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1 Overview and motivation

Almost for the past one decade, the AdS/CFT correspondence [1]–[4] has been found to

provide an extremely elegant tool in order to explore various physical properties of strongly

coupled (gauge theory) plasma at sufficiently high temperatures. The hydrodynamic de-

scription of such strongly coupled gauge theories has been studied quite successfully by

considering asymptotically AdS black holes in the dual gravitational counterpart [5]–[12].

The underlying motivation behind such analysis rests on the fact that the Quark Gluon

Plasma (QGP) produced at RHIC, Brookhaven is strongly coupled where the usual tech-

niques of perturbative Quantum Field Theory (QFT) do not apply.

Apart from being strongly coupled, the other characteristic feature of the QGP pro-

duced at RHIC is the anisotropic expansion of the fireball during the very early stage of the

collision [13]–[15] which therefore has driven a lot of attention in the context of hologra-

phy [16]–[29]. In [16]–[17], the authors had proposed a systematic anisotropic construction

in the context of Einstein-axion-dilaton gravity where they have considered a particular

anisotropic (θ deformed) version of N = 4 SYM plasma namely, δSYM ∼
∫

θ(z)TrF ∧ F ,

where the θ parameter (which is dual to the axion in the bulk) depends linearly on one

of the spatial directions of the brane. The corresponding hydrodynamic analysis of their

model has been performed in [18]. The key outcomes of their analysis could be summarized

as follows: (1) The DC conductivity along the isotropic direction of the brane is different

from that of its value corresponding to the anisotropic direction, and most importantly,

(2) the shear viscosity to entropy (η/s) ratio corresponding to the longitudinal fluctuations

has been found to differ significantly from that of its value computed from the transverse

fluctuations. The most significant outcome of their analysis rests on the fact that one

could have a natural violation of the conjectured lower bound on η/s ratio solely from the

anisotropic considerations even in the context of Einstein gravity [18].
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Even before these analysis had performed, in [30] the authors had studied hydrody-

namics of a strongly coupled plasma in a slightly different context of anisotropy which was

driven due to presence of the non commutativity along different spatial directions of the

Dp brane in the presence of a background NS B field. Holographically such theories are

supposed to describe non commutative N = 4 SYM plasma at strong coupling [31]–[33].

In their analysis [30], the authors had found that despite of the spatial anisotropy (that

is caused due to the distinction between the commutative and the non commutative spa-

tial directions) the shear viscosity to entropy (η/s) ratio turns out to be universal for two

different shear channels. The reason that the universality of the bound is still maintained

in the non commutative scenario could be understood in terms of the holographic stress

tensor which surprisingly turns out to be the same as that of the commutative theory [30].

In summary, from the comparative analysis in the previous two paragraphs, one should

be able to note that the θ deformed N = 4 SYM differs significantly from that of the non

commutative N = 4 SYM as long as we consider the hydrodynamic description of both the

theories with respect to their shear channels. However, the comparison remains incomplete

as the analysis of the diffusive modes, in particular the computation of the R charge diffu-

sion corresponding to non commutative N = 4 SYM theory is still lacking in the literature.

The purpose of the present article is therefore to fill up this gap and make a systematic

comparison between two different anisotropic theories at strong coupling. In order to do

that we essentially turn on U(1) fluctuations in the bulk and compute the corresponding

R charge diffusion rates along both the commutative as well as the non commutative di-

rections of the brane. Unlike the case for the shear viscosity [30], we observe a significant

deviation in the charge transport phenomena along the non commutative direction of the

brane. On the other hand, the charge diffusion constant along the direction of the com-

mutative coordinates of the brane does not receive any non commutative corrections and

thereby remains unchanged.

The organization of the paper is the following: in section 2, we discuss the geometrical

construction in the dual gravitational counterpart of the non commutative N = 4 SYM

plasma. In section 3, we explicitly compute the holographic charge diffusion rates both

along the commutative as well as the non commutative directions of the brane and found

that unlike the case for the shear modes their ratio is different from the unity. Finally, we

conclude in section 4.

2 The dual set up

We start our analysis with a formal introduction to the geometrical construction in the

bulk space time that is holographically dual to non commutative N = 4 SYM theory at

strong coupling. It is already known from the earlier literature that non commutative

gauge theories at strong coupling could be consistently obtained from string theory by

considering the so called decoupling limit in a system of Dp branes in the presence of a

background NS B field that gives rise to certain scale of non commutativity in the large

N limit [31]–[33]. To start with, we consider the non commutative N = 4 SYM theory at
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finite temperature whose dual counterpart in the string frame reads as [30],

ds210 = H−1/2(−fdt2 + dx2 + h(dy2 + dz2)) +H1/2(f−1dr2 + r2dΩ2
5)

f = 1− r4H
r4

, h =
1

1 + Θ2H−1
, H =

L4

r4
(2.1)

where, Θ is the so called non commutative parameter and rH is the usual position of the

horizon. Following the AdS/CFT prescription, one could write L4 = 4πg2YMNα′2 which in

the decoupling (α′ → 0) limit corresponds to a large value of N where N is the number of

D3 branes. Finally, setting u = r2H/r2 the effective five dimensional metric in the Einstein

frame could be formally expressed as [30],

ds2 = h−1/4H−1/2(−fdt2 + dx2 + h(dy2 + dz2)) +
L2h−1/4

4u2f
du2

f(u) = 1− u2, h(u) =
u2

u2 + a2
, H(u) =

u2

u2T
, uT =

r2H
L2

, a = Θ uT . (2.2)

Eq (2.2) is in fact the starting point of our analysis. In the above mentioned coordinate

system (2.2) the horizon is placed at u = 1 and the boundary is located at u = 0. One

should take a note on the fact that here (t, x) are the usual commutative directions whereas

on the other hand, the other two spatial coordinates (y, z) exhibit the non commutative

nature [30]. From (2.2), it is in fact quite evident that due to presence of the non commu-

tativity along two of the spatial directions of the brane, the full SO(3) symmetry of the

boundary theory is reduced down to SO(2) leaving the rotational invariance only over the

(y − z) plane of the brane. Finally, from (2.2) it is in fact quite trivial to note down the

corresponding Hawking temperature which for the present case turns out to be,

T =
1

πuTL
. (2.3)

3 Charge diffusion

Based on the original prescription [9]–[12] for evaluating retarded Green’s function corre-

sponding to U(1) currents (Jµ), the purpose of the present section is to first make a system-

atic analytic investigation of the DC conductivity (σDC) both along the commutative as

well as the non commutative directions of the brane and then compute the corresponding

R- charge diffusion(s) (D) using the so called Einstein relation, D = σDC/χ, where χ is

the charge susceptibility and σDC is the DC electrical conductivity that could be formally

expressed as [9]–[12],

σDC = − lim
w→0

1

w
Im GR

ii (w, q = 0)

GR
ii (w, q = 0) = −i

∫

dτ dx eiwτ ∆(t) 〈[Ji(x), Ji(0)]〉. (3.1)

In order to compute the above quantity in (3.1) and thereby the charge diffusion (D),

we essentially study the dynamics of vector U(1) perturbations over the fixed back ground
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of the anisotropic black brane (2.2) [9]–[12]. Dynamics of these vector perturbations are in

general governed by the Maxwell’s action namely,

SM = − 1

4g2M

∫

d5x
√−gFabFab (3.2)

where, g2M stands for the Maxwell coupling of the U(1) theory.

The basic physics behind our analysis rests on the fact that the infra red behavior

of these U(1) fluctuations in the bulk is solely governed by the hydrodynamics where the

dispersion relation of the type w = −iDq2 appears naturally as a consequence of the

pole appearing in the Laplace transformed version of the charge density in the complex

w plane which could be interpreted as a natural consequence of the diffusion of conserved

charges. In our analysis, considering the so called hydrodynamic limit namely, q ≪ T we

study fluctuations of the type, Am ∼ eiq.xAm(t, u) over the background of (2.2). These

fluctuations by means of the equation of motion as well as the relevant boundary conditions

finally yield the dispersion relation of the above form in the limit q → 0.

3.1 Charge susceptibility

The purpose of the present section is to compute the charge susceptibility (χ) corresponding

to non commutative N = 4 SYM plasma at strong coupling. In the AdS/CFT framework,

the dual geometry corresponding to this non commutative plasma (at finite temperature) is

essentially described by the five dimensional black hole solution (2.2) in the bulk space time.

In our computations, we strictly follow the methods proposed in [12]. The bottom line

of our analysis is the following: in order to compute the susceptibility (χ), one needs to

systematically solve the temporal gauge field (At) in the bulk consistent with the boundary

condition at the horizon (u = 1).

The Maxwell equation that directly follows from (3.2) could be formally expressed as,

1√−g
∂µ(

√−gFµν) = 0. (3.3)

The equation of motion corresponding to At that readily follows from (3.3) could be

formally expressed as,

A′′
t +

∂u(
√−ggttguu)√−ggttguu

A′
t = 0. (3.4)

The corresponding solution turns out to be,

At(u) = C2 +
4C1

(

a2 + u2
)7/8

(

7u2 2F1

(

1, 32 ;
13
8 ;−u2

a2

)

− 5a2
)

15a2u3/4
. (3.5)

The coefficient C2 is uniquely determined by demanding the fact that At must vanish

at the horizon (u = 1) which yields,

C2 =
4C1

(

a2 + 1
)7/8 (

5a2 − 7 2F1

(

1, 32 ;
13
8 ;− 1

a2

))

15a2
. (3.6)
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On the other hand, the chemical potential is given by,

µ = At(u)|u→ε = C2 −
4C1a

7/4

3ε3/4
+O(ε5/4) (3.7)

where |ε| ≪ 1. Clearly the above quantity in (3.7) diverges in the limit ε → 0. In order to

have a finite chemical potential for the bondary theory, we thereby define the renormalized

chemical potential as,

µR = lim
ε→0

(

µ+
4ε

3

∂µ

∂ε

)

= C2. (3.8)

Finally, using (3.5) the charge density could be readily obtained as [12],

̺ =
δSM

δAt
|u=0 =

2uTC1

g2ML
. (3.9)

Using (3.8) and (3.9), the charge susceptibility finally turns out to be,

χ =
̺

µR
=

15a2uT

2g2ML (a2 + 1)7/8
(

5a2 − 7 2F1

(

1, 32 ;
13
8 ;− 1

a2

))
≈ uT

2g2ML
. (3.10)

Interestingly here we note that the charge susceptibility (χ) (almost) does not get corrected

in the non commutative parameter (a) upto fifth orders in the perturbation series.

Having done these computations on charge susceptibility (χ), our next task would

be to compute DC conductivities along both the commutative as well as non commutative

directions of the brane. We denote σ⊥ as the conductivity along the commutative direction

of the brane and σ‖ as the conductivity along the non commutative direction of the brane.

Our purpose is to make a systematic comparison between these two conductivities and

compare our results with the already existing results in the context of anisotropy [18].

3.2 Conductivity I: σ⊥

As a first part of our analysis, we compute the DC electrical conductivity along one of the

commutative directions of the brane, namely the x direction. We consider fluctuations of

the form,

Am(u, t) = L

∫

dwe−iwtAm(u). (3.11)

Considering m = x and substituting (3.11) into (3.3), we obtain

A′′
x +

∂u(
√−gguugxx)√−gguugxx

A′
x −w2 g

tt

guu
Ax = 0. (3.12)

In order to solve the above equation (3.12) in the so called low frequency regime, we

chose the following ansatz, namely,

Ax = (1− u)αΨ(u). (3.13)

Considering the so called in going wave boundary condition [9]–[12], our first task is to

explore the above equation (3.12) in the near horizon limit of the brane namely, u ∼ 1. This
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essentially enable us to determine the coefficient α uniquely. Substituting (3.13) into (3.12)

and considering the incoming wave boundary condition near the horizon of the black brane

it is in fact quite trivial to show that,

α = − iw

4πu
3/2
T T

. (3.14)

Our next task would be to substitute (3.13) in to (3.12) and solve Ψ(u) perturbatively

in the frequency w near the boundary of the space time. This will finally enable us to

compute the DC conductivity (σ⊥). In order to solve Ψ(u) perturbatively in the frequency

(w) we consider the following perturbative expansion namely,

Ψ(u) = Ψ(0) + i(w/T )Ψ(1) +O(w2/T 2) (3.15)

where each of the individual coefficients satisfies equation of motion of the following form,

Ψ′′(1)+
1

2πu
3/2
T (1−u)

[

Ψ′(0)+
1

2(1−u)
Ψ(0)

]

+
∂u(

√−gguugxx)√−gguugxx

[

Ψ′(1)+
1

4πu
3/2
T (1−u)

Ψ(0)

]

= 0 (3.16)

Ψ′′(0) +
∂u(

√−gguugxx)√−gguugxx
Ψ′(0) = 0.

In the following we quote corresponding solutions one by one. Let us first consider the

second equation in (3.16). The corresponding solution turns out to be,

Ψ(0) =
4d1Z

195u3/4 8
√
a2 + u2

+ d2 (3.17)

where,

Z= u2
8

√

u2

a2
+1

(

13
(

3a2+7
)

F1

(

5

8
;
1

8
, 1;

13

8
;−u2

a2
, u2

)

−20u2F1

(

13

8
;
1

8
, 1;

21

8
;−u2

a2
, u2

))

−65
(

a2 + u2
)

. (3.18)

In the above, we have expressed solution (3.17) in terms of Appell polynomials where the

coefficients d1 and d2 are related to each other through the condition Ψ(0)(1) = 0. On top

of it, one can also impose the asymptotic normalization condition which for the present

case turns out to be, Ψ(0)(0) = 1/L. These two conditions should in principle sufficient

to determine these unknown coefficients uniquely. However, for the present purpose of our

analysis it is sufficient to know the boundary behaviour of the gauge fields since we will be

finally evaluating the entities near the boundary of the space time. Expanding (3.18) near

the boundary (u ∼ 0) of the space time we note,

Ψ(0) ≈ 1

L

(

1− 4a7/4

3ε3/4

)−1(

1− 4a7/4

3u3/4
+

(

8a2 + 7
)

u5/4

10
8
√
a2

)

+O(u13/4) (3.19)

where the numerical prefactor guarantees a normalized mode at the boundary. Note that

here ε is the UV cut off as mentioned earlier. At the end of our calculations we finally

consider the ε → 0 limit in order to extract the finite piece at the boundary.
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In the subsequent analysis we drop all the terms starting with quadratic order in u.

Since u ranges between zero and one therefore it is indeed quite logical to truncate solutions

upto certain order in u and particularly consider those terms that contribute significantly

near the boundary of the space time. Using (3.19), the solution corresponding to (Ψ(1))

finally turns out to be,

Ψ(1) ≈ 1

L

(

1− 4

3ε3/4

)−1
(

1− 4

3u3/4
+

a7/4 4
√
u

3πu
3/2
T

+
a7/4u5/4

6πu
3/2
T

− u

4πu
3/2
T

)

+O(u2). (3.20)

Using (3.19) and (3.20), the non trivial piece in the DC conductivity (along x- direction)

finally turns out to be,

σ⊥ =
uT

g2MLT
. (3.21)

Finally, from (3.10) and (3.21) one can easily read of the corresponding charge diffusion

coefficient as,

D⊥ = σ⊥/χ ∼ 1

T
(3.22)

where we have ignored the over all numerical pre factor. The above result (3.22) also

follows from simple dimensional arguments. For example, it is straightforward to notice

from (3.10) that [χ] = 1/L2 since the dimension of the Maxwell coupling in five dimensions

goes as [g2M ] = L [12]. On the other hand, following the same line of arguments we note

[σ⊥] = 1/L2. Using these facts it could be readily seen that [D⊥] = L, where we have used

the fact [T ] = 1/L.

Eq. (3.21) is in fact an important observation in itself. It reveals certain important

fact that the DC conductivity (σ⊥) along the commutative direction of the brane does not

get modified due to the presence of the non commutative parameter (Θ). The same line of

argument also holds for the corresponding charge diffusion rate (D⊥).

3.3 Conductivity II: σ‖

For the sake of completeness as well as the clarity, our final task would be to compute

the DC conductivity along one of the non commutative directions of the brane, say the y

direction and make a systematic comparison of our results with the result obtained in the

previous section. To do that we first turn on fluctuations of the type,

Ay(u, t) = L

∫

dwe−iwtAy(u) (3.23)

which satisfy differential equation of the following form,

A′′
y +

∂u(
√−gguugyy)√−gguugyy

A′
y −w2 g

tt

guu
Ay = 0. (3.24)

To solve (3.24), we choose the following ansatz,

Ay = (1− u)βΦ(u) (3.25)

– 7 –



J
H
E
P
0
7
(
2
0
1
5
)
1
2
1

where the coefficient β could be readily obtained from the near horizon data namely,

β = − iw

4πu
3/2
T T

. (3.26)

Like in the previous case, the function Φ(u) could be solved perturbatively in the fre-

quency w which in the hydrodynamic limit (w/T ≪ 1) yields the following set of equations

namely,

Φ′′(1)+
1

2πu
3/2
T (1−u)

[

Φ′(0)+
1

2(1−u)
Φ(0)

]

+
∂u(

√−gguugyy)√−gguugyy

[

Φ′(1)+
1

4πu
3/2
T (1−u)

Φ(0)

]

= 0 (3.27)

Φ′′(0) +
∂u(

√−gguugyy)√−gguugyy
Φ′(0) = 0.

The corresponding solutions turn out to be,

Φ(0) =
1

L






1 +

4u5/4 8

√

u2

a2
+ 1F1

(

5
8 ;

1
8 , 1;

13
8 ;−u2

a2
, u2

)

5 8
√
a2 + u2







≈ 1

L

[

1 +
4u5/4

5
8
√
a2

]

+O(u13/4)

Φ(1) ≈ 1

L

[

1 +
4u5/4

5
− u

4πu
3/2
T

]

+O(u2). (3.28)

Using (3.28), the corresponding DC conductivity finally turns out to be,

σ‖ =
uT

g2MLT
(1−Θ1/4u

1/4
T ). (3.29)

The way one would like to interpret the above result (3.29) is essentially the following:

unlike the previous case, the the DC conductivity (σ‖) along the non commutative direction

of the brane is modified due to the presence of the non commutative parameter, and most

importantly, the non commutative effects essentially suppress the value of the conductivity

from that of its usual value corresponding to the commutative case. The same arguments

also hold for the corresponding charge diffusion (D‖).

Finally, the ratio between the two charge diffusion rates turn out to be,

D‖

D⊥
=

σ‖

σ⊥
= 1−Θ1/4u

1/4
T . (3.30)

Eq. (3.30) is the full non perturbative result in the non commutative parameter (Θ) and

is consistent with the corresponding result in the commutative (Θ → 0) limit. The crucial

observation that one should make at this stage is the fact that unlike the case for the shear

viscosity to entropy (η/s) ratio [30], the charge diffusion rates are rather different along

different directions of the brane. In other words, the charge diffusion is sensitive to the

intrinsic anisotropy of the plasma. Finally, before we conclude, it is important to emphasis

that similar observations have also been made earlier in a different context of anisotropy

where people had observed, σanisotropy 6= σisotropy [18].
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4 Summary and final remarks

Let us now summarize the key findings of our analysis. In our analysis, considering the so

called hydrodynamic limit, we explore the charge transport phenomena in non commuta-

tive N = 4 SYM plasma at strong coupling. The motivation of our current analysis rests

on the earlier results on shear viscosity to entropy (η/s) ratio which was found to be uni-

versal despite of the intrinsic anisotropy of the Dp brane [30]. In our analysis, however we

observe that unlike the case for the η/s ratio, the charge diffusion rates are indeed different

along two different directions of the brane. In particular, we observe that the holographic

DC conductivity gets significantly modified (only) along the non commutative directions

of the brane and its value is in fact turns out to be lower compared to its commutative

counterpart. Therefore we might conclude that from the point of view of the charge trans-

port property, both the θ deformed as well as the non commutative N = 4 SYM theories

exhibit some sort of similarity whereas on the other hand, they differ quite significantly

when we compare them with respect to their shear channels. Finally, it is noteworthy to

mention that our result smoothly matches to that with the corresponding commutative

result in the limit of vanishing Θ.
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