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1 Introduction

Some time ago, Cardy famously employed modular invariance to obtain the high-

temperature behavior of conformal field theory (CFT) partition functions in two dimen-

sions [1]. This result has since been exploited in a variety of contexts, including the

statistical physics of black holes [2–4]. Cardy’s formula gives the leading order divergence

of the CFT partition function Z(β) as the inverse temperature β goes to zero:

lnZ(β) ∼ π2cL
6β

. (1.1)

Here, cL is the left-handed CFT central charge, and we have focused on the holomorphic

sector for simplicity. Note that the term “Cardy formula” is often applied to the expression,

derived from the above relation, for the micro-canonical entropy of a 2d CFT at high

energies. However, in the present work, by “Cardy formula” we always refer to the above

canonical version for the asymptotic high-temperature expansion of lnZ.
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Similar formulae had been long sought in higher dimensions without much success,

partly because Cardy’s main tool, modular invariance, has no known higher-dimensional

counterpart. Recently, Di Pietro and Komargodski have combined ideas from supersymme-

try and hydrodynamics [5, 6] to obtain the high-temperature behavior of supersymmetric

(SUSY) partition functions in four and six dimensions [7]. Here we expand on their result

in the context of four-dimensional superconformal field theories (SCFTs).

By SUSY partition function we mean the one computed with periodic boundary con-

ditions for fermions along the thermal circle; this amounts to an insertion of (−1)F when

the partition function is represented as a weighted sum over the states, and makes it in-

dependent of exactly marginal couplings [8]. Therefore, one might anticipate that the

partition function displays universal high-temperature behavior depending only on the 4d

central charges. This was realized by Di Pietro and Komargodski, who demonstrated the

relation [7]

lnZSUSY(β) ≈ 16π2(c− a)

3β
, (1.2)

where c and a are the central charges of the 4d SCFT, and where the spatial manifold is

taken to be the round S3. (In the main text we focus on the round S3, while relegating

the case of the squashed sphere to appendix A.)

The formula (1.2) can be thought of as the leading order result in a high-temperature

expansion. In this paper we explore the subleading corrections to eq. (1.2) and provide

evidence that it receives only “non-perturbative” corrections in β (of the type e−1/β), and

O(log β) and O(β0) corrections. While these corrections have already been pointed out by

Di Pietro and Komargodski in [7], we conjecture that the series expansion of lnZSUSY(β)

around β = 0 terminates at O(1), and that no corrections arise at order β or higher.

To explore the subleading behavior of SUSY partition functions, it proves helpful to

understand the relation between their path-integral representation and their representation

as a weighted sum. The latter is called the superconformal index [9, 10], and may be defined

with two fugacities as

I(p, q) = Tr
[

(−1)F e−β̂(∆−2j2−
3
2
r)pj1+j2+

1
2
rq−j1+j2+

1
2
r
]

. (1.3)

Here the trace is over the Hilbert space of the SCFT in radial quantization, ∆ is the

conformal dimension of the state, r is its R-charge, and (j1, j2) are its SO(4) = SU(2)1 ×
SU(2)2 quantum numbers. Only states with ∆− 2j2 − 3

2r = 0 contribute to the index, so

it is independent of β̂. The index may be related to the partition function on the round

S3×S1 by taking p = q = e−β , where β is identified with the radius of the S1. We thus have

I(β) = I(e−β , e−β) = Tr
[

(−1)F e−β(∆− 1
2
r)
]

. (1.4)

The generalization to squashed 3-sphere (and therefore non-equal fugacities in the index)

will be discussed in appendix A.

In the following, we will refer to ZSUSY obtained by path-integration as the “SUSY

partition function”, and to I as the “index”. The relation between these two quantities
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is [11–13]1

I(β) = eβEsusyZSUSY(β) = e
4(3c+a)

27
βZSUSY(β), (1.5)

where the supersymmetric Casimir energy [11, 13, 14] is given by Esusy = 4(3c + a)/27.

It is worth noting that in [12, 13], an extra O(1/β) factor was present in the exponent of

the prefactor. However, as mentioned in [7, 14], and as highlighted below, an alternative

regularization of the computations in [12–14] would eliminate that extra factor.

The relation (1.5), when combined with our claim that lnZSUSY(β) has no O(β) term

in its asymptotic high-temperature expansion, implies an O(β) term (namely 4(3c+a)
27 β) in

the high-temperature expansion of ln I(β). This was conjectured in [15].

The fact that the path-integral and the trace representation of the partition function

are related by anomaly-dependent factors has a well-known counterpart in 2d CFT which

we will review below.

Also well-known for 2d CFTs is the breakdown (except for sparse CFTs [4]) of Cardy’s

formula in the limit of large central charge. The analogous situation for the Di Pietro-

Komargodski formula (1.2) was noted in [16] from a case-by-case study of some holographic

SCFTs, and also the Ak SQCD fixed points. It was observed that in the planar limit, which

is the 4d gauge theory counterpart of the 2d large-c limit, the 4d index has a rather non-

universal high-temperature behavior which is not dictated solely by the central charges.

In this paper we systematically investigate large-N toric quivers, and see the modification

of (1.2) explicitly. This modification can be intuitively understood as a kind of non-

commutativity between the high-temperature limit and the planar limit.

In appendix A, we generalize our computations to the case with squashed 3-sphere as

the spatial manifold. Among other things, we derive a powerful identity (given in eq. (A.6),

generalizing eq. (3.8)) which relates the elliptic Gamma function to the non-compact quan-

tum dilogarithm, and makes the high-temperature behavior of the index of a chiral multi-

plet quite transparent and its connection with the 3d partition function manifest.

The results of appendix A will be employed in appendix B to demonstrate the relation

between the high-temperature expansion of the index and the holographically derived pre-

scriptions of [15] for extracting the central charges from the single-trace index. In particular,

we show that the prescriptions of [15] probe only the O(β) term in the high-temperature

expansion of ln I, and are insensitive to the leading O(1/β) behavior.

The organization of this paper is as follows. In the next section, for the purpose of

orientation and also to highlight later some analogies with 4d SCFTs, we review Cardy’s

formula and the subleading corrections it receives in a high-temperature expansion. In

section 3 we consider free chiral and U(1) vector multiplets and examine the subleading

corrections to the Di Pietro-Komargodski formula. Section 4 contains the discussion of

large-N toric quivers, and our concluding remarks are presented in the last section. SCFTs

with squashed three-sphere as their spatial manifold are treated in appendix A, and in

appendix B the connection between our findings in the present paper and the proposals

of [15] are clarified.

1See eq. (A.11) for the relation between the index with two fugacities and the SUSY partition function

on the squashed 3-sphere as spatial manifold.
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2 Cardy’s formula for 2d CFTs

Before proceeding to four dimensions, we review some well-known facts about Cardy’s

formula for 2d CFTs. Cardy’s formula [1] is obtained using the modular invariance of 2d

CFT partition functions

ZPI(τ) = ZPI(−1/τ), (2.1)

where −2πiτ = β, and we have added a subscript PI since we assume the partition function

is computed by a path integral. For simplicity we focus on the holomorphic sector of the

CFT. If the theory has a gapped spectrum, with its lightest state having energy ∆0 with

respect to the vacuum, the low-temperature (β → ∞) partition function is dominated by

the vacuum contribution ecLβ/24, while the next contribution is down by a factor e−β∆0 .

Using (2.1) we arrive at Cardy’s relation in (1.1), which we rewrite as

lnZPI(β) ∼
π2cL
6β

. (2.2)

This formula leads to the micro-canonical entropy 2π
√

cL(L0 − cL/24)/6, which matches

that of the Strominger-Vafa black hole [2].

The subleading correction to (2.2) is down by a factor e−4π2∆0/β , which is non-analytic

in β. In other words Cardy’s formula is correct to all orders in a high-temperature expan-

sion, and only receives “non-perturbative” corrections in β. Below, we will repeatedly use

the symbol ∼ to denote such all-orders equalities.

To highlight the analogy with 4d SCFTs we now assume the 2d CFT has a single

left-handed conserved U(1) current J whose Laurent modes satisfy the following commu-

tation relations

[Ln, Jm] = −mJm+n,

[Jm, Jn] = 2kmδm+n,0,
(2.3)

where Ln are the Laurent modes of the energy-momentum tensor. For example, a (2, 0)

SCFT has such a conserved current with k = cL/6, sometimes referred to as the R-current.

Adding a chemical potential µ = 2πiz/β for the U(1) charge of the CFT states, one

can define the following grand-canonical partition function

I2d(τ, z) = Tr(qL0yJ0), (2.4)

where q = e2πiτ , y = e2πiz, and we have considered a holomorphic CFT (with cR = 0) for

simplicity. This partition function is not modular invariant, but its path-integral represen-

tation ZPI(τ, z) is invariant under the modular transformation {τ, z} → {−1/τ, z/τ}. The
two are related via [17]

I2d(τ, z) = e−iπk z2

τ
+2πiτ

cL
24 ZPI(τ, z). (2.5)

Hence, modular invariance of ZPI can be combined with the assumption that I2d is domi-

nated at low temperatures by the vacuum, to give the high-temperature behavior

I2d(τ, z) → e−4π2k z2

β
−

cL
24

βe
π2cL
6β = eµ

2kβ−
cL
24

βe
π2cL
6β . (2.6)
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For (2, 0) SCFTs with k = cL/6, this variant of Cardy’s formula yields the micro-canonical

entropy 2π
√

cL(L0 − cL/24)/6− J2
0/4, which reproduces2 the Bekenstein-Hawking entropy

of spinning generalizations of the Strominger-Vafa black hole [17, 18].

For future reference, note that the O(β) term in the high-temperature expansion

ln I2d(τ, z) ∼
π2cL
6β

+ µ2kβ − cL
24

β. (2.7)

differs from the one in

lnZPI(τ, z) ∼
π2cL
6β

+ µ2k

2
β. (2.8)

In particular, when µ = 0, the difference is entirely due to the familiar −cL/24 Casimir

energy on the torus; this Casimir energy is computed by ZPI, but not taken into account

in our definition of I2d in (2.4).

Finally, we remind the reader that Cardy’s formula (2.2) fails for general 2d CFTs

in which the c → ∞ limit is taken before (or at the same time as) the β → 0 limit; the

asymptotic high-temperature expansion may clash with (2.2). This is because a given

large-c CFT may have too many light states so that its low-temperature partition function

is no longer dominated by the vacuum contribution alone. CFTs with a “sparse” spectrum

of low lying states avoid this breakdown. For related recent discussions see [4, 19, 20].

Similar sparseness conditions for the grand-canonical partition function (2.4) remain to

be formulated.

3 Subleading corrections to the Di Pietro-Komargodski formula

We now return to four-dimensions and explore the subleading corrections to the Di Pietro-

Komargodski result, (1.2). We claim that the high-temperature expansion of the SUSY

partition function on the round S3 × S1 has the form

lnZSUSY(β) ∼ 16π2(c− a)

3β
− 4(2a− c) ln(β/2π) + lnZ3d, (3.1)

which terminates at O(β0), and is exact up to non-analytic terms of the type e−1/β . Here

Z3d is the supersymmetric partition function of the dimensionally reduced theory on S3,

which in favorable cases can be computed by localization [21–23]. Using (1.5), the above

relation leads to the expansion of the index

ln I(β) ∼ 16π2(c− a)

3β
− 4(2a− c) ln(β/2π) + lnZ3d +

4(3c+ a)β

27
. (3.2)

The linear term on the r.h.s. of (3.2) was conjectured in [15], based on holographically

derived relations between central charges and the index. That the high-temperature ex-

pansions of ln I(β) and lnZSUSY(β) differ only by an O(β) term is somewhat analogous to

the 2d story sketched in eqs. (2.7) and (2.8).

2Note that the actual derivation of this result is a bit more subtle [18], as it relies not on cR = 0, but on

taking the right-handed sector to be in a Ramond ground state.
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Upon squashing the S3, the above relations are generalized to (A.9) and (A.13). An

important feature arises in the expansion of the index in (A.9), that we would like to

highlight already: the linear term in β encodes two linear combinations of a and c, separated

by their different dependence on the squashing parameter. Therefore both central charges

can be distilled at high temperatures from the O(β) term of ln I. In appendix B we will

demonstrate that this observation is essential for making contact with the proposals of [15].

We now provide support for the claims (3.1) and (3.2) by investigating free chiral and

U(1) vector multiplets. Of course, a general proof would require studying non-abelian

gauge theories and going beyond the free cases.

3.1 Free chiral multiplet

Consider now the concrete case of a free chiral multiplet of off-shell R-charge R (we say

off-shell because a free chiral multiplet is known to have R-charge 2/3 “on-shell”). Its index

can be written as [24]

Iχ(R, p, q) = Γ(z, τ, σ), (3.3)

where p = e2πiτ , q = e2πiσ, and z = (τ + σ)R/2. Here Γ(z, τ, σ) is the elliptic Gamma

function defined by

Γ(z, τ, σ) =
∏

j,k≥0

1− e2πi((j+1)τ+(k+1)σ−z)

1− e2πi(jτ+kσ+z)
. (3.4)

In order to investigate the high-temperature limit of (3.3), we make use of the SL(3,Z)

modular property [25]

Γ(z, τ, σ) = e−iπM(z;τ,σ) Γ( zτ ,− 1
τ ,

σ
τ )

Γ( z−τ
σ ,− 1

σ ,− τ
σ )

, (3.5)

where

M(z; τ, σ) =
z3

3τσ
− τ + σ − 1

2τσ
z2 +

τ2 + σ2 + 3τσ − 3τ − 3σ + 1

6τσ
z

+
1

12
(τ + σ − 1)(τ−1 + σ−1 − 1). (3.6)

This is analogous to how the SL(2,Z) properties of 2d partition functions allow a Cardy-

type analysis, as briefly sketched in the previous section.

Restricting to the case of equal fugacities (i.e. the round S3), the index can be written as

Iχ(R, β) = Γ(Rτ, τ, τ), (3.7)

where τ = iβ/2π. In order to study its τ → 0 limit, we resort to Theorem 5.2 of [25] which is

derived from (3.5), along with some straightforward manipulation, to rewrite Γ(Rτ, τ, τ) as

Γ(Rτ, τ, τ) =
e−iπM(τ,R)

ψ(−(R− 1))

∞
∏

n=1

ψ
(

n+(R−1)τ
τ

)

ψ
(

n−(R−1)τ
τ

) , (3.8)
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where

M(τ, R) =

(

R− 1

6

)

1

τ
+

(

R2

2
−R+

5

12

)

+

(

R3

3
−R2 +

5R

6
− 1

6

)

τ. (3.9)

The ψ functions present on the r.h.s. of eq. (3.8) can be expressed as

lnψ(R) = R ln(1− e−2πiR)− 1

2πi
Li2(e

−2πiR). (3.10)

ψ(R) has a zero of order j at R = j, and a pole of the same order at R = −j, for j ∈ Z
>0.

The reader familiar with the 3d localization literature may notice that ψ(R) is related

to the function ℓ(R) that Jafferis uses in [22] via

ℓ(R) = lnψ(−R) +
iπR2

2
− iπ

12
. (3.11)

ℓ(R) has the useful property that ℓ(−R) = −ℓ(R). From the information on poles and

zeros of ψ(R), we see that ℓ(R) is singular at R ∈ Z − {0}. For future reference, we add

that ℓ(R) is related to the function sb=1(R) in [23] (see also appendix A) via

ℓ(R) = ln sb=1(iR). (3.12)

To obtain the high-temperature behavior of (3.8) we utilize the fact that the ψ function

is exponentially close to one when its argument has a large negative imaginary part [25].

This means that in the limit β = −2πiτ → 0, the infinite product in eq. (3.8) can be

replaced with one, yielding

ln Iχ(R, β) = lnΓ(Rτ, τ, τ) ∼ −iπM(τ, R)− lnψ(−(R− 1)). (3.13)

Recall that ∼means to all orders in a high-temperature expansion; non-analytic corrections

of the type e−1/β coming from the infinite product on the r.h.s. of (3.8) are present but are

not part of the perturbative expansion. Substituting in (3.9) for M(τ, R) and making use

of (3.11) then gives

ln Iχ(R, β) ∼ −π2(R− 1)

3β
+ ℓ(−(R− 1)) + β

(

R3

6
− R2

2
+

5R

12
− 1

12

)

, (3.14)

in perfect agreement with the conjectured form of the index, (3.2). Importantly, there are

no terms of order β2 or higher on the r.h.s. . Also, since for a chiral multiplet 2a− c = 0,

there is no O(log β) term here, unlike in the case of a free U(1) vector multiplet [7].

The temperature-independent term ℓ(−(R − 1)) in (3.14) is precisely the log of the

partition function of a 3d chiral multiplet [22]; this is the well-known result that the N = 1

4d index reduces, as β → 0, to the 3d partition function, after (and only after) its O(1/β)

divergent exponent is removed. Related discussions can be found in [26–31]. The argument

above is, however, in our opinion the most transparent derivation of the reduction result

for a chiral multiplet (see also appendix A.1 for the case with squashing).

Having established the expansion of the index, we now turn to the high-temperature

behavior of ZSUSY
χ (R, β), the SUSY partition function of a chiral multiplet with R-charge

– 7 –
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R. The computation is done by KK compactification of the theory on the thermal circle,

calculating the contribution to the free energy of the n-th KK modes lnZ
(n)
χ (R, β), and then

summing up over n. A similar calculation was performed in the appendix of [7] to obtain

the leading high-temperature behavior of the SUSY partition function. For lnZ
(n)
χ (R, β),

we may use the results of [22, 23]

lnZ(n)
χ (R, β) = ln sb=1

(

i− iR− 2πn

β

)

= ℓ

(

1−R+
2πin

β

)

. (3.15)

Summing over the KK tower now gives

lnZSUSY
χ (R, β) =

∑

n∈Z

ℓ

(

1−R+
2πin

β

)

= ℓ(−(R− 1)) +
∑

n>0

[ℓ(1−R+ 2πin/β)− ℓ(−1 +R+ 2πin/β)],
(3.16)

where we have used the property ℓ(−x) = −ℓ(x). With the aid of (3.11) we can write the

above result in terms of the ψ functions as follows

lnZSUSY
χ (R, β) =

∑

n>0

ln
ψ(R− 1− 2πin/β)

ψ(1−R− 2πin/β)
+ 2

∑

n>0

2π2(R− 1)n

β
+ ℓ(−(R− 1))

=
∑

n>0

ln
ψ(R− 1− 2πin/β)

ψ(1−R− 2πin/β)
− π2(R− 1)

3β
+ ℓ(−(R− 1)),

(3.17)

where, following [7], we have used zeta function regularization in order to arrive at the

result in the last line.

Note that our computation differs from that given in the appendix of [7] in a few

respects. This affects the subleading order, but not the leading order result, which was the

focus of [7]. First of all, in contrast with [7], we have assembled the KK contributions before

taking the high-temperature limit. Secondly, while the 3d bosonic partition functions in [7]

and [23] are identical, agreement of the 3d fermionic partition functions is more subtle. The

Dirac spectrum in (4.6) of [23] has two pieces; if the contribution from the second term

is summed over after shifting the related quantum number, and a relative minus sign is

introduced, then (A.4) of [7] is recovered.3 To avoid subtleties with the fermion reduction

(such as the mixing of the reduced fermions), our logic above is to reduce the bosons on S1 to

obtain the 3d bosonic Lagrangian. Then, instead of reducing the fermions, we simply appeal

to the SUSY completion of the 3d action of the KK bosons. The resulting 3d partition

function for the n-th KK modes is now that reported in the 3d localization literature. This

method of computing the 4d partition function is equivalent to that of [12, 13].

Comparing (3.17) with (3.8), (3.9), and (3.11), now yields the relation

Iχ(R, β) = e

(

R3

6
−R2

2
+ 5R

12
− 1

12

)

β
ZSUSY
χ (R, β). (3.18)

Since a chiral multiplet with R-charge R has

R3

6
− R2

2
+

5R

12
− 1

12
=

4

27
(3c+ a), (3.19)

3Note that l, q, n, and σ in [23] correspond to r3, R, l, and n/r1 in [7], respectively.
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we confirm the relation (1.5) between the index and the SUSY partition function for this

case. Combining (1.5) with the high-temperature expansion of the index in (3.14) then gives

the expansion for lnZSUSY presented in (3.1). Note in particular that the last term on the

r.h.s. of eq. (3.17) is the contribution of the zero-modes. Our computation above therefore

gives some understanding for why the finite part of the 4d SUSY partition function reduces

to the 3d partition function upon taking the β → 0 limit; this is because the n 6= 0 KK

modes only contribute to the O(1/β) term in lnZSUSY, besides giving transcendentally

small corrections to it that are negligible in the high-temperature limit.

3.2 Free U(1) vector multiplet

Our next case study is the theory of a single free U(1) vector multiplet. The index of this

theory is given by [24]

Iv(p, q) = (p; p)(q; q), (3.20)

where (a; q) =
∏∞

k=0(1 − aqk) is the q-Pochhammer symbol. We are, of course, mainly

interested in the case of equal fugacities, in which case

Iv(β) = (q; q)2. (3.21)

Note that (q; q) is related to Dedekind’s eta function via

η(β) = q1/24(q; q). (3.22)

The high-temperature expansion may be obtained by invoking the familiar SL(2,Z)

modular property η(−1/τ) =
√
−iτη(τ). We find that at high temperatures η →

e−π2/6β
√

2π
β , which leads to

Iv(β) → e−π2/3β

(

2π

β

)

eβ/12. (3.23)

Taking the logarithm of this equation gives

ln Iv ∼ −π2/3β − ln

(

β

2π

)

+ β/12, (3.24)

where again ∼ means correct to all orders in β, but excluding non-analytic corrections

of the type e−1/β . This is almost in full agreement with (3.2), since for a single vector

multiplet c = 1/8 and a = 3/16. In particular, (3.24) confirms the conjecture in [15]

regarding the linear term. Also, terms of order β2 or higher are absent. To make the

agreement with (3.2) complete, however, we need to have lnZ3d = 0. As explained in [7]

the dimensionally reduced theory of a vector multiplet is quantum-mechanically ill-defined,

and the logarithmic term in (3.24) is signalling a problem; the 3d vector multiplet has non-

compact moduli, over which the vacuum state can not be properly normalized (see also

the related discussion in [32]). There would not be anything puzzling with our finding

lnZ3d = 0, however, if we think of (3.21) as the index of a U(1) vector multiplet with the

zero-modes removed (see [33] for a similar terminology in a 2d context).
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Now consider the SUSY partition function of the same theory. It is given in eq. (G.11)

of [13] (with rG = 1)

ZSUSY
v (β) = e

iπ
2
Ψ(0,τ,τ)(q; q)2 = e

iπ
2
Ψ(0,τ,τ)Iv(β), (3.25)

where Ψ(w, τ, τ) is defined through

F (w, τ, τ)F (−w, τ, τ) =
eiπΨ(w,τ,τ)

Γ(w, τ, τ)Γ(−w, τ, τ)
, (3.26)

with

F (w, τ, σ) =
∏

n0∈Z

∏

n1,n2≥0

w + n0 +
τ+σ
2 − τ+σ

2 − n1τ − n2σ

w + n0 +
τ+σ
2 + τ+σ

2 + n1τ + n2σ
. (3.27)

Combining the previous two equations, we arrive at

F (w, τ, σ)F (−w, τ, σ) =
∏

n0∈Z

[

∏

n1,n2≥0

(−w − n0 − τ+σ
2 ) + τ+σ

2 + n1τ + n2σ

(w + n0 +
τ+σ
2 ) + τ+σ

2 + n1τ + n2σ

× (w − n0 − τ+σ
2 ) + τ+σ

2 + n1τ + n2σ

(−w + n0 +
τ+σ
2 ) + τ+σ

2 + n1τ + n2σ

]

.

(3.28)

The r.h.s. can be written in terms of the function sb in [23]

F (w, τ, τ)F (−w, τ, τ) =
∏

n0∈Z

[

sb=1

(

−i+
2π

β
(n0 + w)

)

sb=1

(

−i+
2π

β
(n0 − w)

)]

=
∏

n0∈Z

[

sb=1

(

i− 2π

β
(n0 + w)

)

sb=1

(

i− 2π

β
(n0 − w)

)]−1

.

(3.29)

In the last step we have used sb(−x) = 1/sb(x). Comparing with (3.15) makes it now

clear that

F (w, τ, τ)F (−w, τ, τ) =
1

ZSUSY
χ (R = w/τ, β)ZSUSY

χ (R = −w/τ, β)
. (3.30)

The conversion factor that we derived between ZSUSY
χ and Iχ in (3.18) leads therefore

to the correct function Ψ mediating ZSUSY
v and Iv. Explicit calculation by combin-

ing (3.7), (3.18), (3.26) and (3.30) shows

Ψ(w, τ, τ) = 2
w2

τ
+

τ

3
. (3.31)

Plugging back into (3.25) gives

ZSUSY
v (β) = η(q)2 = e−β/12Iv(β), (3.32)

which confirms (1.5) for the free vector case. Using eq. (3.24) we can then write down the

following high-temperature expansion

lnZSUSY
v ∼ −π2/3β − ln

(

β

2π

)

. (3.33)
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4 A Di Pietro-Komargodski formula for large-N toric quivers

Toric quiver theories are a much-studied subset of supersymmetric gauge theories whose

field content can be efficiently summarized in a quiver diagram. These are directed graphs

with nodes representing N = 1 vector multiplets and edges representing N = 1 chiral

multiplets. The nodes at the ends of an edge represent vector multiplets under which the

chiral multiplet represented by the edge is charged. The direction of the edge encodes

further information about the representation of the gauge group according to which the

chiral multiplet transforms. The toric condition puts further constraints on the theory,

thereby guaranteeing some nice properties such as existence of a non-trivial IR fixed point

with a holographic dual describable by “toric geometry” (see for instance [34]). A canonical

example is the N = 4 SYM with SU(N) gauge group, which can be represented by one

node (standing for the SU(N) vector multiplet), and three directed edges (standing for the

three N = 1 chiral multiplets in the adjoint) that both emanate from and end on that

one node.

In this section we show that for the large-N limit of toric quiver gauge theories the

relation (1.2) is modified to

ln IN→∞
quiver (β) ∼ π2

6β

nz
∑

i=1

1

ri
+

16π2

3β

∑

adj

(δcadj − δaadj)

+
nz

2
ln(β/2π) + lnY +

4(3δc+ δa)β

27
, (4.1)

where ri are the R-charges of extremal BPS mesons in the quiver [35, 36], nz is the number of

such mesons (or the number of corresponding zigzag paths in the brane-tiling picture [36]),

δc and δa denote the O(1) contributions to the full central charges (while δcadj and δaadj
denote only the contributions from any chiral adjoint matter) and lnY = 1

2

∑nz
i=1 ln ri +

∑

adj ℓ(Radj − 1). See equations (3.11) and (3.10) for the definition of the function ℓ. The

way to determine ri and nz for a given quiver is explained in eq. (4.8) below.

With the aid of a conjecture in [16], we can write4

nz
∑

i=1

1

ri
=

3

16π3

(

19vol(SE) +
1

8
Riem2(SE)

)

, (4.2)

where SE denotes the Sasaki-Einstein 5-manifold dual to the quiver gauge theory. The

above conjecture was motivated by the finding in [37] that one can “hear the shape of

the dual geometry” in the asymptotics of the Hilbert series of mesonic operators in the

SCFT. We note that the leading high-temperature behavior of the index of toric quivers is

contained in the first two terms of (4.1). The first term, according to (4.2), is dictated by

the geometry of the dual internal manifold, while the second is given by the O(1) part of

the contribution of adjoint matter to c−a. The latter is hence the only part of the finite-N

4In [16] the conjectured expression was given for a0 − b0, the difference of two coefficients appearing in

the high-temperature expansion of the single-trace index. However, in all cases considered there a0 − b0 =
∑

1/ri, so the conjecture can be alternatively stated as in (4.2).
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Di Pietro-Komargodski formula that escapes metamorphosis into “geometry” in the planar

limit. In addition, while at zero squashing both of these terms have the same dependence

on β, as displayed in (A.24) they each have distinct dependence on the squashing parameter

and can therefore be distinguished.

As an illustrative example, let us consider the N = 4 theory, and see how the con-

jecture (4.2) works for this case. In this theory nz = 3 and5 r1,2,3 = 2/3. The conjec-

ture (4.2) reads

9

2
=

3
∑

i=1

1

ri
=

3

16π3

(

19vol(S5) +
1

8
Riem2(S5)

)

=
3

16π3

(

19(π3) +
1

8
(40π3)

)

, (4.3)

where we have used the geometrical data in table 2 of [37] to evaluate the r.h.s. . Similar

tests can be successfully performed for all the SE5 manifolds listed in table 2 of [37].

4.1 Derivation

Our starting point for computing the large-N index is the following expression, valid when

the nodes of the quiver have SU(N) gauge groups [38]

ln IN→∞
quiver (q) = −

∞
∑

k=1

tr i(qk)

k
− ln

∞
∏

k=1

det(1− i(qk)). (4.4)

The matrix i has the single-letter index of the fields transforming in the fundamental

representation of the j-th node and the anti-fundamental representation of the k-th node

as its jk entry. On its diagonal it has the single-letter index of the corresponding vector

multiplets and the adjoint matter. The first term on the r.h.s. of (4.4) is the subtracted

contribution of the U(1)’s from the U(N) answer given by the second term. We neglect

the first term until eq. (4.11) where it is re-introduced.

To obtain an expression for the second term on the r.h.s. of (4.4) we use [35]

(1− i(q)) =
χ(q)

(1− q)2
, (4.5)

with the nv × nv matrix χ (where nv is the number of nodes in the quiver) being a purely

graph-theoretic object given by

χ(q) = 1− q2 −MQ(q) + q2MQ(q
−1). (4.6)

Here MQ(q) is the weighted adjacency matrix

MQ(q) =
∑

e

qR(e)Eh(e),t(e), (4.7)

with R(e) the R-charge of the edge e in the quiver and Ev,w is a matrix such that the (v, w)

entry is 1 and all other entries are zero.

5Note that r = 2/3 is the R-charge of the trace of the adjoint matter. This exemplifies the fact that

the “extremal BPS mesons” that play a role in (4.1) are in general mesons of the theory with U(N) gauge

group. The language of zigzag paths [36] might therefore be preferable when studying SU(N) quivers.
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Our following manipulations are made possible by the remarkable factorization [35, 36]

detχ(t) =

nz
∏

i=1

(1− tri). (4.8)

The above identity is proven for a subset of all toric quivers in [35], but is conjectured to be

valid more generally [36]. It allows an efficient rewriting of the index of the quiver theories

in terms of (qri ; qri).

The second term on the r.h.s. of (4.4) can be written as

− ln
∞
∏

k=1

det

(

χ(qk)

(1− qk)2

)

= − ln
∞
∏

k=1

(

1

(1− qk)2nv

)

det(χ(qk)), (4.9)

which with the aid of the q-Pochhammer symbol and eq. (3.21) can be cast into

2nv ln(q; q)−
nz
∑

i=1

ln(tri ; tri) = nv ln Iv(β)−
1

2

nz
∑

i=1

ln Iv(βri). (4.10)

Now we re-introduce the first term on the r.h.s. of (4.4), whose contribution from the

vector multiplets happens to kill the first term on the r.h.s. of the above equation. However,

the contribution from the adjoint matter remains, so that

ln IN→∞
quiver (β) = −1

2

nz
∑

i=1

ln Iv(βri)−
∑

adj

ln Iχ(Radj, β). (4.11)

Using
∑nz

i=1 ri = 2nv, and also employing (3.14) and (3.24), the high-temperature expansion

given in (4.1) is obtained.

4.2 The N = 4 theory as an example

The N = 4 theory has one vector multiplet and three adjoint chiral multiplets of R-charge

R = 2/3. Application of eq. (4.8) gives for this case nz = 3 and r1,2,3 = 2/3. For the theory

with SU(N) gauge group we find from (4.11) that

ln IN→∞
N=4 (β) = −3

2
ln Iv(2β/3)− 3 ln Iχ(R = 2/3, β)

= −3 ln(q2/3; q2/3)− 3 ln Γ(2τ/3, τ, τ). (4.12)

The asymptotic high-temperature expansion can be derived from the expressions in the

previous section to be

ln IN→∞
N=4 (β) ∼ 5

2

π2

6β
+

3

2
ln

(

β

2π

)

+

(

3

2
ln

2

3
− 3ℓ(1/3)

)

− 4

27
β, (4.13)

which is exact up to non-analytic corrections of the type e−1/β .

Note that for the N = 4 theory with U(N) gauge group we would only need the second

term in eq. (4.4), whose representation in (4.10) can be employed to obtain

ln IN→∞
U(N) N=4(β) ∼

1

2

π2

6β
+

1

2
ln

(

β

2π

)

+
3

2
ln

2

3
, (4.14)

with no O(β) term on the r.h.s. , and also no appearance of the ℓ function. Both of these

features are shared by all U(N) quivers described by (4.10).
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5 Discussion

In this note we have considered free chiral and U(1) vector multiplets, and shown the ro-

bustness of the Di Pietro-Komargodski formula. When written as the high-temperature

expansion of lnZSUSY(β), it receives — aside from transcendentally small contributions —

only O(lnβ) and O(β0) corrections. It is tempting to speculate that similar statements

apply to general Lagrangian SCFTs. It may be possible to investigate this robustness by

defining a “holomorphic temperature” and using holomorphy on S3×S1 [39]. Another sus-

picion is that a yet more robust version of the Di Pietro-Komargodski formula may exist for

SUSY partition functions obtained by path-integration over holomorphically normalized,

as opposed to canonically normalized, gauge fields. To explore these possibilities, extend-

ing the “effective gauge coupling” technique of [40], and “holomorphic gauge coupling”

technique of [41] to the curved-space supersymmetric case may prove helpful.

The reader may ask why in our discussion of finite-N theories we have emphasized that

the theories under study are free, while the index of any Lagrangian theory is independent

of the couplings and can be evaluated easily even if the theory flows to an interacting

SCFT in the IR. The reason is that such interacting SCFTs can not be constructed with

only chiral and U(1) vector multiplets; one needs asymptotic freedom in the Lagrangian,

and therefore non-abelian gauge fields. We have not studied non-abelian gauge theories in

this work because their index is significantly more difficult to analyze, involving contour

integrals that are hard to evaluate analytically [24]. We hope that the understanding

gained in this work eventually help analyzing the high-temperature behavior of non-abelian

gauge fields.

The subleading O(lnβ) term in (3.1) and (3.2) has some resemblance to the results

of [32, 42]; it may be possible to make immediate progress generalizing (3.1) and (3.2) for

N = 2 SCFTs by their methods. It would be very interesting if an analysis along those

lines shows that the coefficient of lnβ in (3.1) and (3.2) depends — in contrast to what we

claimed — not only on the central charges, but also on some “non-universal” information,

such as the dimensions of certain operators.

Another direction to study is examining the high-temperature behavior of the index of

non-Lagrangian SCFTs. The particular case of E6 SCFT is readily in analytical reach [43].

In fact, since the proof of Di Pietro and Komargodski applies only to Lagrangian theo-

ries [7], it would be very interesting to see if even the leading high-temperature behavior

pans out for the E6 SCFT.

A somewhat different path to explore is that of large-N gauge theories. For toric

quivers we presented in eq. (4.1) the explicit form of the modified Di Pietro-Komargodski

formula, including its subleading corrections to all orders in β. As eqs. (4.1) and (4.2)

show, understanding the high-temperature behavior of the index of holographic quivers

involves elements of graph theory, geometry, and the theory of modular forms (or perhaps

a matrix generalization thereof, as eq. (4.4) suggests). It would be nice to have a more

general understanding of the connection between these elements beyond the toric case.

A topic we did not touch upon in our discussion of large-N quivers is that of the SUSY

partition functions ZN→∞
quiver (β) obtained by path integration, in the planar limit. In analogy
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with the finite-N case, we expect such partition functions to be proportional to IN→∞
quiver (β)

with an anomaly-dependent coefficient mediating the relation. We leave a careful study

of this problem to the future, and simply note that a modification of the finite-N version

in (1.5) may have implications for the Casimir energy mismatch puzzle raised in [44].

Non-holographic theories in the planar limit present another playground in which to

observe potential modifications of the Di Pietro-Komargodski formula, and explore its

subleading corrections. Let us discuss one example of this class, namely the SQCD fixed

point with x = Nc/Nf = 1/2 in the Veneziano limit. The index of this theory can be easily

obtained from the expressions given in [24]. We find

ln INc→∞
SQCD,x=1/2(β) = −N2

f ln(q; q) + (N2
f − 1) ln(q2; q2)

∼
N2

f + 1

2

(

π2

6β

)

+
1

2
ln

(

β

2π

)

−
N2

f − 1

2
ln 2 +

N2
f − 2

24
β.

(5.1)

The coefficient of π2/6β in the second line is known (as the a0 coefficient in table 2 of [16])

to be 2N2
c + 1/2 for general x. An application of the finite-N Di Pietro-Komargodski

formula would give instead 32(c − a) = 2N2
c + 2, which although correct at order N2

c ,

differs at order one from the actual value. On the other hand the coefficient of β above

precisely matches with 4(3c+ a)/27 predicted by the finite-N formula (3.2). Importantly,

unlike for the holographic quivers, this term includes the full central charges, and not just

their O(1) piece. This is related to the observations made in [15] regarding the possibility

of extracting the full central charges from the large-N index of Ak SQCD fixed points (see

appendix B).

Finally, modular properties of the SUSY partition functions discussed above hint to-

ward a general modular structure in four dimensions. In section 2 we presented some 2d

relations that bear striking resemblance to those in four dimensions. The resemblance is,

however, far from perfect. For example, ZPI in section 2 was modular invariant, but the

four-dimensional ZSUSY is apparently not. A deeper understanding of the differences with

the 2d modular structure may shed light on the 4d/2d relations [45–50].

Note added: shortly after the first version of the present paper appeared on arXiv, two

important related developments happened. The authors of [51] formulated a sparseness

condition for the elliptic genera of 2d CFTs with (2,2) supersymmetry, partially addressing

the problem mentioned in the last sentence of section 2. In [52] the supersymmetric Casimir

energy is studied in great detail, and also the regularization of SUSY partition functions

on Hopf surfaces is clarified.
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A SCFTs with squashed three-sphere as spatial manifold

In the main body, we have focused on the round S3 × S1. Here we demonstrate that the

results can be extended to the more general case where the fugacities p and q are not

necessarily equal. The index with two fugacities is given in (1.3), and the corresponding

SUSY partition function is (see for instance [31]) the one computed on S3
b × S1, with the

first factor representing a squashed 3-sphere with squashing parameter b, which is related

to the fugacities by p = e2πiτ = e−βb−1
and q = e2πiσ = e−βb.

In the following we will need some mathematical notation that we now introduce. An

important role will be played below by the “double sine” function sb in [53], which can be

represented as

sb(−ix) =
∏

m,n≥0

mb+ nb−1 + Q
2 − x

mb+ nb−1 + Q
2 + x

, (A.1)

withQ ≡ b+b−1. In parallel with (3.12) we can define ℓb(x) = ln sb(ix). To generalize (3.11)

we then define the function ψb through

ℓb(x) = lnψb(−x) +
iπx2

2
− iπ

24
(b2 + b−2). (A.2)

ψb is related to the “non-compact quantum dilogarithm” function eb in [54] via ψb(x) =

eb(−ix). Using eq. (15) in [54] we can express ψb(x) for |Rex| < Q/2 by

lnψb(x) =

∫ +∞

−∞

dt

4t

e−2xt

sinh(bt) sinh(t/b)
, (A.3)

where the singularity at t = 0 is put below the contour of integration. Explicit evaluation

of the above contour integral for b = 1, gives ψ as written in (3.10). In other words, ψb=1

equals the ψ function in the main text. Importantly for our computations below, eq. (21)

in [54] can be used to write

ψb(x) =
(e−2πixb+iπQb; e2πib

2
)

(e−2πixb−1−iπQb−1 ; e−2πib−2)
=

∏

k≥0

1− e−2πixb+iπQb+2πikb2

1− e−2πixb−1−iπQb−1−2πikb−2 . (A.4)

Note that when x has a large negative imaginary part of order 1/β, the expression (A.4)

shows that lnψb(x) ∼ 0, where ∼ means equality to all orders in β but excluding non-

analytic corrections of the type e−1/β .

A.1 Free chiral multiplet

Consider a chiral multiplet of R-charge R. The index is given by [24]

Iχ(R, β, b) = Γ(z, τ, σ), (A.5)

– 16 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
3

with z = RQ
2

iβ
2π , τ = iβ

2π b
−1, and σ = iβ

2π b. We will show below that (3.8) can be general-

ized to

Γ(z, τ, σ) =
e−iπM(z;τ,σ)

ψb(−(R− 1)Q2 )

∞
∏

n=1

ψb(−2πin
β + (R− 1)Q2 )

ψb(−2πin
β − (R− 1)Q2 )

, (A.6)

where

−iπM(z; τ, σ) =− π2(R− 1)

3β

Q

2
−

[

iπ

2

(

(R− 1)
Q

2

)2

− iπ

24
(b2 + b−2)

]

+ β

(

−(R− 1)

48
(b+ b−1 + b3 + b−3) +

(R− 1)3

48
(b+ b−1)3

)

.

(A.7)

Then an argument similar to that in the main text gives the high-temperature expansion

ln Iχ(R, β, b) ∼− π2(R− 1)

3β

(

b+ b−1

2

)

+ ℓb

(

−(R− 1)
b+ b−1

2

)

+ β

(

−(R− 1)

48

(

b+
1

b
+ b3 +

1

b3

)

+
(R− 1)3

48

(

b+
1

b

)3
)

.

(A.8)

In particular, the index reduces to the 3d partition function, exp(ℓb(−(R − 1) b+b−1

2 )) =

sb(−i(R− 1) b+b−1

2 ), in the limit β → 0, after its O(1/β) divergent exponent is removed.

The expansion (A.8) can be written in terms of the central charges as (note that for

chiral multiplets 2a− c = 0)

ln I(β, b) ∼16π2(c− a)

3β

(

b+ b−1

2

)

− 4(2a− c) ln(β/2π) + lnZ3d

+ β

(

2

27
(b+ b−1)3(3c− 2a) +

2

3
(b+ b−1)(a− c)

)

.

(A.9)

In section A.2 we will see that the above form applies (as in the main text, up to the lnZ3d

term) to a U(1) vector multiplet as well. Importantly, both for a free chiral and a free U(1)

vector multiplet, the linear term in the high-temperature expansion of ln I(β, b) encodes

enough information to allow extracting a and c separately from the index. As demonstrated

in appendix B, this observation is crucial for making contact with the prescriptions in [15].

The calculation of the SUSY partition function (highlighted below) goes through very

similarly to that in the main text, and this time yields

lnZSUSY
χ (R, β, b) = β

[

(R− 1)

48

(

b+
1

b
+b3+

1

b3

)

− (R− 1)3

48

(

b+
1

b

)3
]

+ ln Iχ(R, β, b),

(A.10)

which can be written alternatively in terms of the central charges of the chiral multiplet as

I(β, b) = exp

[

β

(

2

27
(b+ b−1)3(3c− 2a) +

2

3
(b+ b−1)(a− c)

)]

ZSUSY(β, b). (A.11)

This agrees with the prefactors proposed in [12, 13], except for the absence of the O(1/β)

term in the exponent.
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Combining (A.10) and (A.8) we obtain the high-temperature expansion

lnZSUSY
χ (R, β, b) ∼ −π2(R− 1)

3β

(

b+ b−1

2

)

+ ℓb

(

−(R− 1)
b+ b−1

2

)

, (A.12)

or in terms of the central charges

lnZSUSY(β, b) ∼ 16π2(c− a)

3β

(

b+ b−1

2

)

− 4(2a− c) ln(β/2π) + lnZ3d, (A.13)

with no O(β) term on the r.h.s. . Again, we will see in section A.2 that (aside from the

lnZ3d term) the above expansion applies to a U(1) vector multiplet as well.

We now turn to the proof of (A.6) by starting with the modular property of the Gamma

function (3.5). We rewrite this expression in terms of R, b, β,Q, expand using (3.4), and

manipulate as follows

Γ(z, τ, σ) = e−iπM
Γ(RQb

2 , 2πibβ , b2)

Γ(RQb−1

2 − b−2, 2πib
−1

β ,−b−2)

= e−iπM
∞
∏

n,k=0

1− e
2πi((n+1)( 2πib

β
)+(k+1)b2−RQb

2
)

1− e
2πi(n( 2πib

β
)+kb2+RQb

2
)

×

× 1− e2πi(n(
2πib−1

β
)−kb−2+RQb−1

2
−b−2)

1− e
2πi((n+1)( 2πib−1

β
)−(k+1)b−2−RQb−1

2
+b−2)

= e−iπM
∞
∏

n,k=0

1− e−
4π2

β
(n+1)b−iπ(R−1)Qb+iπQb+2πikb2

1− e
− 4π2

β
(n+1)

b
−iπ(R−1)Q

b
−iπQ

b
− 2πik

b2

×

× 1− e
− 4π2

β
n
b
+iπ(R−1)Q

b
−iπQ

b
− 2πik

b2

1− e
− 4π2

β
nb+iπ(R−1)Qb+iπQb+2πikb2

= e−iπM
∏

k≥0

1− eiπ(R−1)Qb−1−iπQb−1−2πikb−2

1− eiπ(R−1)Qb+iπQb+2πikb2

×
∏

n>0,k≥0

1− e
− 4π2

β
nb−iπ(R−1)Qb+iπQb+2πikb2

1− e
− 4π2

β
nb−1−iπ(R−1)Qb−1−iπQb−1−2πikb−2

×
∏

n>0,k≥0

1− e
− 4π2

β
nb−1+iπ(R−1)Qb−1−iπQb−1−2πikb−2

1− e
− 4π2

β
nb+iπ(R−1)Qb+iπQb+2πikb2

.

(A.14)

Our claim in eq. (A.6) then follows from using the expression (A.4) for the function ψb.

The computation of the SUSY partition function starts, as in (3.15), with the contri-

bution of the n-th KK mode [53]

lnZ(n)
χ (R, β, b) = ln sb

(

−i(R− 1)
Q

2
− 2πn

β

)

= ℓb

(

−(R− 1)
Q

2
+

2πin

β

)

. (A.15)
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Then following a similar line of argument as in subsection 3.1, and using the relation (A.2)

between ℓb and ψb, we have

lnZSUSY
χ (R, β, b) =

∑

n>0

ln
ψb((R− 1)Q2 − 2πin/β)

ψb((1−R)Q2 − 2πin/β)

+ 2
∑

n>0

2π2(R− 1)n

β

Q

2
+ ℓb

(

−(R− 1)
Q

2

)

=
∑

n>0

ln
ψb((R− 1)Q2 − 2πin/β)

ψb((1−R)Q2 − 2πin/β)

− π2(R− 1)

3β

Q

2
+ ℓb

(

−(R− 1)
Q

2

)

.

This combined with (A.6) proves (A.10).

A.2 Free U(1) vector multiplet

The superconformal index of a single free U(1) vector multiplet is [24]

Iv(p, q) = (p; p)(q; q). (A.16)

Now, following the same line of argument that led to (3.24) we arrive at

Iv(p, q) → e−π2(b+b−1)/6β

(

2π

β

)

e(b+b−1)β/24, (A.17)

or

ln Iv(β, b) ∼ −π2(b+ b−1)

6β
− ln

(

β

2π

)

+
β(b+ b−1)

24
. (A.18)

To study ZSUSY
v (p, q), we need Ψ(w, τ, σ). A computation similar to that which led

to (3.31), but now employing (A.10), gives

Ψ(w, τ, σ) = w2

(

1

τ
+

1

σ

)

+
1

6
(τ + σ). (A.19)

For w = 0, when combined with (G.11) of [13], this implies

ZSUSY
v (p, q) = p1/24q1/24Iv(p, q) = η(p)η(q), (A.20)

in accord with (A.11). The high-temperature expansion is simply

lnZv(β, b) ∼ −π2(b+ b−1)

6β
− ln

(

β

2π

)

. (A.21)

Note that eqs. (A.10) and (A.19), when combined with the localization results of [13],

yield the relation (A.11) between I and ZSUSY even in presence of interactions and non-

abelian gauge fields.
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A.3 Toric quivers in the planar limit

To generalize our results in section 4 to the index with two fugacities, we need the following

more general form of eq. (4.5):

(1− i(p, q)) =
χ(t)

(1− p)(1− q)
, (A.22)

where t =
√
pq. Eq. (4.8) remains unchanged. The rest of the computation in section 4

goes through with little change, and one arrives at

ln IN→∞
quiver (t, y) = −1

2

nz
∑

i=1

ln Iv(tv = tri , yv = 1)−
∑

adj

ln Iχ(R = Radj, tχ = t, yχ = y),

(A.23)

where y =
√

p/q.

We can now use the results in appendices A.1 and A.2 to write down the asymp-

totic high-temperature expansion of the large-N index in (A.23). A simple calculation

using (A.8) and (A.18) shows

ln IN→∞
quiver (β, b) ∼

π2

6β( b+b−1

2 )

nz
∑

i=1

1

ri

+
16π2( b+b−1

2 )

3β

∑

adj

(δcadj − δaadj) +
nz

2
ln(β/2π) + lnYb

+ β

(

2

27
(b+ b−1)3(3δc− 2δa) +

2

3
(b+ b−1)(δa− δc)

)

,

(A.24)

where the notation is similar to that in (4.1), except for lnYb = 1
2

∑nz
i=1 ln(ri(

b+b−1

2 )) +
∑

adj ℓb((Radj − 1)( b+b−1

2 )). See eqs. (A.2) and (A.3) for the definition of the function ℓb.

B Single-trace index and the central charges

The single-trace index is defined as the plethystic log [55] of the index (1.3)

Is.t.(β, b) ≡
∞
∑

n=1

µ(n)

n
ln I(nβ, b), (B.1)

where µ(n) is the Möbius function. The adjective “single-trace” is particularly appropriate

for theories that admit a planar limit in which single-trace operators are weakly interacting.

For such cases if in the definition of the index in (1.3) one restricts the trace to the “single-

trace states” in the Hilbert space, one obtains the single-trace index as defined above. In

AdS/CFT, the weakly interacting mesons of the SCFT at large ’t Hooft coupling map to

the KK supergravity modes in the bulk. Therefore the single-trace index is quite natural

from the bulk point of view.

In [15], building on the holographic results of [56], prescriptions were proposed for

extracting the central charges a and c from the single-trace index of an SCFT. It was
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observed that for holographic theories the prescriptions reproduce the O(1) piece of the

central charges, denoted by δa and δc, while for Ak SQCD fixed points at the Veneziano

limit and for finite-N theories they give the full central charges and not just their O(1)

piece. It was also suspected that there may be a relation between those prescriptions and

the Di Pietro-Komargodski formula (1.2).

In this appendix we show that the proposals in [15] probe in fact only the O(β) term

in the high-temperature expansion of the indices (A.9) and (A.24), and have nothing to

do with their leading O(1/β) behavior. This also explains the applicability of the formulas

in [15] to large-N theories: while the leading O(1/β) behavior of the large-N indices can

be drastically different from the finite-N proposal of Di Pietro and Komargodski, the O(β)

term is either completely inherited from the finite-N theory (as in the case of Ak SQCD

fixed points, an example of which appears in eq. (5.1)), or at least its O(1) piece survives

(as in the case of holographic quivers described in eq. (A.24)).

To simplify comparison with [15] we start by the expansion of the single-trace index

Is.t., first around y = 1 and then around tt = 1 (see section IV of [16])

Is.t. =

(

a0
tt − 1

+ a1 + a2(tt − 1) + · · ·
)

+(y − 1)2
(

b0
(tt − 1)3

+
b1

(tt − 1)2
+

b2
tt − 1

+ · · ·
)

+ · · · , (B.2)

where tt = 1/t = eβQ/2 is the t-variable defined in [15, 16] and y = e
−β

(

b−1/b
2

)

. Then the

prescriptions in [15] read

â =
9(a0 − b0)

32(tt − 1)2
− 3(a0 + 12a2)− 9(b0 − b1 + b2)

32
+ · · · ,

ĉ = − 3(a0 − b0)

32(tt − 1)2
− 2(a0 + 12a2) + 3(b0 − b1 + b2)

32
+ · · · , (B.3)

where the functions â and ĉ have a second-order pole in the high-temperature (tt → 1) limit

and their finite piece in this limit gives the central charges (or in the case of holographic

quivers, their O(1) pieces).

B.1 Finite-N theories

We start with the high-temperature expansion in (A.9), and take its plethystic log as

defined in eq. (B.1). The following sums are needed in the process [57]

∑ µ(n)

n2
=

1

ζ(2)
=

6

π2
,

∑ µ(n)

n
= 0,

∑ µ(n) lnn

n
= −1,

∑

µ(n) → 1

ζ(0)
= −2.

(B.4)
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The result for the high-temperature expansion of the single-trace index is

Is.t. ∼
32(c− a)

2β

(

b+ b−1
)

+ 4(2a− c)

− β

(

4

27
(b+ b−1)3(3c− 2a) +

4

3
(b+ b−1)(a− c)

)

.

(B.5)

We now wish to demonstrate that the leading O(1/β) behavior of the single-trace

index, or its subleading O(β0) term, do not play a role in evaluating the central charges

via (B.3). To illustrate this, we will assume the following form for the single-trace index

Is.t. ∼
G

2β

(

b+ b−1
)

+ C − β

(

4

27
(b+ b−1)3(3c− 2a) +

4

3
(b+ b−1)(a− c)

)

. (B.6)

Using this, we will demonstrate that the prescriptions (B.3) are independent of the coeffi-

cients G,C.

To compare (B.6) with the expansion (B.2), we need the dictionary

b+ b−1 =
2 ln tt

√

ln(tty) ln(tt/y)
, β =

√

ln(tty) ln(tt/y). (B.7)

Substituting the above relations in (B.6), expanding first around y = 1 and then around

tt = 1, and finally comparing with (B.2), gives

a0 = G, a1 =
1

2
G+ C, a2 = − 8

27
a− 8

9
c− 1

12
G,

b0 = G, b1 =
3

2
G, b2 =

64

27
a− 32

9
c+

1

2
G. (B.8)

Plugging the above values in (B.3) yields

â = a+ · · · , ĉ = c+ · · · , (B.9)

where the ellipses denote terms that vanish at tt = 1. Note that the G-dependence of

the coefficients (B.8) drops out when evaluating (B.3). Moreover, the only C-dependent

coefficient in (B.8) is a1, which does not show up in (B.3).

B.2 Ak SQCD fixed points in the Veneziano limit

A natural generalization of standard SQCD is achieved by adding a single adjoint chiral

multiplet X to SQCD, and turning on a simple superpotential TrXk+1. This leads to the

so-called Ak SQCD theories [58].

We have not been able to compute the high-temperature expansion of the index of

these theories when b 6= 1. In fact even for b = 1, SQCD (corresponding to k = 1) with

x = 1/2 has been the only example whose high-temperature expansion we have completely

evaluated; it is shown in (5.1). Nevertheless, since the single-trace index of these theories

were computed explicitly in [16], we can go in the reverse direction to that in the previous

subsection, and use the high-temperature expansion of Is.t.(β, b) to gain information on the

expansion of ln I(β, b). This is, in fact, how the linear term in (3.2) was conjectured in [15].
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Note that, as stated in [15], going from the high-temperature expansion of the single-trace

index to that of ln I(β, b), one can not reproduce the O(β0) term in the latter. However,

the other claim in [15], that even the O(lnβ) term of ln I(β, b) can not be obtained from

the high-temperature expansion of the single-trace index, is not quite correct. Here we

see, from the third line of (B.4), that the coefficeint of lnβ in the expansion of ln I(β, b)
is simply given by minus the O(β0) term in the expansion of Is.t.(β, b). For instance, by

negating the second term on the r.h.s. of relation (B.5) one obtains the coefficient of the

log term on the r.h.s. of (A.9).

We leave out the details, and only report an ansatz which is confirmed by the type of

analysis mentioned in the previous paragraph

ln INc→∞
Ak SQCD(β, b) ∼

2k3 + 3k2 − 1

4k(1 + k)

(

π2

6β( b+b−1

2 )

)

+
16kN2

c − 8k2 + 8k

4k(1 + k)

(

π2( b+b−1

2 )

6β

)

+
1

2
ln

(

β

2π

)

+O(β0)

+ β

(

2

27
(b+ b−1)3(3c− 2a) +

2

3
(b+ b−1)(a− c)

)

.

(B.10)

In particular, the leading O(1/β) term is different from the finite-N Di Pietro-Komargodski

formula in two important respects: i) it is not entirely determined by the central charges,

and ii) the dependence on b + b−1 is slightly more complicated than in the finite-N ver-

sion, (A.9). While at finite N the leading term depends on b + b−1 only through b+b−1

β ,

the large-N version has another O(1/β) term which is proportional to 1
(b+b−1)β

. Similar

observations could be made equally as well for the high-temperature expansion of the in-

dex of large-N toric quivers, presented in (A.24). In both cases, the term proportional to
1

(b+b−1)β
, which would be absent at finite N , is responsible for the poles showing up in the

prescriptions (B.3). This provides some insight into the divergences that were encountered

in [15, 16] when extracting the central charges of large-N theories.

In the next subsection we focus on large-N quivers and demonstrate the aforemen-

tioned connection between the poles in (B.3) and the term proportional to 1
(b+b−1)β

in the

expansion of ln I(β, b). A completely similar analysis can be applied to the Ak SQCD

theories.

B.3 Toric quivers in the planar limit

As in appendix B.1, we start with the high-temperature expansion of the index, take its

plethystic log to arrive at the expansion of the single-trace index, rewrite it in terms of

tt, y, and extract its coefficients to plug in the prescriptions (B.3). Taking the plethystic

log of (A.24), we arrive at

IN→∞
s.t. quiver ∼

2

β (b+ b−1)

nz
∑

i=1

1

ri
+

32
(

b+ b−1
)

2β

∑

adj

(δcadj − δaadj)−
nz

2

− β

(

4

27
(b+ b−1)3 (3δc− 2δa) +

4

3
(b+ b−1) (δa− δc)

)

.

(B.11)
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As in subsection B.1, we now assume the following expansion instead of (B.11)

IN→∞
s.t. quiver ∼

2H

β (b+ b−1)
+

G
(

b+ b−1
)

2β
+ C

− β

(

4

27
(b+ b−1)3 (3δc− 2δa) +

4

3
(b+ b−1) (δa− δc)

)

,

(B.12)

and argue that the prescriptions (B.3) are independent of G,H,C, except thatH determines

the pole terms that according to the prescription of [15] one should drop.

Following similar steps as in subsection B.1 leads this time to the coefficients

a0 = G+H, a1 =
1

2
G+

1

2
H + C, a2 = − 8

27
δa− 8

9
δc− 1

12
G− 1

12
H,

b0 = G, b1 =
3

2
G, b2 =

64

27
δa− 32

9
δc+

1

2
G. (B.13)

Importantly, this time a0 − b0 = H 6= 0; this proves our claim that the poles in (B.3) (or

alternatively, the divergences encountered in [15, 16] for large-N theories) are due to the

term proportional to 1
β(b+b−1)

in the high-temperature expansion of ln I(β, b).
Plugging the above set of coefficients in (B.3) leads to

â =
9H

32(tt − 1)2
+ a+ · · · , ĉ = − 3H

32(tt − 1)2
+ c+ · · · , (B.14)

as expected, where again the dependence on G has dropped out. There is no dependence

on C either, as one could anticipate by noting that C enters only a1 in (B.13), while a1
does not appear in (B.3).

Finally, we would like to point out that the above discussion generalizes (up to the

matching of the indices of bulk and boundary, and assuming (4.8)) the AdS/CFT matching

of the O(1) piece of the central charges to any toric quiver. In [15] such a matching was

demonstrated only for toric quivers dual to smooth SE5 manifolds and without adjoint

matter. The expression (A.24) on the other hand applies also to toric quivers with adjoint

matter and with singular dual geometry, as it hinges on the factorization (4.8) whose

validity is demonstrated in several singular cases and in presence of adjoints as well [36].

The matching mentioned above could be alternatively demonstrated by applying the

prescriptions of [15] to the single-trace index of a general toric quiver, which can be deduced

from eq. (A.23) to be

IN→∞
s.t. quiver(t, y) = −1

2

nz
∑

i=1

iv(tv = tri , yv = 1)−
∑

adj

iχ(R = Radj, tχ = t, yχ = y), (B.15)

with iv(tv, yv) and iχ(R, tχ, yχ) the single-letter indices of the vector and chiral multiplets

iv(tv, yv) =
2t2v − tv(yv + y−1

v )

(1− tvyv)(1− tvy
−1
v )

, iχ(R, tχ, yχ) =
tRχ − t2−R

χ

(1− tχyχ)(1− tχy
−1
χ )

. (B.16)

Plugging the above explicit expressions in (B.15) we obtain

IN→∞
s.t. quiver(t, y) =

nz
∑

i=1

tri

1− tri
−
∑

adj

tRadj − t2−Radj

(1− ty)(1− t/y)
, (B.17)

to which the prescriptions of [15] can be successfully applied.

– 24 –



J
H
E
P
0
7
(
2
0
1
5
)
1
1
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.L. Cardy, Operator content of two-dimensional conformally invariant theories,

Nucl. Phys. B 270 (1986) 186 [INSPIRE].

[2] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[3] A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy,

Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

[4] T. Hartman, C.A. Keller and B. Stoica, Universal spectrum of 2D conformal field theory in

the large c limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].

[5] N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma,

Constraints on fluid dynamics from equilibrium partition functions, JHEP 09 (2012) 046

[arXiv:1203.3544] [INSPIRE].

[6] K. Jensen, M. Kaminski, P. Kovtun, R. Meyer, A. Ritz and A. Yarom, Towards

hydrodynamics without an entropy current, Phys. Rev. Lett. 109 (2012) 101601

[arXiv:1203.3556] [INSPIRE].

[7] L. Di Pietro and Z. Komargodski, Cardy formulae for SUSY theories in d = 4 and d = 6,

JHEP 12 (2014) 031 [arXiv:1407.6061] [INSPIRE].

[8] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

[9] C. Romelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories,

Nucl. Phys. B 747 (2006) 329 [hep-th/0510060] [INSPIRE].

[10] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[11] H.-C. Kim and S. Kim, M5-branes from gauge theories on the 5-sphere, JHEP 05 (2013) 144

[arXiv:1206.6339] [INSPIRE].

[12] C. Closset and I. Shamir, The N = 1 chiral multiplet on T 2 × S2 and supersymmetric

localization, JHEP 03 (2014) 040 [arXiv:1311.2430] [INSPIRE].

[13] B. Assel, D. Cassani and D. Martelli, Localization on Hopf surfaces, JHEP 08 (2014) 123

[arXiv:1405.5144] [INSPIRE].

[14] J. Lorenzen and D. Martelli, Comments on the Casimir energy in supersymmetric field

theories, JHEP 07 (2015) 001 [arXiv:1412.7463] [INSPIRE].

[15] A.A. Ardehali, J.T. Liu and P. Szepietowski, Central charges from the N = 1 superconformal

index, Phys. Rev. Lett. 114 (2015) 091603 [arXiv:1411.5028] [INSPIRE].

[16] A.A. Ardehali, J.T. Liu and P. Szepietowski, c-a from the N = 1 superconformal index,

JHEP 12 (2014) 145 [arXiv:1407.6024] [INSPIRE].

[17] P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity,

JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].

[18] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes,

Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

– 25 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0550-3213(86)90552-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B270,186
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://inspirehep.net/search?p=find+J+Phys.Lett.,B379,99
http://dx.doi.org/10.1016/0370-2693(96)00345-0
http://arxiv.org/abs/hep-th/9601029
http://inspirehep.net/search?p=find+EPRINT+hep-th/9601029
http://dx.doi.org/10.1007/JHEP09(2014)118
http://arxiv.org/abs/1405.5137
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5137
http://dx.doi.org/10.1007/JHEP09(2012)046
http://arxiv.org/abs/1203.3544
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3544
http://dx.doi.org/10.1103/PhysRevLett.109.101601
http://arxiv.org/abs/1203.3556
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3556
http://dx.doi.org/10.1007/JHEP12(2014)031
http://arxiv.org/abs/1407.6061
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6061
http://dx.doi.org/10.1016/0550-3213(82)90071-2
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B202,253
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.037
http://arxiv.org/abs/hep-th/0510060
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510060
http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510251
http://dx.doi.org/10.1007/JHEP05(2013)144
http://arxiv.org/abs/1206.6339
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6339
http://dx.doi.org/10.1007/JHEP03(2014)040
http://arxiv.org/abs/1311.2430
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2430
http://dx.doi.org/10.1007/JHEP08(2014)123
http://arxiv.org/abs/1405.5144
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5144
http://dx.doi.org/10.1007/JHEP07(2015)001
http://arxiv.org/abs/1412.7463
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7463
http://dx.doi.org/10.1103/PhysRevLett.114.091603
http://arxiv.org/abs/1411.5028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.5028
http://dx.doi.org/10.1007/JHEP12(2014)145
http://arxiv.org/abs/1407.6024
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.6024
http://dx.doi.org/10.1088/1126-6708/2007/01/002
http://arxiv.org/abs/hep-th/0607138
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607138
http://dx.doi.org/10.1016/S0370-2693(96)01460-8
http://arxiv.org/abs/hep-th/9602065
http://inspirehep.net/search?p=find+EPRINT+hep-th/9602065


J
H
E
P
0
7
(
2
0
1
5
)
1
1
3

[19] A. Belin, C.A. Keller and A. Maloney, String universality for permutation orbifolds,

Phys. Rev. D 91 (2015) 106005 [arXiv:1412.7159] [INSPIRE].

[20] F.M. Haehl and M. Rangamani, Permutation orbifolds and holography, JHEP 03 (2015) 163

[arXiv:1412.2759] [INSPIRE].

[21] A. Kapustin, B. Willett and I. Yaakov, Exact results for Wilson loops in superconformal

Chern-Simons theories with matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].

[22] D.L. Jafferis, The exact superconformal R-symmetry extremizes Z, JHEP 05 (2012) 159

[arXiv:1012.3210] [INSPIRE].

[23] N. Hama, K. Hosomichi and S. Lee, Notes on SUSY gauge theories on three-sphere,

JHEP 03 (2011) 127 [arXiv:1012.3512] [INSPIRE].

[24] F.A. Dolan and H. Osborn, Applications of the superconformal index for protected operators

and q-hypergeometric identities to N = 1 dual theories, Nucl. Phys. B 818 (2009) 137

[arXiv:0801.4947] [INSPIRE].

[25] G. Felder and A. Varchenko, The elliptic gamma function and SL(3, Z)× Z3, Adv. Math.

156 (2000) 44 [math/9907061].

[26] F.A.H. Dolan, V.P. Spiridonov and G.S. Vartanov, From 4D superconformal indices to 3D

partition functions, Phys. Lett. B 704 (2011) 234 [arXiv:1104.1787] [INSPIRE].

[27] A. Gadde and W. Yan, Reducing the 4D index to the S3 partition function,

JHEP 12 (2012) 003 [arXiv:1104.2592] [INSPIRE].

[28] Y. Imamura, Relation between the 4D superconformal index and the S3 partition function,

JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].

[29] V. Niarchos, Seiberg dualities and the 3d/4d connection, JHEP 07 (2012) 075

[arXiv:1205.2086] [INSPIRE].

[30] P. Agarwal, A. Amariti, A. Mariotti and M. Siani, BPS states and their reductions,

JHEP 08 (2013) 011 [arXiv:1211.2808] [INSPIRE].

[31] O. Aharony, S.S. Razamat, N. Seiberg and B. Willett, 3d dualities from 4d dualities,

JHEP 07 (2013) 149 [arXiv:1305.3924] [INSPIRE].

[32] M. Buican, T. Nishinaka and C. Papageorgakis, Constraints on chiral operators in N = 2

SCFTs, JHEP 12 (2014) 095 [arXiv:1407.2835] [INSPIRE].

[33] F. Benini, R. Eager, K. Hori and Y. Tachikawa, Elliptic genera of two-dimensional N = 2

gauge theories with rank-one gauge groups, Lett. Math. Phys. 104 (2014) 465

[arXiv:1305.0533] [INSPIRE].

[34] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from

toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

[35] R. Eager, J. Schmude and Y. Tachikawa, Superconformal indices, Sasaki-Einstein manifolds

and cyclic homologies, Adv. Theor. Math. Phys. 18 (2014) 129 [arXiv:1207.0573] [INSPIRE].

[36] P. Agarwal, A. Amariti and A. Mariotti, A zig-zag index, arXiv:1304.6733 [INSPIRE].

[37] R. Eager, M. Gary and M.M. Roberts, Can you hear the shape of dual geometries?,

JHEP 10 (2013) 209 [arXiv:1011.5231] [INSPIRE].

[38] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, On the superconformal index of N = 1 IR

fixed points: a holographic check, JHEP 03 (2011) 041 [arXiv:1011.5278] [INSPIRE].

[39] G. Festuccia and N. Seiberg, Rigid supersymmetric theories in curved superspace,

JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

– 26 –

http://dx.doi.org/10.1103/PhysRevD.91.106005
http://arxiv.org/abs/1412.7159
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7159
http://dx.doi.org/10.1007/JHEP03(2015)163
http://arxiv.org/abs/1412.2759
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2759
http://dx.doi.org/10.1007/JHEP03(2010)089
http://arxiv.org/abs/0909.4559
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4559
http://dx.doi.org/10.1007/JHEP05(2012)159
http://arxiv.org/abs/1012.3210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3210
http://dx.doi.org/10.1007/JHEP03(2011)127
http://arxiv.org/abs/1012.3512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3512
http://dx.doi.org/10.1016/j.nuclphysb.2009.01.028
http://arxiv.org/abs/0801.4947
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.4947
http://arxiv.org/abs/math/9907061
http://dx.doi.org/10.1016/j.physletb.2011.09.007
http://arxiv.org/abs/1104.1787
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.1787
http://dx.doi.org/10.1007/JHEP12(2012)003
http://arxiv.org/abs/1104.2592
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2592
http://dx.doi.org/10.1007/JHEP09(2011)133
http://arxiv.org/abs/1104.4482
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4482
http://dx.doi.org/10.1007/JHEP07(2012)075
http://arxiv.org/abs/1205.2086
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2086
http://dx.doi.org/10.1007/JHEP08(2013)011
http://arxiv.org/abs/1211.2808
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.2808
http://dx.doi.org/10.1007/JHEP07(2013)149
http://arxiv.org/abs/1305.3924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3924
http://dx.doi.org/10.1007/JHEP12(2014)095
http://arxiv.org/abs/1407.2835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2835
http://dx.doi.org/10.1007/s11005-013-0673-y
http://arxiv.org/abs/1305.0533
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.0533
http://dx.doi.org/10.1088/1126-6708/2006/01/128
http://arxiv.org/abs/hep-th/0505211
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505211
http://dx.doi.org/10.4310/ATMP.2014.v18.n1.a3
http://arxiv.org/abs/1207.0573
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0573
http://arxiv.org/abs/1304.6733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6733
http://dx.doi.org/10.1007/JHEP10(2013)209
http://arxiv.org/abs/1011.5231
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5231
http://dx.doi.org/10.1007/JHEP03(2011)041
http://arxiv.org/abs/1011.5278
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5278
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689


J
H
E
P
0
7
(
2
0
1
5
)
1
1
3

[40] L.G. Yaffe and B. Svetitsky, First order phase transition in the SU(3) gauge theory at finite

temperature, Phys. Rev. D 26 (1982) 963 [INSPIRE].

[41] N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions

in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].

[42] A.D. Shapere and Y. Tachikawa, Central charges of N = 2 superconformal field theories in

four dimensions, JHEP 09 (2008) 109 [arXiv:0804.1957] [INSPIRE].

[43] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The superconformal index of the E6 SCFT,

JHEP 08 (2010) 107 [arXiv:1003.4244] [INSPIRE].

[44] D. Cassani and D. Martelli, The gravity dual of supersymmetric gauge theories on a squashed

S1 × S3, JHEP 08 (2014) 044 [arXiv:1402.2278] [INSPIRE].

[45] L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from

four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219]

[INSPIRE].

[46] N. Wyllard, AN−1 conformal Toda field theory correlation functions from conformal N = 2

SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [INSPIRE].

[47] N. Nekrasov and E. Witten, The Ω deformation, branes, integrability and Liouville theory,

JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

[48] A. Gadde, L. Rastelli, S.S. Razamat and W. Yan, The 4D superconformal index from

q-deformed 2D Yang-Mills, Phys. Rev. Lett. 106 (2011) 241602 [arXiv:1104.3850]

[INSPIRE].

[49] M. Yamazaki, Quivers, YBE and 3-manifolds, JHEP 05 (2012) 147 [arXiv:1203.5784]

[INSPIRE].

[50] Y. Terashima and M. Yamazaki, Emergent 3-manifolds from 4D superconformal indices,

Phys. Rev. Lett. 109 (2012) 091602 [arXiv:1203.5792] [INSPIRE].

[51] N. Benjamin, M.C.N. Cheng, S. Kachru, G.W. Moore and N.M. Paquette, Elliptic genera

and 3D gravity, arXiv:1503.04800 [INSPIRE].

[52] B. Assel, D. Cassani, L. Di Pietro, Z. Komargodski, J. Lorenzen and D. Martelli, The

Casimir energy in curved space and its supersymmetric counterpart, arXiv:1503.05537

[INSPIRE].

[53] N. Hama, K. Hosomichi and S. Lee, SUSY gauge theories on squashed three-spheres,

JHEP 05 (2011) 014 [arXiv:1102.4716] [INSPIRE].

[54] L.D. Faddeev, R.M. Kashaev and A. Yu. Volkov, Strongly coupled quantum discrete Liouville

theory. 1. Algebraic approach and duality, Commun. Math. Phys. 219 (2001) 199

[hep-th/0006156] [INSPIRE].

[55] S. Benvenuti, B. Feng, A. Hanany and Y.-H. He, Counting BPS operators in gauge theories:

quivers, syzygies and plethystics, JHEP 11 (2007) 050 [hep-th/0608050] [INSPIRE].

[56] M. Beccaria and A.A. Tseytlin, Higher spins in AdS5 at one loop: vacuum energy, boundary

conformal anomalies and AdS/CFT, JHEP 11 (2014) 114 [arXiv:1410.3273] [INSPIRE].
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