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1 Introduction and summary

Type IIB string theory in 9+1 dimensions has a 4-form gauge potential whose 5-form

field strength obeys a self-duality constraint. As a result the theory is formulated using

its equation of motion [1–4] — there is no simple Lorentz invariant action from which

the equations of motion can be derived. Alternatively one can write down an action and

supplement it with the constraint of self-duality of the 5-form field strength. This constraint

needs to be imposed after deriving the equations of motion from the action.

The absence of a simple action for type IIB supergravity served as a sort of no go

theorem for formulation of a field theory for superstrings. If a manifestly Lorentz invariant

superstring field theory could be formulated then by taking its low energy limit one would

arrive at an action for low energy supergravity including type IIB supergravity. Therefore,

absence of the latter would imply absence of the former.

Recently this difficulty was circumvented and a manifestly Lorentz invariant super-

string field theory was formulated [5]. This theory works not only at the classical level

but at the full quantum level. The extra ingredient used in this construction was that the

theory, besides containing the usual degrees of freedom of string theory, contains a set of

free fields that completely decouple from the interacting sector, not only at the classical

level but also at the full quantum level. Given this construction one would expect that

the low energy limit of this theory should lead to a manifestly Lorentz invariant action

for supergravity theories, including type IIB supergravity, at the cost of adding additional

fields to the theory representing free decoupled degrees of freedom.

The purpose of this paper is to describe such a construction. In this we shall not

try to determine the low energy limit of the string field theory of [5] directly, but use the

insights and general structure of this string field theory to guess the form of the action that
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describes type IIB supergravity. Some progress towards the study of low energy limit of

the string field theory has been achieved in [6]. Our final result will be in the form of an

action with no additional constraints. We shall show that under suitable identification of

the field variables appearing in the new action with the field variables in the original form

of type IIB supergravity, the equations of motion derived from the new action reproduce

both the equations of motion and the self-duality constraint on the 5-form field strength

present in type IIB supergravity. However as expected, the new formulation has some

additional degrees of freedom representing free fields that decouple from the interacting

part of the theory.

Different forms of the action for type IIB supergravity have been written down before.

These formulations either break manifest Lorentz invariance [7–10], or have infinite number

of auxiliary fields [11–19], or have a finite number of auxiliary fields with non-polynomial

action [20–24], or requires going to one higher dimension [25, 26].1 The action we construct

in this paper is 9+1 dimensional, preserves manifest Lorentz invariance, has only a finite

number of fields and is polynomial in the fields in the absence of gravity.2 However the

general coordinate transformation acts in an unusual fashion. This is to be expected for

two reasons. First of all in string field theory the gauge transformations look different

from the standard general coordinate transformations beyond linearized level. Therefore

there is no reason to expect that by taking its low energy limit we shall arrive at a theory

with standard general coordinate transformation rules. Second, in the standard general

coordinate invariant coupling of the metric to other fields, in which we replace the ordinary

derivatives by covariant derivatives, there are no free fields since everything gravitates.

Therefore if we are to have a field theory in which one set of fields remain free, then the

general coordinate transformation laws cannot be standard.

One way to write down a theory of 4-form fields with self-dual field strength will

be to begin with a theory of unconstrained 4-form field but arrange the interactions so

that only the self-dual part interacts with the rest of the system [25]. In this case the

anti-self-dual part would describe a decoupled free field. It may be possible to implement

this in the full type IIB supergravity, but one has to take into account the additional

subtleties that arise from the fact that the 5-form that obey’s self-duality constraint itself

depends on the interaction terms. To the best of our knowledge this has not been carried

out explicitly maintaining manifest Lorentz invariance. Here we would only like to point

out that the procedure we follow, motivated by string field theory, is different from the

one described above, In our case the extra free field that decouples also has self-dual

field strength. Furthermore it has the wrong sign kinetic term. This will be fatal in an

interacting theory, but since these extra modes describe free fields, their presence does not

affect the quantization of the interacting part of the theory.

Since the analysis of the paper is somewhat technical, let us summarize the main

results. In the usual formulation type IIB theory contains a four form gauge potential

1Other attempts in this direction can be found in [27, 28].
2Once gravity is turned on the action becomes non-polynomial in the fields since general relativity is

intrinsically non-polynomial. Like general relativity, our action is non-polynomial in the metric fluctuations

but is polynomial in the derivatives of all fields.
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C(4). The action of the theory can be written as S1 + S2 where S2 is independent of C(4),

and S1 has the form given in (4.4) with the various quantities appearing in this action

defined in (4.1), (4.2). After deriving the equations of motion using this action we are

required to impose the self-duality constraint (4.5) on the gauge invariant 5-form field

strength. In our formulation we replace the 4-form field C(4) by a 4-form field P (4) and an

independent self-dual 5-form field Q(5). The action is taken to be S′1 + S2 where S2 is the

same action as before, and S′1 is given in (4.47) with the various quantities appearing in

this expression defined in (4.2), (4.15), (4.17), (4.37). We find that the equations of motion

derived from S′1 + S2 are equivalent to the ones derived from S1 + S2 and the self-duality

condition (4.5) provided we relate the field Q(5) in the new formalism with the field C(4)

in the original formulation via eqs.(4.1), (4.9), (4.32). The degrees of freedom associated

with the field P (4) in the new formalism describe (non-gravitating) free fields and decouple

from the interacting part of the theory. This is already apparent from the fact that P (4)

appears in the action (4.47) only in the linear and quadratic terms, but is clearer in the

gauge fixed kinetic term given in (7.3) where the field P̄ (4) just has a quadratic action and

does not appear anywhere else in the action.

The rest of the paper is organized as follows. In section 2 we use the form of the

string field theory action described in [5] to guess the general structure of the action for

type IIB supergravity. In section 3 we consider type IIB supergravity with the metric

fluctuations and fermion fields set to zero, and show how in this simpler setting one can

construct an action whose equations of motion reproduce the equations of motion of type

IIB supergravity. In section 4 we include the effect of metric fluctuations as well as the

fermion fields and write down the general action whose equations of motion reproduce

the full set of equations of motion and self-duality constraint of type IIB supergravity. In

section 5 we describe the general coordinate transformation laws of various fields which take

a somewhat unusual form in our description. In section 6 we describe how supersymmetry

of the original type IIB supergravity can be described as a symmetry of the new action we

have constructed in section 4. In section 7 we briefly discuss the Feynman rules derived

from this action in a Lorentz covariant gauge.

We expect that the formalism developed in this paper can be generalized to find actions

for other chiral theories. It will be interesting to explore if similar techniques can be used

to construct an action for the Vasiliev higher spin theories [29–31]. If there is any limit

in which the classical Vasiliev theory emerges from classical string field theory, then the

existence of an action for the latter implies that the former must also have an action.

2 Expectation from string field theory

In this section we shall review the structure of the action expected from string field theory

and describe how we shall implement it in the context of type IIB supergravity.

We begin by recalling some pertinent facts about the action for superstring field theory

constructed in [5]. The theory has two sets of fields, which we collectively denote by ψ and

ψ̃. The action takes the form

− 1

2
(ψ̃,QX ψ̃) + (ψ̃,Qψ) + f(ψ) , (2.1)
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where (, ) denotes an inner product and Q and X are hermitian, mutually commuting,

linear operators made of BRST charge and picture changing operators respectively. The

details of these operators will not be important for us. f(ψ) is a non-linear function of

the fields ψ only, representing interaction terms. The equations of motion for ψ̃, ψ derived

from this action takes the form:

QX ψ̃ −Qψ = 0 , (2.2)

and

Q ψ̃ + f ′(ψ) = 0 , (2.3)

where f ′(ψ) denotes the derivative of f(ψ) with respect to various components of ψ. Ap-

plying the operator X on (2.3), subtracting it from (2.2) and using the fact that Q and X
commute we get

Qψ + X f ′(ψ) = 0 . (2.4)

This can be identified as the physical equations of motion with ψ containing all the physical

fields. On the other hand (2.3) can now be regarded as an equation that determines ψ̃ in

terms of ψ. The solution is not unique, but if ψ̃ and ψ̃ + ∆ψ̃ represent two solutions to

this equation for a given ψ then we have

Q∆ ψ̃ = 0 (2.5)

This is a linear equation and hence represent free field degrees of freedom. Furthermore,

since these free field modes do not affect the equation for ψ, they decouple from the

interacting sector described by the field ψ.

The gauge symmetries of the action (2.1) are generated by two sets of parameters

collectively denoted as λ and λ̃. The infinitesimal transformation laws take the form

δψ = Q̄λ+ X h(ψ)λ, δψ̃ = Q̄ λ̃+ h(ψ)λ , (2.6)

where Q̄ is a field independent linear operator and h(ψ) is a linear operator acting on λ,

but is a non-linear function of ψ.

In what follows we shall use this insight to construct an action for type IIB supergravity.

However we shall use a truncated version of this mechanism in which we introduce the

analog of the fields ψ̃ only for the 4-form field of type IIB supergravity. If we try to

directly construct the massless field content from the action (2.1) of type IIB string theory,

we expect to get a doubling for every field and there will also be additional auxiliary fields

/ gauge transformations etc. [6].

We proceed as follows. The role of ψ̃ will be played by an unconstrained 4-form field

P (4), while the role of ψ will be played by a self-dual 5-form field Q(5) and all the usual fields

of type IIB supergravity except the 4-form field. We shall denote these fields collectively

by M . The self-duality constraint on Q(5) takes the form

∗Q(5) = Q(5) , (2.7)
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where ∗ denotes Hodge dual with respect to the flat metric. Note that since Q(5) is an

independent field, this is a purely algebraic constraint. (This will be automatic if we

express Q(5) as a bispinor field as in type IIB string theory.) The action will be taken to

be of the form3

S′ =
1

2

∫
dP (4) ∧ ∗dP (4) −

∫
dP (4) ∧Q(5) + Ŝ(Q(5),M) , (2.8)

where Ŝ(Q(5),M) will be determined by demanding that the equations of motion derived

from this action agree with those of type IIB supergravity after we make suitable identifi-

cation of the fields (P (4), Q(5)) with the 4-form field of type IIB supergravity in the usual

formulation. We see that as in (2.1), P (4) appears only in the kinetic term, while Q(5)

appears in the kinetic term only linearly, but enters the interaction terms. The action has

gauge invariance generated by a 3-form valued parameter Ξ(3)

δgP
(4) = dΞ(3) , (2.9)

with all other fields remaining unchanged. Ξ(3) represents a gauge transformation param-

eter coming from λ̃. There are also other gauge transformations originating from λ. They

will be discussed later when we consider the explicit form of Ŝ.

Let R(5) denote the anti-self-dual 5-form constructed from M and Q(5) that enters the

variation of Ŝ under a general variation of the fields via the relation

δŜ = −1

2

∫
R(5) ∧ δQ(5) + δM Ŝ , (2.10)

where δM denotes variation with respect to all other fields labelled by M . The anti-self-

duality of R(5) is due to the fact that δQ(5) is self-dual and the wedge product of two

self-dual 5-forms vanishes in 9+1 dimensions. Then the equations of motion for P (4), Q(5)

and other fields derived from the action (2.8) take respectively the form:

d(∗dP (4) −Q(5)) = 0 , (2.11)

dP (4) − ∗dP (4) +R(5) = 0 , (2.12)

δM Ŝ = 0 . (2.13)

Note that in writing the equation of motion (2.12) of Q(5) we have used the fact that Q(5)

is self-dual and that the wedge product of any self-dual tensor with another self-dual tensor

vanishes identically. Using (2.12) to eliminate ∗dP (4) from the first equation we get

d(Q(5) −R(5)) = 0 . (2.14)

This is the analog of (2.4).

We shall identify (2.14) and (2.13) as the physical equations of motion of the theory

that should reproduce the equations of motion of type IIB supergravity once we make the

3Our convention for the wedge product and ∗ is such that
∫
dP (4) ∧ ∗dP (4) =

1
5!

∫
(dP (4))µ1···µ5(dP (4))µ1···µ5 . Therefore the kinetic term for P (4) has the wrong sign. It will not

affect us since fluctuations of P (4) will describe a free field.
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correct identification of Q(5) with some combination of fields of type IIB supergravity. The

remaining equation (2.12) can be regarded as the equation for P (4). We see from this that

different solutions to (2.12) for given Q(5), M differ from each other by free field equations

of motion

d(∆P (4))− ∗ d(∆P (4)) = 0 . (2.15)

Furthermore which solution to this equation we pick does not affect the physical equations

encoded in (2.13), (2.14). Therefore the degrees of freedom associated with P (4) decouple

from the theory. This is also apparent from the structure of the action — since the interac-

tion term does not depend on P (4), the Feynman diagrams contributing to amplitudes with

external states associated with Q(5) and M never have P (4) propagator as internal lines.

P (4) only plays a role in determining the Q(5)-Q(5) propagator by inverting the off-diagonal

kinetic term in the P (4), Q(5) space after suitable gauge fixing of the gauge symmetry (2.9).

This has been described explicitly in section 7.

3 Type IIB supergravity without gravity and fermions

We begin by considering a simpler version of type IIB supergravity action where we freeze

the metric to the Minkowski metric ηµν and set all the fermion fields to zero. Even though

this is not the full action of type IIB supergravity, this example will illustrate how by

adding free fields, we can write down manifestly Lorentz covariant form for the action of

interacting chiral p-form fields. In the next section we shall include the effect of gravity

and fermion fields.

In absence of gravity and fermions the relevant fields of type IIB supergravity are the

dilaton φ and the 2-form field B(2) from the NSNS sector and the 0-form field C(0), 2-form

field C(2) and the 4-form field C(4) in the RR sector. Let us define

H(3) ≡ dB(2), F (3) = dC(2) , (3.1)

and4

F (5) ≡ dC(4), F̂ (5) ≡ F (5) +B(2) ∧ F (3) . (3.2)

Then the type IIB supergravity action is usually written as

S = S1 + S2 , (3.3)

4We have chosen to work in a formalism in which C(4), F (5) and P (4), Q(5) are invariant under the

gauge transformation associated with RR 2-form but not under the gauge transformation associated with

the NSNS 2-form (see (3.6), (3.12)). As a result we do not have manifest symmetry under the SL(2, R)

duality transformation that mixes the RR and NSNS 2-forms. We can restore this by replacing B(2) ∧F (3)

by (B(2) ∧ F (3) −C(2) ∧H(3))/2 in all expressions in this and the next section. Consequently in the gauge

transformation laws of C(4), P (4), F (5) and Q(5) the factors of λ(1) ∧ F (3) and dλ(1) ∧ F (3) will have to be

replaced respectively by (λ(1) ∧ F (3) − Λ(1) ∧ H(3))/2 and (dλ(1) ∧ F (3) − dΛ(1) ∧ H(3))/2. The resulting

formalism will have manifest SL(2, R) duality symmetry with C(4), F (5) and P (4), Q(5) remaining invariant

under the duality rotation but now they will transform under the gauge transformations associated with

both the 2-form potentials. The two formalisms are related by a field redefinition of C(4), F (5), P (4)

and Q(5).
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where S2 is a functional of all fields other than the 4-form potential C(4) and

S1 ≡ −
1

2

∫
F̂ (5) ∧ ∗F̂ (5) +

∫
F (5) ∧B(2) ∧ F (3) (3.4)

where ∗ denotes the Hodge dual operation. The equations of motion derived from this

action have to be supplemented by the self-duality constraint

∗ F̂ (5) = F̂ (5) . (3.5)

S1 and S2 are individually invariant under the gauge transformation

δgB
(2) = d λ(1), δgC

(2) = dΛ(1), δgC
(4) = dΛ(3) − λ(1) ∧ F (3) , (3.6)

where the subscript ‘g’ stands for gauge transformation. In particular F̂ (5) remains invari-

ant under these gauge transformations.

The equations of motion of C(4) derived from the action (3.4) takes the form

d(∗F̂ (5) −B(2) ∧ F (3)) = 0 . (3.7)

This will be satisfied automatically if we use the self-duality condition (3.5) and the defi-

nition of F̂ (5) given in (3.2). Therefore the net field equation for C(4) can be summarized

in the self-duality constraint (3.5) and the definition (3.2) of F̂ (5). Alternatively we can

treat F (5) or F̂ (5) = F (5) +B(2) ∧F (3) as the independent variable and use the self-duality

constraint (3.5) and the Bianchi identity (3.7) as independent equations of motion.

The equations of motion of the rest of the fields can be expressed as

δMS1 + δMS2 = 0 , (3.8)

where δM denotes variation with respect to all other fields collectively denoted by M at

fixed F (5). For our analysis we only need to note that

δMS1 =

∫ (
∗F̂ (5) + F (5)

)
∧ δ(B(2) ∧ F (3)) =

∫ (
2F̂ (5) −B(2) ∧ F (3)

)
∧ δ(B(2) ∧ F (3)) ,

(3.9)

where in the second step we have used the self-duality constraint (3.5) and the relationship

between F (5) and F̂ (5) given in (3.2).

Let us now consider a different theory in which we trade in the field C(4) for a pair of

fields — a 4-form field P (4) and an independent 5-form field Q(5) satisfying the self-duality

constraint (2.7). We now consider the action

S = S′1 + S2 , (3.10)

where S2 is the same action as what appears in (3.3) and

S′1 =
1

2

∫
dP (4) ∧ ∗dP (4) −

∫
dP (4) ∧Q(5) −

∫
B(2) ∧ F (3) ∧Q(5)

+
1

2

∫
∗
(
B(2) ∧ F (3)

)
∧
(
B(2) ∧ F (3)

)
. (3.11)
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This action is invariant under the gauge transformations:

δgB
(2) = dλ(1), δgC

(2) = dΛ(1), δgP
(4) = dΞ(3) − λ(1) ∧ F (3),

δgQ
(5) = −dλ(1) ∧ F (3) − ∗

(
dλ(1) ∧ F (3)

)
. (3.12)

Note that we have used the same symbols λ(1) and Λ(1) as in the case of the previous

action to indicate that these gauge transformations will turn out to be the same as those

appearing in (3.6) once we make the correct identification of the fields. On the other hand,

the gauge transformation parameter Ξ(3) is a priori unrelated to Λ(3) appearing in (3.6).

The equations of motion for P (4) and Q(5) derived from the action (3.10), (3.11) take

the form

d(∗dP (4) −Q(5)) = 0 , (3.13)

dP (4) +B(2) ∧ F (3) − ∗
(
dP (4) +B(2) ∧ F (3)

)
= 0 , (3.14)

respectively. Using (3.14) to eliminate d ∗ P (4) term in (3.13), we get

dQ(5) = d(B(2) ∧ F (3))− d ∗ (B(2) ∧ F (3)) . (3.15)

We now claim that the theory described by the action (3.10), (3.11) is equivalent to

that described by the action (3.3) together with a free 4-form field with self-dual 5-form

field strength, under the identification

F̂ (5) =
1

2

[
Q(5) +B(2) ∧ F (3) + ∗

(
B(2) ∧ F (3)

)]
. (3.16)

For this claim to be valid the following must hold:

1. F̂ (5) defined in (3.16) should satisfy the self-duality constraint (3.5) and the Bianchi

identity (3.7) as a consequence of (3.15).

2. Once we make the identification (3.16), we must have

δMS
′
1 = δMS1 , (3.17)

so that the equations of motion for all other fields derived from the action S1 + S2
agree with those derived from the action S′1 +S2. δMS

′
1 has to be calculated at fixed

P (4) and Q(5).

3. Given a solution to the equations of motion derived from the action S1 + S2, the

identification (3.16) should produce a set of solutions to the equations of motion

derived from S′1+S2 which differ from each other by addition of plane wave solutions.

The latter correspond to free fields and do not affect the interacting part of the theory.

We begin by proving the first proposition. F̂ (5) defined in (3.16) clearly satisfies the

self-duality constraint (3.5) since Q(5) is self-dual. Furthermore using (3.15) and (3.16)

we get

dF̂ (5) = d(B(2) ∧ F (3)) = H(3) ∧ F (3) . (3.18)

This agrees with (3.7). This establishes the first proposition.
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Let us now verify the second proposition given in (3.17). δMS1 is already computed

in (3.9), so for verifying (3.17) we need to compute δMS
′
1. Since P (4) and Q(5) are held

fixed while computing δMS
′
1, we get from (3.11):

δMS
′
1 = −

∫
δ(B(2) ∧ F (3)) ∧Q(5) +

∫
∗
(
B(2) ∧ F (3)

)
∧ δ
(
B(2) ∧ F (3)

)
. (3.19)

Using the antisymmetry of the wedge product, and (3.16), we can express this as

δMS
′
1 = 2

∫
F̂ (5) ∧ δ(B(2) ∧ F (3))−

∫
(B(2) ∧ F (3)) ∧ δ(B(2) ∧ F (3)) . (3.20)

This agrees with δMS1 computed in (3.9), thereby establishing (3.17).

Finally we turn to the third proposition. Given a solution F̂ (5) to eqs.(3.5) and (3.7),

eq.(3.16) gives us a value of Q(5) that solves the equations of motion (3.15). But this still

leaves open the possibility of getting different P (4) satisfying (3.13), (3.14). A particular

solution to these equations is provided by setting

P (4) = C(4) , (3.21)

where C(4) is related to F̃ (5) via (3.2). To see this, we note that the solution (3.21)

satisfies (3.14) as a consequence of (3.2) and the self-duality condition (3.5). Once (3.14)

and (3.15) are satisfied, (3.13) follows automatically. Now suppose a general solution

to (3.13), (3.14) for P (4) for given B(2), C(2), Q(5) has the form

P (4) = C(4) + P̃ (4) . (3.22)

Then using (3.13), (3.14) we get

d ∗ dP̃ (4) = 0, dP̃ (4) − ∗dP̃ (4) = 0 . (3.23)

Furthermore the gauge transformation generated by Ξ(3) acts as

δgP̃
(4) = dΞ(3) . (3.24)

Eqs. (3.23) and the gauge transformation (3.24) are precisely those of a free 4-form gauge

field with a self-duality constraint on its field strength. Furthermore which solution of (3.23)

we pick does not affect the solutions for the other fields B(2), C(2), Q(5) etc. which are

determined completely in terms of the solution to the equations of motion derived from

S1 + S2 via the identification (3.16). This establishes the third proposition.

It is also easy to verify that the gauge transformations generated by λ(1) and Λ(1)

in (3.6) agree with those given in (3.12) under the identification (3.16). Therefore the

theory described by the action S′1 + S2 is equivalent to the one described by the action

S1 + S2 and the self-duality constraint (3.5) up to addition of free fields.

Finally, note that the action (3.11) has a finite number of fields and is polynomial in

these fields. Non-polynomiality will arise when we couple this theory to gravity, but this

is an inevitable consequence of the fact that gravity is non-polynomial.
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4 Inclusion of gravity and fermions

We now consider the effect of inclusion of gravity and fermions. In this case H(3) and F (3)

are defined as in (3.1) but the definition of F̂ (5) is modified to

F (5) ≡ dC(4), F̂ (5) = F (5) + Y , (4.1)

Y ≡ B(2) ∧ F (3) + fermionic terms (4.2)

where ‘fermionic terms’ in the definition of Y describe 5-forms constructed from the fermion

bilinear. As in (3.3), the total action is still written as

S = S1 + S2 , (4.3)

but the action S1 given in (3.4) is replaced by

S1 ≡ −
1

2

∫
F̂ (5) ∧ ?gF̂ (5) +

∫
F (5) ∧ Y , (4.4)

where ?g denotes the Hodge dual operation with respect to the dynamical metric gµν . Simi-

larly S2 is covariantized with respect to the general coordinate transformation and includes

the Einstein-Hilbert term and fermionic contribution, but continues to be independent of

C(4). The self-duality constraint (3.5) is generalized to

?g F̂
(5) = F̂ (5) . (4.5)

In order to check the internal consistency of this procedure we examine the equations of

motion for C(4). This takes the form

d(?gF̂
(5) − Y ) = 0 . (4.6)

Using (4.5) this reduces to

d(F̂ (5) − Y ) = 0 , (4.7)

which holds identically as a consequence of (4.1). Therefore once we impose the self-

duality condition (4.5) and the definition (4.1) of F̂ (5), the equation of motion for C(4)

holds identically.

We introduce vielbein fields êµ
a and its inverse Êa

µ via

êµ
aêν

bηab = gµν , Êa
µÊb

νηab = gµν , êµa = êµ
bηba, Êaµ = ηabÊb

µ , (4.8)

and define5

F̃
(5)
a1···a5 = Êa1

µ1 · · · Êa5µ5F̂
(5)
µ1···µ5 . (4.9)

5One cautionary comment is in order here. Often one uses the same symbol to denote tensors under

general coordinate transformation and tensors under local Lorentz transformation which are related to each

other by contraction with vielbeins, e.g. Aa = Êa
µAµ. We shall not use this convention and make all

factors of vielbeins explicit. For example we have used a different symbol F̃ to denote the transform of

F̂ to a tensor under local Lorentz transformation. F̂ will always denote the quantity whose components

are given by the components of the right hand side of (4.1) describing a tensor under general coordinate

transformation.
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Then the self-duality condition (4.5) on the 5-form field strength can be reexpressed as

∗ F̃ (5) = F̃ (5) , (4.10)

where, as in section 3, ∗ now denotes the Hodge dual with respect to flat Minkowski metric.

In the following we shall gauge fix the local Lorentz transformation by choosing Êaµ

and êµa to be symmetric matrices. The insight for this again comes from string field

theory whose gauge symmetries do not include local Lorentz transformation. To facilitate

this choice of gauge, let us express the first equation of (4.8) in the matrix form as

êηêT = g , (4.11)

where ê denotes the matrix with components êµa. When the metric gµν is close to ηµν a

solution to (4.11) for which êµa = êaµ may be expressed as

ê η = (g η)1/2 , (4.12)

where in defining the square root we take the matrix that has all positive eigenvalues.

Writing gµν = ηµν + hµν , (4.12) can be written as

ê η = (1 + hη)1/2 =

(
1 +

1

2
hη − 1

8
hηhη + · · ·

)
, (4.13)

so that

ê =

(
η +

1

2
h− 1

8
hηh+ · · ·

)
(4.14)

is symmetric. In component this corresponds to

êad = ηad +
1

2
had −

1

8
habη

bchcd + · · · . (4.15)

Note that in this gauge we no longer have the distinction between the coordinate indices

µ, ν, · · · and the tangent space indices a, b, · · · . We shall raise and lower all indices with

the flat metric η. There is a rigid Lorentz transformation that preserves this gauge: under

this eab transforms as a covariant rank two tensor. A general coordinate transformation

must be accompanied by a compensating local Lorentz transformation in order to preserve

this gauge.

We now introduce the following notation for operators acting on 5-forms. We use

the indices A,B, · · · to denote the index (a1 · · · a5), (b1 · · · b5), · · · of 5-forms. Therefore

A,B, · · · each takes
(
10
5

)
independent values. However in defining sum over one of these

indices — say A — we shall find it more convenient to define it as a sum over all values of

a1, · · · a5, i.e. ∑
A

≡
∑
a1

∑
a2

· · ·
∑
a5

. (4.16)

In this notation the 5-form F̃
(5)
a1···a5 will be denoted as F̃

(5)
A . We also introduce the following

matrices in this space:

ζAB = ηa1b1 · · · ηa5b5 , ζAB = ηa1b1 · · · ηa5b5 , EAB = Êa1b1 · · · Êa5b5 ,

eAB = êa1b1 · · · êa5b5 , εAB =
1

5!
εa1···a5b1···b5 , (4.17)
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where εa0···a9 is totally anti-symmetric in all the indices and ε01···9 = 1. Note that we have

used the same symbol ζ for labelling a matrix with both upper index and both lower index,

but which one to use should be clear from the expression in which it appears and the rule

that an upper index can only contract with a lower index and vice versa. For example in

ζe we have to use ζ with upper indices while in ζE we shall use ζ with lower index. These

matrices satisfy the identities:

ζT = ζ, eT = e, ET = E, εT = −ε, ε ζ ε = ζ , ζ ζ = I, eεe = (− det ê) ζ ε ζ ,

(4.18)

etc. while acting on 5-forms. Here I denotes identity matrix and det ê is the determinant

of the 10× 10 matrix êµa. Since all of the quantities appearing in (4.17) transform covari-

antly under rigid Lorentz transformation, an action built out of these ingredients will have

manifest Lorentz invariance.

The self-duality condition (4.10) on F̃ (5) can be expressed as

ζ εF̃ (5) = F̃ (5) . (4.19)

Also in this notation (4.9) can be written as

F̃ (5) = ζEF̂ (5) = ζE(dC(4) + Y ) . (4.20)

Using the fact that eζ is the inverse matrix of ζE, we get

F̂ (5) ≡ dC(4) + Y = e ζ F̃ (5) . (4.21)

This gives

d(eζF̃ (5) − Y ) = 0 . (4.22)

We can regard F (5) = eζF̃ (5) − Y as independent variable instead of C(4), and eqs. (4.19)

and (4.22) as the independent equations that determine F (5).

We shall now attempt to replace the action S1 by an action S′1:

S′1 =
1

2

∫
dP (4) ∧ ∗dP (4) −

∫
dP (4) ∧Q(5) + Ŝ1(Q

(5),M) , (4.23)

and write the total action as

S′ = S′1 + S2 , (4.24)

in the spirit of (3.10), (3.11). Here, as in (2.8), P (4) is an unconstrained 4-form field, Q(5) is

a 5-form field satisfying Q(5) = ∗Q(5) and Ŝ1 is a functional of Q(5) and all the usual fields

of type IIB supergravity other than the 4-form field C(4), collectively called M . S2 is the

same action as what appears in (4.3). Our goal will be to determine Ŝ1 by demanding that

S′1+S2 gives the same equations of motion as S1+S2 and the self-duality constraint (4.19),

as long as we make proper identification of fields between the two formalisms. While doing

so, we shall maintain manifest Lorentz covariance at all stages, but invariance under general

coordinate transformation will not be manifest.
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Since S′1 + S2 has the same structure as the action (2.8) with all the Q(5) and P (4)

dependence coming through S′1 we have the analogs of (2.11), (2.12) and (2.14) as equations

of motion of P (4), Q(5):

d(∗dP (4) −Q(5)) = 0 , (4.25)

dP (4) − ∗dP (4) +R(5) = 0 , (4.26)

and

d(Q(5) −R(5)) = 0 , (4.27)

where R(5) is an anti-self-dual 5-form, defined via the equation

δŜ1 = −1

2

∫
R(5) ∧ δQ(5) + δM Ŝ1 , (4.28)

and δM denotes variation with respect to all other fields labelled by M at fixed P (4), Q(5).

Comparing (4.27) with (4.22) we arrive at the identification

Q(5) −R(5) = 2(eζF̃ (5) − Y ) , (4.29)

where the normalization factor of 2 on the right hand side has been chosen to ensure

compatibility between the normalization of the action (4.4) and (4.23) (see e.g. (3.16)).

Comparing the self-dual and anti-self-dual parts on the two sides and using the fact that

the Hodge star operation corresponds to matrix multiplication by ζε from the left, we get

Q(5) = (1 + ζε)eζF̃ (5) − (1 + ζε)Y , (4.30)

and

−R(5) = (1− ζε)eζF̃ (5) − (1− ζε)Y . (4.31)

Our goal will be to eliminate F̃ (5) from these equations to express R(5) as a function of

Q(5) and the fields M appearing in (4.23), and then solve (4.28) to determine the form

of Ŝ1. For this we shall determine F̃ (5) in terms of Q(5) using (4.30) and then substitute

in (4.31). Using the self-duality condition ζεF̃ (5) = F̃ (5), we can solve (4.30) as

F̃ (5) =

{
1 +

1

2
(1 + ζε)(eζ − 1)

}−1(1

2
Q(5) +

1

2
(1 + ζε)Y

)
. (4.32)

Substituting this into (4.31) we get

−R(5) =
1

2
(1− ζε)eζ

{
1 +

1

2
(1 + ζε)(eζ − 1)

}−1 (
Q(5) + (1 + ζε)Y

)
− (1− ζε)Y . (4.33)

Using the fact that Q(5) and (1 + ζε) are annihilated by (1 − ζε) from the left, we can

subtract terms proportional to (1− ζε)Q(5) and (1− ζε)(1 + ζε) from this expression.This

leads to

−R(5) =
1

2
(1− ζε)(eζ − 1)

{
1 +

1

2
(1 + ζε)(eζ − 1)

}−1 (
Q(5) + (1 + ζε)Y

)
− (1− ζε)Y .

(4.34)
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We now note that∫
P ∧Q =

1

5!

∫
εABPAQB = − 1

5!

∫
εABQAPB = −

∫
QT εP , (4.35)

where QT denotes the transpose of Q multiplied by a factor of 1/5!. Using this

and (4.34), (4.28) gives

δŜ1 = −1

2

∫
δQ(5)T ε(1− ζε)

[
1

2
(eζ − 1)

{
1 +

1

2
(1 + ζε)(eζ − 1)

}−1
Q(5)

+
1

2
(eζ − 1)

{
1 +

1

2
(1 + ζε)(eζ − 1)

}−1
(1 + ζε)Y − Y

]
+ δM Ŝ1 . (4.36)

Our goal will be to see if we can integrate this to get Ŝ1. To this end we define:

M≡ (ζ − ε)

{
(eζ − 1)

(
1 +

1

2
(1 + ζε)(eζ − 1)

)−1
ζ

}
(ε+ ζ) . (4.37)

It is now easy to see using (4.18) and the relation Q(5) = ζεQ(5) = 1
2(1 + ζε)Q(5) that we

can express (4.36) as

δŜ1 =
1

8

∫
δQ(5)TMQ(5) +

1

2

∫
δQ(5)T

[
1

2
MY − (ζ − ε)Y

]
+ δM Ŝ1 . (4.38)

We can evaluate M by first expanding the terms inside the curly bracket on the right

hand side of (4.37) in a Taylor series in eζ− 1, and then expanding each term in this series

in binomial expansion. In any given term in this expansion containing products of e, ζ

and ε we can now try to reduce the number of terms in the product using (4.18) and the

fact that εζ acting on (ε+ ζ) from the left gives (ε+ ζ) and ζε acting on (ζ − ε) from the

right gives −(ζ − ε). Using this it is easy to check that each term in the expansion can be

brought to (ζ − ε)(eζ)nζ(ζ + ε) possibly multiplied by a power of det ê. Since each of these

represent a symmetric matrix, we conclude that M is a symmetric matrix. Therefore the

following action satisfies (4.38)

Ŝ1 =
1

16

∫
Q(5)TMQ(5) +

1

2

∫
Q(5)T

[
1

2
MY − (ζ − ε)Y

]
+ S̃1(M) , (4.39)

where S̃1 is independent of Q(5) and P (4) but could depend on the other fields of the theory.

In order to determine S̃1 we have to compare δMS1 with δMS
′
1. Recall that in com-

puting δMS
′
1 we keep fixed P (4) and Q(5) while in computing δMS1 we keep fixed C(4) or

equivalently F (5). Now we get from (4.23) and (4.39):

δMS
′
1 = δM Ŝ1 =

1

2

∫
δY T

[
1

2
M− (ε+ ζ)

]
Q(5) + δM S̃1 +O(δê) (4.40)

where O(δê) denote terms proportional to δê — these would come from variation of M.

Note that we have transposed the matrix sandwiched between Q(5)T and Y using the

symmetry of M. Using (4.37), and after some algebra, this can be expressed as

δMS
′
1 = −

∫
δY T εeζ

(
1 +

1

2
(1 + ζε)(eζ − 1)

)−1
Q(5) + δM S̃1 +O(δê) . (4.41)
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On the other hand δMS1 can be computed from (4.4), (4.1):

δMS1 = −
∫
δY ∧ (?gF̂

(5) + F (5)) +O(δê) = −
∫
δY ∧

(
2F̂ (5) − Y

)
+O(δê) , (4.42)

where in the second step we have used the relation ?gF̂
(5) = F̂ (5). In the matrix notation

this equation takes the form

δMS1 = −
∫
δY T ε

(
2F̂ (5) − Y

)
+O(δê) . (4.43)

Using (4.21), (4.32), and some algebra, we arrive at

δMS1 = −
∫
δY T ε e ζ

(
1+

1

2
(1 + ζε)(eζ − 1)

)−1
Q(5)−

∫
δY T ζ Y +

1

2

∫
δY TMY +O(δê) .

(4.44)

Comparing (4.41) and (4.44) we get

δM S̃1 = −
∫
δY T ζ Y +

1

2

∫
δY TMY +O(δê) , (4.45)

and hence

S̃1 = −1

2

∫
Y T ζ Y +

1

4

∫
Y TMY + · · · , (4.46)

where · · · now denotes some functional of êaµ only. However such a term, under a variation

of êaµ, will give a non-vanishing contribution to δMS
′
1 even when Q(5) and Y vanish. It

is easy to see from (4.4) that δMS1 does not have such terms. Therefore if we want the

equality of δMS
′
1 and δMS1 to hold even for variation with respect to êaµ, then the · · ·

terms in (4.46) must vanish. Therefore we get from (4.23), (4.39), (4.46)

S′1 =
1

2

∫
dP (4) ∧ ∗dP (4) −

∫
dP (4) ∧Q(5) +

1

16

∫
Q(5)TMQ(5)

+
1

2

∫
Q(5)T

[
1

2
MY − (ζ − ε)Y

]
− 1

2

∫
Y T ζ Y +

1

4

∫
Y TMY . (4.47)

This is what should replace the action (4.4) in this formulation. Note that unlike in the

case of the action (4.4), where a self-duality constraint has to be imposed after deriving

the equations of motion, there is no such additional constraint for the action (4.47).

In order to verify that the classical equations of motion derived from (4.47) are equiv-

alent to the usual equations of motion of type IIB string theory, we also need to check that

the variation of S′1 with respect to êab at fixed P (4), Q(5) agrees with the variation of S1
with respect to êab at fixed F (5). In making this comparison we can ignore possible depen-

dence on êab entering through Y since we have already ensured that the terms involving

δY agree between δMS1 and δMS
′
1. Let us denote by δe the variation with respect to êab

at fixed Y , P (4), Q(5) while .acting on S′1 and fixed Y , F (5) while acting on S1. We need

to show the equality of δeS1 and δeS
′
1. Now from (4.47) we have

δeS
′
1 =

1

16

∫
Q(5)T δMQ(5) +

1

4

∫
Q(5)T δMY +

1

4

∫
Y T δMY. (4.48)
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Using (4.32) and the results (1 − εζ)δM = 2 δM = δM(1 + ζε) that follows from (4.37),

we can express this as

δeS
′
1 =

1

4

∫
F̃ (5)T

{
1 +

1

2
(1 + ζε)(eζ − 1)

}T
δM

{
1 +

1

2
(1 + ζε)(eζ − 1)

}
F̃ (5) . (4.49)

From (4.37) we get

δM = (ζ − ε)
(

1 +
1

2
(e ζ − 1)(1 + ζ ε)

)−1
δe ζ

(
1 +

1

2
(1 + ζ ε)(e ζ − 1)

)−1
(1 + ζ ε) .

(4.50)

Using this, and the result (1 + ζ ε)F̃ (5) = 2F̃ (5), we get

δeS
′
1 =

1

2

∫
F̃ (5)T

{
1 +

1

2
(1 + ζε)(eζ − 1)

}T
(ζ−ε)

(
1 +

1

2
(e ζ − 1)(1+ζ ε)

)−1
δe ζ F̃ (5) .

(4.51)

Let us now turn to the computation of δeS1. To make the metric dependence of (4.4)

manifest we introduce the matrix notation:

GAB = ga1b1 · · · ga5b5 for A = (a1, · · · a5), B = (b1, · · · b5) , (4.52)

and express (4.4) as

S1 = − 1

2× 5!

∫ √
− det g F̂

(5)
A GABF̂

(5)
B +

1

5!

∫
F

(5)
A εAB YB . (4.53)

This gives

δeS1 = − 1

2× 5!

∫
(δ
√
− det g) F̂

(5)
A GABF̂

(5)
B − 1

2× 5!

∫ √
− det g F̂

(5)
A δGABF̂

(5)
B . (4.54)

The first term vanishes due to the self-duality constraint (4.5) on F̂ (5). The second term

can be simplified using (4.21) and

G = EζE ,
√
− det g = − det ê . (4.55)

This gives, recalling that the definition of F̃ (5)T includes a transpose and a multiplicative

factor of 1/5!:

δeS1 = −1

2

∫
(− det ê) F̃ (5)T ζ e (δE ζ E + E ζ δE) e ζ F̃ (5) . (4.56)

Since E = e−1 we have δE = −e−1δee−1. Using this we can simplify this equation as

δeS1 =
1

2

∫
(− det ê) F̃ (5)T (ζ δe e−1 + e−1 δe ζ)F̃ (5) =

∫
(− det ê) F̃ (5)T e−1 δe ζ F̃ (5) ,

(4.57)

where in the second step we have replaced the first term in the middle expression by its

transpose. Using (4.18) and (4.19) we can write

F̃ (5)T = −F̃ (5)T ε ζ = −F̃ (5)T ζ ζ ε ζ = −(− det ê)−1 F̃ (5)T ζ e ε e . (4.58)
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Substituting this into (4.57) we get

δeS1 = −
∫
F̃ (5)T ζ e ε δe ζ F̃ (5) . (4.59)

From (4.51) and (4.59) we now get

δeS
′
1 − δeS1

=
1

2

∫
F̃ (5)T

[{
1 +

1

2
(1+ζε)(eζ−1)

}T
(ζ − ε)+2 ζ e ε

(
1+

1

2
(e ζ − 1)(1+ζ ε)

)]
(

1 +
1

2
(e ζ − 1)(1 + ζ ε)

)−1
δe ζ F̃ (5) . (4.60)

Straightforward manipulation of the expression inside the square bracket using the self-

duality of F̃ (5) gives

δeS
′
1 − δeS1 = 0 . (4.61)

This shows complete equivalence between the equations of motion derived from S1 + S2
and S′1 + S2.

Given the action S′1 + S2, one can formally quantize this using Batalin-Vilkovisky

(BV) formalism following the same route as for the string field theory action of [5], since

the structure of gauge transformations in the two theories are similar. However this theory

will suffer from the usual ultraviolet divergences of superstring theory. Therefore the full

quantization of the theory will require using the full string field theory. For this reason, the

utility of this action lies not in the fact that we can use it to quantize type IIB supergravity,

but in that it is through action of this type that one can make a direct link between

superstring field theory — needed for a systematic quantization of superstring theory —

and supergravity describing the low energy dynamics of the theory. This construction

also throws light on an apparent puzzle — it has been known since early days of string

theory that the RR vertex operators in the canonical (−1/2,−1/2) picture couple directly

to the RR field strengths instead of RR gauge fields, while supergravity theories, including

type IIA supergravity which has an action, are naturally formulated in terms of the gauge

fields. The formulation of type IIB supergravity presented here illustrates how supergravity

theories can be formulated directly in terms of field strengths. This also tells us that the

version of supergravity that will emerge naturally from string field theory should involve a

formulation in which the other RR fields are also described in terms of their field strengths.

Such a formulation can be easily obtained by generalizing the construction described here,

although this is not necessary for being able to write down the action.

5 General coordinate transformation

Even though our action is not manifestly invariant under general coordinate transformation,

since the equations of motion are equivalent to the equations of motion of type IIB super-

gravity, the formalism has hidden general coordinate invariance. In this section we shall

determine the general coordinate transformation laws for various fields in our formalism.
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First of all, for all the fields other than P (4) and Q(5), collectively called M in (2.8),

the general coordinate transformation rules are the same as in the original formulation

of type IIB supergravity since these fields are in one to one correspondence in the two

formalisms. This includes also the vielbein fields, but we should keep in mind that general

coordinate transformations have to be accompanied by a local Lorentz transformation to

keep the vielbein symmetric. Since under combined infinitesimal general coordinate and

local Lorentz transformations generated by the parameters ξa and ωab = −ωba, we have

δêab = ∂aξ
c êcb + ξc ∂cêab + êac η

cd ωdb , (5.1)

the requirement that δêab remains symmetric determines ωab in terms of ξa via the relations:

êac η
cd ωdb − êbc ηcd ωda = ∂bξ

c êca − ∂aξc êcb . (5.2)

This compensating local Lorentz transformation must also act on the fermions under a

general coordinate transformation.

For determining the transformation laws of P (4) and Q(5) we again draw our insight

from the structure of gauge transformations in superstring field theory given in (2.6).

In the truncated version of the theory in which the only field coming from ψ̃ is P (4),

the gauge transformation parameters are also truncated with λ̃ giving only the 3-form

gauge transformation parameter Ξ(3) that generates P (4) → P (4) + dΞ(3) transformation,

and λ containing all other gauge transformation parameters including general coordinate

transformation. If we denote by δξ the general coordinate transformation with infinitesimal

parameter ξ then it follows from (2.6) that δξP
(4) and δξQ

(5) will be a function of the fields

coming from ψ. This includes Q(5) and other fields collectively denoted by M in (2.8) but

does not include P (4). This is clearly an unusual transformation law for P (4) since even

the usual term ξa∂aP
(4) will not be present in the transformation of P (4).6

We now note the following:

1. We have seen in section 4 that the variation δM of S1 with respect to all fields at fixed

F (5) agrees with the variation δM of S′1 with respect to all fields at fixed P (4) and

Q(5). As a special case, this also applies to variations induced by general coordinate

transformation.

2. S1 given in (4.4) is manifestly invariant under general coordinate transformation if we

regard F (5) as an independent 5-form field variable and F̂ (5) to be given by F (5) +Y .

3. Therefore if we can ensure that the variation of S′1 under the general coordinate

transformation of P (4) and Q(5) agrees with the variation of S1 under the general

coordinate transformation of F (5) then we would have proved the general coordinate

invariance of S′1. Denoting by the symbol δ′ξ the transformation of the action induced

by the general coordinate transformation of F (5), P (4) and Q(5) only, the requirement

given above translates to

δ′ξS
′
1 = δ′ξS1 . (5.3)

6Unusual form of general coordinate transformation laws also appear in double field theories [32–35].
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4. Since S2 is manifestly invariant under general coordinate transformation, this will

also prove the general coordinate invariance of S′1 + S2.

Note the emphasis on the fact that in computing δ′ξS1 we need to regard F (5) as an inde-

pendent field variable. The reason for this is as follows. As is well known, while checking

symmetries of the action under a given transformation we cannot use equations of motion.

For S′1 this translates to the statement that we should not use eqs. (4.25), (4.26) and (4.27).

However we are allowed to use the self-duality of Q(5) since this is an algebraic constraint

on the field imposed at the beginning. We shall follow this guideline while computing

δ′ξS
′
1. Now for S1 we normally regard C(4) as independent variable. If we calculate the

corresponding change in S1 under general coordinate transformation of C(4) then in the

resulting expression we would have used the Bianchi identity dF (5) = 0 already since this

is automatic when F (5) is expressed in terms of C(4). Since under the identification (4.29)

this translates to the equation of motion (4.27) derived from S′1, we can no longer compare

δ′ξS1 and δ′ξS
′
1 off-shell. To avoid this we proceed by noting that S1 given in (4.4), with

the identification F̂ (5) = F (5) + Y , is invariant under general coordinate transformation

even if we regard F (5) as an independent 5-form field variable. The resulting expression for

δ′ξS1 holds even when F (5) does not satisfy Bianchi identity, and furthermore since this is

computed for general F (5), the formula for δ′ξS1 will continue to hold when we impose the

self-duality constraint (4.5) after computing the variation. Therefore if we can ensure that

the identity (5.3) holds for this expression for δ′ξS1, this would establish the invariance of

S′1 under general coordinate transformation.

We begin with the computation of δ′ξS
′
1. It follows from (4.23) and (4.28) that

δ′ξS
′
1 =

∫
dP (4)∧∗d δξP (4)−

∫
dP (4)∧δξ Q(5)−

∫
d δξP

(4)∧Q(5)− 1

2

∫
R(5)∧δξQ(5) . (5.4)

This will eventually have to be compared with δ′ξS1. Now δ′ξS1 can depend on

Q(5) through its dependence on F (5) and the relation between F (5) and Q(5) encoded

in (4.32), (4.1), (4.20), but it does not have any dependence on P (4). Therefore the terms

involving P (4) in δ′ξS
′
1 must cancel among themselves. Since we have argued that neither

δξP
(4) nor δξQ

(5) depend on P (4) we see that only the first two terms on the right hand

side of (5.4) have P (4) dependence and hence they must cancel. This can be achieved by

setting

δξQ
(5) = d δξP

(4) + ∗d δξP (4) . (5.5)

With this, (5.4) reduces to

δ′ξS
′
1 = −

∫
d δξP

(4) ∧Q(5) − 1

2

∫
R(5) ∧ δξQ(5) . (5.6)

Using (5.5) again and the anti-self-duality of R(5), we can express this as

δ′ξS
′
1 = −

∫
d δξP

(4) ∧ (Q(5) −R(5)) . (5.7)
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Let us now compute δ′ξS1. Using (4.4) and the fact that in computing δ′ξS1 we only

allow F (5) to vary, we get

δ′ξS1 = −
∫
δξF

(5) ∧ (?gF̂
(5) − Y ) = −

∫
δξF

(5) ∧ F (5) , (5.8)

where in the second step we have used the self-duality relation (4.5) and the relation

F̂ (5) − Y = F (5) given in (4.1). Now for any pair of p and (11− p) forms K(p) and L(11−p)

in 9+1 dimensions, we have the general relations

δξK
(p) = 1ξ dK

(p) + d(1ξK
(p)),

∫
1ξK

(p) ∧ L(11−p) = −
∫

1ξL
(11−p) ∧K(p) , (5.9)

where 1ξ denotes the contraction of ξ with the differential form. Using this we get

δξF
(5) = d 1ξF

(5) + 1ξ dF
(5) , (5.10)

and hence

δ′ξS1 = −
∫

(d 1ξF
(5) + 1ξ dF

(5)) ∧ F (5) = −
∫

(d 1ξF
(5) ∧ F (5) − 1ξF

(5) ∧ dF (5))

= −
∫

(d 1ξF
(5) ∧ F (5) + d 1ξF

(5) ∧ F (5)) = −2

∫
d 1ξF

(5) ∧ F (5) . (5.11)

Comparing the right hand sides of (5.7) and (5.11), and using the identification (4.29), we

now see that δ′ξS1 and δ′ξS
′
1 agree if we set

δξP
(4) = 1ξF

(5) = 1ξ(F̂
(5) − Y ) . (5.12)

Using (4.21), (4.32) this can be expressed as

δξP
(4) = 1ξ

[
e ζ

{
1 +

1

2
(1 + ζε)(eζ − 1)

}−1(1

2
Q(5) +

1

2
(1 + ζε)Y

)
− Y

]
. (5.13)

This, together with (5.5), determines the general coordinate transformation laws of all the

fields appearing in the action (4.47).

It is easy to see that when equations of motion are satisfied, the transformation law of

Q(5) given in (5.5), (5.13) agrees with the one induced from the transformation law of F (5)

via the identification (4.29). To this end note that (5.5) and (5.12) give

δξQ
(5) = d 1ξF

(5) + ∗d 1ξF
(5) . (5.14)

On the other hand (4.29) gives

Q(5) = F (5) + ∗F (5) . (5.15)

Thus on-shell, when dF (5) = 0, the transformation induced on Q(5) from (5.10) is

δξQ
(5) = δξF

(5) + ∗δξF (5) = d 1ξF
(5) + ∗d 1ξF

(5) . (5.16)

We see that (5.16) and (5.14) are in perfect agreement. Eq. (5.15) also explains why the

transformation laws of Q(5) are somewhat unusual. Whereas F (5) transforms as a 5-form

under general coordinate transformation, the ∗ in the second term represents Hodge dual

with respect to Minkowski metric, leading to non-standard transformation laws of this term.
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6 Supersymmetry

In this section we shall discuss supersymmetry of the action constructed in section 4. Our

goal will be to propose supersymmetry transformation laws δ′s of the new variables P (4),

Q(5) and M that leave the new action S′1 + S2 given in (4.24) invariant. We propose the

following transformations:

δ′sM = δsM, δ′sP
(4) = δsC

(4), δ′sQ
(5) = d δsC

(4) + ∗d δsC(4) , (6.1)

where δs denotes the usual supersymmetry transformation laws described in [3, 4]. It is

understood that on the right hand side of (6.1) all factors of dC(4) have to be replaced in

terms of Q(5) using (4.21) and (4.32). To this end it is important that in the expressions

for δsC
(4) and δsM , C(4) always appears in the combination dC(4) [4], since an explicit

factor of C(4) without derivative could not have been expressed back in terms of Q(5). Our

goal will be to show that δ′s(S
′
1 + S2) vanishes. In doing so, we can use the self-duality of

Q(5) since this condition is valid off-shell, but not the relation (4.27) since the latter is an

equation of motion derived from S′1 + S2.

For computing δ′s(S
′
1 + S2) we shall make use of the known results on the δs transfor-

mation properties of the original action S1 + S2. However instead of regarding C(4) as an

independent variable, it will be more useful for us to regard F (5) as an independent variable

satisfying the self-duality condition ?gF̂
(5) = F̂ (5). In this case we can no longer use the

Bianchi identity dF (5) = 0. The expression for δs(S1 + S2) under these conditions can be

found using explicit computation, but we shall extract the result from known results in the

literature as follows:

1. An action for type IIB supergravity was proposed in eq. (4.7) of [23]. This action had,

besides the usual fields of type IIB supergravity which we have called C(4) and M ,

an additional scalar field a. The scalar field enters the action through a combination

f4 which is also proportional to F̂ (5) − ?gF̂ (5). The f4 dependent term in the action

is quadratic in f4. We can identify the action S1 + S2 appearing in (4.3) as the one

given in [23] without the quadratic term in f4 and without the additional scalar field

a. (There are also some obvious changes in the normalizations and notations that

can be easily identified but will not be described here.)

2. The action given in [23] was shown to be invariant under supersymmetry transfor-

mations that agree with those used in [3, 4] after setting f4 = 0. During this analysis

C(4) was taken as the independent variable instead of F (5), and as a consequence the

Bianchi identity dF (5) = 0 was used.

3. Since the action of [23] depends on f4 through a term quadratic in f4, its first order

variation with respect to f4 vanishes at f4 = 0. Therefore the supersymmetry of the

action of [23] guarantees that the action S1 + S2 is supersymmetric if after taking

the supersymmetry variation we set F̂ (5) to be equal to ?gF̂
(5) since this sets f4 to 0.

However if we do not use the Bianchi identity dF (5) = 0 then in general there will be
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additional terms proportional to dF (5) in the expression for δs(S1 + S2). This allows

us to write

δs(S1 + S2) = Ξ , (6.2)

where Ξ denotes some term proportional to dF (5).

4. For computing Ξ we can organize each term in δs(S1 +S2) using integration by parts

such that the supersymmetry transformation parameter has no derivative acting on

it. In this case it is easy to see that since S2 does not depend on F (5), the entire

contribution to Ξ comes from the variation of S1. The variation of C(4) generates∫
δsC

(4)∧dF (5). On the other hand, using the result of [3, 4] that δY = −d δC(4)+· · · ,
where · · · contain terms without derivatives of the supersymmetry transformation

parameters, one finds from (4.42) that the variation of Y generates−2
∫
δsC

(4)∧dF (5).

This gives

Ξ = −
∫
δsC

(4) ∧ dF (5) . (6.3)

Let us now return to our main goal, which is to show that δ′s(S
′
1 + S2) vanishes. Since

S2 depends only on the set of variables M , we have, from (6.1), δ′sS2 = δsS2. Therefore

using (6.2), we get

δ′s(S
′
1 + S2) = δ′sS

′
1 − δsS1 + Ξ . (6.4)

The Ξ term on the right hand side is important since using dF (5) = 0 would translate

to (4.27) under the identification (4.29), and we are not allowed to use this relation. We

now note from (4.23), (4.28) that

δ′sS
′
1 =

∫
δ′sP

(4) ∧ d
(
Q(5) − ∗dP (4)

)
+

1

2

∫
δ′sQ

(5) ∧ (dP (4)−∗dP (4) +R(5)) + δ̃sS
′
1 , (6.5)

where δ̃s denotes the variation induced by δ′s (or equivalently δs) variation of M . Using (6.1)

this takes the form

δ′sS
′
1 =

∫
δsC

(4) ∧ d
(
Q(5) −R(5)

)
+ δ̃sS

′
1 . (6.6)

On the other hand we have from (4.4),

δsS1 = −
∫
δsF

(5) ∧ (?gF̂
(5) − Y ) + δ̃sS1 = −

∫
d δsC

(4) ∧ (?gF̂
(5) − Y ) + δ̃sS1

=

∫
δsC

(4) ∧ d(F̂ (5) − Y ) + δ̃sS1 =
1

2

∫
δsC

(4) ∧ d
(
Q(5) −R(5)

)
+ δ̃sS1 , (6.7)

where in the second line we have used the self-duality constraint ?gF̂
(5) = F̂ (5) which we are

allowed to use, and the identification (4.21), (4.29). Now since we have shown in section 4

that the variation of S′1 and S1 with respect to M are identical, we have δ̃sS
′
1 = δ̃sS1.

Therefore we get from (6.4), (6.6), (6.7):

δ′s(S
′
1 + S2) =

1

2

∫
δsC

(4) ∧ d
(
Q(5) −R(5)

)
+ Ξ = 0 , (6.8)

where in the last step we have used (6.3), (4.21), (4.29). This establishes supersymmetry

of the action.

We end the section with two observations:
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1. The form of the transformation laws given in (6.1) is consistent with the general form

of gauge transformations described in [5] and reviewed in (2.6), according to which

the supersymmetry transformation laws of various fields, which is a special case of

the gauge transformation generated by λ, should be independent of P (4).

2. It is easy to verify that the supersymmetry transformation laws δ′s agree with δs after

using the identification (4.30). For all fields encoded in M this is automatic conse-

quence of (6.1); so we only need to check this for Q(5). We have from (4.21), (4.30)

Q(5) = F̂ (5) + ∗F̂ (5) − Y − ∗Y = F (5) + ∗F (5) . (6.9)

Therefore

δsQ
(5) = δsF

(5) + ∗δsF (5) = d δsC
(4) + ∗d δsC(4) = δ′sQ

(5) , (6.10)

where in the last step we have used (6.1). This shows that the transformations δs
and δ′s agree.

7 Lorentz covariant gauge fixing and Feynman rules

String field theory action of [5] admits a Lorentz covariant gauge fixing at the full quantum

level — the ‘Siegel gauge’. This suggests that the action given in (4.47) (together with S2)

must also admit a Lorentz covariant gauge fixing. In this section we shall describe how

this can be done in flat space-time background.

Since gauge transformations of most fields are standard and we can choose the analog

of Lorentz / Feynman gauge for them maintaining manifest Lorentz covariance, we shall

focus on the P (4) → P (4) + dΞ(3) gauge transformation. We can fix a gauge by adding a

gauge fixing term of the form

1

2

∫
∗ d ∗ P (4) ∧ d ∗ P (4) . (7.1)

Since in flat space-time the background value of e is η, (eη − 1) and hence M has its ex-

pansion beginning at the first order in the fluctuations. Therefore the only terms quadratic

in P (4), Q(5) in the original action are the first two terms on the right hand side of (4.47).

After adding (7.1) to the action (4.47) the quadratic term involving P (4) and Q(5) takes

the form
1

2

∫
P (4) ∧ ∗(∗ d ∗ d+ d ∗ d ∗)P (4) +

∫
P (4) ∧ dQ(5) . (7.2)

In momentum space this corresponds to a term proportional to

1

2 × 4!

∫
d10k

[
P (4)abcd(−k) k2 P

(4)
abcd(k) + 2 i P (4)abcd(−k)keQ

(5)
eabcd(k)

]
=

1

2 × 4!

∫
d10k

[
(P (4)abcd(−k)

−i(k2)−1kfQ(5)fabcd(−k)) k2 (P
(4)
abcd(k) + i(k2)−1keQ

(5)
eabcd(k))

−Q(5)fabcd(−k)(k2)−1kf k
eQ

(5)
eabcd(k)

]
(7.3)

=
1

2 × 4!

∫
d10k

[
P̄ (4)abcd(−k) k2 P̄

(4)
abcd(k)−Q(5)fabcd(−k)(k2)−1kf k

eQ
(5)
eabcd(k)

]
,
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where

P̄
(4)
abcd(k) ≡ P (4)

abcd(k) + i(k2)−1keQ
(5)
eabcd(k) . (7.4)

We can now treat P̄ (4) as the independent field instead of P (4). Since this does not appear

anywhere else in the action, this describes a free field and hence decouples. Therefore the

only kinetic operator that is of relevance is that of Q(5). If we define the following operator

acting on 5-forms:

KA
B(k) = (k2)−1

(
ka1k

b1δa2
b2 · · · δa5b5 + δa1

b1ka2k
b2δa3

b3δa4
b4δa5

b5

+ · · ·+ δa1
b1 · · · δa4b4ka5kb5

)
, (7.5)

then the kinetic operator acting on Q(5) may be written as

− 1

4
ζ (1− ζε)K(k) (1 + ζε) , (7.6)

up to a constant of proportionality. The operator (1 + ζε)/2 on the right projects onto

self-dual 5-forms, whereas the operator (1 − ζε)/2 on the left projects onto anti-self-dual

5-forms reflecting the fact that only anti-self-dual 5-forms have non-zero contraction with

self-dual 5-forms. Thus the kinetic operator is a map from the space of self-dual 5-forms

to the space of anti-self-dual 5-forms. The propagator, which is i times the inverse of the

kinetic term, should be a map from the space of anti-self-dual 5-forms to the space of self-

dual 5-forms, also reflecting the fact that the propagator naturally acts on current dual

to field which is in this case anti-self-dual 5-form. It is easy to verify that the following

operator constitutes the inverse of the kinetic term in this sense:

∆ = −(1 + ζε)K(k) (1− ζε) ζ . (7.7)

This is the gauge invariant propagator of a 5-form field strength given e.g. in [36]. With

this propagator i∆ for the Q(5) field, and the vertices computed in the usual way from the

action S′1 +S2, we can now compute the tree level Green’s functions and S-matrix elements

of type IIB supergravity in the standard way. Loop corrections will require embedding this

theory into the full string field theory described in [5].
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