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Claudio Corianò,a,b Antonio Costantini,a Marta Dell’Attia and Luigi Delle Rosea

aDipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,
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Abstract: We extend a previous phenomenological analysis of photon lensing in an ex-

ternal gravitational background to the case of a massless neutrino, and propose a method

to incorporate radiative effects in the classical lens equations of neutrinos and photons.

The study is performed for a Schwarzschild metric, generated by a point-like source, and

expanded in the Newtonian potential at first order. We use a semiclassical approach,

where the perturbative corrections to neutrino scattering, evaluated at one-loop in the

Standard Model, are compared with the Einstein formula for the deflection using an im-

pact parameter formulation. For this purpose, we use the renormalized expression of the

graviton/fermion/fermion vertex presented in previous studies. We show the agreement

between the classical and the semiclassical formulations, for values of the impact param-

eter bh of the neutrinos of the order of bh ∼ 20, measured in units of the Schwarzschild

radius. The analysis is then extended with the inclusion of the post Newtonian corrections

in the external gravity field, showing that this extension finds application in the case of the

scattering of a neutrino/photon off a primordial black hole. The energy dependence of the

deflection, generated by the quantum corrections, is then combined with the standard for-

mulation of the classical lens equations. We illustrate our approach by detailed numerical

studies, using as a reference both the thin lens and the Virbhadra-Ellis lens.
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1 Introduction

According to classical general relativity (GR) massless particles follow null spacetime

geodesics which bend significantly in the presence of very massive sources. The gravi-

tational lensing enforced on their spatial trajectories provides important information on

the underlying distributions of matter and, possibly, of dark matter, which act as sources

of the gravitational field.

Several newly planned weak lensing experiments such as the Dark Energy Survey

(DES) [1], the Large Synoptic Survey Telescope (LSST) [2], both ground based, or from

space with the Wide-Field Infrared Survey Telescope (WFIRST) [3] and Euclid [4], are

expected to push forward, in the near future, the boundaries of our knowledge in cosmology.

In the analysis of the deflection by a single compact and spherically symmetric source,

one significant variable, beside the mass of the source, is the impact parameter of the

incoming particle beam, measured respect to the center of the source, which determines

the size of the deflection. It is very convenient to measure the impact parameter (b), which

is typical of a given collision, in units of the Schwarzschild radius rs ≡ 2GM , denoted as

bh ≡ b/rs. In the Newtonian approximation for the external background, this allows to

scale out the entire mass dependence of the lensing event.

For an impact parameter of the beam of the order of 105–106, the corresponding

deflection is rather weak, of the order of 1–2 arcseconds, as in the case of a photon skimming

the sun. Stronger lensing effects are predicted as the particle beam nears a black hole,

with deflections which may reach 30 arcseconds or more. These are obtained for impact

parameters bh of the order of 2 × 104. Even larger deflections, of 1 to 2 degrees or a

significant fraction of them, are generated in scatterings which proceed closer to the event

horizon [5]. In fact, as we are going to show, for closer encounters, with the beam located

between 20 and 100 bh, such angular deflections are around 10−2 radians in size, as predicted

by classical GR. A high energy cosmic ray of 10–100 GeV will then interact with the field

of the source by exchanging momenta far above the MeV region, and will necessarily be

sensitive to radiative effects, such as those due to the electroweak corrections.

Interactions with such momentum exchanges cannot be handled by an effective Newto-

nian potential, as derived, for instance, from the (loop corrected) scattering amplitude. We

recall that, in general, in the derivation of such a potential, one has to take into account

only non-analytic terms in the momentum transfer q. These are obtained from a given

amplitude and/or gravitational form factor of the incoming particle after an expansion at

small momentum. The analytic terms in the expansion correspond to contact interactions

which are omitted from the final form of the potential, being them proportional to Dirac

delta functions.

As one can easily check by a direct analysis, non-analytic contributions originate from

massless exchanges in the loops, which approximate the full momentum dependence of the

radiative corrections only for momentum transfers far below the MeV region. Therefore,

the validity of the method requires that the typical impact parameter of the beam, for

a particle with the energy of few GeV’s, be of the order of 106 Schwarzschild radii and

not less. For such a reason, if we intend to study a lensing event characterized by a close
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encounter between a cosmic ray and a black hole, we need to resort to an alternative

approach, which does not suffer from these limitations.

Finally, with the photon sphere located at bh ∼ 2.5 for a Schwarzschild metric, one

expects that very strong deflections are experienced by a beam for scattering events running

close to such a value of the impact parameter. This is also the radial distance from the

black hole center at which the scattering angle diverges. A simple expansion of the Einstein

formula for the deflection shows that this singularity is logarithmic [5]. In such extreme

cases the beam circulates around the source one or more times before escaping to infinity,

generating a set of relativistic images [6]. This is also the region where the simple Newtonian

approach, discussed in [5], fails to reproduce the classical GR prediction, as expected.

1.1 Comparing classical and semiclassical effects

The analysis of possible extensions of the classical GR prediction for lensing, with the

inclusion also of quantum effects in the interaction between the particle source and the

deflector (lens), has not drawn much attention in the past, except for a couple of very

original proposals [7, 8]. While these effects are expected to be small, even for huge

gravitational sources such as massive/supermassive black holes, they could provide, in

principle, a way to test the impact of quantum gravity and of other radiative corrections

to the propagation of cosmic rays. Close encounters of a beam with a localized source,

which could be a large black hole or a neutron star, are expected to be quite common

in our universe, although the probability of identifying a lensing event characterized by a

close alignment between the source, the lens and an earth based detector, especially for

neutrinos, is exceedingly rare [9]. The situation might be more promising for photons in

close encounters with primordial black holes, revealed by resorting to spaceborne detectors.

Such is the FERMI satellite [11], with source beams given by Gamma Ray Bursts

(GRBs) [10], which could detect fringes between primary and secondary paths of the GRBs

on its ultra sensitive camera, generated by a gravitational time delay. This approach was

termed in [10] “femtolensing”, due to the size of the Einstein radius characteristic of these

events, which was estimated to be of the order of a femtoarcsecond. As shown in [10], a

classical GR analysis based on the thin lens equation can be applied quite straightforwardly

also to this extreme situation.

An important point which needs to be addressed, in this case, concerns the quantum

features of these types of lensing events, since the Schwarzschild radius of a primordial

black hole, for a gamma ray photon, is comparable to its wavelength. Our analysis draws

a path in this direction.

The classical deflections of photons, as pointed out in the past and in a recent work [5],

can be compared at classical and quantum levels by equating the classical gravitational

cross section, written in terms of the impact parameter of the incoming photon beam, to

the perturbative cross section. The latter is expanded in ordinary perturbation theory

with the inclusion of the corresponding radiative corrections. The result is a differential

equation for the impact parameter of the beam, whose solution provides the link between

the two descriptions. In particular, the energy dependence, naturally present in the cross

section starting at one-loop order, allows to derive a new formula which relates bh to the
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energy E of the beam and to the angle of deflection α, bh(E,α). This dependence, which is

absent in Einstein’s formula, propagates into all the equations for the usual observables of

any lensing process: magnifications, cosmic shears, the light curve of microlensing events

and Shapiro time delays. Clearly, such a dependence implies, as noted in [19–21], that

radiative corrections induce a violation of the classical equivalence principle in General

Relativity. The violation of the equivalence principle, viewed from a quantum perspective,

is not surprising, since this principle is inherently classical and requires the localization

of the point particle trajectory on a geodesic. It can be summarized in the statement

that an experiment will not be able to determine the nature of the point particle which is

subjected to gravity, except for its mass. The notion of a point particle clearly clashes with

the quantum description, which is, on the other hand, inherently tight to Heisenberg’s

indetermination principle. For this reason, one expects that the inclusion of radiative

corrections will cause a violation of such principle.

Gravity, in this approach, is treated as an external background and the transition am-

plitude involves on the quantum side, in the photon case, the TV V vertex, where T denotes

the energy momentum tensor (EMT) of the Standard Model and V the electromagnetic

current. In the fermion case (f), the corresponding vertex is the Tff , with f denoting

a neutrino. The comparison between the classical and the semiclassical formula for the

deflection derived by this method can then be performed at numerical level, as shown in [5]

for the photons. The energy dependence of the bending angle, for a given impact parameter

of the photon beam, though small, is found to become more pronounced at higher energies,

due to the logarithmic growth of the electroweak corrections with the energy.

The goal of our present work is to propose a procedure which allows to include these

effects in the ordinary lens equations, illustrating in some detail how this approach can be

implemented in a complete numerical study. We mention that our semiclassical analysis is

quite general, and applies both to macroscopic and to microscopic black holes. In the case of

macroscopic black holes the procedure has to stop at Newtonian level in the external field.

In fact, post-Newtonian corrections, though calculable, render the perturbative expansion

in the external (classical) gravitational potential divergent, due to the macroscopic value

of the Schwarzschild radius. On the other hand, in the case of primordial black holes, the

very same corrections play a significant role in the deflection of a cosmic ray, and bring to

a substantial modification of the classical formulas.

1.2 Organization of this work

In the first part of our work we will extend a previous analysis of photon lensing [5],

developed along similar lines, to the neutrino case, presenting a numerical study of the

complete one-loop corrections derived from the electroweak theory. The formalism uses a

retarded graviton propagator with the effects of back reaction of the scattered beam on

the source not included, as in a typical scattering problem by a static external potential.

In this case, however, because of the presence of a horizon, we search for a lower bound

on the size of the impact parameter of the collision where the classical GR prediction and

the quantum one overlap. Indeed, above the bound the two descriptions are in complete

agreement. As already mentioned above, both in the fermion as in the photon case [5], this
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bound can be reasonably taken to lay around 20 bh, which is quite close to the horizon of

the classical source.

For smaller values of bh (4 < bh < 20), the two approaches are in disagreement, since

the logarithmic singularity in the angle of deflection, once the beam gets close to the photon

sphere, starts playing a significant role. This is expected, given the assumption of weak

field for the gravitational coupling, which corresponds to the Newtonian approximation in

the metric.

The second part of our work deals with the implementation of the semiclassical deflec-

tion within the formalism of the classical lens equations. We use the energy dependence

of the angular deflection to derive new lens equations, which are investigated numerically.

We quantify the impact of these effects both in the thin lens approximation, where the

trigonometric relations in the lens geometry are expanded to first order, and for a lens

with deflection terms of higher order included. As an example, in this second case, we

have chosen the Virbhadra-Ellis [12] lens equation. The observables that we discuss are

limited to solutions of these equations and to their magnifications, although time delays,

shears and the light curves of a typical microlensing event can be easily included in this

framework. We anticipate that the effects that we quantify are small and cover the mil-

liarcsecond region, remaining quite challenging to detect at experimental level. We hope

though, that the framework that we propose can draw further interest on this topic in the

future, both at theoretical and at phenomenological level.

In the third part of our study we discuss the post Newtonian formulation of the impact

parameter formalism, and apply it to the case of a compact source with a microscopic

Schwarzschild radius. This is the only case in which the gravitational corrections to the

Newtonian cross section can be consistently included in our approach in a meaningful

way. We then summarize our analysis and discuss in the conclusions some possible future

directions of possible extensions of our work.

2 Gravitational interaction of neutrinos

We start our analysis with a brief discussion of the structure of the gravitational interaction

of neutrinos, building on the results of [13, 14], to which we refer for additional details, and

that we are going to specialize to the case of a massless neutrino. An analysis of gravity

with the fermion sector is contained in [15]. We simply recall that the dynamics of the

Standard Model in external gravity is described by the Lagrangian

S = SG + SSM + SI = − 1

κ2

∫
d4x
√
−g R+

∫
d4x
√
−gLSM + χ

∫
d4x
√
−g RH†H. (2.1)

This includes the Einstein term SG, the SSM action and a term SI involving the Higgs

doublet H [16], called the term of improvement. SSM, instead, is obtained by extending

the ordinary Lagrangian of the Standard Model to a curved metric background. The term

χ is a parameter which, at this stage, is arbitrary and that at a special value (χ ≡ χc = 1/6)

guarantees the renormalizability of the model at leading order in the expansion in κ.

Deviations from the flat metric ηµν = (+,−,−,−) will be parametrized in terms of

the gravitational coupling κ, with κ2 = 16πG and with G being the gravitational Newton’s
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constant. At this order the metric is given as gµν = ηµν + κhµν , with hµν describing its

fluctuations. We will consider two spherically symmetric and static cases, corresponding

to the Schwarzschild and Reissner-Nordstrom metrics. The first, in the weak field limit

and in the isotropic form is given by

ds2 ≈
(

1− 2GM

|~x|

)
dt2 −

(
1 +

2GM

|~x|

)
d~x · d~x. (2.2)

In this case the fluctuation tensor takes the form

hµν(x) =
2GM

κ|~x|
S̄µν , S̄µν ≡ ηµν − 2δ0

µδ
0
ν . (2.3)

The inclusion of higher order terms in the weak field expansion will be discussed in the

following sections.

The coupling of the gravitational fluctuations to the fields of the Standard Model

involves the EMT, which is defined as

Tµν =
2√
−g

δ (SSM + SI)

δgµν

∣∣∣∣
g=η

(2.4)

with a tree-level coupling summarized by the action

Sint = −κ
2

∫
d4xTµνh

µν , (2.5)

where Tµν is symmetric and covariantly conserved. The complete expression of the EMT of

the Standard Model, including ghost and gauge-fixing contributions can be found in [17].

The Higgs field is parameterized in the form

H =

(
−iφ+

1√
2
(v + h+ iφ)

)
(2.6)

in terms of h, φ and φ±, which denote the physical Higgs and the Goldstone bosons of

the Z and W ′ s respectively. v is the Higgs vacuum expectation value. The terms of the

Lagrangian SI , generate an extra contribution to the EMT which is given by

TµνI = −2χ(∂µ∂ν − ηµν�)H†H = −2χ(∂µ∂ν − ηµν�)

(
h2

2
+
φ2

2
+ φ+φ− + v h

)
, (2.7)

the term of improvement, which can be multiplied by an arbitrary constant (χ). As men-

tioned above, it is mandatory to choose the value χ = 1/6 for any insertion of the EMT

on the correlators of the Standard Model. These are found to be ultraviolet finite only if

TµνI is included [16–18].

We will be dealing with the Tff̄ vertex, where T denotes the EMT and f ≡ νf a

neutrino of flavour f , and work in the limit of zero mass of the neutrinos. The vertex,

to lowest order, is obtained from the EMT of the neutrino. For instance, the explicit

– 6 –
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expression of the EMT for the (left-handed, ν ≡ νL) electron neutrino is given by

T ν
e

µν =
i

4

{
ν̄eγµ

→
∂ ν ν

e − ν̄eγµ
←
∂ ν ν

e +
2e

sin 2θW
ν̄eγµ

1− γ5

2
νeZν

− 2i
e√

2 sin θW

(
ν̄eγµ

1− γ5

2
eW+

ν + ēγµ
1− γ5

2
νeW−ν

)
+ (µ↔ ν)

}
− ηµνLνe ,

(2.8)

with

Lνe = iν̄eγµ∂µν
e +

e

sin 2ϑW
ν̄eγµ

1− γ5

2
νeZµ

+
e√

2 sinϑW

(
ν̄eγµ

1− γ5

2
eW+

µ + ēγµ
1− γ5

2
νeW−µ

)
.

(2.9)

In momentum space, in the case of a massless fermion, the vertex takes the form

V (0)µν =
i

4
(γµ(p1 + p2)ν + γν(p1 + p2)µ − 2ηµν(p/1 + p/2)) . (2.10)

while in the case of neutrinos we have

V (0)µν
ν = V (0)µν PL (2.11)

with PL = (1 − γ5)/2 being the chiral projector. We refer to appendix G for a list of the

relevant Feynman rules necessary for the computation.

We will denote with

T̂ (0)µν = ū(p2)V (0)µνu(p1), (2.12)

the corresponding invariant amplitude, a notation that we will use also at one-loop level

in the electroweak expansion. We introduce the two linear combinations of momenta p =

p1+p2 and q = p1−p2 to express our results. It has been shown that the general Tff̄ vertex,

for any fermion f of the Standard Model, decomposes into six different contributions [13],

but in the case of a massless neutrino only three amplitudes at one-loop level are left,

denoted as

T̂µν = T̂µνZ + T̂µνW + T̂µνCT . (2.13)

In the expression above, the subscripts indicate the contributions mediated by virtual Z

and W gauge bosons, while CT indicates the contribution from the counterterm.

We show in figure 1 some of the typical topologies appearing in their perturbative

expansion.

Two of them are characterized by a typical triangle topology, while the others denote

terms where the insertion of the EMT and of the fermion field occur on the same point.

The computation of these diagrams is rather involved and has been performed in dimen-

sional regularization using the on-shell renormalization scheme. Neutrinos interactions, in

– 7 –
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p2

p1

h

(a)

p2

p1

h

(b)

h

p2

p1

(c)

h p2

p1

(d)

Figure 1. The one-loop Feynman diagrams of the neutrino vertex in a gravitational background.

The dashed lines can be Z and W .

the limit of massless neutrinos, involve only few of the structures of the Tff̄ tensor de-

composition presented in [13]. In this case we are left with only one tensor structure and

hence only one form factor for each sector

T̂µνZ = i
GF

16π2
√

2
fZ1 (q2,mZ) ū(p2)OµνC1 u(p1) ,

T̂µνW = i
GF

16π2
√

2
fW1 (q2,mf ,mW ) ū(p2)OµνC1 u(p1) , (2.14)

where we have defined the vertex

OµνC1 = (γµ pν + γν pµ)PL. (2.15)

The counterterms needed for the renormalization of the vertex can be obtained by pro-

moting the counterterm Lagrangian of the Standard Model from a flat spacetime to the

curved background, and then extracting the corresponding Feynman rules, as for the bare

one. We obtain

T̂µνCT = − i
4

ΣL(0) ū(p2)OµνC1u(p1), (2.16)

where we have denoted with ΣL the neutrino self-energy

ΣL(p2) =
GF

16π2
√

2

[
ΣL
Z(p2) + ΣL

W (p2)

]
, (2.17)

which is a combination of the self-energy contributions

ΣL
W (p2) = −4

[ (
m2
f + 2m2

W

)
B1

(
p2,m2

f ,m
2
W

)
+m2

W

]
(2.18)

ΣL
Z(p2) = −2m2

Z

[
2B1

(
p2, 0,m2

Z

)
+ 1

]
, (2.19)

with

B1

(
p2,m2

0,m
2
1

)
=
m2

1 −m2
0

2p2

[
B0(p2,m2

0,m
2
1)− B0(0,m2

0,m
2
1)

]
− 1

2
B0(p2,m2

0,m
2
1), (2.20)

expressed in terms of the scalar form factor B0, given in appendix E together with all the

other relevant scalar integrals. We have denoted with mZ and mW the masses of the Z

– 8 –
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and W gauge bosons; with q2 the virtuality of the incoming momentum of the EMT and

mf is the mass of the fermion of flavor f running in the loops.

The explicit expressions of the form factors appearing in (2.14) is given by

fZ1 = −2m2
Z −

4m4
Z

3 q2
+

(
2 +

7m2
Z

3 q2

)
A0(m2

Z)−
(

17m2
Z

6
+

7m4
Z

q2
+

4m6
Z

q4

)
B0(q2, 0, 0)

+
2

3 q4
m2
Z(2m2

Z + q2) (3m2
Z + 2q2)B0(q2,m2

Z ,m
2
Z) (2.21)

− 4

q4
m6
Z (m2

Z + q2) C0(0,m2
Z ,m

2
Z)− 1

q4
m2
Z (m2

Z + q2)2(4m2
Z + q2) C0(m2

Z , 0, 0),

with C0 denoting the scalar 3-point function, and with the form factor fW1 related to the

exchange of the W ’ s given by

fW1 =
m2
f

2
− 4m2

W +
4

3q2
(m4

f +m2
fm

2
W − 2m4

W )− 1

3q2
(m2

f + 2m2
W )
(
A0(m2

f )−A0(m2
W )
)

− 2

q2

(
m4
f +m2

fm
2
W − 2m2

W (m2
W + q2)

)
B0(0,m2

f ,m
2
W ) +

1

6q4

(
− 24m6

f − 10m4
fq

2

+m2
f (72m4

W + 46m2
W q

2 + q4)− 2m2
W (24m4

W + 42m2
W q

2 + 17q4)
)
B0(q2,m2

f ,m
2
f )

+
1

3q4

(
12m6

f + 12m4
fq

2 + 4m2
W (2m2

W + q2)(3m2
W + 2q2)

+m2
f (−36m4

W−16m2
W q

2+q4)
)
B0(q2,m2

W ,m
2
W )+2

(
m4
f+

2

q4
(m2

f−m2
W )3(m2

f+2m2
W )

+
1

q2

(
3m6

f − 4m4
fm

2
W + 5m2

fm
4
W + 4m6

W

))
C0(m2

f ,m
2
W ,m

2
W )

+
1

q2

(
4m8

f +m6
f (q2 − 4m2

W )− 2m2
W (m2

W + q2)2(4m2
W + q2)

−m4
f (2m2

W + q2)(6m2
W + q2)

)
C0(m2

W ,m
2
f ,m

2
f )

+
m2
f

q2
(20m6

W + 25m4
W q

2 + 6m2
W q

4)C0(m2
W ,m

2
f ,m

2
f ). (2.22)

Being the computations rather involved, the correctness of the results above has been

secured by appropriate Ward identities, whose general structure has been discussed in [17].

As an example, by requiring the invariance of the generating functional of the theory under

a diffeomorphic change of the spacetime metric, one derives the following Ward identity

qµ T̂
µν = ū(p2)

{
pν2 Γf̄f (p1)− pν1 Γf̄f (p2) +

qµ
2

(
Γf̄f (p2)σµν − σµν Γf̄f (p1)

)}
u(p1) , (2.23)

where Γf̄f (p) is the fermion two-point function, diagonal in flavor space [13]. From this

equation one obtains

0 = fZ1 −
1

4
ΣL
Z(0)

0 = fW1 −
1

4
ΣL
W (0), (2.24)
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Figure 2. The deflection of the trajectory of a massless particle P approaching a black hole.

which, as one can check, are identically satisfied by the explicit expressions of fZ and fW
given above.

In the case of MeV neutrinos, the expressions of the two form factors simplify con-

siderably, since the typical momentum transfer q2 = −4E2 sin2(θ/2) may be small. These

expansions, in fact, are useful in the case of scattering and lensing of neutrinos far from

the region of the event horizon, of the order of 103–106 horizon units. As we are going to

see, an expansion in q2 provides approximate analytical expressions of the bh(α) relation,

connecting the impact parameter to the angle of deflection α, valid at momentum transfers

which are smaller compared to the electroweak scale, i.e. q2/m2
W � 1. We will come back

to illustrate this point more closely in the following sections.

In these cases the expression of the renormalized fZ form factor takes the form

f
Z (ren)
low q = −11

18
q2, (2.25)

while the W form factor is slightly lengthier

f
W (ren)
low q = − q2

36 (m2
f −m2

W )4

[
5m8

f − 98m6
fm

2
W + 243m4

fm
4
W − 194m2

fm
6
W + 44m8

W

+ 6
(
10m6

fm
2
W − 15m4

fm
4
W + 2m2

fm
6
W

)
ln
(
m2
f/m

2
W

)]
. (2.26)

3 Cross sections for photons, massive fermions and scalars

Before coming to a discussion of the 1-loop effects in the scattering of neutrinos, we briefly

summarize the result for the leading order cross sections for fermions, photons and scalars

using in an external static background [13, 14, 19–21]. We just recall that the scattering

matrix element is written as

iSif = −κ
2

∫
V
d4x〈p2|hµν(x)Tµν(x)|p1〉, (3.1)

where V is the integration volume where the scattering occurs, which gives

〈p2|hµν(x)Tµν(x)|p1〉 = hµν(x)ψ̄(p2)V µνψ(p1)eiq·x. (3.2)
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Denoting with i and f the initial and final neutrino, we have introduced plane waves

normalized as

ψi(p1) = Niu(p1), Ni =

√
1

E1V
, ū(p1)u(p1) = 1, (3.3)

and similarly for ψf , while V denotes a finite volume. The E1 (E2) are the energy of the

incoming (outgoing) particle respectively.

In momentum space the matrix element is given by

iSfi = −κ
2
hµν(q)ψ̄(p2)V µνψ(p1) = −κ

2
hµν(q)NiNf T̂µν (3.4)

in terms of the gravitational fluctuations in momentum space hµν(q). For a static external

field the energies of the incoming/outgoing fermions are conserved (E1 = E2 ≡ E).

The Fourier transform of hµν in momentum space is given by

hµν(q0, ~q) =

∫
d4xeiq·xhµν(x), (3.5)

which for a static field can be expressed as

hµν(q0, ~q) = 2πδ(q0)hµν(~q), (3.6)

in terms of a single form factor h0(~q)

hµν(~q) ≡ h0(~q)S̄µν with h0(~q) ≡
(
κM

2~q2

)
. (3.7)

The squared matrix element in each case takes the general form

|iSfi|2 =
κ2

16V 2E1E2
2πδ(q0) T 1

2
J µνρσ(p1, p2)hµν(~q )hρσ(~q ), (3.8)

where T is the transition time. Specifically, in the case of a massive (Dirac) fermion one

obtains

J µνρσf (p1, p2) = tr [(p/2 +m)V µν
m (p1, p2)(p/1 +m)V ρσ

m (p1, p2)] , (3.9)

where the V µν
m vertex is in this case given by

V µν
m (p1, p2) =

i

4

(
γµ(p1 + p2)ν + γν(p1 + p2)µ − 2ηµν(p/1 + p/2 − 2m)

)
(3.10)

which gives a cross section

dσ

dΩ

∣∣∣∣(0)

f

=

(
GM

sin2(θ/2)

)2(
cos2 ϑ/2 +

1

4

m2

|~p1|2
+

1

4

m4

|~p1|4
+

3

4

m2

|~p1|2
cos2 ϑ/2

)
. (3.11)

In the case of a neutrino, the corresponding cross section is obtained by sending the fermion

mass m of the related Dirac cross section to zero, giving

dσ

dΩ

∣∣∣∣(0)

ν

=

(
GM

sin2 θ
2

)2

cos2 θ

2
, (3.12)
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which is energy independent. Notice that the inclusion of the chiral projector PL in the

expression of the neutrino amplitude, which carries a factor 1/2, makes the neutrino and

Dirac cross sections coincide. The same 1/2 factor, in the Dirac case, appears in the average

over the two states of helicity, while the axial-vector terms induced by PL are trivially zero

(see [22] for typical studies of polarized processes).

In the photon case one obtains

J αβρσγ (k1, k2) =
∑
λ1,λ2

V αβκλ(k1, k2)eκ(k1, λ1)e∗λ(k2, λ2)V ρσµν(k1, k2)eµ(k2, λ2)e∗ν(k1, λ1) ,

(3.13)

where eµ denotes the polarization vector of the photon, with an interaction vertex which

is given by

V µναβ(k1, k2) = i

{
(k1 · k2)Cµναβ +Dµναβ(k1, k2)

}
, (3.14)

where

Cµνρσ = ηµρ ηνσ + ηµσ ηνρ − ηµν ηρσ ,

Dµνρσ(k1, k2) = ηµν k1σ k2 ρ −
[
ηµσkν1k

ρ
2 + ηµρ k1σ k2 ν − ηρσ k1µ k2 ν + (µ↔ ν)

]
.

The cross section for a photon is then given by

dσ

dΩ

∣∣∣∣(0)

γ

= (GM)2 cot4(θ/2) . (3.15)

Finally, in the case of a scalar the relative expression is given by

J αβρσs (p1, p2) = V αβ
s (p1, p2)V ρσ

s (p1, p2) , (3.16)

with

V µν
s = −i

{
p1 ρp2σC

µνρσ − 2χ
[
(p1 + p2)µ (p1 + p2)ν − ηµν(p1 + p2)2

]}
, (3.17)

where we have included the minimal and the term of improvement [17]. For a conformally

coupled scalar χ = 1/6. The cross sections, in this case, are given by

dσ

dΩ

∣∣∣∣(0)

s

=

{
(GM)2 csc4(θ/2) χ = 0(
GM

3

)2
cot4(θ/2) χ = 1/6 .

(3.18)

We show in figure 3 the expressions of these three cross sections at different energies,

normalized by 1/(2GM)2 and denoted as σ̃. In panel (a) we consider the scattering of a

massive fermion, together with the massless limit, which applies in the neutrino case. We

have included in (b) and (c) two enlargements of (a) which show how the massive and the

massless cross sections tend to overlap for energies of the order of 1 GeV. In panel (d)

we show the cross sections for the photon (s = 1), for the neutrino (s = 1/2) and for the

conformally coupled scalar (s = 0).
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Figure 3. Normalized (σ̃ = σ/(2GM)2) cross sections for massive and massless fermions. In the

massive case m is the electron mass (a). Two enlargements of (a) are in (b) and (c). Panel (d)

shows the cross sections for photons (s = 1), massless neutrinos (s = 1/2) and conformally coupled

scalars (s = 0).

3.1 The neutrino cross section at 1-loop

In the neutrino case, at 1-loop level, eq. (3.12) is modified in the form

dσ

dΩ
= G2M2 cos2 θ/2

sin4 θ/2

{
1 +

4GF

16π2
√

2

[
f1
W (E, θ) + f1

Z(E, θ)− 1

4
ΣL
Z −

1

4
ΣL
W

]}
, (3.19)

whose explicit expression has been given in appendix C. In the massless approximation for

the neutrino masses, loop corrections do not induce flavor transition vertices, such as those

computed in [14].

In the case of neutrinos of an energy E in the MeV range, the expression above sim-

plifies considerably and takes the form

dσ

dΩ
= G2M2 cos2 θ/2

sin4 θ/2

{
1+

GF

π2
√

2

[
11

18
+

1

36(m2
f−m2

W )4

(
5m8

f−98m6
fm

2
W +243m4

fm
4
W (3.20)

− 194m2
fm

6
W +44m8

W +6
(

10m6
fm

2
W−15m4

fm
4
W +2m2

fm
6
W

)
ln

m2
f

m2
W

)]
E2 sin2 θ

2

}
.

We show in figure 4 three plots of the tree level and one-loop cross sections for an energy

of the incoming neutrino beam of 1 MeV, for 2 different angular regions (plots (a) and (b)),
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Figure 4. Differential cross section for MeV neutrinos in units of r2s , with rs the Schwarzschild

radius.

together with a global plot of the entire cross section (plot (c)) for the rescaled differential

cross section dσ̃/dΩ ≡ 1/r2
s dσ/dΩ. Notice that the tree-level and one-loop results are

superimposed. We can resolve the differences between the two by zooming-in in some

specific angular regions of the two results, varying the energy of the incoming beam. The

result of this analysis is shown in figure 5, where in plots (a) and (b) we show the rescaled

cross section dσ̃/dΩ as a function of the scattering angle θ, for three values of the incoming

neutrino beam equal to 1 GeV, 1 TeV and 1 PeV. PeV neutrinos events are rare, due to

the almost structureless cosmic ray spectrum, which falls dramatically with energy. They

could be produced, though, as secondaries from the decays of primary protons of energy

around the GZK [23, 24] cutoff, and as such they are part of our analysis, which we try to

keep as general as possible.

It is clear from these two plots that the tree-level and the one-loop result are superim-

posed at low energies, with a difference which becomes slightly more remarked at higher

energies. A similar behaviour is noticed in the cross section for scatterings at larger angles.

Also in this case the radiative corrections tend to raise as the energy of the incoming beam

increases. This behaviour is expected to affect the size of the angle of deflection α as we

approach the singular region of a black hole. In fact, α is obtained by integrating the semi-

classical equation (4.1), introduced below, and large deviations are expected as the impact

parameter bh reaches the photon sphere. As we are going to illustrate in the next sections,
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Figure 5. Differential cross section: tree level and one-loop contribution for a wide range of

energies.

the bh(E,α) relation is significantly affected by the behaviour of the cross section at large

θ as bh → 3/2rs. This is the closest radial distance allowed to a particle approaching the

black hole from infinite distance without being trapped. Therefore, these differences in σ̃

for large θ are going to render bh sensitive on the changes in energy of the neutrino beam

for such close encounters of the neutrinos with a black hole.

4 Impact parameter formulation of the semiclassical scattering

As pointed out in previous studies [5, 7, 14, 25], the computation of the angle of deflection

for a fermion or a photon involves a simple semiclassical analysis, in which one introduces

the impact parameter representation of the specific classical cross section and equates it to

the quantum one. The classical/semiclassical scattering process is illustrated in figure 2,

with α denoting the angle of deflection. By assuming that the incoming particle is moving

along the z direction, with the source localized at the origin, and denoting with θ the

azimuthal scattering angle present in the quantum cross section, we have the relation

b

sin θ

db

dθ
=
dσ

dΩ
(4.1)

between the impact parameter b and θ, as measured from the z-direction. This semiclassical

equation [7, 25] allows to relate the quantum and the classical features of the interaction

between the particle beam and the gravitational source. The explicit expression of b(α), at

least for small deflection angles, which correspond to large values of the impact parameter,

can be found either analytically, such as at Born level and, for small momentum transfers

also at one-loop, but it has to be obtained numerically otherwise. The solution of (4.1)

takes the general form

b2h(α) = b2h(θ̄) + 2

∫ θ̄

α
dθ′ sin θ′

dσ̃

dΩ′
, (4.2)

with b2h(θ̄) denoting the constant of integration. The semiclassical scattering angle α is

obtained from (4.2) as a boundary value of the integral in θ of the quantum cross section.
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Figure 6. Plot of α, the angle of deflection, versus the impact parameter bh for 20 < bh < 100,

having inverted the b(α) solution of (4.1) at various 1/bn orders.

As discussed in [5], the integration constant derived from (4.2) has to be set to zero (for

θ̄ = π) in order for the solution of (4.1) to match the classical GR result for a very large bh.

In the case of a point-like gravitational source and of neutrino deflection, one obtains

from (4.2) the differential equation

db2

dθ
= −2

(
GM

sin2 θ
2

)2

cos2 θ

2
sin θ. (4.3)

Notice that the variation of b with the scattering angle θ is negative, since the impact

parameter decreases as θ grows, as we approach the center of the massive source. A

comparison of this expression with the analogous relation in the photon case (γ) shows

that the two equations differ by a simple prefactor

db2

dθ
=

1

cos2 θ
2

db2

dθ

∣∣∣
γ

with
db2

dθ

∣∣∣
γ

= −2G2M2 cot4 θ

2
sin θ. (4.4)

The solution of (4.3) takes the form

b2(α) = 4G2M2
(
−1 + csc2 α

2
+ 2 ln

(
sin

α

2

))
, (4.5)

and in the small α (i.e. large b) limit takes the asymptotic form

b = GM

(
4

α
+
α

3
(1 + ln 8− 3 lnα)

)
+O(α2) (4.6)

which allows us to identify the deflection angle as

α ∼ 4
GM

b
(4.7)

in agreement with Einstein’s prediction for the angular deflection. This is the result ex-

pected from the classical (GR) analysis. The inversion of the asymptotic expansion (4.6)

generates the asymptotic behaviour

α =
2

bh
− 2

b3h

(
ln bh +

1

3

)
+

3

b5h

(
ln2 bh −

1

5

)
+O(1/b7h) (4.8)
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Figure 7. Angle of deflection as a function of the impact parameter: (a) spin dependence; (b)

mass dependence.

which corresponds to the general functional form

α =
2

bh
+
∑
k≥1

a2k

b2kh
+
∑
k≥1

1

b2k+1
h

(
a2k+1 + d1 ln bh + d2 ln2 bh + · · ·+ dk lnk bh

)
. (4.9)

As shown in figure 6, the analytic inversion of (4.6), given by (4.8), is very stable under an

increase of the order of the asymptotic expansion over a pretty large interval of bh, from

low to very high values. Solutions (4.8) and (4.9) can be obtained by an iterative (fixed

point) procedure, which generates a sequence of approximations α0 → α1 → . . . → αn to

α(bh) implemented after a Laurent expansion of (4.6) and the use of the initial condition

α0 = 2/bh. The approach can be implemented also at one-loop and with the inclusion of

the post-Newtonian corrections, if necessary.

The logarithmic corrections present in (4.9) are a genuine result of the quantum ap-

proach and, as we are going to discuss below, are not present in the classical formula for the

deflection. Radiative and post-Newtonian effects, not included in (4.8), give an expression

for α(bh) which coincides with the form (4.9), with specific coefficients (an, dn) which are

energy dependent. This is at the origin of the phenomenon of light dispersion (gravitational

rainbow) induced by the quantum corrections, which is absent at classical level [19–21].
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Eq. (4.9) will play a key role in our proposal for the inclusion of the radiative corrections

in the classical lens equation. Such equation will relate the angular position of the source

in the absence of lensing, β, to α(b).

We give, for completeness, the analogous expressions in the case of the scalar and for

a massive fermion. For a massless scalar we have the relation

α =
2

3 bh
− 1

b3h

(
12 ln 3− 1

243
+

4

81
ln bh

)
+O(1/b5h), (4.10)

while for a massive fermion the corresponding expression becomes more involved and takes

the form

α =
8E4

4E4 − 2E2m2
f +m4

f

1

bh
− 1

b3h

 8E4

3(2E2 −m2
f )(4E4 − 2E2m2

f +m4
f )2
×

×

m6
f + 8E6(1 + ln 8) + E4m2

f ln 64− 6E4(4E2 +m2) ln
2

1− m2
f

2E2


+

4E4(4E2 +m2
f )

8E6 − 8E4m2
f + 4E2m4

f −m6
f

ln bh

+O(1/b5h), (4.11)

where E and mf are the energy and the mass of the fermion respectively. One can easily

check that in the limit E � mf eq. (4.11) reproduce the formula for the massless fermion

(neutrino). We have plotted the behaviour of the formulas for the deflection in figure 7.

As one can immediately notice from the plots presented, the angular deflection is much

less enhanced in the scalar case compared to the remaining cases, showing a systematic

difference respect to the classical prediction form Einstein’s deflection integral (F.1). The

angular deflection in the scalar case is significantly affected by the choice of χ the free

coupling factor of a scalar field to the external curvature R. We have chosen in panel (a)

the two cases of χ = 0 (minimal coupling) and of conformal coupling (χ = 1/6) as typical

examples.

4.1 Bending at 1-loop

Moving to the one-loop expression given in (3.19), we can derive an analytic solution of the

corresponding semiclassical equation (4.1) for b = b(E,α), in the limit of small momentum

transfers. For this reason we perform an expansion of (3.19) in q2/m2
W up to O((q2/m2

W )2)

and solve (4.1) in this approximation for b2h(E,α), obtaining

b2h(E,α)=
[
−1+csc2 α

2
+2 ln

(
sin

α

2

)]
+C1(E)

[
1+cosα+4 ln

(
sin

α

2

)]
+C2(E) cos4 α

2

+ 20D2(E) ln
(

sin
α

2

)
−4F2(E) cosα−8D2(E) cosα ln

(
sin2 α

2

)
−G2(E) cos 2α

− 2D2(E) cos 2α ln
(

sin2 α

2

)
− E2(E), (4.12)

with the coefficients C,D, F and G are functions of the energy and of the masses of the

weak gauge bosons. Their explicit expressions can be found in appendix D. The impact pa-

rameter bh(α), as shown in the same appendix, has a dependence on the angular deflection

– 18 –



J
H
E
P
0
7
(
2
0
1
5
)
1
6
0

0.02 0.04 0.06 0.08 0.10

Α HradL

20

40

60

80

100

bh

Νe - E = 1 TeV

(a)

Classical

One Loop

0.02 0.04 0.06 0.08 0.10
Α HradL

20

40

60

80

100

bh

Νe - E = 1 PeV

(b)

Figure 8. Plots of the impact parameter bh versus α, the angle of deflection, for 20 < bh < 100

for the classical and quantum solution.

α which can be summarized by an expression of the form

bh(E,α)=
2

α
+c(E)α+d(E)α ln(α)+f(E)α3+g(E)α3 lnα+h(E)α3 ln2 α+O(α5) (4.13)

that we can invert in order to get α(E, bh). This is given by

α(E, bh) =
2

bh
− 1

b3h

[(
2 + 4C1(E)

)
log bh +A(E)

]
+O(1/b5h)

A(E) = −2C1(E)− C2(E) + E2(E) + 4F2(E) +G2(E) +
2

3
. (4.14)

We show in figure 8 some plots of the impact parameter bh as a function of the deflec-

tion angle in a range closer to the horizon of a black hole, computed using the Newtonian

approximation derived from the metric (2.2). The region involved covers the interval be-

tween 20 and 100 horizons. The numerical results refer to the GR solution and to the full

one-loop prediction respectively. The classical expression and the quantum one start dif-

fering as we approach the value of bh ∼ 20, and are characterized by a certain dependence

on the energy of the incoming beam. Shown are the plots corresponding to neutrinos of

energies in the TeV and the PeV range respectively. In these regions the lensing is very
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strong, corresponding to 103 arcseconds and larger. As the neutrino (or the photon) beam

gets closer to the photon sphere (x0 = 3/2rs), which is the point of maximum approach,

the angular deflection diverges. This is the impact parameter region where one expects

the formation of relativistic images. The divergence can be parameterized by an integer

n, with αn = 2πn, and n tending to infinity. The integer is the winding number of the

beam path around the photon sphere. In the external neighborhood of the point of closest

approach the beam still escapes to infinity, forming an infinite set of images which are

parameterized by the same integer n [6].

5 1/bn contributions to the deflection

It is interesting to compare the classical GR prediction for the deflection with the result

of (4.9), by resorting to a similar expansion for the deflection integral. This has been

studied quite carefully in the literature, especially in the limit of strong lensing [26, 27].

The 1/bnh expansion has been shown to appear quite naturally in the post-Newtonian

approach applied to the Einstein integral for light deflection.

We recall that Einstein’s expression in GR is given by the integral

α(r0) =

∫ ∞
r0

dr
2

r2

[
1

r2
0

(
1− 2M

r0

)
− 1

r2

(
1− 2M

r

)]−1/2

− π (5.1)

and can be re-expressed in the form

α = 2

∫ 1

0

dy√
1− 2s− y2 + 2sy3

− π, (5.2)

with the variable s ≡ rs/(2r0) being related to the ratio between the Schwarzschild radius

and the distance of closest approach between the particle and the source, r0. The exact

computation of this integral is discussed in appendix F, and involves elliptic functions.

Additional information on α(r0) is obtained via an expansion of the integrand in powers of

s and a subsequent integration. This method shows that the result can be cast in the form

α(bh) =
a1

bh
+
a2

b2h
+
a3

b3h
+
a4

b4h
+
a5

b5h
. . . (5.3)

with

a1 = 2, a2 =
15

16
π, a3 =

16

3
, a4 =

3465

1024
π, a5 =

112

5
. (5.4)

The coefficients ai differ from those given in [27] (up to a7) just by a normalization. They

are obtained by re-expressing s = s(r0) in terms of the impact parameter bh using the

relation

bh = x0

(
1− 1

x0

)−1/2

(5.5)

between the impact parameter and the radial distance of closest approach, having redefined

x0 ≡ r0/(2GM). This can also be brought into the form

x0 =
2 bh√

3
cos

[
1

3
cos−1

(
−33/2

2 bh

)]
. (5.6)
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An expression equivalent to (5.6) can be found in [5]. Eq. (5.6) can be given in a 1/bh
expansion

x0 = bh −
3

8 bh
− 1

2 b2h
− 105

128 b3h
− 3

2 b4h
+O(1/b5h), (5.7)

which will turn useful below.

We can invert (5.3) obtaining the relation

bh(α) =
2

α
+
a2

2
+
α

8

(
2 a3 − a2

2

)
+
α2

16

(
a3

2 − 3a2 a3 + 2 a4

)
+

α3

128

(
8 a5 − 16 a2 a4 − 8 a2

3 + 20 a2
2a3 − 5a4

2

)
+O(α4), (5.8)

which differs from (4.9) by the absence of logarithmic terms in the impact parameter bh
and by the energy independence of the coefficients. The inclusion of the extra contributions

mentioned above, in the classical GR expression, becomes relevant in the case of strong

lensing. We show in appendix B how the inclusion of the additional 1/bnh terms in the

expansion of the angular deflection can be extended to the case of a continuous distribution

of sources/deflectors. This provides a simple generalization of the standard approach to

classical lensing for such distributions.

6 Lens equations and 1/bn corrections

The standard approach to gravitational lensing in GR is based on an equation, derived

from a geometrical construction, which relates the angular position of the image (θI) to

that of the source (β), with an intermediate angular deflection (α) generated on the lens

plane. In this section we are going to briefly review this construction, which is based on the

asymptotic expression for the angular deflection (α ∼ 2/bh), and discuss its extension when

one takes into account more general expansions of α(bh) of the form given by eq. (5.3).

The extension that we consider covers the case of a thin lens and concerns only the extra

1/bnh terms derived from classical GR. The discussion is preliminary to the analysis of the

next section, where we will consider the inclusion of the radiative effects, parameterized

by (4.9), into the classical lens equation.

6.1 The lens geometry

We show in figure 9 the lens geometry in the case of a continuous distributions of sources

and deflectors. A simplified picture of the geometry, with pointlike source and deflector is

shown in figure 10. We indicate with ~β the oriented angle between the optical axis (OP )

(taken as the z axis) and the unlensed direction of the source (OS). ~θI denotes the angle

formed by the visual line of the image (OI) with the optical axis. We also denote with

DOL the distance between the observer and the lens plane; with DLS the distance between

the lens plane and the source plane and with DOS the distance of the source plane from

the observer. α̂ is the (oriented) angle of deflection, measured clockwise as all the other

angles appearing in the geometrical construction. We also introduce the relations, valid for

DLS , DOL much larger than the size of the lens, typical of a linear lens,

~η ≡ ~PS = ~βDOS
~SI = ~̂αDLS

~PI = ~θIDOS . (6.1)
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Figure 9. Geometric construction of the lens for a continuous distribution of sources. Shown

are the plane S of the source distribution and the plane of the lens L. The line OI identifies the

direction at which the observer sees the image after the angular deflection α.

S IP

V R

H

T

~η0

~ξ0

r0

Optical Axis

Source Plane

Lens Plane

DLS

DOL

DOS

O

~ϑ

~β

~α

Figure 10. The thin lens geometric construction where the source S, the lens V and the observer

O lie on the same plane. Notice that figure is not to scale, since DOL and DLS are far larger than

the length of V R.

The thin lens equation follows from the approximate geometrical relation

~PI = ~PS + ~SI i.e. ~β = ~θI − ~̂α
DLS

DOS
. (6.2)

Denoting with ~ξ a 2-D vector in the lens plane, it is convenient to introduce two scales η0

and ξ0 defined as

~η = η0 ~y ~ξ ≡ ~V R = ξ0~x
η0

ξ0
=
DOS

DLS
. (6.3)
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Optical axis

S IpIs

Rs Rp

O

Source plane

Lens plane

ϑs
ϑp

β

αs αp

Figure 11. Geometrical construction for the primary Ip and secondary Is images generated by

the two geodesics of the isotropic emission. Shown are the source S, the lens, represented by the

dotted circle, the observer O and the primary Ip and secondary Is angular positions involved in the

discussion.

Using the lens equation in the geometric relation

| ~PI|
| ~V R|

=
DOS

DOL
, (6.4)

we find the relation

~y = ~x− ~̂αDLS DOL

DOS ξ0
≡ ~x− ~α with ~α = ~̂α

DLS DOL

DOS ξ0
, (6.5)

which defines the thin lens equation. It is possible to give a simpler expression to the

equation above if we go back to (6.2) and perform simple manipulations on the angular

dependence. On the lens plane (figure 10) the equation takes the scalar form

β = θI − α
DLS

DOS
, (6.6)

which can be extended to the case of stronger lensing by the inclusion of the contributions

of the 1/bn corrections in α(b). Use of the Einstein relation α = 4GM/b and of the relation

b ∼ θIDOL brings (6.6) into the typical form

β = θI −
θ2
E

θI
θ2
E =

DLS

DOS

4GM

DOL
, (6.7)

which defines the thin lens approximation, with θE being the Einstein radius. For a source

S aligned on the optical axis together with the deflector and the observer O (see figure 11)

— which is defined by the segment connecting the observer, the lens and the plane of the

source (with β = 0) — the images will form radially at an opening θI = θE and appear as a
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circle perpendicular to the lens plane. For a generic β, instead, the primary and secondary

image solutions are given by the well-known expressions

θI± =
β

2
± 1

2

(
β2 + 4θ2

E

)1/2
. (6.8)

It is quite straightforward to extend this derivation with the inclusion of the 1/bn correc-

tions in the α(b) relation and test their effect numerically [27]. This is part of a possible

improvement of the ordinary (quadratic) thin lens equation which can be investigated more

generally in conditions of strong lensing. In that case one can also adopt an equation which

includes deflections of higher orders, as we will discuss in the following sections. For the

moment we just mention that the inclusion of the higher order 1/bn contributions given

by (5.3) modifies (6.6) into the form

β = θI −
θ2
E

θI
−
∑
n≥2

θ
(n)
E

θnI
, (6.9)

with

θ
(n)
E ≡ rns an

DLS

DOSDn
OL

. (6.10)

Another observable that we will investigate numerically is going to be the lens magnifica-

tion. For this purpose we recall that light beams are subject to deflections both as a whole

but also locally, due to their bundle structure. Rays which travel closer to the deflector are

subject to a stronger deflection compared to those that travel further away. This generates

a difference in the solid angles under which the source is viewed by the observer in the

unlensed and in the lensed cases. In the simple case of an axi-symmetric lens the ratio

between the two solid angles can be defined in the scalar form

µ =

∣∣∣∣( ∂β∂θI sinβ

sin θI

)∣∣∣∣−1

. (6.11)

In the case of a thin lens (6.5), the analogous expression is given by

µ
(0)
± ≡

(
∂β

∂θI

β

θI

)−1

. (6.12)

For this lens the analysis simplifies quite drastically. Using the expression of the two images

θI± given in (6.8) one obtains the simple expression for the primary and secondary images

µ± = ±

(
1−

(
θE
θI±

)4
)−1

, (6.13)

where the Einstein angle is defined as usual

θE =

√
4GM

x

DOL
with x =

DLS

DOS
. (6.14)
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It is convenient to measure the angular variables in terms of the Einstein angle θE , as

β̄ ≡ β/θE , θ̄ ≡ θI/θE , with

θ̄I± =
β̄

2
±
√

1 +
β̄2

4
, (6.15)

then the total magnification takes a rather simple form

µ ≡ µ+ + µ− =
2 + β̄2

β̄
√

4 + β̄2
. (6.16)

This equation is commonly used to calculate the light curve in the microlensing case. We

refer to [28] for a short review on this point.

6.2 Nonlinear effects in strong deflections

In conditions of strong lensing, the linear approximations in the trigonometric expressions

are not accurate enough and one has to turn to a fully nonlinear description of the geometry,

expressed in terms of the angular variables which are involved. We illustrate this point by

taking as an example a typical lens equation, which in our case is given by the Virbhadra-

Ellis construction (VE) [29].

Following figure 10, we recall that the VE lens equation is based on the geometrical

relation [29, 30]

PS = PI − SI, (6.17)

which gives

DOS tanβ = DOS tan θI −DLS(tan θI + tan(α− θI)), (6.18)

under the assumption that the point R in figure 10 lies on the vertical plane of the lens.

θI is the angle at which the image is viewed by the observer and β is the unlensed angular

position of the source. Within this approximation we can use the geometric relation

b = DOL sin θI , (6.19)

which allows to relate the image position θI to the angular deflection of the beam α. Notice

that this approximate relation is justified by the fact that the distances DOL and DOS are

very large compared to the radius of closest approach r0. In this limit the two segments

V H and V T are treated as equal.

We remind that (6.18) is not the unique lens equation that one can write down, but,

differently from eq. (6.5), it can be used in the case of strong lensing. It takes into account

the nonlinear contributions to the angular deflection by the introduction of the tan(β) and

tan(θI) terms, which in (6.5) are not included. We refer to [30] for a review of possible lens

equations.
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1.65012

Β HarcsecL

DLS = 9 Kpc

Classical

E = 1 TeV

(a)

-0.41253 0. 0.41253 0.825059 1.23759 1.65012
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Β HarcsecL

E = 1 GeV

DLS = 2 Kpc

DLS = 5 Kpc

DLS = 9 Kpc

(b)

Figure 12. (a): β(θI) for the Virbadhra-Ellis lens equation in the neutrino case, for a black hole

with M = 106 M� and with DOL=10 Kpc, DOS=19 Kpc. The numerical solution for the classical

and the energy-dependent result. (b): β(θI) as in (a) but for a 1 GeV neutrino beam.

7 Radiative effects and the geometry of lensing

Turning to our case study, radiative effects in the lens equations can be introduced by

replacing the expression of the angular deflection generated by the source on the source

plane, which is a function of the impact parameter b (α = α(b)) with the new, energy

dependent relation α(b, E) whose general form is given by (4.9).

For simplicity we consider a pointlike source, and a pointlike deflector, as shown in

figure 10. We recall that for a massless particle the geodesic motion is determined in terms

of the energy E and of the angular momentum L at the starting point of the trajectory.

The gravitational deflection, however, can be written only as a function of the impact

parameter b of the source, with b = E/L, which is an important result of the classical

approach. For a further clarification of this aspect, which differs from the semiclassical

analysis we are interested in, we briefly overview the classical case, using the lens geometry

as a reference point for our discussion.
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For a source located on the source plane at an angular opening β (in the absence of the

deflector), the initial conditions can be expressed in terms of the two components of the

initial momentum ~p = (pr, pφ) on the plane of the geodesic, or, equivalently, by the pairs

(pr, E) or (pϑ, E), with E the initial energy of the beam. We recall that for a Schwarzschild

metric these are defined as

pr =

(
1− 2GM

r

)−1

ṙ, pϑ = −r2ϑ̇, pt =

(
1− 2GM

r

)
ṫ, pφ = −r2 sin2 ϑφ̇ . (7.1)

We have denoted with ẋ ≡ dx/ds the derivative respect to the affine parameter. pt and pφ
related to the energy and to the angular momentum as pt = E and pφ = −L, and with the

motion taking place on the plane ϑ = π/2 (pϑ = 0). They are constrained by the mass-shell

condition (
1− 2GM

r

)
(pt)2 −

(
1− 2GM

r

)−1

(pr)2 − r2(pφ)2 = 0, (7.2)

with (pr = ṙ, pφ = φ̇, pt = ṫ).

The lens equation, usually written as

L(β, θI) = 0, (7.3)

can also be written, equivalently, in the form of a constraint between β and b using (6.19).

We can use any of the independent variables mentioned above. For a given initial mo-

mentum of the beam, emitted from the plane of the source, the lens equation will then

determine the position of the source in such a way that the geodesic motion will reach

the observer at its location on the optical axis. In particular, an interesting description

emerges if we choose as initial conditions the angular position of the source (β) and the

value of the impact parameter b. These two conditions fix the direction of the trajectory

of the beam at its origin on the source plane. In these last variables, the lens equation will

then determine one of the two in terms of the other in such a way that outgoing geodesic

will reach the observer.

The inclusion of an energy dependence in the angle of deflection α renders this picture

slightly more complex. For instance, the lens equation will now depend on 3 parameters,

which can be chosen to to be (β, θI , E) or (β, pr, pφ) or any other equivalent combina-

tion, with one of the three fixed in terms of the other two by the equation itself. For a

monochromatic and spherical source of energy E, fixed at a position β, emitting a beam

with a given impact parameter b respect to the deflector, the lens equation may not have

a real solution, since the deflector may disperse the beam in such a way that it will never

reach the observer. For a fixed spherical source which emits photons or neutrinos of any

energy, one can look for solution in the reduced variables b, E. Being b related to the pri-

mary and secondary images θI±, the beam that reaches the observer will be characterized

by a unique energy E, assuming that the images are detected at angular positions θI±.

The argument above can be repeated by using any triple combination of independent

kinematic variables among those mentioned above.

Having clarified this point, we now move to a description of the actual implementation

of the lens equation is this extended framework. The angular location of the image θI and
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the impact parameter are related in the geometry of the lens by eq. (6.19), and this allows

to search for solutions of the lens equation (6.18) in regions characterized by smaller values

of the impact parameter (20 < bh < 100) where the angular deflections are stronger.

The key to the derivation of the radiative lens equation are eqs. (4.9) and (6.19).

Combining the two relations we obtain

α(b(θI , E)) =
4GM

DOL sin θI
+
∑
n≥1

A2n

(DOL sin θI)
2n

+
∑
n≥1

(
2GM

DOL sin θI

)2n+1(
A2n+1 +D1 lnn

(
DOL

2GM
sin θI

)
+ . . .

)
, (7.4)

where the ellipsis refer to the extra logarithmic contributions present in eq. (4.9). The

expression above is known analytically if we manage to solve explicitly the semiclassical

equation (4.1), otherwise it has to be found by a numerical fit. However, it is clear that the

ansatz for the fit has, in any case, to coincide with eqs. (4.9) and (7.4), due to the typical

functional forms of the solutions of eq. (4.1). For instance, in the case of a thin lens, the

modifications embodied in (7.4) can be incorporated into the new equation

β = θI − α(b(θI , E))
DLS

DOS
, (7.5)

which is an obvious generalization of (6.9), the latter being valid only in the classical

GR case. As we are going to illustrate below, (7.5) can be studied numerically for sev-

eral geometrical configurations, which are obtained by varying the lensing parameters

DLS and DOL.

A similar approach can be followed for the VE or for any other classical lens equation.

The insertion of α(θI , E) given by (4.9) into (6.18) generates the radiative lens equation

DOS tanβ = DOS tan θI −DLS(tan θI + tan(α(θI , E)− θI)), (7.6)

which takes into account also the quantum corrections and is now, on the contrary of (6.18),

energy dependent. At this point it is clear that all the lens observables, such as magni-

fications, shears, light curves of microlensing etc. descend rather directly by this general

prescription.

For instance, we can determine for the Virbadhra-Ellis lens the expression for the

magnification using the radiative (semiclassical) expression

µ =
χ1

χ2
(7.7)

χ1 = DOS sin θI (1 + ((DOL tan θI + (DOL −DOS) tan(α(θI , E)− θI))/DOS)2)3/2,

χ2 = (DOL tan θI + (DOL −DOS) tan(α(θI , E)− θI))
×
(
sec2 θI + (DOL −DOS)/DOS(sec2 θI + sec2(α(θI , E)− θI) (α′(θI , E)− 1))

)
,

where α′ ≡ ∂α/∂θI . As clear from eqs. (7.6) and (7.7), both equations are very involved,

although they can be investigated very accurately at numerical level. It is also possible to
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Figure 13. β(θI) with 20 < bh < 100 in the neutrino case for a black hole with M = 4.31 106 M�:

DLS = 1 kpc (a), DLS = 1 pc (b), DLS = 1 milliparsec (mpc) (c).

discuss the analytical form of the solutions within the formalism of the 1/bn expansion. In

fact, we are entitled to expand all the observables of the fully nonlinear lens in the angular

deflection α, and work at a certain level of accuracy in the angular parameters. In this

work, however, we prefer to proceed with a direct numerical analysis of the full equations,

both for the thin and for the VE lens, leaving the discussion of the explicit solutions to a

future work.

7.1 Numerical analysis for neutrino and photon lensing

The analysis that we present in this section, especially in the neutrino case, is of exploratory

nature. It has the aim to test the consistency of the theoretical approach presented in the

previous sections, rather than being an explicit proposal for the detection of such effects.

We start investigating the behaviour of the solutions for the VE lens equation, which

are shown in figures 12, by plotting the angular position of the source (β) as a function of the

location of the image θI , for neutrino beams. In panel (a) we have chosen distances between

lens/source and observer of galactic size. The branch of the solution with θI > 0 describes

a primary image, while for θI < 0 the points (β, θI) on the curve describe configurations

corresponding to secondary images. One can test the energy dependence of the solution by

varying the energy of the original beam in the lens equation (7.6), which, for this specific

geometry, is clearly unnoticeable. In general, in fact, specific geometries (DOL, DLS) select
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Figure 14. µ(θI) (Sagittarius) with 20 < bh < 100 in the neutrino case for a black hole with

M = 4.31× 106 M�: DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 1 mpc (c). The strong suppression

of the magnification parameter for panels (a) and (b) are associated with the secondary image.

impact parameters bh in the beam path which are quite large. In this case the impact

parameter turns out to be pretty large (bh ∼ 105), corresponding to very weak deflections,

and causes a superposition between the two curves, the one describing the classical GR

solution of (6.18), and the semiclassical one, obtained by solving (7.6). The curves intersect

the θI (image) axis in two opposite points (θI = ±θE), giving rise to the Einstein ring,

which are obtained for β = 0, i.e. for a complete alignment of the lens/source/observer

along the optical axis. In this figure the negative β range is symmetric and hence it is

not shown. It can be obtained by a parity flip of the two positive branches with β → −β
and θI → −θI .

In figure 12 (b) we investigate the dependence of the classical solution for three values

of DLS . The solution curves so generated exhibit variations which are clearly far more

significant that any radiative correction which might affect the lensing geometry. Notice

that for a given solution of the lens equation θI , as we increase the distance DLS , for a given

angular position of the image, the source moves towards the optical axis. This behaviour,

in the secondary image, appears to be reversed: in this case larger values of DLS require

larger angular values of β, for a given angular position θI of the image.

Solutions with smaller values of the impact parameters are those which are more

favourable from the point of view of the semiclassical treatment, since in these cases the
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Figure 15. β(θI) with 20 < bh < 100 in the neutrino case for a black hole with M = 1.40 108 M�:

DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 1 mpc (c) (Andromeda galactic center).

deflections are larger and induce larger gradients into the lens equation (7.6). For this

reason we investigate two lensing configurations corresponding to the case of the super-

massive black holes located at the center of our galaxy (Sagittarius A∗, 8 kpc) and of

the nearby galaxy Andromeda (DOL ∼ 780 kpc), and vary the distance DLS between the

source and the lens.

We show in figure 13 the solutions for the Sagittarius configuration. In panels (a)

and (b) the solutions that we identify correspond to secondary images obtained for very

small values of θI , of the order of a milliarcsecond. These are the only configurations

which guarantee close encounters between the cosmic ray beam and the black hole, with

20 < bh < 100. As the distance DLS gets reduced, the equation has solutions with values

of θI which define primary images, being β > 0 (panel c). At the same time, as shown in

panel (c), the angular position of the source moves from β < 0 to β > 0. A primary image

is shown to form when DLS is 1 milliparsec (mpc).

Simple considerations show that such lensing configurations are not unreasonable. For

instance, for the supermassive black hole that we consider (with M=4.31 × 106M�), this

distance is of the order of 5 × 103rs, with rs denoting its Schwarzschild radius (∼ 6× 106

km). Being the center of our galaxy rather densely populated by massive compact sources,

one could envisage a distribution of these covering a large array of possible distances from
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Figure 16. µ(θI) with 20 < bh < 100 in the neutrino case for a black hole with M = 1.40 108 M�:

DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 1 mpc (c) (Andromeda galactic center). The strong

suppression of the magnification parameter, in this case, is associated to the secondary image for

this geometric configuration.

the center of the black hole. For instance, it has been found that stars may orbit the

supermassive galactic black hole with orbital periods even of the order of T ∼ 11.4 ys,

corresponding to orbital distances (R) from its center as close as few astronomical units

(AU), R = T 2/3 ∼ 5 AU, i.e. R ∼ 125 rs. While such distances may correspond to realistic

lensing configurations, the lensing resolutions of these specific events, which is of the order

of a milliarcsecond, remains a challenging aspect of these studies. This is due to the strong

quasi-alignment required between source, lens and observer along the optical axis, which

might be difficult to measure.

The energy dependence of the lensing configuration, extracted from eq. (7.6), is il-

lustrated by plotting the solutions for several values of the initial energy of the neutrino

beam, corresponding to 1 GeV, 1 TeV and 1 PeV respectively. A comparison with the clas-

sical GR solution is included. Differences among the various predictions for the position of

the source can be as large as 15%.

The analysis for the magnification of this lensing configuration is presented in figure 14.

Panels (a) and (b) show the strong suppression of the secondary images identified in

figure 13 (a) and (b). The magnification of the secondary and primary images of figure 13
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Figure 17. β(θI) with 20 < bh < 100 in the photon case for a black hole with M = 4.31 106 M�:

DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 1 mpc (c) (Sagittarius).

(c) is shown in figure 14 (c). The µ < 0 and µ > 0 regions, in this figure, are separated

by asymptotes for θI = θE , the Einstein angle of the lens. These regions in µ correspond

to the secondary (β < 0) and (β > 0) branches of the panel (c) in figure 14 and therefore

refer to secondary and primary pictures respectively.

The dependence on the energy of the incoming neutrino beam appears in the form

of 3 displaced curves and respective asymptotes. The three vertical asymptotes therefore

characterize the dependence of the Einstein radius on the energy.

The analysis is repeated in figures 15 and 16 for lensing events detected on Earth from

the galactic center of the Andromeda galaxy. In this case as before, we vary the distance

between the lens and the source, with DLS = 1 kpc, 1 pc and 1 milliparsec in panels (a),

(b) and (c) respectively. The first two plots correspond to secondary images while panel (c)

describes a primary image solution of the lens equation. The corresponding plots for the

magnifications, in the three cases, are shown in figure 16, evidencing its strong suppression

for the two secondary images (panels (a) and (b)), and the enhancement for the primary

image in figure 15 (c), shown in panel (c). Also in this case we illustrate the dependence

of the image solutions on the energy of the incoming neutrino beam.

The patterns found for the neutrino lenses remain valid also for the photons, as one

can easily figure out by a cursory look at figures 17 and 18 for the supermassive black hole
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Figure 18. µ(θI) sagittarius with 20 < bh < 100 in the photon case for a black hole with M =

4.31 106 M�: DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 1 mpc (c) (Sagittarius).

in Sagittarius. In panels (a) and (b) of figure 17 the secondary images found as solution

of the lens equation are suppressed in magnitude, as shown in figure 18 (a) and (b), while

the solution in figure 17 (c), corresponding to one primary and one secondary image, is

associated with the magnification given in figure 18 (c). In these two sets of figures the

energy dependence of the result is quite small.

Finally, the numerical result for the photon lensing case, generated by the supermassive

black hole in the Andromeda galactic center is discussed in figures 19 and 20. While the

two secondary images found in 19 (a) and (b) give suppressed magnifications, the solution

in panel (c) corresponds to a primary image. The corresponding magnification, shown in

figure 20 has, obviously, a single branch, with an Einstein radius located at approximately

7× 10−5 arcsec.

8 Post-Newtonian corrections: the case of primordial black holes

We have seen in the previous sections that the bh(α) expression for the deflection does

not suffer from any apparent divergence (from the gravity or external field side) due to

well-defined structure of the Newtonian cross section. The expression given in (3.12), in

fact, is similar to the ordinary Rutherford scattering encountered in electrodynamics.
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Figure 19. β(θI) with 20 < bh < 100 in the photon case for a black hole with M = 1.40 108 M�:

DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 1 mpc (c) (Andromeda).

The dependence of the resulting cross section on the scale GM/c2, the Schwarzschild

radius, manifests as an overall dimensionful constant. Therefore, the inclusion of the

electroweak corrections — and the logarithmic dependence on the energy of the terms in

the expansion that follows — do not appear in combination with the macroscopic scale rs.

This allows, in principle, an extension of the perturbative computation up to any order in

the electroweak coupling constant αw. It is also clear that this result is expected to be

valid for any renormalizable field theoretical model, when combined with an external static

gravitational field of Coulomb type, as in the case of the Newtonian limit of GR.

From now on, we will be using the notation nPN to indicate the (post-Newtonian) order

in the potential at which we expand the Schwarzschild metric. For instance, contributions of

a certain nPN order involve corrections in the external field proportional to Φn+1, with 0PN

denoting the ordinary (lowest order) Newtonian (i.e. zeroth post-Newtonian) contributions

proportional to Φ, as given in eq. (3.7). The inclusion of the higher order corrections in

the external potential modifies this simple picture due 1) to the need of introducing a

cutoff regulator in the computation of the Fourier transform of the higher powers of the

Newtonian potential and 2) to the presence of the Schwarzschild radius rs in the actual

expansion. These features emerge already at the first post-Newtonian order (1PN) for an

uncharged black hole and at order 0PN for the Reissner-Nordstrom (RN) metric (charged

black hole).
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Figure 20. µ(θI) with 20 < bh < 100 in the photon case for a black hole with M = 1.40

108 M�: DLS = 1 Kpc (a), DLS = 1 pc (b), DLS = 10 mpc (c). The strong suppression of

the magnification parameter, in this case, is associated to the secondary image for this geometric

configuration (Andromeda).

Both points 1) and 2) are, in a way, expected, since the microscopic expression for the

transition matrix element given by (3.1), in fact, cannot be extrapolated to the case of a

macroscopic source, with the presence of a macroscopic scale such as the black hole horizon.

This seems to indicate that the success of the Newtonian approximation is essentially due

to the rescaling of rs found in the expression of the cross section, which is a feature of

this specific order, and is therefore limited to a 1/r potential. It is then natural to ask if

there is any other realistic case in which the post-Newtonian corrections can be included

in an analysis of this type. Obviously, the answer is affirmative, as far as we require that

rs is microscopic and that the energy of the beam, which is an independent variable of

a scattering event, is at most of the order of 1/rs. Under these conditions, we are then

allowed to extend our analysis through higher orders in Φ, with scatterings in which the

dimensionless parameter rsq with q the impact parameter, is at most of O(1). This specific

situation is encountered in the case of primordial black holes, where rs can be microscopic.

We are going to illustrate this point in some detail, since it becomes relevant in the case

of primordial black holes.
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8.1 Post Newtonian contributions in classical GR

To illustrate this point we extend the expansion of the Schwarzschild metric at order 0PN

given in (2.2). A similar expansion will be performed on the RN metric.

For this purpose, it is convenient to perform a change of coordinates on the

Schwarzschild metric

ds2 =

(
1− 2GM

r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ (8.1)

in such a way that this takes an isotropic form. The radial change of coordinates is given by

r = ρ

(
1 +

GM

2ρ

)2

(8.2)

which allows to rewrite (8.1) as

ds2 = A(ρ)dt2 −B(ρ)(dρ2 + ρ2 dΩ) (8.3)

with

A(ρ) =
(1−GM/2ρ)2

(1 +GM/2ρ)2
B(ρ) = (1 +GM/2ρ)4 . (8.4)

Post-Newtonian (weak field) corrections can be obtained by an expansion of A and B

taking M/ρ� 1. Up to third order in Φ this is given by

A(ρ) = 1 + 2 Φ + 2 Φ2 +
3

2
Φ3 (8.5)

B(ρ) = 1− 2 Φ +
3

2
Φ2 − 1

2
Φ3. (8.6)

In the RN spacetime for a charged black hole the analysis runs similar. The interest

in this metric is due to the fact that the lowest order potential, in this case, involves

charge-dependent 1/r2 contributions which, for an uncharged black hole, appear at first

post-Newtonian order (1PN). The metric, in this case, is given by the expression

ds2 =

(
1− 2GM

r
+
GQ2

r2

)
dt2 −

(
1− 2GM

r
+
GQ2

r2

)−1

dr2 − r2dΩ, (8.7)

with Q denoting the overall charge of the black hole. It has two concentric horizons which

become degenerate in the maximally charged case. The two horizons are the solution of

the equation (
1− 2GM

r
+
GQ2

r2

)
= 0 (8.8)

with solutions r = GM ±
√
G2M2 −GQ2. The RN black hole has a maximum allowed

charge Q = M
√
G, in order to avoid a naked singularity. In this case, the radial change of

variables which brings the metric into a symmetric form is given by

r = ρ

(
1 +

GM +
√
GQ

ρ

)(
1 +

GM −
√
GQ

ρ

)
, (8.9)
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so that the RN spacetime in isotropic coordinates is

ds2 =

(
1− G2M2−GQ2

4ρ2

)2

(
1 + GM+

√
GQ

2ρ

)2 (
1 + GM−

√
GQ

2ρ

)2dt
2

−

(
1 +

GM +
√
GQ

2ρ

)2(
1 +

GM −
√
GQ

2ρ

)2

(dρ2 + ρ2 dΩ). (8.10)

We just recall that for a massless particle in this metric background the angle of deflection

and the impact parameter are given by the expressions

α(r0) = 2

∫ ∞
r0

dr

r

√
r2

r20

(
1− 2GM

r0
+ GQ2

r20

)
−
(

1− 2GM
r + GQ2

r2

) − π (8.11)

b(r0) =
r0√

1− 2GM
r0

+ GQ2

r20

(8.12)

where r0 is the closest distance of approach. It’s convenient to normalize r, r0 and Q to

the Schwarzshild radius rs = 2GM and introduce the variables

x =
r

2GM
x0 =

r0

2GM
q =

Q

2GM
. (8.13)

With this redefinitions the deflection can be expressed in the form [31]

α(x0) = G(x0) F(φ0, λ)− π (8.14)

with

G(x0) =
4x0√

1− 1
x0

+ q2

x20

1√
(r1 − r3)(r2 − r4)

(8.15)

and with

F(φ0, λ) =

∫ φ0

0
(1− λ sin2 φ)−1/2dφ (8.16)

being an elliptic integral of the first kind with arguments

φ0 = arcsin

√
r2 − r4

r1 − r4
(8.17)

λ =
(r1 − r4)(r2 − r3)

(r1 − r3)(r2 − r4)
. (8.18)

The ri are the roots of the fourth order polynomial

P (x) = x4 +
x2

0

1− 1
x0

+ q2

x20

(x− x2 − q2) (8.19)

ordered so that r1 > r2 > r3 > r4. The comparison between Schwarzschild and RN

deflection angle is shown in figure 21. The plots describe the behaviour of the angular
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Figure 21. Comparison of the deflection angle for the Schwarzshild case and the maximally charged

Reissner-Nordstrom case in the near-horizon (a), in the very-near-horizon (b).

deflection as a function of the impact parameter bh for a RN and Schwarzschild metric in

the region with 10 < bh < 50 (top left) and 4 < bh < 10 (top right) for the maximally

charged case. The differences tend to be very pronounced as we approach the horizon of

the Schwarzschild metric.

As pointed out in [26] in the Schwarzschild case, the 1/b expansion for the deflection

angle does not reproduce the photon sphere singularity of the Schwarzschild metric, which

is achieved using the exact GR expression in terms of elliptic function given in (8.14), but

it represents nevertheless an improvement respect to the 0PN order. Expanding the RN

metric in M/ρ� 1 up to the third order, the 2PN approximation gives

A(ρ) = 1− 2GM

ρ
+

2G2M2 +GQ2

ρ2
− 3G3M3 + 5G2M Q2

2 ρ3
(8.20)

B(ρ) = 1 +
2GM

ρ
+

3G2M2 −GQ2

2 ρ2
+
G3M3 −G2M Q2

2 ρ3
. (8.21)

Inserting this expansion into the deflection integral, we can account in a systematic way of

the 1/b corrections in the angle of deflection α

α(b) = 4
GM

b
+

(
5− GQ2

M2

)
3π

4

G2M2

b2
+

(
128

3
− 16

GQ2

M2

)
G3M3

b3
. (8.22)

The deflection (8.22) in the maximally charged case is given by the expression

αm.c. = 4
GM

b
+ 3π

(GM)2

b2
+

80

3

(GM)3

b3
. (8.23)

In the next subsection we are going to illustrate how the inclusion of these expansions

at nPN order affects the computation of the quantum corrections to the angular deflec-

tion. The corrections are embodied in a geometric form factor whose expression is entirely

controlled by the 1/b expansion.

8.2 Quantum effects at 2nd PN order

The inclusion of the PN corrections to the external background requires a recalculation of

the cross section, with the inclusion of the additional terms in the fluctuation of the metric
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in momentum space. As usual we consider a static source, so that the metric is written as

hµν(q) = 2πδ(q0)hµν(~q ). (8.24)

At leading order in the external field Φ both the timelike and the spacelike components are

equal ( h00 ≡ hii), while at higher orders they are expressed in terms of two form factors

h0 and h1

hµν(~q ) = h0(~q )δ0µδ0ν + h1(~q )
(
ηµν − δ0µδ0ν

)
, (8.25)

which at higher order in the weak external field are given by

h0(~q ) = −2

κ

∫
d3~x

[
Φ

c2
+

(
Φ

c2

)2

+
3

4

(
Φ

c2

)3 ]
ei~q·~x

h1(~q ) = −2

κ

∫
d3~x

[
−Φ

c2
+

3

4

(
Φ

c2

)2

−1

4

(
Φ

c2

)3 ]
ei~q·~x,

(8.26)

where we have explicitly reinstated the dependence on the speed of light. Below we will

conform to our previous notations in natural units, with c = 1.

Neutrinos. The computation, at this stage, follows rather closely the approach of the

previous sections, giving for the averaged squared matrix element in the neutrino case

|iSfi|2 =
κ2

16V 2E1E2
2πδ(q0) T 1

2
tr

[
p/2V

µν(p1, p2)p/1V
ρσ(p1, p2)

]
hµν(~q )hρσ(~q ), (8.27)

with T being the time of the transition, and the differential cross section

dσ =
dW
T

=
|Sfi|2

jiT
dnf . (8.28)

We have denoted with dnf the density of final states in the transition amplitude, and with

ji the incoming flux density. After integration over the final states, and using |~p1| = |~p2|,
we obtain the expression

dσ

dΩ

∣∣∣∣(0)

2PN

=
κ2

16π2
E4 cos2 θ

2
Fg(q)

2, (8.29)

where we have introduced the gravitational form factor of the external source

Fg(q) ≡
(
h0(~q )− h1(~q )

)
. (8.30)

Notice the complete analogy between the corrections coming from a distributed source

charge, for a potential scattering in quantum mechanics, and the gravity case. In the

evaluation of Fg in momentum space we are forced to introduce a cutoff Λ, being the

Fourier transforms of the cubic contributions in Φ divergent. The singularity is generated

by the integration around the region of r ∼ 0 in the Fourier transform of the potential.

The relevant integrals in this case are given by

In =

∫
d3~x

1

|~x|n
ei~q·~x (8.31)
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with

I1 =
4π

~q 2
, I2 =

2π2

|~q|
. (8.32)

and with I3 requiring a regularization with an ultraviolet cutoff in space (Λ)

I3 =
4π

|~q |

∫ ∞
Λ

dr
sin(|~q |r)

r2
. (8.33)

The choice of Λ is dictated by simple physical considerations. Given the fact that consis-

tency of the expansion requires that rsq . O(1), it is clear the appropriate choice in the

regulator is given by the condition that this coincides with the Scwarzschild radius, i.e.

Λ ∼ rs. Expressed in terms of the cutoff, we obtain for the geometric form factors the

expressions

h0(~q ) = −2

κ

[
− 4π

|~q |2
GM +

2π2

|~q |
(GM)2 − 3

4

4π

|~q |

(
sin(Λ|~q |)

Λ
− |~q |Ci(Λ|~q |)

)
(GM)3

]
h1(~q ) = −2

κ

[
4π

|~q |2
GM +

3

4

2π2

|~q |
(GM)2 +

1

4

4π

|~q |

(
sin(Λ|~q |)

Λ
− |~q |Ci(Λ|~q |)

)
(GM)3

]
,

(8.34)

where we have indicated with Ci the cosine integral function

Ci(x) =

∫ x

∞
dt

cos t

t
. (8.35)

From the previous equations we obtain the cross section

dσ

dΩ

∣∣∣∣(0)

2PN

=
1

4π2
E4 cos2 θ

2

[
8π

|~q |2
GM− π2

2|~q |
(GM)2+

4π

|~q |

(
sin(Λ|~q |)

Λ
−|~q |Ci(Λ|~q |)

)
(GM)3

]2

,

(8.36)

which is valid at Born level and includes the weak field corrections up to the third order

in Φ. In the expression of the cross sections, we use the subscript nPN, with n = 0, 1, 2

to indicate a n-th order expansion of the metric in the gravitational potential, while the

superscripts ((0), (1) and so on) label the perturbative order in αw. The leading order

cross section at order 2PN, for instance, takes the form

dσ

dΩ

∣∣∣∣(0)

2PN

=
dσ

dΩ

∣∣∣∣(0)

0PN

PN 2(E, θ), (8.37)

with

PN 2(E, θ) ≡
[
1− π

8
(GM)E sin

θ

2
+

1

2
(GM)2E sin

θ

2

(
1

Λ
sin

(
2 ΛE sin

θ

2

)
− 2E sin

θ

2
Ci

(
2 ΛE sin

θ

2

))]2

, (8.38)

where we have factorized the tree level result dσ/dΩ|(0)
0PN given in (3.12). The post-

Newtonian form factor PN 2(E, θ) induces an energy dependence of the cross section which
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is unrelated to the electroweak corrections. The analysis, in fact, can be extended at one

loop in the electroweak theory. In this case, a lengthy computation gives the 2PN result

dσ

dΩ

∣∣∣∣(1)

2PN

=
dσ

dΩ

∣∣∣∣(0)

0PN

[
1+

4GF

16π2
√

2

(
f1
W (E, θ)+f1

Z(E, θ)− 1

4
ΣL
W−

1

4
ΣL
Z

)]
PN 2(E, θ), (8.39)

where we have inserted the one loop expression given in (3.19).

We can obtain an explicit solution of the corresponding semiclassical equation at order

1PN. Using the expression of the PN function at this order

PN 1(E, θ) ≡
[
1− π

8
(GM)E sin

θ

2

]2

(8.40)

on the right hand side of (8.38) in order to generate the 1PN cross section at Born level,

and solving the corresponding semiclassical equation (4.1) we obtain

b2
∣∣(0)

1PN
= 4 (GM)2

(
− 1 + csc2 α

2
+ 2 ln sin

α

2

)
+ E (GM)3π

(
4 + (cosα− 3) csc

α

2

)
− 1

32
E2(GM)4π2

(
1 + cosα+ 4 ln sin

α

2

)
. (8.41)

At this point, we can invert eq. (8.41) for α(b) obtaining

α|(0)
1PN =

2

bh
− π

2

1

b2h
E (GM)− 1

b3h

(
ln bh

(
2− π2

32
E2(GM)2

)
+

2

3
− E (GM)π

− 3π2

64
E2(GM)2

)
+O(b4h) (8.42)

for the tree level post Newtonian one.

For the Reissner-Nordstrom geometry the situation is similar. The post-Newtonian

form factor is then given by

PN (E, θ)|RN =

[
1− π

8
(GM)

(
1 + 3

Q2

GM2

)
E sin

θ

2
+ (GM)2

(
1+

Q2

GM2

)
E sin

θ

2

×
(

1

Λ
sin

(
2ΛE sin

θ

2

)
−2E sin

θ

2
Ci

(
2ΛE sin

θ

2

))]2

, (8.43)

and the impact parameter in the 1PN approximation is

b2
∣∣(0) RN

1PN
= 4(GM)2

(
−1 + csc2 θ

2
+ 2 ln sin

θ

2

)
+ E(GM)3

(
1 + 3

Q2

GM2

)
(8.44)

×π
(

4+(cos θ−3) csc
θ

2

)
− 1

32
E2(GM)4

(
1+3

Q2

GM2

)2

π2

(
1+cos θ+4 ln sin

θ

2

)
.

The inversion formula in this case is

α|(0) RN
1PN =

2

bh
− π

2

1

b2h
E(GM)

(
1+3

Q2

GM2

)
− 1

b3h

(
ln bh

(
2−π

2

32
E2(GM)2

(
1+3

Q2

GM2

)2
)

+
2

3
−E(GM)

(
1+3

Q2

GM2

)
π − 3π2

64
E2(GM)2

(
1+3

Q2

GM2

)2
)

+O(b4h). (8.45)
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Photons. We can extend the analysis presented above for neutrinos to the photon case.

Here the cross section takes the form

dσ

dΩ

∣∣∣∣(0)

γ,2PN

=
κ2

16π2
E4 cos4 θ

2
Fg(q)

2 (8.46)

and, as in the neutrino case, we have

dσ

dΩ

∣∣∣∣(0)

γ,2PN

=
dσ

dΩ

∣∣∣∣(0)

γ,0PN

PN 2(E, θ) (8.47)

where we inserted the tree level cross section for the photon

dσ

dΩ

∣∣∣∣(0)

γ,0PN

= (GM)2 cot4 θ

2
. (8.48)

In the 0PN Newtonian limit, this cross section has been computed in [5], and takes the form

dσ

dΩ

∣∣∣∣(1)

γ,0PN

=
dσ

dΩ

∣∣∣∣(0)

γ,0PN

1 + 2

∑
fk

N c
fk
F 3
fk

(E, θ,mfk , Qfk) + F 3
W (E, θ)

 (8.49)

where

F 3
fk

(E, θ)=
1

36

αw
π

Q2
fk

E2
(35E2 − 39m2

fk
csc2 θ/2) (8.50)

− 1

12

αw
π

Q2
fk

E2
(4E2−5m2

fk
csc2 θ/2)

√
1+m2

fk

csc2 θ/2

E2
log

 1+
√

1 +m2
fk

csc2 θ/2
E2

−1+
√

1+m2
fk

csc2 θ/2
E2


+

1

16

αw
π

m2
fk
Q2
fk

E4
csc4 θ/2

(
E2 cos θ−E2+m2

fk

)
log2

 1+
√

1+m2
fk

csc2 θ/2
E2

−1+
√

1 +m2
fk

csc2 θ/2
E2


and

F 3
W (E, θ) = − 1

24

αw
π

1

E2
(125E2 − 39m2

W csc2 θ/2) (8.51)

+
1

8

αw
π

1

E2
(14E2−5m2

W csc2 θ/2)

√
1+m2

W

csc2 θ/2

E2
log

 1+
√

1+m2
W

csc2 θ/2
E2

−1+
√

1+m2
W

csc2 θ/2
E2


− 1

32

αw
π

1

E4

(
16E4−16E2m2

W csc2 θ/2+3m4
W csc4 θ/2

)
log2

 1+
√

1+m2
W

csc2 θ/2
E2

−1+
√

1+m2
W

csc2 θ/2
E2


are the relevant electroweak form factors entering in the computation. In the previous

equations the sum fk is over all Standard Model fermions, with mfk and Qfk their masses

and charges. N c
fk

is 1 for leptons and 3 for quarks. Proceeding similarly to the neutrino

case, the one loop cross section in the 2PN approximation takes the form

dσ

dΩ

∣∣∣∣(1)

γ,2PN

=
dσ

dΩ

∣∣∣∣(1)

γ,0PN

PN 2(E, θ), (8.52)
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with PN 2 given by (8.38), which can be inserted again in (4.1) and investigated numerically.

Solving at order 1PN the analogous of (8.52), the solution of (4.1) gives

b2
∣∣(0)

γ,1PN
= 2 (GM)2

(
−1 + 2 csc2 α

2
+ cosα+ 8 ln sin

α

2

)
− 2

3
E (GM)3π

(
1 + 3 csc

α

2

)(
cos

α

4
− sin

α

4

)6

− 1

256
E2(GM)4π2

(
11 + 12 cosα+ cos 2α+ 32 ln sin

α

2

)
. (8.53)

In the photon case the inversion formulae at orders 0PN and 1PN are given by

α|(0)
γ,0PN =

2

bh
− 1

b3h

(
4 ln bh −

1

3

)
− 1

b5h

(
12 ln2 bh + 10 ln bh +

17

20

)
+O(b7h) (8.54)

and

α|(0)
γ,1PN =

2

bh
− 1

b2h

π

2
E (GM)− 1

b3h

(
ln bh

(
4− 1

16
π2E2(GM)2

)
− 1

64
π2E2(GM)2

− 4

3
π E (GM)− 1

3

)
+O(b4h) (8.55)

respectively.

8.3 Range of applicability

The structure of the one-loop 2PN result for neutrinos and photons shows the complete fac-

torization between the quantum corrections and the background-dependent contributions.

While the former are process dependent, the latter are general. Obviously, this result is not

unexpected, and follows rather closely other typical similar cases in potential scattering in

quantum mechanics. An example is the case of an electron scattering off a finite charge

distribution characterized by a geometrical size R, where the finite size corrections are all

contained in a geometric form factor.

We recall that for a Coloumb interaction of the form V (r) = e2/r, the cross section is

given in terms of the pointlike (p) amplitude

f(θ)p = −2
me2

~q 2
(8.56)

with ~q = ~k − ~k′ and |~q| = 2|~k| sin θ/2 being the momentum transfer of the initial (final)

momentum of the electron ~k (~k′) and charge e. The scattering angle is measured with

respect to the z-direction of the incoming electron. The charge of the static source has also

been normalized to e. The corresponding cross section is given by

dσ

dΩp
= |f(θ)p|2 =

(2m)2e4

16k4 sin4 θ/2
, (8.57)

and the modification induced by the size of the charge distribution (ρ(x)) is contained in

F (~q) =

∫
d~xρ(~x)ei~q·~x (8.58)
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Figure 22. Comparison of nPN approximations for α(b) in the photon case with MPBH = 10−16 M�
and for EGM ≈ 1 (a). In (b) and (c) we show the PN function for different energies.

with
dσ

dΩ
=
dσ

dΩp
|F (q)|2. (8.59)

For a uniform charge density, for instance, the geometrical form factor F (~q), which is the

transform of the charge distribution, introduces a dimensionless variable qR in the cross

section which is absent in the point-like (Coulomb) case, of the form

F (q) = 3
sin(q R)− q R cos(q R)

(q R)3
. (8.60)

The validity of the expression above is for q R . 1, and the presence of the geometrical

form factor is responsible for the fluctuations measured in the cross section as a result of

the finite extension of the charged region.

In the analysis of the nPN corrections in gravity, the situation is clearly analogous,

with the size of the horizon taking the role of the classical charge radius R. For ordinary

(macroscopic) horizons (e.g. of a km size) rs ∼ GM invalidates the perturbative expansion

due to the appearance of the GME parameter in the expression of the post Newtonian

factor PN (E, θ), which is small only if E ∼ 1/GM , a choice which is not relevant for our

analysis, since it applies to particle beams whose energy is in the very far infrared.

By imposing that the cutoff Λ coincides with the Schwarzschild radius (Λ ≡ rs), one

can immediately realize that the post-Newtonian expansion gets organized only in terms

of this parameter (GME). In the regions of strong deflections, which are those that
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concern our analysis, we can reasonably assume that y ≡ sin θ/2 ∼ O(1), if we use the GR

prediction to estimate the bending angle. This allows to discuss the convergence of the

PN expansion only in terms of the energy E of the incoming beam and of the size of the

horizon. The analogous of the charge oscillations given by (8.60), in the gravitational case,

are then uniquely related to the post-Newtonian function PN , and hence to the size of the

parameter ΛE ∼ rsE which defines its expansion in powers of the gravitational potential.

Assuming a small value of x ≡ GME, we can indeed rewrite (8.38) via a small-x expansion,

obtaining

PN (x, y) = 1− π

8
xy + x2y2 (1− γE − log x− log 4y) . (8.61)

This expression can be used to investigate the range of applicability of these corrections in

terms of the two factors appearing in x, the energy of the incoming beam and the size of

the horizon of the gravitational source. The requirement that such a parameter be small

defines a unique range of applicability of such corrections in the quantum case.

One possible application of the formalism which renders the PN corrections to the

gravitational scattering quite sizable is in the context of primordial black holes [32], which

have found a renewed interest in the current literature [33, 34].

We just mention that primordial black holes (PBHs) have been considered a candidate

component of dark matter since the 70’s, and conjectured to have formed in the early

universe by the gravitational collapse of large density fluctuations, with their abundances

and sizes tightly constrained by various theoretical arguments. These range from Hawking

radiation, which causes their decay to occur at a faster rate compared to a macroscopic

black hole (of solar mass); bounds from their expected microlensing events; their influence

on the CMB, just to mention a few [35]. For instance, the mechanism of thermal emission

by Hawking radiation sets a significant lower bound on their mass (∼ 5× 1014g), in order

for them to survive up to the present age of the universe. This bound satisfies also other

constraints, such as those coming from the possible interference of their decay with the

formation of light elements at the nucleosynthesis time. With the launch of the FERMI

gamma ray space telescope [11], the interest in this kind of component has found new

widespread interest. The unprecedented sensitivity of its detector in the measurement of

interferometric patterns generated by high energy cosmic rays (femtolensing events), such

as Gamma Ray Bursts [10], has allowed to consider new bounds on their abundances [36].

The hypothesis of having PBHs as a dominant component of the dark matter of the uni-

verse provides remarkable constrains on their allowed mass values, except for a mass range

1018kg < MPBH < 1023kg, where it has been argued that they can still account for the

majority of it. In other mass ranges several analyses indicate that the PBH fraction of

dark matter cannot exceed 1% of the total [35].

PN corrections turn out to be significant for PBH in this mass range, due to the

large variation induced on the PN function by the 1PN and 2PN terms. These may play a

considerable role in a PBH mediated lensing event. We illustrate this behaviour by showing

plots of the post Newtonian behaviour of the relevant expressions for lensing. In figure 22

(a) we plot the angular deflection as a function of the impact parameter for the Newtonian

0PN, and relative post Newtonian corrections. We have considered a primordial black
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hole with a mass of 10−16 M�, which carries a microscopic Schwarzschild radius (300 fm)

and chosen E = 1/(GM) = 0.6 MeV for the incoming photon beam. The impact of the

corrections on the gravitational cross section are quite large, as one can easily figure out

from panel (b), where we plot the factor PN as a function of the Schwarzschild radius for

these compact massive objects, for bh ∼ 1 fm. For a more massive primordial black hole,

with 200 < bh < 1000, the pattern is quite similar, as shown in panel (c). In both cases

the post-Newtonian corrections appear to be significant, of the order of 15-20 % and could

be included in a more accurate analysis of lensing for these types of dark matter candidate

solutions.

9 Conclusions and perspectives

We have presented a discussion of neutrino lensing at 1-loop in the electroweak theory. In

our approach the gravitational field is a static background, and the propagating matter

fields are obtained by embedding the Standard Model Lagrangian on a curved spacetime,

as discussed in previous works [14, 17]. As in a previous study [5], also in our current case

the field theoretical corrections to the gravitational deflection are in close agreement with

the predictions of general relativity. The agreement holds both asymptotically, for very

large distances from the center of the black hole, of the order of 106 horizon sizes (bh), but

also quite close to the photon sphere (∼ 20 bh). In this respect, the similarity of the results

for photons and neutrinos indicates the consistency of the semiclassical approach that we

have implemented. As noticed in [19–21], the inclusion of the quantum effects causes the

appearance of an energy dependent dispersion of a particle beam, which implies a violation

of the classical equivalence principle.

Various types of lens equations have been formulated in the past using classical GR,

and we have illustrated the modifications induced on their expressions by the inclusion of

the suppressed 1/bn corrections in the impact parameter to the angular deflections. We

have then developed a formalism which allows to include the semiclassical results, due to

the radiative effects in the propagation of a photon or a neutrino, in a typical lensing

event. We have considered both the case of a thin lens, which is quadratic in the deflection

angle, and the fully nonlinear case, taking as an example the Virbhadra-Ellis lens equation.

Radiative and post-Newtonian effects induce a dependence of the angle of deflection with

the appearance of extra 1/bn suppressed contributions and of extra logarithms of the impact

parameter, that we have studied numerically for some realistic geometric configurations. In

general, radiative effects are significant only for configurations of the source/lens/observer

which involve small impact parameters in the deflection (bh ∼ 20), and require angular

resolutions in the region of few milliarcseconds. Our results are valid for a Schwarzschild

metric, considered both in the Newtonian and in the post-Newtonian approximation, but

they can be extended to other metrics as well.

We have also discussed the consistency of the post-Newtonian approach. We have

shown that such corrections can be consistently taken into account in the case of microscopic

horizon sizes, such as primordial black holes. These corrections have been shown to factorize

and be accounted for by a post-Newtonian function. Our analysis can be extended in
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several directions, from the case of Kerr-Newman metrics to the study of microlensing and

Shapiro delays, and to dynamical gravity. We hope to return on some of these topics in

a future work.
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A Fluctuations to first order in the Newtonian potential

The solution for the static massive source is obtained from the linearized equation

�

(
hµν −

1

2
ηµνh

)
= −κT ext

µν , (A.1)

where h ≡ hµνηµν , and can be rewritten as

�hµν = κSµν , with Sµν = −
(
T ext
µν −

1

2
ηµνT

ext

)
. (A.2)

The external field hµν is obtained by convoluting the static source with the retarded prop-

agator

GR(x, y) =
1

4π

δ(x0 − y0 − |~x− ~y|)
|~x− ~y|

, (A.3)

normalized as

�GR(x, y) = δ4(x− y). (A.4)

The solution of eq. (A.2) takes the form

hext
µν (x) = κ

∫
d4y GR(x, y)Sµν(y) (A.5)

with the EMT of the external localized source, defining Sµν , given by

T ext
µν =

PµPν
P0

δ3(~x) . (A.6)

For a compact source of mass M at rest at the origin, with Pµ = (M,~0), we have

T ext
µν = Mδ0

µδ
0
νδ

3(~x) (A.7)

which gives

Sµν =
M

2
S̄µν S̄µν ≡ ηµν − 2δ0

µδ
0
ν (A.8)

and

hµν(x) =
2GM

κ|~x|
S̄µν , (A.9)

where the field generated by a local (point-like, L) mass distribution has the typical 1/r

(r ≡ |~x|) behaviour. The fluctuations are normalized in such a way that hµν has mass

dimension 1, as an ordinary bosonic field, with κ of mass dimension −1.
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B 1/bn corrections to lensing for discrete and continuous mass

distributions in GR

The method of extracting the 1/bn corrections to the angular deflection can be extended

to the case of a countinuos mass distribution in the lens plane, as shown in figure 9. For

this purpose we can consider the case of a distributed lens with a surface density

Σ(~ξ) =

∫
ρ(~ξ, z) dz. (B.1)

In the Newtonian approximation we have the usual relation

~̂α(~ξ) = 4GM

∫
d2ξ′

~ξ − ~ξ′

|~ξ − ~ξ′|2
Σ(~ξ′) (B.2)

or, after the rescaling ~ξ = ξ0~x,

~̂α(~x) = 4GM

∫
d2x′ξ0

~x− ~x′

|~x− ~x′|2
Σ(ξ0~x

′) . (B.3)

The deflection angle is

~α(~x) = 4GM
DLS DOL

DOS
∇x
∫
d2x′ log |~x− ~x′|Σ(ξ0~x) (B.4)

and is the gradient of the lensing potential

~α(~x) = ∇xΨ(~x) Ψ(~x) ≡ 1

π

∫
d2x′ log |~x− ~x′| Σ(ξ0~x)

Σcr
(B.5)

where we have introduced the critical surface density

Σcr =
1

4πGM

DOS

DLS DOL
. (B.6)

It is possible to introduce the corrections to this behaviour by extending to the case of a

continuous distribution the result given in eq. (5.3). Inserting the generalized 1/b expansion

given in (5.3), we derive a generalized version of (B.2) that remains valid also in the case

of strong lensing and which is given by

~̂α(~ξ) =

∫
d2ξ′(~ξ − ~ξ′)

(
4GM

Σ(~ξ′)

|~ξ−~ξ′|2
+

15π

4
(GM)2 Σ2(~ξ′)

|~ξ−~ξ′|3
+

128

3
(GM)3 Σ3(~ξ′)

|~ξ−~ξ′|4

)
. (B.7)

This allows to define a generalized deflection potential

~α(~x) = ∇xΨ(~x), (B.8)

with

Ψ(~x) =
1

πΣcr

∫
d2x′

(
log |~x− ~x′|Σ(ξ0~x)− 15π

16

1

|~x− ~x′|
GM

ξ0
Σ2(ξ0~x)

−128

24

1

|~x− ~x′|2
G2M2

ξ2
0

Σ3(ξ0~x)

)
. (B.9)
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C Full cross section

We give the explicit expression of the neutrino differential cross section in terms of E and

θ used for the calculation of the form factors

dσ

dΩ
= G2M2 cos2 θ/2

sin4 θ/2

{
1 +

2GF

16
√

2π2

1

6E2 sin2 θ/2

[
6
(
m2
f − 4(2m2

W +m2
Z)
)
E2 sin2(θ/2)

− 4
(
m4
f +m2

fm
2
Z − 2m4

W −m2
Z

)
+
(
m2
f + 2m2

W

)
A0

(
m2
f

)
+
(

24E2 sin2(θ/2)− 7m2
Z

)
A0

(
m2
Z

)
−
(
m2
f + 2m2

W

)
A0

(
m2
W

)
+

(
−34m2

ZE
2 sin2(θ/2)− 3m6

Z

E2 sin2(θ/2)
+ 21m4

Z

)
B0
(
−4E2 sin2(θ/2), 0, 0

)
+

(
16m2

ZE
2 sin2(θ/2) +

3m6
Z

E2 sin2(θ/2)
− 14m4

Z

)
B0
(
−4E2 sin2(θ/2),m2

Z ,m
2
Z

)
+

(
4(m2

f + 8m2
W )E2 sin2(θ/2) +

3

E2 sin2(θ/2)
(m6

f − 3m2
fm

4
W + 2m6

W )

− 4(m4
f −m2

fm
2
W + 7m4

W )

)
B0
(
−4E2 sin2(θ/2),m2

W ,m
2
W

)
+

(
2(m2

f − 34m2
W )E2 sin2(θ/2)− 3

E2 sin2(θ/2)
(m6

f − 3m2
fm

4
W + 2m6

W )

+ 5m4
f − 23m2

fm
2
W + 42m4

W

)
B0
(
−4E2 sin2(θ/2),m2

f ,m
2
f

)
+

(
48m2

W +
6

E2 sin2(θ/2)

(
m4
f − 2m4

W +m2
fm

2
W

))
B0
(
0,m2

f ,m
2
W

)
+

(
12m6

Z −
3m8

Z

E2 sin2(θ/2)

)
C0
(
−4E2 sin2(θ/2), 0,m2

Z ,m
2
Z

)
+

(
48m2

ZE
4 sin4(θ/2)− 72m4

ZE
2 sin2(θ/2)

− 3m8
Z

E2 sin2(θ/2)
+ 27m6

Z

)
C0
(
−4E2 sin2(θ/2),m2

Z , 0, 0
)

+

(
1

4E2 sin2(θ/2)

(
m8
f − 2(m2

W − E2 sin2(θ/2))(m3
W − 4mWE

2 sin2(θ/2))2

+m4
f (−4E2 sin2(θ/2) + 8m2

WE
2 sin2(θ/2)− 3m4

W )−m6
f (E2 sin2(θ/2) +m2

W )

+m2
f (24m2

WE
4 sin4(θ/2)−25m2

WE
2 sin2(θ/2)+5m6

W )
))
C0
(
−4E2 sin2(θ/2),m2

W ,m
2
f ,m

2
f

)
+

(
24m6

W−
6m8

W

E2 sin2(θ/2)
−30m4

Wm
2
f+

15m6
Wm

2
f

E2 sin2(θ/2)
−

9m4
Wm

4
f

E2 sin2(θ/2)
−

3m2
Wm

6
f

E2 sin2(θ/2)

+
3m8

f

E2 sin2(θ/2)
+24m2

Wm
4
f+24m4

fE
2 sin2(θ/2)−18m6

f

)
C0
(
−4E2 sin2(θ/2),m2

f ,m
2
W ,m

2
W

)]

− GF

16
√

2π2

(
ΣLZ + ΣLW

)}
. (C.1)
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D Coefficients of the semiclassical expansion

The coefficients present in the expansion in eq. (4.12) are given by

C1(E) =
1

24
√

2

GF
π2

E2

(m2
f −m2

W )4

(
9m8

f + 62m6
fm

2
W + 125m4

fm
4
W − 94m2

fm
6
W + 22m8

W

+ (20m6
fm

2
W − 30m4

fm
4
W + 4m2

fm
6
W ) ln(m2

f/m
2
W )
)

C2(E) =
1

600
√

2

GF
π2

E4

m2
Z(m2

f −m2
W )6

(
20m2

Z

(
2m10

f − 84m8
fm

2
W + 36m6

fm
4
W + 76m4

fm
6
W

+21m2
fm

8
W − 6m10

W

)
ln(m2

f/m
2
W ) + (m2

f −m2
W )
(
69m10

f − 69m10
W + 150m8

Wm
2
Z

−5m8
f (69m2

W−55m2
Z)+15m6

f (46m4
W +135m2

Wm
2
Z)−15m4

f (46m6
W +165m4

Wm
2
Z)

+5m2
f (69m8

W − 175m6
Wm

2
Z)
))

D2(E) =
1

160
√

2

GF
π2

E4

m2
Z

E2(E) =
1

160
√

2

GF
π2

E4

m2
Z

(
−11 + 6 ln 4 + ln(E2/m2

Z)
)

F2(E) =
1

160
√

2

GF
π2

E4

m2
Z

(
−3 + ln 16 + 2 ln(E2/m2

Z)
)

G2(E) =
1

160
√

2

GF
π2

E4

m2
Z

(
−1 + ln 16 + 2 ln(E2/m2

Z)
)
. (D.1)

We find

bh(E, θ)=
2

θ
+

1

12

{
− 2 + 6C1(E) + 3C2(E)− 3E2(E)− 12F2(E)− 3G2(E)

}
θ

− 6
{

1 + 2C1(E)
}
θ ln θ +

1

2880

{
− 4(17 + 75C2(E) + 15E2(E)

− 300F2(E)−345G2(E)+30(1+96D2(E)) ln 2)+15
(
− 3C2

2 (E)+6C2(E)(E2(E)

+ 4F2(E) +G2(E))− 12C2
1 (E)(ln 4− 1)2 − 3(E2(E) + 4F2(E) +G2(E) + ln 4)2

− 4C1(E)
(
3C2(E)− 3(−2 + E2(E) + 4F2(E) +G2(E) + 4 ln2 2)

+(12F2(E)−1) ln 4
)
+2(C2(E)+2C1(E)C2(E)−2C1(E)(E2(E)+G2(E))) ln 64

)}
θ3

+
1

48

{
2− 3C2(E) + 192D2(E) + 3E2(E) + 12F2(E) + 3G2(E) + ln 64

+ 2C1(E)(−1− 3C2(E) + 3E2(E) + 12F2(E) + 3G2(E)

+ 6C1(E)(ln 4− 1) + ln 4096
}
θ3 ln θ − 1

16

{
1 + 2C1(E)2

}
θ3 ln2 θ . (D.2)

E Scalar integrals

In this appendix we collect the definitions of the scalar integrals appearing in the computa-

tion of the matrix element. One-, two- and three- point functions are denoted respectively
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as A0, B0 and C0 with

A0(m2
0) =

1

iπ2

∫
dnl

1

l2 −m2
0

,

B0(p2
1,m

2
0,m

2
1) =

1

iπ2

∫
dnl

1

(l2 −m2
0)((l + p1)2 −m2

1)
, (E.1)

C0(p2
1, (p1 − p2)2, p2

2,m
2
0,m

2
1,m

2
2) =

1

iπ2

∫
dnl

1

(l2 −m2
0)((l + p1)2 −m2

1)((l + p2)2 −m2
2)
.

Because the kinematic invariants on the external states of our computation are fixed,

q2 = (p1−p2)2, p2
1 = p2

2 = 0, we have defined the shorter notation for the three-point scalar

integrals

C0(m2
0,m

2
1,m

2
2) = C0(m2, q2,m2,m2

0,m
2
1,m

2
2) , (E.2)

with the first three variables omitted.

F Deflection integral

The deflection integral for the GR solution can be recast in the form

α(x0) = 2x
3/2
0

∫ 1/x0

0

dt√
x3

0t
3 − x3

0t
2 + x0 − 1

− π, (F.1)

with x0 being the point of closest approach between the deflector and the beam. It is an

elliptic integral of first kind. In the indefinite form, the general expression of these types

of integrals is given by

I0 =

∫
dz√
R(z)

(F.2)

with the polynomial at the denominator

R(z) = c0z
n + c1z

n−1 + · · ·+ cn, (F.3)

being of degree n. For n = 3, which is the GR case, the Weierstrass form of (F.2) is

obtained by introducing the roots (e1, e2, e3) and given by

I0 =

∫
dt√

4(t− e1)(t− e2)(t− e3)
. (F.4)

By the transformation

t = e3 −
e1 − e3

z2
(F.5)

it can be brought to the Legendre form

I0 =

∫
Cdζ√

(1− ζ2)(1− k2ζ2)
, (F.6)

where k is its modulus. In the case of a finite integration, the form that is needed is

F (x; k) =

∫ x

0

dz√
(1− z2)(1− k2z2)

, (F.7)
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also re-expressed as

F (φ; k) =

∫ φ

0

dϑ√
1− k2 sin2 ϑ

(F.8)

by a simple change of the integration variable. For (F.1) the corresponding roots are

e1 =
1

2x0

(
x0 − 1−

√
x2

0 + 2x0 − 3

)
e2 =

1

2x0

(
x0 − 1 +

√
x2

0 + 2x0 − 3

)
e3 =

1

x0

(F.9)

and the transformation (F.5) is given by

t =
1

x0
− x0 − 3−

√
x2

0 + 2x0 − 3

2x0z2
(F.10)

which takes to the Legendre form

I0 = −
√

8x0

x0 − 3−
√
x2

0 + 2x0 − 3

∫
dz√

(1− z2)(1− k2(x0)z2)
, (F.11)

with

k2(x0) =
x0 − 3 +

√
x2

0 + 2x0 − 3

x0 − 3−
√
x2

0 + 2x0 − 3
. (F.12)

Keeping into account the finite integration region, (F.1) becomes

α(x0) = −4Σ(x0)

∫ ∞
∆(x0)

dz√
(1− z2)(1− k2(x0)z2)

, (F.13)

with

∆(x0) =

√
x0 − 3−

√
x2

0 + 2x0 − 3

2x0
. (F.14)

The boundaries of integration in (F.13) can be expressed in the Jacobi form by the substi-

tution z → ζ = 1/z, obtaining

∫ ∞
∆(x0)

dz√
(1− z2)(1− k2(x0)z2)

=
1

k(x0)

∫ τ(x0)

0

dζ√
(1− ζ2)(1− λ2(x0)ζ2)

, (F.15)

with τ(x0) = (∆(x0))−1 e λ2(x0) = (k2(x0))−1. After reabsorbing a factor in front of the

integral in the definition of Σ(x0), we obtain

α(x0) = −4Σ(x0)F (φ(x0);λ(x0))− π, (F.16)
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with

Σ(x0) =

√√√√x2
0

(
x0 − 3−

√
x2

0 + 2x0 − 3
)

6− 4x0
(F.17a)

φ(x0) = arcsin(τ(x0)) (F.17b)

τ(x0) =

√
2

x0 − 3−
√
x2

0 + 2x0 − 3
(F.17c)

λ2(x0) =
x0 − 3−

√
x2

0 + 2x0 − 3

x0 − 3 +
√
x2

0 + 2x0 − 3
. (F.17d)

G Feynman rules

We collect here all the Feynman rules involving an external gravitational field that have

been used in this work. All the momenta are incoming

• graviton — gauge boson — gauge boson vertex

hµν

V β

V α

k1

k2

= −iκ
2

{(
k1 · k2 +M2

V

)
Cµναβ +Dµναβ(k1, k2) +

1

ξ
Eµναβ(k1, k2)

}
(G.1)

where V stands for the vector gauge bosons g, γ, Z and W .

• graviton — fermion — fermion vertex

hµν

ψ

ψ

k1

k2

= −iκ
8

{
γµ (k1 + k2)ν + γν (k1 + k2)µ− 2 ηµν (k/1 + k/2 − 2mf )

}
(G.2)

• graviton — scalar — scalar vertex

hµν

S

S

k1

k2

= i
κ

2

{
k1 ρ k2σ C

µνρσ −M2
S η

µν

}
− iκ

2
2χ

{
(k1 + k2)µ(k1 + k2)ν − ηµν(k1 + k2)2

}
(G.3)

where S stands for the Higgs H and the Goldstones φ and φ±. The first line is the

contribution coming from the minimal energy-momentum tensor while the second is

due to the improvement term.
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• graviton — scalar — fermion — fermion vertex

hµν

S

ψ

ψ̄

k1

k2

k3

=
κ

2

(
CLSψ̄ψ PL + CRSψ̄ψ PR

)
ηµν (G.4)

where the coefficients are defined as

CLhψ̄ψ = CRhψ̄ψ = −i e

2sW

m

mW
, CLφψ̄ψ = −CRφψ̄ψ = i

e

2sW

m

mW
2I3 ,

CLφ+ψ̄ψ = i
e√

2sW

mψ̄

mW
Vψ̄ψ , CRφ+ψ̄ψ = −i e√

2sW

mψ

mW
Vψ̄ψ ,

CLφ−ψ̄ψ = −i e√
2sW

mψ̄

mW
V ∗ψ̄ψ , CRφ−ψ̄ψ = i

e√
2sW

mψ

mW
V ∗ψ̄ψ . (G.5)

• graviton — gauge boson — fermion — fermion vertex

hµν

V α

ψ

ψ̄

k1

k2

k3

= −κ
2

(
CLV ψ̄ψ PL + CRV ψ̄ψ PR

)
Cµναβγβ (G.6)

with

CLgψ̄ψ = CRgψ̄ψ = igsT
a , CLγψ̄ψ = CRγψ̄ψ = ieQ ,

CLZψ̄ψ = i
e

2sW cW
(v + a) , CRZψ̄ψ = i

e

2sW cW
(v − a) ,

CLW+ψ̄ψ = i
e√

2sW
Vψ̄ψ , CLW−ψ̄ψ = i

e√
2sW

V ∗ψ̄ψ , CRW±ψ̄ψ = 0 , (G.7)

and v = I3 − 2s2
WQ, a = I3.

The tensor structures C, D and E which appear in the Feynman rules defined above are

given by

Cµνρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ,

Dµνρσ(k1, k2) = ηµνk1σk2ρ −
[
ηµσkν1k

ρ
2 + ηµρk1σk2ν − ηρσk1µk2ν + (µ↔ ν)

]
, (G.8)

Eµνρσ(k1, k2) = ηµν(k1ρk1σ + k2ρk2σ + k1ρk2σ)−
[
ηνσk1µk1ρ + ηνρk2µk2σ + (µ↔ ν)

]
.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 55 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
7
(
2
0
1
5
)
1
6
0

References

[1] http://www.darkenergysurvey.org/.

[2] http://www.lsst.org/.

[3] http://wfirst.gsfc.nasa.gov/

[4] http://www.euclid ec.org/.
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