting of a theta angle14 η and an FI parameter ξ. This allows us to write an additional

F-term, which for a single U(1) factor is given by:

SFI = −1

4

∫
d2y

∫
dθ+ tTrΥ|

θ
+

=0
+ h.c. = −

∫
d2y ξTrD −

∫
d2y

η

2π
TrF. (A.42)

14Due to an unfortunate clash of notation, we write the angle as η rather than θ.
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B 10D super Yang-Mills as a 2D GLSM

In this appendix, we study 10D Super Yang-Mills theory compactified on a Calabi-Yau

fourfold. This theory arises in the context of perturbative type I and heterotic string

compactifications. We treat the spacetime as fixed and non-dynamical:

R1,1 ×M , (B.1)

where M denotes a Calabi-Yau fourfold which we also refer to as the internal space.

As we have already discussed in section 3, some of the advantages of presenting an

off-shell formalism for this theory are that we will then be able to control the structure of

some of the quantum corrections to this model. Additionally, it will allow us to quickly

read off the structure of the low energy effective action obtained by working around a

specific background for the internal gauge fields.

The extent to which we will be able to successfully arrive at such an action hinges

on a few features. First of all, as we already remarked in section 3, there is an important

constraint coming from the fact that our supercharges, and thus our gauginos obey the 10D

Majorana-Weyl constraint. To a certain extent, this clashes with the condition of unitar-

ity, since it means we need to impose a non-holomorphic constraint on the fermions of our

model. More concretely, this shows up in the condition that the modes of the Fermi multi-

plet Λ(0,2) which transforms as a (0, 2) differential form on M must obey an on-shell unitar-

ity constraint. A straightforward albeit ad hoc workaround for this issue is to simply assume

the existence of an additional Z2 symmetry, and to only keep the Fermi multiplets which are

even. Then, we use a non-trivial E-field to realize the remaining BPS equations of motion.

Alternatively, we can continue to work in terms of the full (0, 2) form, but then at the

end impose the 10D Majorana-Weyl constraint. The advantage of proceeding in this way

is that all of the internal symmetries will be manifest from the start. The disadvantage,

of course, is that since we have to impose a unitarity constraint by hand, we cannot claim

that the resulting supersymmetry algebra fully closes off-shell. Rather, it closes up to an

overall unitarity constraint. In the interest of showing the virtues of both approaches, in

this appendix we will focus on the latter approach. That is to say, we shall assemble our

Fermi multiplets into a (0, 2) form, and only impose the 10D Majorana-Weyl condition at

the very end. The price we pay is that supersymmetry will only partially close off-shell.

As a last comment, we note that to really obtain a fully off-shell action in 2D superspace

away from Wess-Zumino gauge, it is necessary to add a non-local Wess-Zumino term, which

follows from reduction of the term considered in reference [24] (see also [25]).

B.1 Action and symmetries

We start with the gauge sector of the low energy effective supergravity description of the

heterotic string. It is governed by the action [53]

SYM =
1

4g2
YM

∫
d10x
√
−g
(

TrFIJF
IJ + 2iTrχΓIDIχ

)
, (B.2)
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where χ is a 10D Majorana-Weyl spinor, and DI denotes the gauge covariant derivative

DIχ = ∂Iχ+ [AI , χ] (B.3)

and the field strength is given by:

FIJ = [DI , DJ ]. (B.4)

We suppress the indices labeling the adjoint representation of the gauge algebra and write:

AI = AαI T
α and χ = χαTα (B.5)

where Tα are antihermitian Lie algebra generators, as per our conventions in appendix A.

The action (B.2) is invariant under the supersymmetry variations

δεAI = −iεΓIχ and δεχ =
1

2
ΓIJFIJε . (B.6)

Note that the we have chosen the to be compatible with the standard conventions of the

N = (0, 2). Both ε and χ are Majorana-Weyl spinors with 16 real components. The

infinitesimal gauge transformations of AI and χ read

δρAI = ∂Iρ+ [AI , ρ] = DIρ and δρχ = [χ, ρ] , (B.7)

where ρ denotes a Lie Algebra valued parameter.

As we have already mentioned, we are interested in 10D Super Yang-Mills theory

compactified on a Calabi-Yau fourfold. Let us now take a closer look at the spinors ε and

χ. In order to discuss their representations, we first switch to flat indices by applying the

vielbein eÂ
I , resulting in

gÂB̂ = eÂ
IgIJeB̂

J = diag(−1, 1, . . . , 1) . (B.8)

Further, we introduces Dirac matrices which are governed by the Clifford algebra

{ΓÂ,ΓB̂} = 2gÂB̂ . (B.9)

A canonical representation for them arises from the direct products

Γ0 = −iσ1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

Γ1 = σ2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ 1

Γ2 = σ3 ⊗ σ1 ⊗ 1 ⊗ 1 ⊗ 1

Γ3 = σ3 ⊗ σ2 ⊗ 1 ⊗ 1 ⊗ 1
... =

...
...

...
...

...

Γ9 = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ2 (B.10)

of Pauli matrices σ1, σ2 and σ3. In addition the Dirac matrices, we are going to use the

ten dimensional chirality operator

Γ11 = Γ0Γ1 . . .Γ9 (B.11)
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and the charge conjugation matrix

C = σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 . (B.12)

It is defined by the property

(ΓI)T = −CΓIC−1 . (B.13)

While the representation (B.10) is complex and 32 dimensional, we are interested in a

16 dimensional real representation. Thus, we first project on spinors with positive chirality

and further require the Majorana condition

χTCT = χ†Γ0 = χ (B.14)

to hold. Rewriting (B.14), we see how complex conjugation

χ∗ = (Γ0)−TCχ = CΓ0χ (B.15)

acts on a spinor. It is possible to rotate the Dirac matrices by a unitary transformation in

such a way that CΓ0 is equivalent to the identity matrix. In this case, complex conjugation

does not change a spinor at all, and so it has to be real.

For the following calculations, it is essential to make the structure (B.1) of the space-

time manifest. Thus, we split the ten spacetime directions into two external and eight

internal ones, e.g.

ΓÂ =
(

Γ0 Γ1 ΓA
)
. (B.16)

Here the index A on the right hand side labels the eight different directions of the internal

space. This splitting leads to the branching rule

10→ (2v,1) + (1,8v) (B.17)

of SO(1, 9) into SO(1, 1)×SO(8).

Of course the spinors χ and ε are affected, too. They now decompose into a chiral

and an antichiral Majorana Weyl spinor of the internal space. The corresponding internal

chirality operator reads

Γ′11 = Γ2Γ3 . . .Γ9 (B.18)

and commutes with Γ11. By calculating the action of the SO(1, 1) generator

J = − i
2

Γ01 (B.19)

on the 16 dimensional spinor representation, we obtain the additional branching

16→ 8s− + 8c+ . (B.20)

Note that J is identified with the Lorentz generator of the (0, 2)-SUSY algebra later on.

Additionally, we have used the triality outer automorphism of Spin(8) to make a conve-

nient choice for the internal spinor assignments which is compatible with our N = (0, 2)

conventions.
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Remember that the internal space is a Calabi-Yau fourfold. Thus, it is equipped with

an integrable complex structure JAB, fulfilling J2 = −1, and a canonical holomorphic

four-form ΩABCD in addition to its metric gAB. By lowering the complex structure’s first

index, one obtains the Kähler form ωAB = gACJ
C
B. We expresses it as the antisymmetric

part of the tensor product

8s ⊗ 8s = 1 + 28 + 35 , (B.21)

involving two pure15 Majorana Weyl spinors ε1, ε2 and obtain

ωAB = ε2ΓABε1 . (B.22)

Majorana conjugation in this equation uses the charge conjugation matrix of the internal

space

C ′ = 1⊗ σ2 ⊗ σ1 ⊗ σ2 ⊗ σ1 (B.23)

instead of (B.12). Further, the canonical holomorphic form

ΩABCD = ε1ΓABCDε1 (B.24)

arises from ε1, too. Both the complex structure and this four-form have to be non-vanishing

on the internal manifold. This requirement reduces the structure group of the internal space

from SO(8) to SU(4). The relevant branching rules are:

SO(8) ⊃ SU(4)×U(1) (B.25)

8s → 1+2 ⊕ 1−2 ⊕ 60 (B.26)

8c → 4−1 ⊕ 4+1 (B.27)

8v → 4+1 ⊕ 4−1. (B.28)

They show that the two SU(4) invariant invariant spinors ε1 and ε2 are contained in 8s.

Let us make a few comments on the geometric content of the present decomposition.

Take e.g. the constituents of 8c. Here, complex variables are more appropriate, as evidenced

by the U(1) generator

R =
1

4
ωABΓAB , (B.29)

resulting from the Kähler form. It is helpful to remember that the holonomy of the metric

is SU(4) rather than U(4). The (complexification) of the overall U(1) acts as a rescaling on

the holomorphic four-form. Its action with respect to the 8c is diagonalized by a unitary

transformation.

It is also instructive to analyze how the vector representation 8v is influenced by the

reduced holonomy of the CY. To do so, we express an arbitrary vector

V A = χ1ΓAχ2 . (B.30)

in terms of two spinors. Applying a Lorentz transformation MBCΓBC to it results in

δMV
A = (CMBCΓBCχ1)TΓAχ2 + χ1ΓAMBCΓBCχ2 = χ2[ΓA,MBCΓBC ]χ1 . (B.31)

15A spinor in d dimensions is called pure, if it satisfies εΓA1...Anε = 0 for 1 ≤ n < d/2.
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Using the Clifford algebra (B.9), this equation simplifies to

δMV
A = 4MBCδA[BgC]DV

D . (B.32)

Combined with (B.29), this result immediately tells us

δRV
A = δABω

BCgCDV
D = JABV

B . (B.33)

Thus, diagonalizing R is equivalent to diagonalizing the complex structure.

Let us now examine the structure of the N = (0, 2) supersymmetry algebra obtained

by compactifying on a Calabi-Yau fourfold. To this end, we calculate the anticommutator

{δε1 , δε2}AM = −2iε2ΓN ε1∂NAM + . . . (B.34)

of the SUSY variations. The dots represent a gauge transformation which is discussed later.

We will see that in superspace it arises as a compensating gauge transformation required to

keep Wess-Zumino gauge. Focussing on the contribution from the R1,1 directions, we have:

{δε1 , δε2}AM = 2iε1ε2∂+AM + . . . . (B.35)

Next, we evaluate the commutator with a generic Lorentz transformation MIJΓIJ

[δM, δε]AM = −(CMIJΓIJε)
TΓMχ , (B.36)

where δM acts as

δMAM = 4MIJgM [IδJ ]
NAN and δMχ =MIJΓIJχ (B.37)

on vectors and spinors, respectively. Specializing to the generators J and R, whose values

for ε are collected in table 1, we obtain

[δε, δJ ] =
i

2
δε and [δε, δR] = 2iδε . (B.38)

Finally, we make the substitutions

δε 7→ Q+ , δε 7→ Q+ , ∂+ 7→ iP+ , δJ 7→ J and δR 7→ R (B.39)

to obtain the N = (0, 2) supersymmetry algebra.

So far, we have seen that the gauginos can be decomposed into different irreducible

representations of SU(4). Following [53], we go a step further and identify them with differ-

ential forms on the CY fourfold. To this end, interpret the Dirac matrices Γa as fermionic

annihilation and Γa as fermionic creation operators with the canonical anticommutator

relations

{Γa,Γb} = {Γa,Γb} = 0 and {Γa,Γb} = 2gab . (B.40)

Further, take a vector |1〉 ∼ ε, where ε is the 1−2 part of 8s, with 〈1|1〉 = 1. It is

annihilated by all creation operators. Thus, it is the vacuum state on which we build all

other representations. The guess for χ in terms of creation operators would be

χ =
1√
2

(
− 1

2!
λabΓ

ab + iψaΓ
0Γa +

√
2µ

)
|1〉 . (B.41)
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In order to match with the conventions in the literature, we have to insert the given

prefactors in the expansion. The two components in this equation are directly connected

to the representations

µ ∼ 1−2 , λab ∼ 60 and ψa ∼ 4−1 , (B.42)

in the 8s and the 8c, respectively. But what about the remaining spinors? They have pos-

itive U(1) charge and cannot be associated the antiholomorphic differential forms directly.

Solving this puzzle, we have to take into account that χ is a Majorana-Weyl spinor and

thus has to fulfill a reality condition. The naive ansatz (B.42) fails to do so. We have to

expand it with complex conjugate µ, ψa of µ, ψa. These are exactly the missing

µ ∼ 12 and ψa ∼ 41 (B.43)

spinors. Hence, the complete expansion of χ reads

|χ〉 =
1√
2

(
−
√

2
1

4!
µΩabcdΓ

abcd+i
2

3!
ψaΩ

a

bcdΓ
0Γbcd− 1

2!
λabΓ

ab+iψaΓ
0Γa+

√
2µ

)
|1〉 . (B.44)

It fulfills the Majorana condition (
CΓ0|χ〉

)∗
= |χ〉 . (B.45)

In explicitly checking this statement, we encounter two types of terms(
CΓ0Γ0Γa1...aN |1〉

)∗
= − 1

4!
Ωb1b2b3b4

Γ0Γa1...aN Γb1b2b3b4 |1〉 and(
CΓ0Γa1...aN |1〉

)∗
= − 1

4!
Ωb1b2b3b4

Γa1...aN Γb1b2b3b4 |1〉 , (B.46)

where we used (
CΓ0|1〉

)∗
=

1

4!
ΩabcdΓ

abcd . (B.47)

With the property

ΓaΓb1b2...bN = 2Nga[b1Γb2...bN ] + (−1)NΓb1b2...bN Γa (B.48)

of the Dirac matrices, we further derive the identity

1

2N
Ωb1...bM

Γa1...aN Γb1...bM |1〉 =
M !

(M −N)!
Ω
a1...aN

bN+1...bM
ΓbN+1...bM |1〉 . (B.49)

which in combination with (B.46) and (B.44) gives exactly (B.45). For λab, we obtain the

additional constraint

2λabΩ
ab

cd = −λcd . (B.50)

Again, λab denotes the Hermitian conjugate of λab.

Here we encounter an important issue. Since 60 is the only real representation of

SU(4) we encountered, such a constraint is natural when trying to express it in terms of a

complex quantity. Let us finally comment on the prefactor 1/
√

2 in the expansion (B.44).

It is required because we combine two 2D Majorana-Weyl spinors into one Weyl spinor.
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Field A0 A1 A(1,0) A(0,1) µ µ λ(0,2) ψ(1,0) ψ(0,1) ε ε

DOF 1 1 8 8 2 2 6 8 8 2 2

J −1 1 0 0 1
2

1
2

1
2 −1

2 −1
2

1
2

1
2

R 0 0 1 −1 −2 2 0 −1 1 2 −2

Γ′3 — — — — −1 −1 −1 1 1 −1 −1

Table 1. Field content of the 10D vector multiplet packaged in terms of differential forms of the

internal space. Here, J refers to the spin, R to the U(1)-charge, and Γ′3 to the chirality of the

fermionic states.

It simplifies the notation considerable to introduce the differential forms

ψ(0,1) = ψadz
a , ψ(1,0) = ψadz

a , λ(0,2) =
1

2
λabdz

a ∧ dzb and λ(2,0) =
1

2
λabdz

a ∧ dzb .
(B.51)

According to the Majorana-Weyl condition:

∗ (λ(0,2) ∧ Ω) = −λ(0,2) . (B.52)

On the fourfold, the Hodge star is defined as

∗ϕ =
det g

p!q!(4− p)!(4− q)!
εm1...mp

j1...j4−p
εn1...nq

i1...i4−q

· ϕm1···pn1...nqdz
i
1 ∧ · · · ∧ dzi4−q ∧ dzj1 ∧ · · · ∧ dzj4−p . (B.53)

It maps a (p, q)-form

ϕ =
1

p!q!
ϕi1...ipj1...jqdz

i1 ∧ · · · ∧ zip ∧ dzj1 ∧ · · · ∧ dzjq (B.54)

to a (4− q, 4− p)-form, while complex conjugation

ϕ =
1

p!q!
ϕj1...jqi1...ipdz

j1 ∧ · · · ∧ zjq ∧ dzi1 ∧ · · · ∧ dzip (B.55)

relates (p, q)-forms with (q, p)-forms. The internal components of the vector potential Aa
and Aa can be combined the differential forms

A(0,1) = Aadz
a and A(1,0) = Aadz

a . (B.56)

Table 1 summarizes all the fields we discussed so far and states its charges under J , R

and the chirality operator

Γ′3 = Γ0Γ1 . (B.57)

To reproduce the correct number (16) of degrees of freedom (DOF), remember that the

complex fields A(0,1), µ, ε and their complex conjugates A(1,0), µ and ε are not independent

from each other. The canonical choice is to only consider A(0,1), µ, ε as dynamic. Further,

we have to restrict λ(0,2) according to the condition (B.52). Out of the 12 real degrees of

freedom a (0,2)-form has, only 6 real degrees of freedom survive.
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We repeat the steps outlined for χ in the last subsection for the parameter of super-

symmetry transformations ε, giving rise to

|ε〉 =

(
− ε 1

4!
ΩabcdΓ

abcd + ε

)
|1〉 . (B.58)

Let us now calculate the supersymmetry transformations for the different fields in table 1.

We start with

δεAa = −i〈ε|CTΓa|χ〉 =
1√
2
〈ε|CT (Γ0)−1ΓaΓ

bψb|1〉 =
√

2〈ε|1〉ψa =
√

2εψa , (B.59)

where we used that CT (Γ0)−1 is the same as complex conjugation according to (B.15).

Hence, it transforms |ε〉 in its complex conjugated

|ε〉 =

(
− ε 1

4!
ΩabcdΓ

abcd + ε

)
|1〉 . (B.60)

Using the gamma matrices

Γ+ = Γ0 + Γ1 and Γ− = Γ0 − Γ1, (B.61)

we calculate the supersymmetry variation

δεA± = −i〈ε|CTΓ±|χ〉 = −i〈ε|Γ0(−Γ0 ± Γ1)|χ〉 = −i〈ε|1± Γ′3|χ〉 (B.62)

of A± directly from (B.6). This equation tells us that only fermions with positive/negative

chirality Γ′3 in two dimensions contribute. Thus δεA+ vanishes, while

δεA− = −2i(εµ+ εµ) . (B.63)

To derive the supersymmetry transformation

δελab =
√

2(2εF abΩ
ab

ab − εFab) (B.64)

of λab, we remember (B.49). From Γ+− = −1
2Γ′3, we further conclude

δεµ = ε

(
1

2
F+− − Fabg

ab

)
. (B.65)

Finally, there is

δεψa = −i
√

2εF+a , (B.66)

which follows by applying the identity

− Γ0Γa±|1〉 =
1

2
Γ0(Γ0 ± Γ1)Γa|1〉 =

1

2
(1± Γ′3)Γa|1〉 . (B.67)
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B.2 2D action

We now construct the two-dimensional off-shell action for our 10D Super Yang-Mills the-

ory. The main idea will be to assemble the fields of the higher-dimensional theory into

supermultiplets of a 2D GLSM. Along these lines, we formally label the collection of such

fields by points of the internal manifold. The discussion is quite similar to that given in

appendix A, so we shall be somewhat brief. Essentially, we need to take the components of

the 10D gauge field A+ and A− with legs along R1,1, and identify them with the components

v+ and v− of the respective supermultiplets Ξ and V . Additionally, we have a gauge field

strength supermultiplet Υ. We shall also encounter a supermultiplet transforming as the

(0, 1) component of the internal gauge field, as well as a Fermi multiplet which transforms as

an adjoint valued (0, 2) differential form. One important point about organizing the mode

content in this way is that although most of the 2D vector multiplets labelled by points

of the internal manifold will implicitly pick up a mass and so should be counted as mas-

sive (rather than massless) vector multiplets, the super Higgs mechanism naturally pairs

these with the (0, 1)-form chiral multiplets which we also explicitly track. Therefore, it is

appropriate to work in terms of the massless basis of fields adopted here. As a last general

comment, we note that the 2D gauge coupling for the zero modes will be controlled by:

1

e2
=

Vol(M)

g2
YM

(B.68)

In what follows, however, we will be integrating over the internal space, so we have more

than just the zero modes.

Inspired by ∇−, we also define the chiral and anti-chiral covariant derivatives:

Da = ∂a + Aa and Da = ∂a + Aa = Da , (B.69)

which satisfy:

[Da,D+] = [Da,D+] = 0 . (B.70)

Their connections contain the internal components of AI and the fermions in the 8c.

Aa = Aa +
√

2θ+ψa − iθ+θ
+
F+a (B.71)

Aa = Aa +
√

2θ
+
ψa + iθ+θ

+
F+a. (B.72)

Here, F+a = [D+, Da], and so quite naturally, the field strength with one leg along the

internal space, and one along R1,1 will, upon squaring give us the kinetic term for the

scalar components of this superfield.

Under a 10D gauge transformation parameterized by a collection of adjoint valued

chiral superfields C labelled by internal points of M , we have the standard rule for the

internal gauge fields and their transformation:

Da 7→ e−CDae+C . (B.73)

Upon expanding (recall we have anti-hermitian Lie algebra generators) C = (χ− χ) + . . .,

one recovers:

δχAa = ∂a(χ− χ) + [Aa, χ− χ] . (B.74)
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Hence calculating the supersymmetry transformations

δεAā = (εQ+ − ε̄Q̄+ + δχ)Aā , (B.75)

we obtain

δεAā =
√

2εψā and δεψā = −i
√

2ε̄F+ā , (B.76)

which perfectly match with the 10D results.

In analogy with the field strength Υ in the 2D directions, we also have a field strength

in the internal directions given by:

FAB = [DA,DB] . (B.77)

We hasten to add that only the combination with just anti-holomorphic indices defines a

chiral superfield. Expanding in components, we have:

Fab = Fab +
√

2θ+
(
Daψb −Dbψa

)
− iθ+θ

+
D+Fab (B.78)

Fab = Fab −
√

2θ+Daψb −
√

2θ
+
Dbψa − iθ

+θ
+(
DaF+b +DbF+a + 2i{ψa, ψb}

)
. (B.79)

The kinetic term for the chiral superfield Da is:

LD =
1

2

∫
M
gab Tr(Da[∇−,Db]) . (B.80)

which gives rise to the component action:

SD = −
∫
d2y

∫
M
gab Tr

(
F+aF−b + iψaD−ψb − i

√
2µDaψb − i

√
2µDbψa −DFab

)
.

(B.81)

By combining this contribution with that coming from the term proportional to ΥΥ, we

can solve the equations of motion for the auxiliary field:

D = 2gabFab . (B.82)

Plugging (B.82) into the supersymmetry variations, we obtain

δεµ = ε

(
1

2
F+− − igabFab

)
and δεµ = ε

(
1

2
F+− + igabFab

)
, (B.83)

which reproduces the variations from the 10D theory.

Finally, there is the Fermi multiplet which has the fermions λab as top component. As

we have already remarked in section B.1 and also at the beginning of the appendix, there

is a tradeoff here between maintaining a proper count of the off-shell degrees of freedom

(i.e. by imposing a Z2 symmetry on the geometry), or by working in terms of a (0, 2)

differential form on the Calabi-Yau fourfold. In the former case, the component expansion

for the superfield is:

Λ
(even)

ab
= λ

(even)

ab
−
√

2θ+G(even)

ab
−
√

2θ
+F(even)

ab
− iθ+θ

+
D+λ

(even)

ab
, (B.84)
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where the E-field has been chosen for the Fermi multiplet so that it is given by F(even)

ab
. In the

latter case, we simply set to zero the contribution from the E-field, and in this case we have:

Λab = λab −
√

2θ+Gab − iθ
+θ

+
D+λab . (B.85)

The primary disadvantage of the latter case is that our superspace action will not respect

the correct counting of degrees of freedom when compared with the 10D Majorana-Weyl

constraint. The advantage, of course, is that the symmetries of the internal geometry are

more manifest from the start. We shall indeed adhere to the latter version in this appendix,

but it is important to keep in mind that at all stages of our analysis, we can make the

substitution of superfields Λ → Λ(even), and keep only the Z2 invariant interaction terms

to obtain a fully off-shell presentation in two dimensions of 10D Super Yang-Mills.

Working in terms of the full N = (0, 2) superfield, its kinetic terms are given by:

SΛ =
1

2

∫
d2yd2θ

∫
M
gacgbd TrΛabΛcd = −

∫
d2yTr

(
GabGab + iλ

ab
D+λab

)
(B.86)

So far, we only considered D-terms. As we have already explained in section B.1, the

appropriate superpotential is:

Wtop = −
∫
M

Ωabcd Tr(ΛabFcd). (B.87)

So, we obtain the F-term interactions:

SW =

∫
d2ydθ+W + h.c. =

∫
d2y

∫
M

Ωabcd Tr(GabFcd + λabDcψd) + h.c. . (B.88)

Solving the equation of motion for the auxiliary field G yields:

Gab = Ωab
cdF cd . (B.89)

B.3 Summary

Let us summarize the results of the last section. In terms of superfields, the complete

two-dimensional N = (0, 2) supersymmetric action can be written in terms of differential

forms as:

Stot = SD + SF (B.90)

SD = − 1

g2
YM

∫
d2yd2θ

∫
M

Tr

(
1

8
∗Υ ∧Υ− i

2
∗ D(0,1) ∧∇−D(0,1) −

1

2
∗ Λ ∧ Λ

)
(B.91)

SF = − 1√
2

1

g2
YM

∫
d2ydθ+

∫
M

Tr
(
Ω ∧ Λ(0,2) ∧ F(0,2)

)
+ h.c. (B.92)

where here, we present the Fermi multiplets as (0, 2) differential forms on the Calabi-Yau

fourfold and the 10D Majorana-Weyl constraint is then imposed “by hand”. Alternatively,

when there is a Z2 symmetry available we can make the action fully off-shell by making

the substitution Λ(0,2) 7→ Λ
(even)
(0,2) , and keeping only the Z2 invariant F-terms. Observe that
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nothing is projected out of the D-terms since they are always Z2 invariant. Finally, the

expansion into components is:

S = − 1

g2
YM

∫
d2y

∫
M

Tr

(
1

4
∗ F(0,0) ∧ F(0,0) +

1

2
∗ D ∧ D + i ∗ µ ∧D+µ+ ∗F(0,1) ∧ F(0,1)

+ i ∗ ψ ∧D−ψ − i
√

2(∗ω ∧ µ∂Aψ + h.c)− ∗ω ∧ F(1,1)D+

− ∗G ∧ G + i ∗ λ ∧D+λ

× (−Ω ∧ G ∧ F(0,2) − Ω ∧ λ ∧ ∂Aψ + h.c.)

)
, (B.93)

where we introduced the differential forms

F(0,0) = F−+ , F(0,1) = F−adz
a , F(0,2) =

1

2
Fabdz

a ∧ dzb and G =
1

2
Gabdz

a ∧ dzb .
(B.94)

After integrating out the auxiliary fields D and G, we obtain the 10D BPS equations of

motion:

F(0,0) = 0 , F(0,1) = 0 , ∗ω ∧ F(1,1) = 0 and F(0,2) = 0 . (B.95)

C Intersecting 7-branes as a 2D GLSM

In the previous appendix we presented the action for 10D Super Yang-Mills theory, but

written in terms of a two-dimensional N = (0, 2) GLSM. Our plan in this appendix will

be to follow a similar procedure in the case of intersecting 7-branes. An important feature

of this construction is that the “ad hoc” Z2 symmetry introduced by hand in the case of

the 10D theory is automatically implemented for intersecting 7-branes.

C.1 Explicit decomposition of the field content

To begin, we recall the decomposition of the bulk modes of 10D Super Yang-Mills theory

into modes of 8D Super Yang-Mills theory on the spacetime:

R1,1 ×X (C.1)

with X a Kähler threefold. Following conventions as in section 4, we have:

SO(1, 9) → SO(1, 1)× SU(4)×U(1)R

AI →


A± = A0 ±A1 ↔ 1±±0,

Aa = A2a−iA2a+1√
2

a = 1, . . . , 3, ↔ 3−1 ↔ A(0,1) = Aa dz
a ,

φ ≡ A8+iA9√
2

↔ 13 ↔ φ(3,0) = φabc dz
a ∧ dzb ∧ dzc ,

(C.2)

where (z1, z2, z3) is a local basis of coordinates for X. All the fields are also adjoint valued,

since AαMT
α where Tα are the generator of the gauge algebra in the adjoint representation.

The ten-dimensional gaugino χ decomposes and organizes supermultiplets as stated

in section 4. In order to decompose the ten-dimensional supersymmetry variations into

variations of the 2D N = (0, 2) theory, we give here an explicit basis of ten-dimensional
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gamma matrices and the relative decomposition of the 10D gaugino χ in components. A ten

dimensional Clifford algebra represented by gamma matrices, {ΓI ,ΓJ} = 2gIJ , decomposes

in the following way, according to R9,1 → R1,1 ×X × C,

Γ0 = iσ2 ⊗ I8 ⊗ I2, (C.3)

Γ1 = σ1 ⊗ I8 ⊗ I2, (C.4)

Γ1+m = σ3 ⊗ γi ⊗ I2, (C.5)

Γ8 = σ3 ⊗ γ ⊗ σ2, (C.6)

Γ9 = σ3 ⊗ γ ⊗ σ1, (C.7)

where m = 1, · · · , 6, and Id is the d-dimensional identity matrix. The six-dimensional

gamma matrices are given by

γ1 = σ2 ⊗ I2 ⊗ I2, (C.8)

γ2 = σ1 ⊗ I2 ⊗ I2, (C.9)

γ3 = σ3 ⊗ σ2 ⊗ I2, (C.10)

γ4 = σ3 ⊗ σ1 ⊗ I2, (C.11)

γ5 = σ3 ⊗ σ3 ⊗ σ2, (C.12)

γ6 = σ3 ⊗ σ3 ⊗ σ1, (C.13)

γ = σ3 ⊗ σ3 ⊗ σ3. (C.14)

In light-cone coordinates y± = y0±y1
2 , and complex coordinates on X and C, zi = x2a+ix2a+1

√
2

and z⊥ = x8+ix9√
2

, the gamma matrices transform as

Γ± =
Γ0 ± Γ1

2
, (C.15)

Γa =
Γ2a + iΓ2a+1

√
2

, (C.16)

Γa =
Γ2a − iΓ2i+1

√
2

, (C.17)

Γ⊥, =
Γ8 + iΓ9

√
2

, (C.18)

Γ⊥ =
Γ8 − iΓ9

√
2

. (C.19)

where a = 1, · · · , 3. The ten-dimensional spinors which are singlets under the global

symmetry are given in the following notation

ε = | ↓↓↓↓↑ 〉, ε = | ↓↑↑↑↓ 〉, | ↑ 〉 =

(
1

0

)
, | ↓ 〉 =

(
0

1

)
, (C.20)

where ε = Bε∗, and B = I2⊗ iσ2⊗σ2⊗σ2⊗σ1. Finally let us describe the fermionic fields

in terms of the components of a ten-dimensional spinor:

1−,0 ↔ µ− ∼ −| ↓↓↓↓↑ 〉, (C.21a)
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3+,−1 ↔ ψ0,1
+ ∼ | ↑↑↑↓↓ 〉, (C.21b)

3−,−2 ↔ λ0,2
− ∼ | ↓↑↓↓↓ 〉, (C.21c)

1+,3 ↔ χ3,0
+ ∼ | ↑↑↑↑↑ 〉, (C.21d)

1−,0 ↔ µ− ∼ | ↓↑↑↑↓ 〉, (C.21e)

3+,1 ↔ ψ
1,0
+ ∼ −| ↑↑↓↓↑ 〉, (C.21f)

3−,2 ↔ λ
2,0
− ∼ | ↓↓↑↑↓ 〉, (C.21g)

1+,−3 ↔ χ0,3
+ ∼ −| ↑↓↓↓↓ 〉, (C.21h)

where the other elements of the triplet in (C.21b), (C.21c), (C.21f) and (C.21g) are all the

permutations of the arrow from the second to the fourth places. All these fermionic fields

are adjoint valued since the ten-dimensional gaugino transforms as χαTα with adjoint

generators of the Lie algebra, Tα. The chiral Γ in ten-dimension is Γ = (σ3)⊗5, which

exactly matches with (C.21) having the same ten-dimensional chirality. Moreover one can

check that Γab, with a 6= b satisfy the SU(3) algebra on the 3 and 3, representations. The

explicit generators of the U(1)’s that we have in section 4, JX = Γ11 + Γ22 + Γ33, and

R = I16 ⊗ σ3.

Let us briefly digress and discuss the action of CPT conjugation on the modes of our

model. First of all, let us see how it acts on a basis of ten-dimensional gamma matrices, ΓI .

The time-reversal symmetry behaves as follows y0 7→ −y0. In terms of Gamma matrices,

it translates to

TΓ0T−1 = −Γ0, TΓIT−1 = ΓI , M = 1, . . . , 9 , (C.22)

which allows us to choose

T = −Γ0Γ , (C.23)

where Γ is the chiral operator. Parity instead, xM 7→ −xM with M = 1, . . . , 9. In terms of

Gamma matrices we have

PΓ0P−1 = Γ0, PΓIP−1 = −ΓI , M = 1, . . . , 9 , (C.24)

and we choose

P = Γ0,⇒ PT = Γ . (C.25)

The charge conjugation matrix C = B∗Γ0 is defined by introducing a matrix B, such that

BΓIB−1 = (ΓI)∗ . (C.26)

Finally, we need to see how CPT acts on our decomposed fields:

1+,3
CPT←→ 1+,−3 (C.27a)

3+,−1
CPT←→ 3+,1 (C.27b)

1−,0
CPT←→ 1−,0 (C.27c)

3−,−2
CPT←→ 3+,2 (C.27d)
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Following the same logic we can see that CPT acts on the gauge field, AM in the following

way

10,3
CPT←→ 10,−3 (C.28a)

30,−1
CPT←→ 30,1 , (C.28b)

and it trivially maps A± into themselves.

C.2 Supersymmetry variations

The ten-dimensional supersymmetry variations for 10D SYM are given by

δεΨ =
1

2
FIJΓIJε, (C.29a)

δεAI = −iεΓIχ . (C.29b)

The ten-dimensional field strength decomposes as follows

FIJΓIJ =
(
F+−Γ+− + (F+aΓ

+a + F+aΓ
+a) + (FabΓ

ab + FabΓ
ab) + 2FabΓ

ab (C.30)

(F+⊥Γ+⊥+F+⊥Γ+⊥)+(Fa⊥Γa⊥+Fa⊥Γa⊥+Fa⊥Γa⊥+Fa⊥Γa⊥)+2F⊥⊥Γ⊥⊥
)
.

Now we can get the variations of the (0, 2) theory, by plugging in the decompositions (C.2)

and (C.21), where the spinors ε and ε correspond to the (static) singlets, 1−,0. We also use

the decomposition of gamma matrices and fermions given in section C.1. The variations

on the bosonic fields coming from the decomposition in (C.29b) read

δεA− = −2iεµ− , δεA− = 2iεµ− , (C.31a)

δεA+ = 0 , δεA+ = 0 , (C.31b)

δεAa = 0 , δεAa =
√

2εψ+ a , (C.31c)

δεAa =
√

2εψ+ a , δεAa = 0 , (C.31d)

δεφabc =
√

2εχ+ abc , δεφabc = 0 , (C.31e)

δεφabc = 0 , δεφabc =
√

2εχ+ abc , (C.31f)

where D+ = ∂0 + ∂1 +A+, and we have redefined Γi → iΓi, Γ⊥ → iΓ⊥.

In order to fix a bit of notation, let us introduce the covariant derivative ∂A = ∂+A(0,1)

on X, the field strengths on X and R1,1,

F(0,2) = [∂A, ∂A] = (∂aAb + [Aa, Ab])dz
a ∧ dzb = Fα

ab
Tαdza ∧ dzb, (C.32)

∂Aφ(3,0) = [∂A, φ(3,0)] = (∂[aφbcd] +A[a, φbcd])dz
a ∧ dzb ∧ dzc ∧ dzd, (C.33)

F+− = [D+, D−] = (∂[+A−] + [A+, A−]), (C.34)

F+i = D+Ai = ∂+Aa + [A+, Aa], F+a = D+Aa = ∂+Aa + [A+, Aa], (C.35)

where all the fields carry also an adjoint index α contracted with the generators of the

gauge Lie algebra, Tα. All of this extend also for the fermions, in fact, the commutators

will be extended later to the superfields, moreover, they will mostly used when we commute
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two derivative operators, and dropped when we have a covariant derivative acting on an

adjoint valued gauge field.

Decomposing (C.29a) we get the following supersymmetry variations:

δεµ− = ε

(
1

2
F−+ + iD

)
, δεµ− = 0 , (C.36a)

δεµ− = 0 , δεµ− = −ε
(

1

2
F−+ − iD

)
, (C.36b)

δεψ+ a = −i
√

2εF+a , δεψ+ a = 0 , (C.36c)

δεψ+ a = 0 , δεψ+ a = −i
√

2εF+a , (C.36d)

δελ− ab = −
√

2ε
(
∂
†
Aφ
)
ab
, δελ− ab = +

√
2εFab , (C.36e)

δελ− ab = −
√

2εFab , δελ− ab =
√

2ε
(
∂†Aφ

)
ab
, (C.36f)

δεχ+ abc = 0 , δεχ+ abc = −i
√

2εD+φabc , (C.36g)

δεχ+ abc = −i
√

2εD+φabc , δεχ+ abc = 0 , (C.36h)

where, for example, ∂†Aφ(3,0) = ωx(∂
†
Aφ(3,0)) = gab(∂A)bφacddz

c ∧ dzd. Moreover on-shell,

we have:

D = − ∗X
(
ω ∧ ω ∧ F(1,1) + [φ, φ]

)
, (C.37)

where in components [φ, φ] = φ[abcφabc]dz
a∧dzb∧dzc∧dza∧dzb∧dzc and F(1,1) = [∂A, ∂A].

∗X is the Hodge-dual operator on X. These are just the on-shell variations, we need to

extend them by adding the auxiliary fields G and D in (C.36),

δεµ− = ε

(
1

2
F−+ + iD

)
, δεµ− = 0 , (C.38a)

δεµ− = 0 , δεµ− = −ε
(

1

2
F−+ − iD

)
, (C.38b)

δεψ+ a = −i
√

2εF+a , δεψ+ a = 0 , (C.38c)

δεψ+ a = 0 , δεψ+ a = −i
√

2εF+a , (C.38d)

δελ− ab = −
√

2εGbc , δελ− ab =
√

2εEab , (C.38e)

δελ− ab = −
√

2εEab , δελ− ab =
√

2εGab , (C.38f)

δεχ+ abc = 0 , δεχ+ abc = −i
√

2εD+φabc , (C.38g)

δεχ+ abc = −i
√

2εD+φabc , δεχ+ abc = 0 , (C.38h)

where16 E = F(0,2). In order to close the (0, 2) supersymmetry algebra,

[δε, δε] = [δε, δε] = 0, [δε, δε] = 2iεεD+, (C.39)

The auxiliary field variations are

δεD = εD+µ− , δεD = εD+µ− , (C.40a)

16Here the E is just the top bosonic component of a field that will be promoted to a superfield in the

superspace formalism later on.
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δεGab =
√

2ε(∂Aψ
(1,0)

+ )ab−
√

2iεD+λ− ab , δεGab = 0 , (C.40b)

δεGab = 0 , δεGab = +
√

2ε(∂Aψ
(0,1)
+ )ab+

√
2iεD+λ− ab , (C.40c)

where we know the explicit expression for the variation E,

δεE = +
√

2ε∂Aψ
(0,1)
+ , δεE = −

√
2ε∂Aψ

(1,0)
+ . (C.41)

C.3 Superfields

In the previous section we have derived the supersymmetry variations of a (0, 2) QFT

starting from the variations for 10D SYM considering 7-branes wrapping a Kähler threefold

X. We are now ready to organize the fields in supermultiplets, and to do so we use the

superspace formalism. In appendix A we have defined the supersymmetry generators as well

as the covariant derivative in superspace (A.13). Let us now write down the corresponding

multiplets for our bulk 7-brane theory.

First of all, just as in the analysis of appendix B, we have a collection of superfields

which are labelled by points of the internal manifold X. This includes the vector multiplets,

a Fermi multiplet Λ(0,2) with non-trivial E-field, and chiral multiplets Φ(3,0) and D(0,1),

the superfield associated with the anti-holomorphic component of the internal covariant

derivative. Indeed, as we explained in section 4, the field content descends directly from that

of the associated 9-brane model. Borrowing our discussion from appendix B, let us therefore

focus on the few features of the field content which are distinct from the 9-brane theory.

We have a chiral multiplet Φ(3,0) with expansion in components:

Φ(3,0) = φ(3,0) +
√

2θ+χ+,(3,0) − iθ+θ
+
D+φ(3,0). (C.42)

In addition to the rather similar expansion for D(0,1), the Fermi multiplet is a (0, 2) form

with a non-trivial E-field:

Λ(0,2) = λ
(0,2)
− −

√
2θ+G(0,2) −

√
2θ

+
E(0,2) − iθ+θ

+
D+λ−,(0,2), (C.43)

where the superfield E(0,2) is given by

E(0,2) = F(0,2) = [D(0,1),D(0,1)] = (F(0,2) +
√

2θ+∂Aψ+,(0,1)− iθ+θ
+

[[∂A, D+], ∂A]) . (C.44)

C.4 Non-Abelian bulk twisted action

We are now ready to write down the effective action of 7-branes wrapping a Kähler threefold

X. As a notational device for writing the kinetic terms for superfields, we introduce a

pairing (·, ·) for bundle valued differential forms which are Serre dual to one another. In

addition to the Hermitian metric of the Kähler threefold, this also requires us to introduce

a Hermitian pairing on the associated bundle. Whenever we write such a pairing, it will

implicitly be a top differential form which can be integrated over the manifold. When we

turn to modes localized on a Kähler surface S, we shall employ a similar notation. Finally,

we shall also introduce a holomorphic pairing 〈·, ·〉 which only makes use of the complex

structure of the associated bundles. For the bulk modes, this is implicitly captured by a

simple trace over the adjoint representation.
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We begin with the kinetic terms for the various fields. The kinetic term for the chiral

field Φ(3,0) is given by

SΦ = − i
2

∫
d2yd2θ

∫
X

(
Φ(3,0) , [∇−,Φ(3,0)]

)
. (C.45)

Expanding in components yields:

SΦ = −
∫
R1,1

d2y

∫
X

Tr

((
D+φ(0,3) ∧D−φ(3,0)

)
+ iχ0,3

+ ∧D−χ
3,0
+

+
√

2
(
µ−[φ(3,0), χ

0,3
+ ] + µ−[χ3,0

+ , φ(0,3)]
)

+D[φ(3,0), φ(0,3)]

)
, (C.46)

where we used the properties of cyclicity of the trace in the pairing as well as integration

by parts.

The kinetic term for D(0,1) is:

SD = −1

2

∫
d2yd2θ

∫
X

(
D(0,1), [∇−,D(0,1)]

)
. (C.47)

The expansion in component fields is:

SD = −
∫
d2y

∫
X
ω ∧ ω∧ Tr

(
F

(0,1)
+ ∧ F (1,0)

− + i ψ
(1,0)
+ ∧D−ψ(0,1)

+

−
√

2
(

(∂Aµ−) ∧ ψ(1,0)
+ + ψ

(0,1)
+ ∧ (∂Aµ−)

)
+ F(1,1)D

)
. (C.48)

The kinetic term for the Fermi field Λ(0,2) is given by

SΛ = −1

2

∫
d2yd2θ

∫
X

(
Λ(0,2),Λ(0,2)

)
, (C.49)

and when we plug in (C.43), its expansion in components is

SΛ = −
∫
d2yd2θ

∫
X
ω∧ Tr

(
−i (D+λ

(0,2)
− ) ∧ λ(2,0)

− + G(0,2) ∧ G(2,0) − F(0,2) ∧ F(2,0)

√
2(∂Aψ

(0,1)
+ ∧ λ(2,0)

− + λ
(0,2)
− ∧ ∂Aψ

(1,0)
+ )

)
. (C.50)

Finally, the action includes a contribution from Υ given by integrating 1
8ΥΥ over X.

C.4.1 Superpotential terms

The bulk superpotential is given by

WX = − 1√
2

∫
X

Tr(Λ(0,2) ∧ D(0,1)Φ(3,0)) . (C.51)

In the nomenclature of N = (0, 2) supersymmetric models, this amounts to setting J(Φ) =

[D(0,1),Φ
3,0]. In components, the resulting contribution to the action from the F-terms is:

SF =

∫
d2y

∫
X

Tr(G(0,2)∧∂Aφ(3,0) +λ
(0,2)
− ∧∂Aχ(3,0)

+ +λ
(0,2)
− ∧ [φ(3,0), ψ

(0,1)
+ ])+h.c, (C.52)
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where we get an additional constraint by requiring that W is a chiral quantity,

Tr(Ei · J i) = 〈Ei, Ji〉 = Tr(F(0,2) ∧ [D(0,1),Φ(3,0)]). (C.53)

This vanishes on-shell, but would give a topological condition off-shell in order for su-

persymmetry to be manifestly preserved. So inevitably we must couple to some of the

background geometric moduli.

C.5 Localized surface defects

As we have already discussed in section 4, one of the important features of intersecting 7-

branes is that some of the matter fields localize on intersections, i.e. from the intersection of

X1 and X2. On general grounds, we expect there to be a hypermultiplets worth of degrees of

freedom localized on the surface. That is to say, we expect there to be two chiral multiplets

and two Fermi multiplets localized on the surface. These organize according to “generalized

bifundamental” representations of G1×G2, where Gi denotes the corresponding bulk gauge

group. Denote the representation of G1 ×G2 by r1 × r2, the corresponding bundle will be

R1 ⊗R2.

Our goal in this subsection will be to understand the action for these surface defects

using the general Katz-Vafa collision rules discussed for example in [65] and [26]. With this

in mind, we start with the action for an isolated bulk 7-brane with gauge group G, and we

consider the effects of activating a background value for the (3, 0)-form Φ(3,0). Then, there

will be localized modes trapped on the intersection of Kähler threefolds which intersect

along a Kähler surface. We obtain the action for the localized modes by starting from the

bulk action, and expanding to second order in the fluctuations. The third order fluctuations

are associated with interactions between three localized terms.

The superpotential describing the defect theory on the surface intersection, S, is given

in terms of the localized matter fields:

(δD(0,1) surface = Q) ∈ K1/2
S ⊗R1 ⊗R2, (C.54a)

(δΦsurface = Qc) ∈ K1/2
S ⊗R∨1 ⊗R∨2 , (C.54b)

(δΛ(0,2) surface = Ψ) ∈ Ω0,1
S (K

1/2
S ⊗R1 ⊗R2). (C.54c)

In the above, we have included the contributions from the propagating bulk modes. An-

other way to arrive at the same mode count is to work in terms of the bulk topological

term Wtop,X, and include variations with respect to a all bulk modes. The expansion in

component fields is:

Q = σ +
√

2θ+η + . . . , (C.55)

Qc = σc +
√

2θ+ηc + . . . , (C.56)

Ψ = ξ −
√

2θ+K −
√

2θ
+
E . . . , (C.57)

Ψc = ξc −
√

2θ+Kc −
√

2θ
+
Ec . . . , (C.58)

where σ is a boson, ξ, η are fermions, K and Kc are auxiliary fields. Here, we hasten to

add that Ψc is not an independent degree of freedom. In the case of the localized modes,
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we must also include the E-fields for the Fermi multiplet, which is in turn captured by the

contribution to Wtop. See section 4 for further discussion on this point.

The kinetic term for the defect theory is then given by

Sdef. kinetic =

∫
d2yd2θ

∫
S

(
− i

2

(
Q,∇−Q

)
− i

2

(
Qc,∇−Qc

)
− 1

2

(
Ψ,Ψ

))
(C.59)

where (·, ·) is the canonical pairing introduced earlier. The expansion into component fields

is entirely straightforward, and follows the rules laid out in appendix A.

To explicitly count the modes localized on the Kähler surface, it is helpful to return

to the bulk action and study the fermionic modes which are localized as a result of having

a non-trivial profile for φ(3,0). We begin by looking at the part of the action that includes

all the fermions:

Sferm. = −
√

2

∫
R1,1×X

Tr

(
µ−[φ(3,0), χ

(0,3)
+ ] + µ−[χ

(3,0)
+ , φ(0,3)]− (∂Aµ−) ∧ ψ(1,0)

+ − ψ(0,1)
+ ∧ (∂Aµ−)

+ ω ∧ ∂Aψ(0,1)
+ ∧ λ(2,0)

− + ω ∧ λ(0,2)
− ∧ ∂Aψ

(1,0)

+

)
×
(
−λ(0,2)
− ∧ ∂Aχ(3,0)

+ − λ(0,2)
− ∧ [φ(3,0), ψ

(0,1)
+ ] + h.c.

)
. (C.60)

Now, to see how fermions localize on a surface S, switch on a background value for φ. In

a small neighborhood of S, we can use the local holomorphic coordinates (z1, z2, z3) on X.

Let us assume that a section of the canonical bundle of X, KX , exists, then

φ = φ0t, t ∈ ad(GX), φ0 ∈ H0(KX , X), (C.61)

and since φ0 is a section of the canonical bundle, which locally is parameterized by z3, we

have that

φ(3,0) = tz3 dz1 ∧ dz2 ∧ dz3, (C.62)

where S corresponds to the locus where z3 = 0. For ease of exposition, we assume that the

expectation value (C.62) breaks GX to ΓX × U(1) ⊂ GX . We would like now to solve the

equations of motion for the fermions in a neighborhood of the surface S. To do so we look

at the fermionic action written in (C.60). This basically follows the same analysis spelled

out in great detail in reference [26], so we shall simply summarize the main points.

By varying this action we indeed find trapped zero modes localized along the vanishing

locus of the holomorphic three-form φ3,0. The modes take the following schematic form for

the fermions descending both from the chiral multiplet and the Fermi multiplet:

∂z3(ferm) + z3
˜ferm = 0, ∂z3(˜ferm) + z3 ferm = 0. (C.63)

This leads to a Gaussian profile for the zero modes with falloff of the form ∼ exp(−c|z3|3)

for z3 6= 0. The quantity c depends on details of the geometry such as the Kähler metric for

X as well as the Hermitian pairing for the various bundles of the 7-brane theory. We find

trapped fermionic modes which are part of the chiral multiplets Q and Qc, and another

trapped mode Ψ which fills out a Fermi multiplet and transforms as a (0, 1) differential
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form on S. Observe that in the flat space limit, we get a 4D N = 2 hypermultiplet’s worth

of degrees of freedom.

We can also determine the bundle assignments for our localized modes using this

analysis. Since S is defined by a section of the canonical bundle of X, KX , φ0 ∈ H0(X,KX).

Given this, we can now write the following twisted Koszul sequence:

0 −→ N∨S/X ⊗KX −→ KX −→ KX |S −→ 0, (C.64)

resulting in NS/X = KX |S . By the adjunction formula we also know that

KS = KX |S ⊗NS/X , (C.65)

and by construction, we have NS/X = KX |S , and hence

K
1/2
S = NS/X . (C.66)

Recalling the bundle cohomologies in (C.54), we conclude that the massless fermions local-

ized along S can be identified with the zero-modes of the fermions in the defect theory η, ξ.

D Brief review of Chern classes

At various stages in our analysis, we have used some basic elements about the structure

of Chern classes, especially as it pertains to bundles on Calabi-Yau fourfolds and general

Kähler threefolds and Kähler surfaces. In this appendix we collect some of these formulae.

We recall (for instance from [66]) that the Pontryagin classes for a real vector bundle

E are related to the Chern classes of the complexified bundle E ⊗ C as:

pi(E) = (−1)ic2i(E ⊗ C) . (D.1)

If E = E ⊕ E∨ with E∨ the dual bundle where E is a complex vector bundle, then

c(E ⊗ C) = c(E ⊕ E∨) = c(E)c(E∨) (D.2)

Since ci(E∨) = (−1)ici(E), it is easy enough to make the expansion

p1(E) = −2c2(E) + c1(E)2 , (D.3)

p2(E) = 2c4(E) + c2(E)2 − 2c1(E)c3(E) (D.4)

We are most interested in the case c1(E) = 0, which leads to

p1(E) = −2c2(E) , (D.5)

p2(E) = 2c4(E) + c2(E)2 , (D.6)

and the remarkable identity

4p2(E)− p1(E)2 = 8c4(E) . (D.7)
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In particular, when we apply this to the tangent bundle of a Calabi Yau fourfold TCY4 we

obtain

4p2(TCY4)− p1(TCY4)2 = 8χ(CY4), (D.8)

where we have used the fact that the Euler characteristic of a Calabi-Yau fourfold is given

by:

χ(CY4) =

∫
CY4

c4(TCY4). (D.9)

We note that this identity holds more generally for any eight manifold that admits a

nowhere vanishing spinor [67].

We shall often have occasion to calculate the bundle valued cohomology groups

H i
∂
(M, E) for M a Kähler manifold with E a holomorphic vector bundle. Here, we typi-

cally need to know the dimensions hi(M, E) for i = 0, . . . ,dimCM . Though the dimensions

can depend on the geometric and vector bundle moduli, some specific combinations are

protected by a topological index formula. For example, there is a holomorphic Euler char-

acteristic:

χ(M, E) =

dimCM∑
i=0

(−1)ihi(M, E) =

∫
M

ch(E) Td(M) (D.10)

where the final equality follows from the Hirzebruch-Riemann-Roch index formula, and we

have introduced the Chern character and Todd class of a general bundle:

ch(E) = rk(E)+c1(E)+
1

2

(
c2

1(E)− 2c2(E)
)

+
1

3!

(
c3

1(E)− 3c2(E)c1(E) + 3c3(E)
)

(D.11)

+
1

4!

(
c4

1(E)− 4c2(E)c2
1(E) + 4c3(E)c1(E) + 2c2

2(E)− 4c4(E)
)

+ . . . (D.12)

Td(E) = 1 +
1

2
c1(E)+

1

12
(c2

1(E) + c2(E)) +
1

24
(c1(E)c2(E)) (D.13)

+
1

720

(
−c4

1(E) + 4c2
1(E)c2(E) + c1(E)c3(E) + 3c2

2(E)− c4(E)
)

+ . . . (D.14)

D.1 Special case: Calabi-Yau fourfolds

In our specific applications to compactifications of type I and heterotic strings, we will

specialize further to the case of stable irreducible holomorphic vector bundles on an irre-

ducible Calabi-Yau fourfold. In these cases, we can set the first Chern class to zero, and

we get the simplified formulae:

ch(E) = rk(E)− c2(E) +
1

2
c3(E) +

1

12
(c2

2(E)− 2c4(E)) (D.15)

Td(E) = 1 +
1

12
c2(E) +

1

720

(
3c2

2(E)− c4(E)
)
. (D.16)

We shall also encounter the holomorphic Euler characteristics:

χi(CY4) ≡ χ(CY4,Ω
(0,i)
CY4

) =
4∑
j=0

(−1)jhj,i(CY4) =

∫
CY4

ch(Ω
(0,i)
CY4

) Td(CY4). (D.17)
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The resulting expression in terms of Chern classes is (see e.g. [68]):

χ0(CY4) =
1

720

∫
CY4

(
3c2

2 − c4

)
(D.18)

χ1(CY4) =
1

180

∫
CY4

(
3c2

2 − 31c4

)
(D.19)

χ2(CY4) =
1

120

∫
CY4

(
3c2

2 + 79c4

)
. (D.20)

We can also simplify the various relations between c2 and c4. For example, evaluating

the holomorphic Euler characteristic for the bundle E = OCY4 the structure sheaf and using

χ(CY4,OCY4) = 2, we immediately find the relation:

3c2(M8)2 − c4(M8) = 1440 .

Setting E = TCY4 leads to the further relation:

χ(CY4, TCY4) = 8− 1

6
χ(CY4),

i.e. we find a simple relation between the holomorphic Euler characteristic and the Euler

characteristic of the manifold. Using the above, we can also show much as in reference [52],

that χ(CY4) is divisible by 6.

D.2 Special case: Kähler threefolds and surfaces

In our discussion of intersecting 7-branes, it is also helpful to recall some general features

of index formulae for a general Kähler threefold X and a Kähler surface S. Specializing

the index formula to a vector bundle over each such space, we have:

χ(X, E) =

∫
X

(
rk(E)

24 (c1(X)c2(X)) + 1
12c1(E)(c2

1(X) + c2(X))

+1
4

(
c2

1(E)− 2c2(E)
)
c1(X)+ 1

3!

(
c3

1(E)− 3c2(E)c1(E) + 3c3(E)
)) (D.21)

χ(S, E) =

∫
S

(
rk(E)

12
(c2

1(S) + c2(S)) +
1

2
c1(E)c1(S)+

1

2

(
c2

1(E)− 2c2(E)
))

. (D.22)

E Normalizing the Green-Schwarz contribution

In our discussion of compactifications of the perturbative type I and heterotic string theory,

we saw that the number of spacetime filling 1-branes is controlled by the contribution from

the Green-Schwarz term:

Seff ⊃ a

∫
B2 ∧X8(F,R). (E.1)

In this appendix we present a general argument for fixing the overall normalization of this

term.
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We recall the basic story of the gauge anomaly. Consider a Weyl fermion in d = 2n-

dimensions coupled in a representation r to a background Yang-Mills gauge field with

field strength F .17 The gauge anomaly is encoded in the transformation of the one-loop

effective action W [A]: under δvA = −Dv = −(dv + [A, v]) the change in the effective

action is given by [69]:

δvW [A] = −
∫

Tr vDµ
δW [A]

δAµ
=

in

(2π)n(n+ 1)!

∫
Q1

2n(v,A) . (E.2)

The local quantity Q1
2n is fixed by descent in the familiar way. Given the anomaly

polynomial IW2n+2, we have the local relations

IW2n+2 = dQ2n+1 , (E.3)

δvQ2n+1 = dQ1
2n (E.4)

So, as far as the gauge anomaly goes, to fix the normalization we just need to specify

IW2n+2. Fortunately, we know this:

IW2n+2 = trr F
n+1 . (E.5)

We now specialize to the case of a Majorana-Weyl fermion in ten spacetime dimensions.

We have just one thing to do in this case: multiply the Weyl answer by 1/2. Thus,

IMW
12 =

1

2
trr F

6 (E.6)

In our notation above, a Majorana-Weyl fermion in the adjoint representation has

IMW
12 =

1

2
TrF 6 (E.7)

This will therefore lead to a variation of the effective action by

δvW [A] =
1

2

i

(2π)56!

∫
Q1

5(v,A) . (E.8)

We now compare with I12(R,F ), the anomaly polynomial of the 10D heterotic super-

gravity theory. Setting R = 0 yields:

I12(R = 0, F ) = − 1

90
TrF 2 TrF 4 +

1

27000

(
TrF 2

)3
(E.9)

= −48

90

[
1

48
TrF 2 TrF 4 − 1

14400

(
TrF 2

)3]
(E.10)

= − 8

15
TrF 6 . (E.11)

In the last line we used the factorization condition

TrF 6 =
1

48
TrF 2 TrF 4 − 1

14400

(
TrF 2

)3
. (E.12)

17We continue to work with anti-Hermitian generators, so that, for instance, the Chern-Simons three-form

below has no factor of i =
√
−1.
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Let Î12 be the correctly normalized polynomial. By this we mean that the Q̂1
10 con-

structed from Î by descent shows up in the variation of the effective action with constant:

δW =
i

(2π)56!

∫
Q̂1

10 . (E.13)

From our comparison we see that Î12 = −15
16I12, so that we also have Q̂1

10 = −15
16Q

1
10, and

therefore

δW =
i

(2π)56!

(
−15

16

)∫
Q1

10 . (E.14)

We also know that factorization allows us to write Q1
10 in a simple way:

Q1
10 = Q1

2X8 , (E.15)

where18

Q1
2 = − 1

30
Tr εdA+ tr vdω . (E.16)

The final piece of information we need is that if the Euclidean worldsheet has the

coupling

Sstring ⊃
i

2πα′

∫
φ∗(B) , (E.17)

then cancellation of worldsheet anomalies requires that we set

δB =
α′

4

[
tr vdω − 1

30
Tr εdA

]
=
α′

4
Q1

2 . (E.18)

So, we now see that the full one-loop effective action that includes Green-Schwarz term

has gauge variation

δW =

[
i

(2π)56!

(
−15

16

)
+ a

α′

4

] ∫
Q1

2X8 . (E.19)

Gauge invariance thus fixes the constant a to be

a =
i

2πα′
1

192(2π)4
. (E.20)

We observe from our studies above that in every case case except for the irreducible E8×E8

case
1

192(2π)4

∫
CY4

X8 ∈ Z . (E.21)

Placing N fundamental space-filling strings will lead to the additional two-dimensional

coupling (in Euclidean signature)
iN

2πα′

∫
2D

B . (E.22)

So, to cancel the tadpole we will need:

N = − 1

192(2π)4

∫
CY4

X8 . (E.23)

18Here ε is the gauge parameter, v is the Lorentz parameter, and ω is the spin connection.
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To preserve supersymmetry we need N ≥ 0, and therefore

1

192(2π)4

∫
CY4

X8 ≤ 0 . (E.24)

This is satisfied in many but not all cases.
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