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By using a kernel exhibiting a singularity at the origin, the gluon condensate enters the
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1 Introduction

One of the two-pillars of QCD sum rules (QCDSR) [1, 2], an analytic method to obtain

results in QCD, is the operator product expansion (OPE) of current correlators at short

distances beyond perturbation theory, to wit. Given a current-current correlation function

of the squared four-momentum, Π(Q2), the OPE is formally written as

Π(Q2)|QCD = C0 Î +
∑

N=1

C2N (Q
2, µ2)

Q2N
〈O2N (µ

2)〉, (1.1)

where 〈O2N (µ
2)〉 is short for 〈0|O2N (µ

2)|0〉, µ2 is a renormalization scale, Q2 < 0 is the

squared four-momentum, and the Wilson coefficients in this expansion, C2N (Q
2, µ2), de-

pend on the Lorentz indices and quantum numbers of the current J(x) entering the corre-

lator, and of the local gauge invariant operators O2N (µ
2) built from the QCD quark and

gluon fields. These operators are ordered by increasing dimensionality and the Wilson co-

efficients, calculable in perturbative QCD (PQCD), fall off by corresponding powers of Q2

(explicitly factored out in eq. (1.1)). In other words, this OPE achieves a factorization of

short distance effects encapsulated in the Wilson coefficients, and long distance dynamics

present in the vacuum condensates. Since there are no gauge invariant operators of dimen-

sion d = 2 involving the quark and gluon fields in QCD, it is normally assumed that the

OPE starts at dimension d = 4. This is supported by contemporary results from QCDSR

analyses of τ -lepton decay data [3]–[7], and e+e− annihilation data in the light-quark sec-

tor [6], which show no evidence for d = 2 operators. A similar result is also found in lattice

QCD (LQCD) analyses [9, 10]. With the exception of the quark condensate, the numerical

values of the vacuum condensates cannot be calculated analytically from first principles

as this would be tantamount to solving QCD exactly. They can be determined e.g. from

numerical simulations in lattice LQCD, or by confronting the OPE with suitable experi-

mental data, as described in the sequel. In the chiral limit the first non-vanishing power

term in the OPE with dimension d = 4 has been traditionally identified with the gluon

condensate [1, 2, 11], C4〈O4〉 = π
3 〈αsGa

µνG
aµν〉. Having the lowest dimension it dominates

the OPE and thus QCDSR analyses of chirality conserving amplitudes, such as e.g. the
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Adler function. This condensate is also directly related to the vacuum energy density, ǫ,

through

ǫ =
π

8α2
s

β(αs)

〈

αs
π
Ga
µνG

aµν

〉

, (1.2)

where β(αs) is the Gell-Mann-Low beta-function normalized as β1 = −1
2

(

11− 2
3nF

)

. The

sign and the magnitude of the gluon condensate are of fundamental importance in the

understanding of the strong interactions. A negative value of the vacuum energy ǫ is ex-

pected from models such as the bag model and the instanton gas model. In addition, the

numerical value of the gluon condensate should be chiral symmetric, i.e. determinations

from a vector channel correlator should give the same value as those from an axial-vector

channel correlator. In spite of more than 35 years of efforts to determine this condensate

there is still no clear consensus on its numerical value. There are at least three approaches

to determine the gluon condensate. A direct, numerical approach consists in computing

the average plaquette in LQCD. Unfortunately, an important and large perturbative com-

ponent needs to be subtracted in this approach [9], and numerical results cover a huge

range [9, 12, 13]. The other two approaches to determine the power corrections in the OPE

are based on QCDSR, whose second pillar is the so-called quark-hadron duality. This is

based on the use of the complex squared energy s-plane to invoke Cauchy’s theorem to

relate QCD with the hadronic sector. Stable hadronic states enter as poles in the current

correlator on the real s-axis, and resonances as singularities in the second Riemann sheet.

These singularities lead to a discontinuity across the positive real s-axis. Choosing a cir-

cular integration contour, and given that there are no other singularities in the complex

s-plane, Cauchy’s theorem leads to the finite energy sum rules (FESR) [2, 14]–[17]

∫ s0

sth
ds

1

π
p(s) ImΠ(s)|HAD = − 1

2πi

∮

C(|s0|)
ds p(s) Π(s)|QCD , (1.3)

where p(s) is an analytic weight kernel, sth is the hadronic threshold, and the finite radius

of the circle, s0, is large enough for QCD and the OPE to be used on the circle. Physical

observables determined from FESR should be independent of s0. In practice, though, this

is not exact, and there is usually a region of stability starting at s0 & 2 − 4GeV2 in

the light-quark sector where observables are fairly independent of s0. Equation (1.3) is

the mathematical statement of what is usually referred to as quark-hadron duality. Since

PQCD is not valid on the real axis in the time-like resonance region (s ≥ 0), in principle

there is a possibility of problems on the circle near the real axis, known as duality violations

(DV), an issue identified very early in [14] long before the present formulation of QCDSR.

In order to account for this potential issue it was first proposed in [18]–[20] to use suitable

integration kernels pinched so that they vanish on the real axis. An underlying assumption

in this approach is that QCD is still valid on the Cauchy circle provided the radius is large

enough. This is a contentious issue, as there is an alternative proposal which relaxes this

assumption and seeks suitable models to account for DV [21]–[25]. In any case, it should

be kept in mind that DV effects are difficult to estimate as they are unknown by definition,

as very clearly pointed out in [21].
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Most of the early determinations of the vacuum condensates in the OPE from FESR,

eq. (1.1), were performed with simple kernels p(s) = sN and using the vector or axial-

vector correlators together with data, e.g. from e+e− annihilation in the light-quark sector,

or τ -lepton hadronic decays [26]–[28], as well as data on e+e− annihilation in the charm-

quark region [29]–[32]. In the framework of fixed order perturbation theory [15] the FESR,

eq. (1.3), become

(−)NC2N+2〈O2N+2〉 =
∫ s0

0
ds sN

1

π
ImΠ(s)|HAD − sN+1

0

(N + 1)
IN (s0)|PQCD , (1.4)

where N ≥ 1, and IN (s0)|PQCD is the integrated PQCD contribution. In this approach,

and to next-to-leading order (NLO) in PQCD, radiative corrections to the condensates

do not induce mixing of condensates of different dimension [33], a welcome feature. All

of these early results relied on available PQCD information at the time, mostly only up

to next-to-next-to leading order (NNLO), and on values of αs considerably lower than at

present, i.e. some 40% lower. Due to this, the PQCD contribution to the FESR was a

manageable correction leading to relatively high accuracy in the values of the condensates.

This situation changed dramatically with the availability of radiative corrections at the

five-loop level, and a considerably higher value of the strong quark-gluon coupling. As a

result, current determinations based on eq. (1.4) [4]–[7] are affected by such large uncer-

tainties that the dimension d = 4 gluon condensate is known with close to 100% error,

and no meaningful results are obtained for condensates of higher dimension. For instance,

the ALEPH Collaboration [34] has used τ -decay data [35] together with an indiscriminate

global fit of all parameters, i.e. strong coupling and power corrections, to obtain an unphys-

ical negative value for the gluon condensate. The source of the problem in this approach

is the almost cancellation between two large and comparable quantities on the right hand

side of eq. (1.4). In other words, large PQCD logarithmic terms tend to swamp the power

corrections in sum rules. Specifically, the condensates determined from FESR are the result

of a difference between two integrals, one involving the data and the other PQCD on the

circle of radius s = |s0|. Both contributions are large and comparable, thus leading to a

large uncertainty. An exception is the case of chiral condensates which can be determined

with reasonable accuracy due to the absence of PQCD [7, 20, 25, 36].

The third approach to obtain the dimension d = 4 power correction in the OPE is

based on QCDSR for the vector current correlator in the charm-quark region, where there

is data from e+e− annihilation into hadrons. Early determinations [29]–[32] have been

superseded due to the large increase of the strong coupling αs over the years, and by the

availability of NNLO perturbative information.

In this paper we discuss a novel determination of this condensate in the charm-quark

region using the vector current correlator and involving a pinched integration kernel in

the FESR exhibiting a singularity at the origin in the complex s-plane. This allows for

(a) a substantial enhancement of the hadronic contribution due to the well known first

two ψ-poles, followed by a large quenching of the resonance region above them, where the

data has large uncertainties, and (b) an extraction of the gluon condensate entering in the

Cauchy residue of the singularity at the origin through the low energy QCD expansion.
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This leads to an expression for the gluon condensate involving contributions from three

terms, the experimental data, the high energy PQCD contribution and the low energy

PQCD expansion in inverse powers of the heavy-quark mass. It turns out that the last

two terms have opposite signs, thus rendering the total PQCD contribution to be one

order of magnitude smaller than the data. This last feature circumvents the problem with

traditional FESR where the condensates are the result of a fine balance between two large

contributions, the hadronic and the PQCD integrals. Hence, this leads to a substantially

more accurate result.

2 Determination of C4〈O4〉

We consider the vector current correlator

Πµν(q
2) = i

∫

d4x eiqx〈0|T (Vµ(x) Vν(0))|0〉 = (qµ qν − q2gµν) Π(q
2) , (2.1)

where Vµ(x) = c̄(x)γµc(x). From Cauchy’s residue theorem in the complex s-plane one

obtains
∫ s0

sth=M
2
J/ψ

p(s)
1

π
ImΠ(s) ds = − 1

2πi

∮

C(|s0|)
p(s)Π(s) ds+Res[Π(s) p(s), s = 0] , (2.2)

where p(s) is now a meromorphic function, the integral on the right hand side involves QCD,

provided s0 is large enough, and the left hand side involves the hadronic spectral function

Im Π(s) =
1

12π
Rc(s) , (2.3)

with Rc(s) the standard R-ratio for charm production in e+e− annihilation. Notice the

lower limit of integration on the left hand side of eq. (2.2). This threshold lies above the

(suppressed) pure gluonic intermediate states entering at NNLO, thus not included in the

observable Rc. It was found in [37] that the total background is different from Ruds by

0.01%, and thus the non-Ruds contributions are entirely negligible.

The PQCD piece of Π(s), entering the integral around the circle in eq. (2.2), can be

formally written as

Π(s)|PQCD = e2c
∑

n=0

(

αs(µ
2)

π

)n

Π(n)(s) , (2.4)

where ec = 2/3 is the charm-quark electric charge, and

Π(n)(s) =
∑

i=0

(

m̄2
c

s

)i

Π
(n)
i , (2.5)

with mc ≡ mc(µ) the running charm-quark mass in the MS-scheme. Up to order O
[α2
s(m̄

2
c/s)

6] the function Π(s)PQCD has been calculated in [38], exact results for Π
(3)
0 and

Π
(3)
1 have been found in [39], and Π

(3)
2 is known up to a constant [40]. At five-loop order,

O(α4
s), the full logarithmic terms for Π

(4)
0 were determined in [41], and for Π

(4)
1 in [42].

Since there is incomplete knowledge at this order we shall use the available information

– 4 –
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Figure 1. Experimental data for the total R(s) ratio [56]–[58] together with the optimal integration

kernel, eq. (2.13), with N = 2 (dash curve), and p(s) = 1/s2 (solid curve) normalized to coincide

with the former at the position of the ψ(2S) peak.

as a measure of the truncation error in PQCD. There is also a non-perturbative QCD

contribution to Π(s), with the leading term being the gluon condensate. This contribution,

though, is negligible on account of s0 being large. However, the gluon condensate also

enters in the sum rules through the Cauchy residue in eq. (2.2), provided p(s) is singular

at the origin, a feature that constitutes the essence of this determination. The low energy

expansion of the vector correlator around s = 0 in PQCD can be written as

ΠPQCD(s) =
3 e2c
16π2

∑

n≥0

Cn zn , (2.6)

where z = s/(4m2
c). The coefficients Cn are then expanded in powers of αs(µ)

C̄n = C̄(0)
n +

αs(µ)

π

(

C̄(10)
n + C̄(11)

n lm

)

+

(

αs(µ)

π

)2
(

C̄(20)
n + C̄(21)

n lm + C̄(22)
n l2m

)

+

(

αs(µ)

π

)3
(

C̄(30)
n + C̄(31)

n lm + C̄(32)
n l2m + C̄(33)

n l3m

)

+ . . . (2.7)

where lm ≡ ln(m̄2
c(µ)/µ

2). Up to three loop level the coefficients of C̄n are known up

to n = 30 [43]–[46]. At four-loop level C̄0 and C̄1 were determined in [43]–[44, 47], C̄2

is from [45]–[46], and C̄3 from [48]. We shall choose p(s) so that no coefficients C̄4 and

above contribute to the Cauchy residue at s = 0. The different expansions in eqs. (2.5)

and (2.6) are to be understood as a result of the scale hierarchy ΛQCD ≪ mc ≪ s0. The

non-perturbative contributions to the OPE involve inverse powers of q2, and the leading

term, of dimension d = 4, is the gluon condensate [49]

lim
−q2→0

Π(q2)|NPQCD(q
2) = − 1

q4
〈αsπ G2〉
12π

(1 +O(αs)) . (2.8)
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As is well known, in the heavy-quark sector there is no underlying chiral symmetry, and

the heavy-quark condensate reduces to the gluon condensate, e.g. to leading order in m−1
Q

〈Q̄Q〉 = − 1

12mQ

〈

αs
π
G2

〉

. (2.9)

In the sequel we ignore potential renormalon ambiguities, as we are not aware of renor-

malon analyses in heavy-quark expansions, with masses expressed in theMS-regularization

scheme. Furthermore, in the present analysis we determine the dimension d = 4 power cor-

rection in the OPE of the heavy-quark vector correlator. This term has traditionally been

identified with the gluon condensate, and could also be viewed simply as a phenomenolog-

ical parameter of the QCDSR approach. In other words, we are not determining the gluon

condensate from first principles, as done e.g. in LQCD, which involves issues which may

not arise in phenomenological extractions such as the one presented here.

Finally, the leading non-perturbative contribution to the FESR, eq. (2.2), from singular

kernels of the form p(s) = 1/sN+1, with N ≥ 0, has been calculated in [49]. However, we

shall make use of the result in [37], which is already expressed in the MS-scheme, and to

NLO reads

Res

[

Π(s)|NPQCD

sN+1
, s = 0

]

=
e2c

(4m̄2
c)
N+2

〈

αs
π
G2

〉

aN

(

1 +
αs
π

b̄N

)

, (2.10)

where the quark mass and the coupling depend on µ, and

aN = −2N + 2

15

Γ(4 +N)Γ(7/2)

Γ(7/2 +N)Γ(4)
, (2.11)

b̄N = bN − (2N + 4)

(

4

3
− lm

)

, (2.12)

with b0 = 1469/162, b1 = 135779/12960, b2 = 1969/168, and other values given in [37, 49].

The NNLO term is unknown so that we will include it as a source of uncertainty later.

The fundamental QCD parameters are the charm-quark mass mc(µ
2), the running strong

coupling αs(µ
2), and the gluon condensate 〈αsπ G2〉. For the strong coupling we use the

current value from lattice QCD (LQCD) [12] αs(M
2
Z) = 0.1183 ± 0.0007, and the charm-

quark mass also from LQCD [50] m̄c(3 GeV) = 986.4±4.1 GeV, which agrees with the most

recent QCDSR determination [51] m̄c(3 GeV) = 987±9 MeV. Solving the renormalization

group equation for the strong coupling and for the quark mass one can obtain their values

at any scale s in terms of their values at any given reference scale, e.g. s = s0 [34].

Regarding the renormalization scale µ, we follow the choice [51, 52] µ2 = (3 GeV)2 in the

low energy QCD expansion, and µ2 = s0 in the high energy QCD expansion on the circle

of radius s = |s0|.
Turning to the experimental data, we follow closely the analysis of [37, 53]. For the first

two narrow resonances we use the latest data from the Particle Data Group [54], MJ/ψ =

3.096916(11) GeV, ΓJ/ψ→e+e− = 5.55(14) keV, Mψ(2s) = 3.68609(4) GeV, Γψ(2s)→e+e− =

2.35(4) keV. These two narrow resonances are followed by the open charm region where it

is necessary to subtract from the total R-ratio the contribution from the light quark sector,

– 6 –
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Uncertainties (GeV4)

Method 〈αsπ G2〉 ∆s0 ∆αs ∆mc ∆DATA ∆T

(GeV4)

(a) 0.044 0.0028 0.0003 0.0048 0.0043 0.007

(b) 0.026 0.0016 0.0001 0.0027 0.0024 0.004

Table 1. Results for the gluon condensate for the kernel, eq. (2.13), for N = 2 and its sources of

uncertainty from the values of s0, αs, mc, the experimental data, and the total uncertainty. Method

(a) refers to using the currently known NLO radiative correction to the residue, eq. (2.10). Method

(b) assumes that the NNLO correction is as large, and of the same sign as the NLO one (see text).

i.e. Ruds. We perform this subtraction as in [55]. In the region 3.97 GeV ≤ √
s ≤ 4.26 GeV

we only use CLEO data [56] as they are the most precise. In connection with the two

data sets from BES [57]–[58], we assume that the systematic uncertainties are not fully

independent and add them linearly, rather than in quadrature. However, we treat these

data as independent from the CLEO data set [56], and thus add errors in quadrature.

There is no data in the region s = 25 − 49 GeV2, and beyond there is CLEO data up to

s ≃ 90 GeV2. The latter data is fully compatible with PQCD.

We discuss next the integration kernels p(s) in eq. (2.2), which we choose as

p(s) =
(s0
s

)N
− 1 , (2.13)

with N ≥ 2. This choice is motivated by (i) the suppression of potential quark-hadron

duality violations, as p(s0) = 0, and (ii) the simultaneous enhancement of the two ground

state narrow resonances and the quenching of the resonance region contribution. This

second feature can be appreciated from figure 1. In principle, the constant term in the

kernel, eq. (2.13), should not contribute to the sum rule, eq. (2.2), due to the absence of a

d = 2 power correction. If quark-hadron duality were to be exact, then this would be an

exact result. We find that while numerically the line integral is not exactly equal to the

integral around the circle, the contribution of this constant term in p(s) to eq. (2.2), i.e.

the difference between the two integrals is small. However, we shall take this into account

later in the final result. Regarding the value of N , as discussed in [37, 53], inverse moments

p(s) = 1/sN should not involve too large values of N . In fact, the convergence of PQCD

deteriorates with increasing N , and the uncertainties in αs and the renormalization scale

µ have a greater impact on the total error of the result. We found that eq. (2.13) with

N = 2 is the optimal kernel as explained next. In figure 1 we show the experimental data

for the ratio R(s) together with the kernel eq. (2.13) with N = 2 and for s0 ≃ 23 GeV2,

and the simple kernel p(s) = 1/s2 normalized such that both kernels coincide at the peak

of the second narrow resonance ψ(2S), i.e. s ≃ 13.6 GeV2. One can easily appreciate that

in comparison with the latter, the former kernel leads to a welcome higher enhancement

of the weight of the J/ψ and the ψ(2S), as well as to a stronger suppression of the broad

– 7 –
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resonance region, particularly near the onset of the continuum. Also, the kernel, eq. (2.13),

with N = 2 (i) leads to the most stable result for the gluon condensate as a function of s0,

and (ii) gives a result with the smallest uncertainty. In fact, varying s0 from an initial value

s0 = 23.04GeV2, corresponding to the last BES data point [57, 58], and s0 = 30.0GeV2

changes the value of the gluon condensate within the range determined by the uncertainties

in αs and m̄c The contour integral evaluated using fixed order perturbation theory (µ2 = s0)

gives essentially the same result as using contour improved perturbation theory.

In table 1 we show the results, together with a breakdown of the relevant uncertainties

due to the various parameters. The numerical value is 〈αsπ G2〉 = 0.048 ± 0.003GeV4 from

the kernel eq. (2.13), and 〈αsπ G2〉 = 0.041 ± 0.003GeV4 for p(s) = 1/s2. Combining these

results leads to 〈αsπ G2〉 = 0.044 ± 0.007GeV4. Of some concern is the large size of the NLO

radiative correction to the residue, eq. (2.10), and the fact that the NNLO is unknown.

Radiative corrections to condensates at NNLO are currently known only for the quark

condensate entering the Adler function [59], and it is of the same sign as the NLO term.

Adopting the conservative procedure of assuming the NNLO to be of the same size and

sign as the NLO gives 〈αsπ G2〉 = 0.026 ± 0.002GeV4. Including this uncertainty into the

gluon condensate gives our preferred value
〈

αs
π
G2

〉

= 0.037 ± 0.015GeV4 , (2.14)

This result for the gluon condensate agrees within errors with a recent LQCD value [12]

〈αsπ G2〉 = 0.028 ± 0.003GeV4. Another LQCD determination [13] reports a still smaller

value consistent with zero 〈αsπ G2〉 = 0.002 ± 0.002GeV4. On the other hand, our result is

larger than our most recent value from the corrected ALEPH data base [7] which, however,

has a very large uncertainty, i.e. 〈αsπ G2〉 = 0.005 ± 0.004GeV4. As mentioned earlier,

such a large uncertainty in the traditional FESR method is due to the condensate resulting

from the difference between two large integrals involving PQCD and the data. Very early

determinations from QCDSR in the heavy-quark sector [1, 2, 29]–[32] can be summarized

in the value
〈

αs
π
G2

〉

= 0.018 ± 0.012GeV4 . (2.15)

A comparison with our result, eq. (2.14), is not straightforward mainly because (i)

our method differs substantially from others as it requires not only high energy QCD

information but also the low energy QCD expansion. Both contributions to the gluon

condensate are comparable but of different sign, thus becoming an order of magnitude

smaller than the data contribution, a more than welcome feature. And (ii) current PQCD

information at high energy is far more detailed than 20-30 years ago, and the value of αs
is currently much higher. A more recent QCDSR value in the light-quark region, from an

unconventional method, gives [60]
〈

αs
π
G2

〉

= 0.062 ± 0.019GeV4 , (2.16)

in agreement within errors with our value, eq. (2.14). The result above would support the

view that the gluon condensate is channel/sector independent [1, 2, 11].

– 8 –
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3 Conclusion

In this paper we have introduced a novel approach to determine the dimension d = 4

power correction to the OPE, traditionally identified with the gluon condensate. The

method relies on QCD FESR, but it is not based on the standard FESR, which involve

the difference between two large quantities, i.e. the PQCD integral around the Cauchy

circle in the complex s-plane and the line integral of the data along the real and positive

s-axis. Instead, we considered FESR involving a suitable integration kernel, singular at

the origin in the s-plane, which (i) invites the gluon condensate to enter the FESR in

a leading role through the Cauchy residue in eq. (2.2), and (ii) in the hadronic sector it

enhances substantially the contribution of the well known narrow resonances, while strongly

quenching the region beyond. Feature (i) results in the gluon condensate being determined

by the data, and by both the low and the high energy QCD expansions of the vector

correlator. The latter two are of opposite sign, leading to a partial cancellation with a

total value close to one order of magnitude smaller than the contribution from the data.

Hence, this feature avoids the shortcomings of the standard FESR approach, where there

is only one (large) PQCD contribution of similar size as the data contribution. The impact

of uncertainties in all relevant parameters entering this determination was assessed, and

shown in table 1. A relevant source of, perhaps, the larger systematic uncertainty is the

lack of knowledge of NNLO radiative correction to the gluon condensate. This enters the

Cauchy residue, eq. (2.10). We attempted to account for this issue by assuming that the

NNLO radiative correction is as large as the NLO one. Our final result is compatible with

some LQCD values, and previous QCDSR results. By confronting it with results from

the light-quark sector it supports the widely accepted view that the gluon condensate is

channel/sector independent [1, 2, 11].
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[37] J.H. Kühn, M. Steinhauser and C. Sturm, Heavy quark masses from sum rules in four-loop

approximation, Nucl. Phys. B 778 (2007) 192 [hep-ph/0702103] [INSPIRE].

[38] K.G. Chetyrkin, R. Harlander, J.H. Kuhn and M. Steinhauser, Mass corrections to the vector

current correlator, Nucl. Phys. B 503 (1997) 339 [hep-ph/9704222] [INSPIRE].

[39] P.A. Baikov, K. G. Chetyrkin and J.H. Kühn, R(s) and hadronic τ -decays in order α4
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