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1 Introduction

Experimentally observed slow growth of hadron cross-sections at high energies is an in-

triguing phenomenon calling for an explanation within the framework of quantum chromo-

dynamics. For concreteness in this paper we focus on total cross-section of proton-proton

scattering. It changes only about 2.5 times, roughly from 40 mb to 120 mb, while the

center-of-mass energy changes by several orders of magnitude from 10 to 105 GeV [1, 2],

see figure 1. This very slow growth can be approximated with a good accuracy for the

center-of-mass energies exceeding 100 GeV with the following fit (see [1, 2]),

σpp ' 34.71 + 0.2647 log2
(
s

16

)
. (1.1)

Here σpp is a total proton-proton cross-section measured in mb, while the Mandelstam

variable s is measured in GeV2. Other hadron cross-sections, e.g. of proton-anti-proton

scattering, exhibit similar slow growth behavior [1, 2].

Because the theory in question is strongly coupled, high-energy behavior of σpp can

not be immediately deduced from QCD dynamics. At the same time “logarithm square”

growth of (1.1) looks temptingly similar to the behavior of the upper bound on the total

cross-section proposed by Froissart in [3],

σF = σ0 log2
(
s

s0

)
. (1.2)

The constant σ0 is inverse-proportional to the nearest location of the branch-cut singularity

in t-channel, σ0 ∼ 1/t0, and s0 is some appropriate constant. Any total cross-section σ

in a given gapped theory may not exceed σF when energy s is sufficiently large. It looks

deceptively simple to declare the particular form of (1.1) to be a consequence of saturation

of Froissart bound (1.2).

In the context of QCD the constant σ0 was fixed in [4, 5] by Martin and  Lukaszuk

leading to Froissart-Martin bound σFM0 = π/m2
π ' 63.32 mb. (The value of s0 was recently
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Figure 1. Proton-proton total cross-section as a function of center-of-mass energy
√
s. The plot

is taken from [1, 2].

fixed to be s0 = m2
π

√
2/(17π3/2) [6], see also [7, 8] for related progress.) The two orders of

magnitude difference between σFM0 and the coefficient in front of log2(s) in (1.1) is a clear

indication that Froissart-Martin bound is currently not saturated and thus can not justify

experimentally observed behavior of σpp.

Several authors suggested that the huge discrepancy between the actually observed

slope of log2(s) in (1.1) and the prediction of the Froissart-Martin bound σFM0 is due to

pseudo-Goldstone nature of pions. In chiral limit mπ → 0 naive Froissart bound becomes

obsolete, but it was argued there is another improved bound of the form (1.2) with finite

value of σ0. Since large impact parameters correspond to a small invariant mass of the pion

pair, and low energy Goldstone bosons decouple, it was argued in [9, 10] that σ0 would be

determined by the strong interaction scale of M ∼ 1 GeV, σ0 ∼ 1/M2. A similar conclusion

was also reached in [11, 12] and in [13, 14], where σ0 was calculated to be given by some

combination of ρ-meson mass and fπ.

In section 2 we reconsider derivation of Froissart bound in presence of massless or

very light (pseudo)-Goldstone bosons and conclude that the asymptotic form (1.2) with

σ0 ∼ 1/M2, M ∼ 1 GeV is unwarranted. Furthermore, even if the resulting value of σ0
would approximately match the coefficient in front of log2(s) from (1.1), still the behavior

of (1.1) for 102 <
√
s < 105 GeV could not be justified by saturation of (1.2). This is

because the bound (1.2), if holds, has to apply whenever σpp(s)� σ0 (this point is justified

in section 2 below), but presence of the constant term in (1.1) precludes saturation of (1.2)

for 102 <
√
s < 105 GeV. We further elaborate on this point in Summary.

To summarize, our first conclusion is that the slow growth of the proton-proton total

cross-section experimentally observed for energies smaller than 105 GeV can not be at-
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tributed to saturation of the appropriately modified Froissart bound. Still, it would be

interesting to understand if a similar logic can help predict the asymptotic behavior of

proton-proton total cross-section when s → ∞. Let us note that we can not take for

granted that the form (1.1) will persist much longer beyond currently accessible scales.

Indeed there is some evidence σpp may grow faster than the “logarithm square” growth

of (1.1) [15–20]. This conclusion is in agreement with an alternative fit of experimental

data [21–23],

σpp ' 21.7 s0.0808, (1.3)

which agrees well with (1.1) for 102 <
√
s < 106 GeV but grows much faster when s→∞.

Clearly (1.3) would start violating (1.2) with any σ0, s0 when s is significantly large.1 As

was mentioned above, if Froissart-Martin bound holds, it must apply when σpp becomes

significantly larger than ∼ 2σFM0 ' 130 mb which is expected to happen at energies of order√
s ∼ 105–106 GeV. Obviously we can not say if σpp will eventually saturate the bound

but we expect that σpp will exhibit its true asymptotic behavior starting at or below this

scale.

2 Froissart bound revisited

Let us briefly remind the reader main steps leading to the derivation of Froissart bound.

We consider scattering of two identical particles at center-of-mass energies
√
s much larger

than their mass. Using optical theorem the total cross-section can be expressed through

the imaginary part of forward scattering amplitude

σtotal =
4π

s
ImA(s, cos θ = 1) . (2.1)

The 2 → 2 elastic scattering amplitude A(s, cos θ) can be decomposed into partial waves

with help of the Legendre polynomials Pl,

A(s, cos θ) =
∞∑
l=0

al(s)(2l + 1)Pl(cos θ) . (2.2)

The upper bound on (2.1) is a result of the inequality Im al ≤ |al(s)| < 1, which is

a consequence of unitarity, and a bound on Im al ≤ |al(s)| for large l following from

analyticity of A(s, x) with respect to x. Rewriting x through Mandelstam variables x =(
1 + 2t

s

)
we conclude A(s, x) as a function of x must have branch-cuts along real axis for

|x| > z0 where z0 = 1 + 2t0/s and t0 is the energy squared of the lightest state appearing

in t-channel. Assuming these branch-cuts are the only singularities of A(s, x),2 one can

1Here we implicitly assume that scattering amplitude as a function of energy grows not faster than a

polynomial. This assumption may be unjustified allowing σ ∼ sα at all energies [15, 16, 24].
2This is a technical assumption which we believe can be avoided. Thus, [24] derives Froissart bound

using only analyticity of A inside Lehman ellipse, without making any explicit assumptions about structure

of the singularities of A(s, x).
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express A(s, x) using dispersion relation

A(s, x) =

∫ ∞
z0

dz

z − x
ρ(s, z) , (2.3)

2iπρ(s, z) = A(s, z + iε)−A(s, z − iε) +A(s,−z − iε)−A(s,−z + iε) .

The dispersion relation (2.3) may be divergent. In such a case corresponding integral

should be regularized by a number of subtractions. Consequently al(s) can be expressed

through the branch-cut jump function ρ and Legendre function of the second kind Ql(z)

as follows (for l large enough this integral is convergent and does not require subtractions)

al(s) =

∫ ∞
z0

Ql(z)ρ(s, z) . (2.4)

Using asymptotic from of Ql(z) for large l derived in appendix this integral can be estimated

from above with help of Laplace method. First, let us assume |ρ(s, z)| near z → 1+ can be

approximated, or bounded from above, by some function A(s), |ρ(s, z)| ≤ A(s). Then

al(s) ≡ A(s)

∫ ∞
z0

Ql(z) . A(s)


1
l2
, z0 − 1� 1

8l2√
π
√

1−e−2α0

2l3/2
e−α0l, z0 − 1 & 1

8l2

(2.5)

|al(s)| ≤ al(s) . (2.6)

Integral (2.5) is a monotonically deceasing function of l. Starting from some l = L con-

straint (2.6) will become better than the unitarity constraint |al(s)| < 1. Following [24] we

introduce the combination Y = α0L, where

α0 = log
(
z0 +

√
z20 − 1

)
, (2.7)

and notice that in the limit t0/s→ 0 conditions Y � 1 and z0 − 1� 1/L2 are the same.

Assuming that A(s) grows with s, at some point A(s) will become large enough such

that corresponding Y ∼ logA(s) � 1. To find a bound on (2.1) we split the sum (2.2)

into two parts, from 0 to L − 1 and from L to infinity and use unitarity bound |al| ≤ 1

and (2.6) correspondingly. Keeping only leading terms we arrive at (see e.g. [24] for a

similar calculation)

σtotal ≤
4π

s
(L2 + 2L/α0 − 1/α2

0) = σ0
(
(Y + 1)2 − 2

)
, σ0 ≡

π

t0
. (2.8)

Notice that by assumption Y � 1 and hence (2.8) is always positive. Common lore predicts

A(s) ∼ sN for large s, leading to σ0 = πN2/t0 and asymptotic form (1.1). TakingA(s) ∼ s2

and t0 = 4m2
π we recover the Froissart-Martin bound for hadron scattering3

σtotal .
π

m2
π

log2(s/s0) . (2.9)

3Strictly speaking the lightest singularity in t-channel is a one pion pole at t0 = m2
π. It can be shown

though that the contribution of pole singularities goes to zero when s → ∞, see [24]. Hence the leading

singularity contributing to the Froissart bound is a two-pion state t0 = 4m2
π.
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Different assumptions about ρ may lead to different 1/l suppression of al for large

l� α−10 which will result in different Y -independent term in (2.8). In any case this constant

term is always of order 1 and can not justify the asymptotic form σF = σ0 log2(s/s0) + σ1
with σ0 and σ1 being different by several orders of magnitude as in (1.1).

An interesting but rarely discussed possibility is when
√
s is much larger than the

masses of external particles and
√
t0, but A(s) is not too large such that corresponding Y

is of order or smaller than one. Then for l ≤ L, al = A(s)/l2 and L ' A1/2(s). Once again

we split the sum (2.6) into two parts, but now the sum from l = L to infinity is tricky.

It starts as ∼
∑

(2l + 1)/l2 for L < l . α−10 and continues as ∼
∑

(2l + 1)/l3/2e−α0l for

α0l & 1. Up to double-log corrections the first sum for L < l . α−10 can be estimated as

−2 log(α0L) while the second one gives an order one constant γ. Eventually we find

σtotal ≤ σ0Y 2
(
1− 2 log(Y ) + γ

)
, Y = α0A(s)1/2 � 1 . (2.10)

The form of (2.10) is different from the canonical “log-squared” form (1.2). If A(s) grows

polynomially, so is Y , while (2.10) is a combination of polynomial and logarithmic growth.

For example, taking A(s) ∼ s2 we get Y ∼
√
s and (2.10) will be growing as s log(s). We

have to conclude there is no natural reason for (2.10) to grow as a very small power of s

reproducing (1.3) or exhibiting a similar behavior.

Let us now discuss the area of validity of (2.8) and (2.10). The bound (2.10) is valid

when Y � 1 and consequently when (2.10) is much smaller than σ0. The bound (2.8) is

valid when 1/Y corrections are small compared with (Y + 1)2, i.e. approximately starting

from Y & 1, and correspondingly when (2.8) is larger than ∼ 2σ0. Obviously validity

of (2.8) improves with growth of Y . When Y ∼ 1 the bound on the total cross section is

of order σ0.

2.1 Froissart bound in chiral limit

One line of thought suggests the Froissart-Martin bound (2.9) is giving unrealistically high

values for proton-proton total cross-section because pions, responsible for the lightest state

appearing in t-channel, are pseudo-Goldstone bosons. Taking this logic to extreme it would

be interesting to see what happens with the Froissart bound in chiral limit mπ → 0. Naively

in such a case σ0 ∼ 1/t0 becomes infinite and Froissart bound becomes obsolete. Some

authors suggested there is another improved bound of the form (1.2) with finite value of σ0.

Since large impact parameters correspond to a small invariant mass of the pion pair, and

low energy Goldstone bosons decouple, it was argued in [9, 10] that σ0 would be determined

by the strong interaction scale of ∼ 1 GeV. A similar conclusion was also reached in [11–14].

Below we consider Froissart bound in QCD in chiral limit but reach different conclu-

sions. Because of the Goldstone mechanism origin, at low energies pions interact through

derivative couplings. Hence for small physical s and t amplitude A is small, A → 0 when

s, t→ 0. By extrapolating this property to unphysical region, we assume the jump on the

branch-cut ρ vanishes when t → 0 and s is large an physical. In other words, we assume

|ρ(s, z)| . A(s)(z − 1)a for some a ≥ 1 at the vicinity of z → 1+.

– 5 –
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The following analysis is essentially the same for any a and for convenience we fix a = 1

unless noted otherwise. Using (A.10) and (A.11) we define

al ≡ A(s)

∫ ∞
z0

dz(z − 1)Ql(z) . A(s)

 2
l4
, z0 − 1� 25

8l2√
π(1−e−α0 )2+1/2

2
√
2 l3/2

e−α0l, z0 − 1 & 25
8l2

(2.11)

such that |al(s)| < al(s). Up to an l-independent pre-factor, for l2(z0−1)� 1 integral (2.11)

is the same as (2.5) for any a. Hence, when A(s) is large enough and Y ∼ logA(s) & 1

the upper bound will be also given by (2.8). When Y � 1 the situation is different. In

this case L = 2−1/4A1/4(s) (more generally L ∼ A1/(2a+2)(s)) and as before we split the

sum (2.2) into two parts. First part, from l = 0 to L− 1 yields L2, while the second part

from l = L to infinity is bound by ∼
∑

l≥L(2l + 1)/l4 and converges to ∼ 1/L2. Hence

σtotal . 2σ0Y
2, Y = 2−1/4α0A(s)1/4 � 1 . (2.12)

For general a, σtotal . σ0Y
2
(
1 + 1

a

)
and Y ∼ α0A(s)1/2(1+a).

Once again we notice that the asymptotic form (2.8) corresponding to Y & 1 is valid

when σ & 2σ0 while the asymptotic form corresponding to Y . 1 is valid when σ . 2σ0.

The bound (2.12) remains finite in chiral limit t0 → 0,

σtotal < c
A(s)1/(1+a)

s
, (2.13)

where c is an appropriate numerical coefficient. Assuming A(s) ∼ sN , N > (1 + a), we

arrive at one of the main conclusions of this paper: in chiral limit when pions are massless

or when the observed σ . σ0, Froissart bound may have a “power law” rather than “log

squared” form. The “power law” asymptotic form of σ as a function of s is corroborated

by a perturbative consideration of QCD evolution equation [25, 26], although some authors

believe arguments based on gluon saturation should lead to the conventional “log squared”

asymptotic [27]. Even though the possibility of the power law growth of the bound is

remarkable, it can hardly explain experimentally observed slow growth of (1.3) through

saturation. Indeed, small power of s in (2.13) would require either fine-tuning of N and a

to some fractional values, or unrealistically large a.

3 Summary

This paper is devoted to the question whether Froissart bound can explain experimentally

observed slow growth of hadron total cross sections at high energies, in particular total

cross-section of proton-proton collisions. To this end we revisited derivation of Froissart

bound, in particular considered what happens with the bound in chiral limit, when pions

become massless. By making an appropriate assumption about the behavior of function

ρ (jump of the scattering amplitude across the cut in t-plane) we derived new universal

expression for the Froissart bound (2.13) which should be valid in theories with (pseudo)-

Goldstone bosons while the cross-section σ � σ0 = π/t0.

– 6 –
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There are several findings which we believe have universal nature relevant for any QFT

and do not depend on technical assumptions about analytic structure of scattering ampli-

tude, e.g. validity of dispersion relation. Applying these results toward hadron scattering

lead us to several interesting conclusions. Below we summarize our results.

• In theories with mass gap there are several different regimes corresponding to different

functional forms of Froissart bound. If t0 is the lightest state appearing in t-channel,

with an exception of bound states and stable particles, and σ0 = π/t0, and the

total cross-section σ is significantly larger than 2σ0, Froissart bound assumes its

conventional “log squared” form (1.2), (2.8), provided scattering amplitude grows

with energy as a polynomial A(s) ∼ sN . When σF . σ0, functional form of Froissart

bound may vary, but the common element is the power law growth of the bound with

energy when σF � σ0.

In short, σ & 2σ0 is an approximate validity condition of the bound σ < σ0 log2(s/s0).

• In theories with massless Goldstone bosons, e.g. QCD in chiral limit, Froissart bound

will grow with energy polynomially (2.13). This is a hypothesis based on the assump-

tion of the particular behavior of the branch-cut jump function ρ when Goldstones

are the only massless states present in the theory.

• In cases when Froissart bound grows with energy polynomially or approximately

polynomially, e.g. in theories with (pseudo)-Goldstones when the total cross-section is

much smaller than σ0, we are unaware of a mechanism which would favor small power

of polynomial growth. In the context of proton-proton total cross-section we conclude

that the approximate empirical power-law growth with small scaling exponent in the

energy range 102
√
s < 105 GeV, (1.3), can not be explained by saturation of the

modification of the Froissart-Martin bound in the regime σpp . σFM0 = 63.32 mb.

• We equally conclude that the approximate empirical “log squared” growth of the

proton-proton total cross-section (1.1) in the range 102
√
s < 105 GeV can not be

explained by saturation of the Froissart bound (1.2) with σ0 tuned to be of order

of strong scale σ0 ∼ 1/M2, M ∼ 1 GeV, to match the coefficient in front of log2(s)

from (1.1). Indeed, empirical expression (1.1) includes s-independent constant term

34.71 mb which is either dominant or of the same order as 0.2647 log2(s/16) for all

energies within the range 102 <
√
s < 105 GeV. As a result the proton-proton total

cross-section is of order 40 mb or larger, for
√
s > 10 GeV, i.e. several orders of

magnitude larger than the proposed value of σ0 ∼ 0.2647 mb. Consequently, for all√
s > 10 conventional Froissart bound (1.2) with σ0 ∼ 0.2647 mb must apply and

correspondingly
√
s0 must be of order 20 MeV of smaller. This is three orders of

magnitude smaller than the corresponding coefficient from (1.1). As a result (1.1)

will be significantly smaller than (1.2) for all 102 <
√
s < 105 GeV, thus defying the

whole idea that (1.1) saturates (1.2) in this range.

• Finally, we have to conclude that experimentally observed slow growth behavior of

σpp for 102 <
√
s < 105 GeV can not be attributed to saturation of Froissar bound.

– 7 –
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It is an open question what is the true asymptotic of σpp when s → ∞. It is likely

that both “power law” (1.3) and “log squared” behavior (1.1) fail to capture true

asymptotic of σpp. While the “power law” will ultimately violate Froissart-Martin

bound, there is also some circumstantial evidence that “log squared” behavior of σpp
does not continue at very high energies [15–20]. The Froissart-Martin bound should

apply once σpp becomes significantly larger than 2σFM0 ' 130 mb, i.e. at energies

above 105–106 GeV. We do not know if σpp will eventually saturate the bound, but

we expect σpp to start exhibiting its true asymptotic behavior starting from this scale.

Our expectations is a result of dimensional analysis. For
√
s > 106 GeV there would

be no other scale which could potentially interfere with the asymptotic behavior.

To conclude, we admit that currently available fits (1.1) and (1.3) may fail to predict

σpp at high energies above
√
s > 106 GeV and expect that σpp will start exhibiting

its true asymptotic behavior at or below this scale.
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A Legendre functions of the second kind

Here we collect some useful relations related to the Legendre functions of the second kind

Ql(z). We define Ql(z) through Legendre polynomial Pl as follows

Ql(z) ≡ 1

2

∫ 1

−1
dx

Pl(x)

z − x
, z > 1 . (A.1)

To derive the asymptotic form Ql(z) for large l we use the following integral representation

Ql(z) =
1

2

∫ ∞
−∞

dt(
z +
√
z2 − 1 cosh(t)

)l+1
, z > 1 , (A.2)

and apply Laplace method to get

lim
l→∞

Ql(z)→
√

π

2(l + 1)

1

(z2 − 1)1/4(z +
√
z2 − 1)l+1/2

. (A.3)

This is an accurate approximation of Ql(z) except of a small vicinity of z → 1+.

Now we would like to estimate
∫∞
z0
dz Ql(z) for different values of z0. Using (A.3) and

a change of variables z = coshα we immediately find∫ ∞
z0

dz Ql(z) '
√

π

2(l + 1)

∫ ∞
α0

dα e−(l+1/2)α sinh1/2 α , (A.4)

where α0 = log(z0 +
√
z20 − 1). There are two distinct regimes, z0 <

(2l+1)

2
√
l(l+1)

' 1 + 1
8l2

and z0 > (2l+1)

2
√
l(l+1)

' 1 + 1
8l2

. In the former case the peak of integrand is inside the

– 8 –
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interval of integration and one can once again apply Laplace method to find z0-independent

asymptotic ∫ ∞
z0

dz Ql(z) ' π

2
√
e

1

l3/4(l + 1)1+1/4
, z0 − 1 .

1

8l2
, (A.5)

which correctly reproduces 1/l2 behavior of the exact value for z0 = 1

I0l =

∫ ∞
1

dz Ql(z) =
1

l(l + 1)
. (A.6)

When (z0 − 1) & 1
8l2

the integral (A.4) can be estimated from above as∫ ∞
z0

dz Ql(z) <

√
π
√

1− e−2α0

2l
√
l + 1

e−α0l, z0 − 1 &
1

8l2
. (A.7)

Similarly we can estimate
∫∞
z0
dz (z − 1)aQl(z) for some positive a. Using the same

change of variables as in (A.4) we find∫ ∞
z0

dz (z − 1)aQl(z) '
√

π

2(l + 1)

∫ ∞
α0

dα e−(l+1/2)α
(
2 sinh2(α/2)

)a
sinh1/2 α . (A.8)

Again, there are two regimes. When z0 − 1 . (1+4a)2

8l2
the peak of integrand of (A.8) is

within the area of integration. Applying Laplace method to (A.8) yields∫ ∞
z0

dz (z − 1)aQl(z) ' π(1 + 4a)1+2a

21+3ae1/2+2al2(a+1)
, z0 − 1 .

(1 + 4a)2

8l2
. (A.9)

This result correctly captures 1/l2(a+1) behavior of z0 → 1 limit which can be deduced for

positive integer a from (A.6) and the recursion relation

Ial =

∫ ∞
1

dz (z − 1)aQl(z) , Ia+1
l =

2(a+ 1)2

l(l + 1)− (a+ 2)(a+ 1)
Ial . (A.10)

When z0 − 1 & (1+4a)2

8l2
the peak of integrand of (A.8) is outside of the area of integration,

and the integral can be estimated from above as follows∫ ∞
z0

dz (z−1)aQl(z) <

√
π
√

1−e−2α0

2(l−a)
√
l+1

(1−e−α0)2a

2a
e−α0l, z0−1 &

(1+4a)2

8l2
. (A.11)
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