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1 Introduction

The relation between entanglement and black hole interior has attracted much attention

recently [2–5]. For eternal AdS black holes, it was discussed that the time evolution of

holographic entanglement entropy [6–8] can capture some information about the black hole

interior, taking a particular time slicing with which the black hole looks time dependent.

For subsystems composed of two disjoint same intervals located in each of two CFT’s,

the original CFT and the thermofield doubled copy CFT [9], its holographic entanglement
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entropy grows linearly in time for a while, in accordance with the growth of the wormhole

inside the black hole. At a certain critical time, the entropy becomes saturated at twice the

value of the black hole thermal entropy. In the dual CFT language, this time dependent

behavior of the entanglement entropy is interpreted in terms of global quench process [10].

For such Calabrese Cardy type of two dimensional quenches, a systematic construction of

their holographic duals was discussed in [11].

More general two-sided black holes can have even richer interior structures. For ex-

ample, similar inter-boundary entanglement entropies in charged or rotating black hole

geometries, which have vertically extended Penrose diagrams, were investigated in [12, 13].

In this paper, we focus on another interesting class of two-sided black holes with a so

called “causal shadow” region, which is a bulk region causally inaccessible from both the

boundaries. The implications of such a region for holographic entanglement entropy have

been discussed [14, 15]. For example, we can construct an asymptotically AdS black holes

with a causal shadow by sending shock waves from the boundaries of eternal AdS black

holes [16–18], and we can also discuss its dual CFT [19]. It is an interesting question how

the dual CFT encodes information on causal shadow regions.

To investigate this question further, we concentrate on another type of black hole with

a causal shadow called the three-dimensional time-dependent Janus black hole,1 which is a

one parameter deformation of the BTZ black hole and a solution of the Einstein-scalar the-

ory [1]. This black hole geometry has a nontrivial dilaton configuration, without which it

reduces to just the eternal BTZ black hole. From the viewpoint of the dual boundary theory,

this nontrivial dilaton configuration corresponds to the difference in the coupling constant

and so in Hamiltonian between the two CFT’s, the original CFT and the thermofield dou-

bled copy CFT [1]. Its corresponding CFT state was proposed [21] as a natural extension

of the usual eternal AdS black hole/thermofield double state correspondence [22, 23], and

this proposal was checked by computing a one point function both on the CFT side and

the gravity side [1, 21].

In this paper, we study the time evolution of an inter-boundary holographic entangle-

ment entropy in the Janus black hole geometry, expecting to capture some information on

its causal shadow. As in the BTZ black hole geometry, there are two extremal surfaces

for the subsystem we take, where the entanglement entropy is given as the area of the one

with the smaller area. One which we call “connected surface” passes through the black

hole interior and connects the two asymptotic boundaries, while the other which we call

“disconnected surface” does not pass through the black hole interior but can penetrate

partially into the interior.

In the Janus black hole geometry with not so large deformation parameter, there is

a critical time tc at which the surface giving the entanglement entropy switches from the

connected one to the disconnected one, as in the BTZ black hole geometry. We find that

the critical time tc is shorter than that in the BTZ case. This is roughly because the

deformation enlarges the wormhole region and so increases the connected surface area. In

the black hole geometry with a sufficiently large deformation parameter, we find that the

1There is also a static type of Janus deformation of BTZ black hole [20].
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area of the disconnected one becomes always smaller and that the holographic entanglement

entropy is already proportional to the size of the subsystem from the beginning, unlike the

BTZ case.

This paper is organized as follows. In section 2, we review properties of the three-

dimensional Janus black hole with emphasis on the difference from the BTZ black hole. In

section 3, we compute the area of extremal surfaces with appropriate boundary conditions

in this black hole geometry. In section 4 we discuss the time evolution of the holographic

entanglement entropy. We conclude this paper in section 5.

2 Properties of three-dimensional Janus Black Hole

Here we summarize the properties of the three dimensional time-dependent Janus black

hole with emphasis on its causal structure and dual CFT interpretation.

2.1 The three-dimensional Janus metric

2.1.1 Time-dependent Janus deformation of BTZ metric

The metric of the Janus black hole with its horizon radius Lr0 is given by

ds2 = L2 dµ
2 − dτ2 + r20 cos2 τdθ2

g(µ)2
, (2.1)

where the only dimensionful quantity is the AdS radius L. The conformal factor g(µ) is

defined as

g(µ) =
cn(κ+µ, k

2)

κ+ dn(κ+µ, k2)
κ± :=

√
1±

√
1− 2γ2

2
k :=

κ−
κ+

. (2.2)

This metric is a one-parameter generalization of the BTZ black hole metric by “Janus

deformation parameter” 0 ≤ γ < 1/
√

2. When γ = 0, the factor g(µ) becomes cosµ and

then the metric reduces to the BTZ metric, with its inverse temperature

β =
2π

r0
, (2.3)

in the unit of the AdS radius L. The conformal boundaries g(µ) = 0 are located at

µ = ±µ0, where µ0 := K(k2)/κ+ and K(k2) is the complete elliptic integral of the 1st kind

K(k2) :=
∫ π/2
0 dθ/

√
1− k2 sin2 θ.

2.1.2 Dual CFT coordinate (t, θ) and UV cutoff εCFT

In applying AdS/CFT techniques, another time coordinate tanh r0t := sin τ is useful,

because the flat metric −dt2 + dθ2 of the dual CFT becomes manifest:

ds2 = L2

[
dy2 +

r20
g̃(y)2 cosh2 r0t

(−dt2 + dθ2)

]
. (2.4)

– 3 –



J
H
E
P
0
7
(
2
0
1
5
)
0
8
0

Here we have also replaced the radial coordinate µ with another one y such that tanh y =

sn(κ+µ, k
2), measuring the proper length dy = dµ/g(µ), and we have rewritten the factor

g(µ) as

g̃(y) := g(µ(y)) =
1

κ+

√
(1− k2) cosh2 y + k2

=

√
2

1 +
√

1− 2γ2 cosh 2y
. (2.5)

In this coordinate y, the origin µ = 0 corresponds to y = 0 and the conformal boundaries

µ = ±µ0 are located at y → ±∞.

Near the conformal boundaries y → ±∞, the metric (2.4) approaches to the pure AdS

metric in Poincaré coordinate

ds2 = L2dz
2 − dt2 + dθ2 +O(z)

z2
(2.6)

with the following identification

z :=
2

4
√

1− 2γ2 r0
e−|y| cosh r0t . (2.7)

Hence the CFT UV cutoff εCFT is given as

εCFT =
2

4
√

1− 2γ2 r0
e−y∞ cosh r0t∞, (2.8)

where y∞(� 1) is a bulk volume regulator and t∞ is the time t in the CFT at y = ±y∞.

2.1.3 As a solution of Einstein-scalar theory

This geometry is a solution of the three-dimensional Einstein-scalar system

S =
1

16πG

∫
d3x
√
g

(
R− gab∂aφ∂bφ+

2

L2

)
, (2.9)

with a scalar field configuration

φ = φ0 +
√

2
(

tanh−1(k sn(κ+µ, k
2)) + log

√
1− k2

)
= φ0 +

√
2
(

tanh−1(k tanh y) + log
√

1− k2
)
. (2.10)

Note that the scalar field value φ+ := φ(y = ∞) on the right boundary is different from

the one φ− := φ(y = −∞) on the left boundary by

φ+ − φ− = 2
√

2 tanh−1 k =
√

2 tanh−1
√

2γ . (2.11)

This three-dimensional system can be embedded in type IIB supergravity in ten dimen-

sions with an appropriate ansatz [1]. Then in the same way as the standard D1-D5 black

hole [24–26], the boundary CFTs are given by the IR fixed points of the two-dimensional

N = (4, 4) supersymmetric SU(N1) × SU(N5) quiver field theories, which turn out to be

σ-models on the instanton moduli space M = MN1N5
4 /SN1N5 . The bulk scalar field φ is
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identified with the dilaton, and hence the boundary values φ± are related to the coupling

constants g± of those boundary quiver theories [1]. In terms of the IR σ-models, this differ-

ence in the boundary values leads to the difference in the overall coefficients of the actions

on the two boundaries.

Although the difference between φ+ and φ− (2.11) becomes very large when we take

γ very close to 1/
√

2, we can also take φ0 negatively large so that classical gravity does

not break down. In terms of the dual boundary theory, it requires that the theory is

weakly coupled in the sense of the Yang-Mills couplings whereas it is strongly coupled in

the viewpoint of the ’t Hooft couplings, as usual.

2.2 Main differences from BTZ black hole

2.2.1 Causal shadow region

By using the conformally flat (µ, τ) coordinate (2.1), one can draw the Penrose diagram

of the time-dependent Janus black hole geometry (see Figure 1). The diagram is hori-

zontally longer than that of the BTZ geometry, because the width 2µ0 = 2K(k2)/κ+ in

the µ coordinate between the two conformal boundaries monotonically increases with the

deformation parameter γ.

As a consequence, unlike the BTZ geometry (γ = 0), the three-dimensional Janus black

hole geometry (γ > 0) has a finite region causally disconnected from the both conformal

boundaries µ = ±µ0. Such regions are sometimes called “causal shadow” [14, 15]. It is an

interesting question how the dual CFT encodes information on causal shadow regions. As

a first step to answer this question, we will compute holographic entanglement entropies in

the Janus black hole geometry in the next two sections, because holographic entanglement

entropies can be affected by the inside of the causal shadow.

2.2.2 Time-dependence

Unlike the BTZ metric (γ = 0), the Janus metric (γ > 0) is time-dependent, that is to say,

has no timelike Killing vector. As a result, its apparent horizon

tan τ = − d

dµ
log g(µ) (2.12)

in a time slice τ = const. becomes different from the event horizon τ − π/2 = µ− µ0 (See

Figure 1).

2.3 The CFT interpretation of the Janus black hole

When γ = 0, the Janus black hole reduces to the ordinary eternal BTZ black hole, which

is dual to the thermofield double state [22, 23]

|Ψ〉 =
1√
Z

∑
n

e−
β
2
En |En〉|En〉 . (2.13)

The inverse temperature β is given by (2.3).
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Figure 1. Penrose diagram of the three-dimensional time-dependent Janus black hole. The two

conformal boundaries are located at µ = ±µ0 (thick lines), and the diagram is a wide rectangle

because µ0 ≥ π/2. The blue and red lines represent, respectively, the future and past event horizons

which intersect with the right hand side boundary. The yellow shaded region corresponds to the

“causal shadow” region, which is causally disconnected from the both boundaries. The apparent

horizons (green line) in time slices τ = const. are located inside the future event horizon.

If we turn on the parameter γ, the Hamiltonian H+ on the right boundary and H− on

the left boundary become different, as was explained in section 2.1.3. Hence it is natural

to conjecture [21] that the Janus black hole is dual to a state

|Ψ〉 =
1√
Z

∑
(m,n)

e−
β
4
(E−n +E+

m)〈E+
m|E−n 〉|E+

m〉|E−n 〉 . (2.14)

This conjecture has passed some nontrivial checks. For example, the one point function of

the Lagrangian density was computed both on gravity and CFT sides, which agrees up to

the second order in γ [21].

3 Calculation of holographic entanglement entropy

In this section, we compute a holographic entanglement entropy on the three-dimensional

Janus black hole geometry to study an entanglement between the left and right CFT’s. We

take our subsystem A to be two disjoint same intervals −θ∞ ≤ θ ≤ θ∞ in each of the left

and right CFT at a fixed time t = t∞ (see Figure 2).

3.1 Covariant holographic entanglement entropy

It has been conjectured [8] that for a given bulk geometry, the entanglement entropy of

the dual CFT state is given by the area of the extremal surface2 in the bulk which are

2The original holographic entanglement entropy formula [6, 7] (later proven in [27]) with minimal surface

prescription is only applicable to static bulk geometries. The extension (3.1) to general geometries is

– 6 –
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(a) disconnected phase

θ

t

A

θ

t

Ay

γA

(b) connected phase

Figure 2. The subsystem A (two red lines) is taken as two disjoint intervals of the same length

∆θ = 2θ∞ in the right and left boundary (two black squares). The extremal surface γA (blue lines)

has two phases: disconnected phase (a) and connected phase (b).

anchored to ∂A in the conformal boundary,

SA = ext
A(γA)

4GN
, (3.1)

where GN is the three-dimensional Newtonian constant. The extrema is chosen among

the surfaces γA which are homologous to the subsystem A and satisfying ∂A = ∂γA. If

there are multiple extremal surfaces, we should choose the one with the minimum area

among them.

In the current setup with the subsystem A = {(±y∞, t∞, θ);−θ∞ ≤ θ ≤ θ∞} in the

Janus black hole geometry (2.4), the extremal surface can take two types of topologies

(see Figure 2), “connected phase” and “disconnected phase”, like the usual BTZ black

holes [9]. The disconnected type consists of two geodesics which start from and end at

the same boundary (see Figure 2 (a)); starting from (±y∞, t∞,−θ∞), turning around at

(±y∗, t∗, 0) and ending at (±y∞, t∞, θ∞). The connected type consists of two geodesics

which connect the two boundaries (see Figure 2 (b)); starting from (y∞, t∞,±θ∞) and

ending at (−y∞, t∞,±θ∞).

In the following, we will obtain and solve differential equations for each type of extremal

surfaces. Identifying the area functional

A[t(y), θ(y)] = L

∫
dy

√
1 +

r20
g̃(y)2 cosh2 r0t

(−ṫ2 + θ̇2) (3.2)

with a classical action for dynamical variables t(y) and θ(y) as for “time” y, this problem

reduces to just an Euler-Lagrange problem. Here the dot (˙) represents the “time” deriva-

achieved by just replacing the “minimum” on the time-slice by the “extremum” in the spacetime.

There are many equivalent constructions which look different. The extremal surface explained above

(called W in the original paper [8]), the surface with vanishing traces of extrinsic curvatures (Yext), and a

surface constructed by using light-sheets (YminAt
), are eventually all equivalent. See the original paper for

the detail.

– 7 –
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tive d/dy. We will see that the disconnected surface, as well as the connected one, can

penetrate the event horizon, and both of their areas are dependent on the boundary time

t∞. The phase transition between these two types will be discussed in section 4.

3.2 Extremal areas in connected phase

For connected surfaces, the area functional is extremized when θ = const. (= ±θ∞). Then

the “action” (3.2) becomes

A[t(y)]/L =

∫ y∞

−y∞
dy

√
1− r20 ṫ

2

g̃(y)2 cosh2 r0t
, (3.3)

for each of the two pieces of the surface (θ = ±θ∞). Here y∞ is the bulk volume regulator,

which also regulates the area functional. This functional has one conserved charge E:

E :=
δA/L

δṫ
=

−r20 ṫ

g̃(y) cosh r0t
√
g̃(y)2 cosh2 r0t− r20 ṫ2

⇔ ṫ =
−E g̃(y)2 cosh2 r0t√
r20 + E2 g̃(y)2 cosh2 r0t

, (3.4)

associated to its t-translation symmetry. But this charge E vanishes, because ṫ cannot

change its sign and we have the boundary condition
∫ y∞
−y∞ ṫ dy = t∞ − t∞ = 0. In the

result, the total area of the connected extremal surface can be explicitly calculated as

Ac(t∞, θ∞)/L = 2× 2y∞

= 4 log
2 cosh r0t∞
r0εCFT

− log(1− 2γ2). (3.5)

To derive this, we used the relation between the regulator y∞ and the CFT cutoff εCFT (2.8).

For later purposes, it is convenient to define the notion of “renormalized” area which is

given by

A(ren)
c /L ≡ Ac(t∞, θ∞)/L+ 4 log εCFT

= 4 log
2 cosh r0t∞

r0
− log(1− 2γ2) . (3.6)

Note that the connected surface area becomes arbitrarily large in γ2 → 1
2 limit. This

illuminates the fact that the length of the wormhole behind the Janus black hole becomes

infinitely long in this limit.

3.3 How to calculate extremal areas in disconnected phase

In this subsection, we represent the area of the disconnected surfaces as a function of

boundary coordinates (t∞, θ∞). The disconnected surfaces consist of two disjoint geodesics,

one of which is located in the right region y > 0 and the other is in the left region y < 0.

In what follows, we take the y > 0 part of the surfaces, because the y < 0 part can be

identified with y > 0 part by the parity transformation y → −y.

– 8 –
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The disconnected surface area Adc can be given by an integral from the boundary y =

y∞ to the returning point y = y∗, at which the derivative θ̇ of the surface (t, θ) = (t(y), θ(y))

diverges. Its location (y∗, t∗) is determined by the boundary coordinates (t∞, θ∞), and so

we can represent the area Adc as a function of (t∞, θ∞) by substituting the expression

y∗ = y∗(t∞, θ∞) into the area integral.

3.3.1 Solving the equation of motion

We can solve the Euler-Lagrange equations for t(y) and θ(y) in the following way.

The action (3.2) has one conserved charge J ,

J : =
δA/L

δθ̇
=

1

g̃(y) cosh r0t

r20 θ̇√
g̃(y)2 cosh2 r0t+ r20(−ṫ2 + θ̇2)

(3.7)

associated to its θ translation symmetry. This charge J can be expressed by the returning

point location (y∗, t∗) as J = r0(g̃(y∗) cosh r0t∗)
−1, because θ̇ in (3.7) diverges at the

returning point. With the aid of this constant charge J , the equation of motion for t(y)

can be rewritten into an equation for t(θ) without any g̃(y) dependence:

d

dy

δA

δṫ
− δA

δt
= 0⇔ d

dy

(
J
ṫ

θ̇

)
= Jr0

−ṫ2 + θ̇2

θ̇
tanh r0t (3.8)

⇔ d2t

dθ2
= r0

[
1−

(
dt

dθ

)2
]

tanh r0t, (3.9)

whose general solution is given by sinh r0t = sinhA cosh r0(θ +B) with some constants

A, B. These constants A, B are determined by geometrical conditions θ|y=y∗ = 0 and

dt/dθ|y=y∗ = 0 as

sinh r0t = sinh r0t∗ cosh r0θ. (3.10)

This relation allows us to erase θ in (3.7), yielding a 1st order differential equation of t:

ṫ =
cosh r0t

r0g̃(y∗) cosh r0t∗

√
cosh2 r0t− cosh2 r0t∗

1− (g̃(y)/g̃(y∗))2
, (3.11)

which has a unique solution√
1− sinh2 r0t∗

sinh2 r0t
(= tanh θ) = cosh r0t∗ tanh

[∫ y

y∗

dy
g̃(y)2√

g̃(y∗)2 − g̃(y)2

]
, (3.12)

with an initial condition t(y∗) = t∗. This expression gives the unique solution (t(y), θ(y))

of the equations of motion, in terms of the returning point location (y∗, t∗).

3.3.2 Returning point (y∗, t∗)

The boundary condition (t(y∞) = t∞, θ(y∞) = ±θ∞) determines t∗ by (3.10) as

sinh r0t∗ =
sinh r0t∞
cosh r0θ∞

, (3.13)

– 9 –
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Figure 3. How deeply the extremal surfaces in the disconnected phase can go inside the Janus

black hole (with γ2 = 0.3 in the figure). The shaded orange region represents where the extremal

surfaces can pass through. The extremal surfaces can go beyond the event horizon (blue line), but

cannot go beyond the apparent horizon (green line).

and y∗ by (3.10) and (3.12) as

sinh

[∫ y∞

y∗

dy
g̃(y)2√

g̃(y∗)2 − g̃(y)2

]
=

sinh r0θ∞
cosh r0t∞

. (3.14)

Note that there are bulk points which cannot be returning points for any boundary

value (t∞, θ∞), and that there exists a region which cannot be reached by the connected

surfaces (see figure 3). It might be interesting that the surface can go beyond the event

horizon but cannot go beyond the apparent horizon.

3.3.3 Extremal surface area

Plugging (3.10) and (3.11) into the definition of the surface area (3.2), we obtain the

disconnected extremal surface area

Adc(t∞, θ∞)/L = 4

∫ y∞

y∗

dy
g̃(y∗)√

g̃(y∗)2 − g̃(y)2
, (3.15)

as a function of (t∞, θ∞), with y∗ implicitly determined by (t∞, θ∞) through (3.14).

Note that this area has a UV divergence −4 log εCFT, because g̃(y) → 0 at the each

boundary and

Adc/L→ 4

∫ y∞

dy ∼ 4y∞ = 4 log
2 cosh r0t∞

4
√

1− 2γ2 r0εCFT

. (3.16)

This UV divergence can be renormalized as

A
(ren)
dc /L ≡ Adc/L+ 4 log εCFT

= Adc/L− log(1− 2γ2) + 4 log
2 cosh r0t∞

r0
− 4y∞ . (3.17)

– 10 –
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3.4 Some limits of extremal surface areas in disconnected phase

It is generally difficult to calculate the area of the disconnected surface. In this subsection,

we address some limits in which this area is explicitly calculable. In sections 3.4.1 and 3.4.2,

we compute the disconnected surface area A
(ren)
dc (t∞, θ∞) with a large subsystem (θ∞ �

r−10 ), in the early time (t∞ � θ∞) and late time (t∞ � θ∞) limit. In section 3.4.3, we

compute the area in the small γ limit.

3.4.1 Early time limit for large subsystem (θ∞ � t∞)

In this parameter region, the returning point (y∗, t∗) is close to the origin (0, 0), which can

be seen as follows. The t∗ is determined by (3.13) as

r0t∗ ' 2e−r0θ∞ sinh r0t∞ (� 1) , (3.18)

where we used cosh r0θ∞ ' er0θ∞/2 and sinh r0t∗ ' r0t∗. The y∗ is determined by (3.14) as

r0θ∞ − log cosh r0t∞ '
∫ y∞

y∗

dy
g̃(y)2√

g̃(y∗)2 − g̃(y)2
(� 1) . (3.19)

This means y∗ � 1, because the left hand side of (3.19) is large while the integral of the

right hand side is a monotonically decreasing function of y∗, diverging at y∗ → 0. In fact,

the right hand side integral can be evaluated as

r0θ∞ − log cosh r0t∞ ' −
1√

κ2+ − κ2−
log

κ+ +
√
κ2+ − κ2−
4

y∗

 (3.20)

in the limit y∗ → 0, by changing the integration variable from y to z := tanh y.

By solving this for y∗ and plugging it into (3.17), we obtain the renormalized area

A
(ren)
dc (t∞, θ∞) as a function of (t∞, θ∞). This can be carried out by evaluating the inte-

gration of (3.15) similarly as∫ y∞

y∗

dy
g̃(y∗)√

g̃(y∗)2 − g̃(y)2

' − κ+√
κ2+ − κ2−

log

κ+ +
√
κ2+ − κ2−
4

y∗

− log

κ+ +
√
κ2+ − κ2−√

κ2+ − κ2−

+ y∞ (3.21)

in the limit y∗ → 0. We can delete y∗ by (3.20), which results in

A
(ren)
dc (t∞, θ∞)/L ' 4κ+r0θ∞ + 4(1− κ+) log cosh r0t∞ − 4 log

κ+ +
√
κ2+ − κ2−
2

r0

 .
(3.22)

Note that the area linearly grows with both t∞ and θ∞ with different coefficients, when

θ∞ � t∞ � r−10 .
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3.4.2 Late time limit for large subsystem (t∞ � θ∞ � r−1
0 )

In this parameter region, (3.13) and (3.14) lead to

2e−r0t∗ '
∫ y∞

y∗

g̃(y)2dy√
g̃(y∗)2 − g̃(y)2

' er0(θ∞−t∞) (� 1) , (3.23)

where we used sinh x ' coshx ' ex/2 for x � 1 and sinhx ' x for x � 1. This

in turn implies y∗ � 1, therefore the integrals in (3.23) and (3.15) can be respectively

approximated as ∫ y∞

y∗

g̃(y)2dy√
g̃(y∗)2 − g̃(y)2

' 2
4
√

1− 2γ2
e−y∗ , (3.24)∫ y∞

y∗

g̃(y∗)dy√
g̃(y∗)2 − g̃(y)2

' y∞ − y∗ + log 2 , (3.25)

where we also used y∞ − y∗ � 1. By substituting (3.25) into (3.15), and by erasing y∞
and y∗ with the aid of (2.8), (3.23) and (3.24), we can evaluate the renormalized area

A
(ren)
dc (3.17) as

A
(ren)
dc (t∞, θ∞)/L ' 4(r0θ∞ − log r0) , (3.26)

which does not depend on either of γ or t∞. Then in particular, it coincides with the BTZ

(γ2 = 0) result.

3.4.3 Up to the lowest order of γ2

So far, we have seen the early time t∞ � θ∞ and the late time θ∞ � t∞ behavior of

the disconnected surface area for general γ, but the surface phase transition discussed in

the next section typically occurs at the intermediate time region t∞ ∼ θ∞. To obtain an

analytic expression applicable to the whole time region, let us evaluate the surface area up

to the lowest order of the deformation γ2. By expanding the relation (3.14) and the area

integral (3.15) up to the order of γ2, we get

A
(ren)
dc /L = 4 log

(
2

r0
sinh r0θ

)
−
(

3F 2 + 2

2
√

1 + F 2
coth−1

(√
1 + F 2

)
− 3

2

)
γ2 +O(γ4) ,

(3.27)

where

F (t, θ) =
cosh r0t∞
sinh r0θ∞

. (3.28)

The detail of this calculation is explained in appendix A. Note that when γ = 0, it reduces

to the usual thermal result. In the early (F � 1) and late (F � 1) time limits, it

respectively reproduces the results (3.22) and (3.26) in the previous section.
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4 Time evolution of entanglement entropy and phase transition

Here we discuss the time-dependent behavior of the holographic entanglement entropy.

Since there are two extremal surfaces in the bulk geometry, the holographic entanglement

entropy SA is given by choosing the one with the minimum area among them,

SA =
1

4GN
min {Ac, Adc} , (4.1)

where Ac and Adc are given by (3.5) and (3.15) respectively. As we will see below, the

entropy SA behaves very differently depending on the deformation parameter γ.

γ = 0. When γ = 0, the spacetime reduces to the BTZ black hole, and does not contain

any causal shadow region. The connected and disconnected surface areas are respectively

given by

Ac(t∞, θ∞)/L = 4 log

(
2 cosh r0t∞
r0εCFT

)
, Adc(t∞, θ∞)/L = 4 log

(
2 sinh r0θ∞
r0εCFT

)
. (4.2)

Let us take a sufficiently large subsystem r0θ∞ � 1. The entropy initially grows linearly

with time because the connected surface is chosen in accordance with Ac < Adc, and stops

growing at a critical time t∞ = tc ' θ∞. After the critical time, it ends up with a constant

value, double the value of the thermal entropy, because the disconnected surface becomes

chosen in accordance with Adc < Ac.

This time-dependent behavior such as the sharp phase transition can be also be ob-

served on the CFT side, since the time-scale of the transition is given by β [9] and now

r0θ � 1 implies tc � β. Furthermore, the initial entanglement entropy at t∞ = 0 can be

identified with the contribution from the boundary of A (4 points). The time-dependent

behavior can be intuitively understood in the so-called quasi-particle picture [10]. In this

picture, we assume that a pair creation of entangled quasi-particles occurs at every spatial

point at the initial time, and that the pair propagate in opposite directions at the speed of

light. A pair contributes to the entanglement entropy if one of the pair is inside the subsys-

tem and the other of the pair is outside the subsystem. This picture correctly reproduces

the linear growth and saturation of the entanglement entropy.

0 < γ2 � 1
2
. When 0 < γ2 � 1

2 , the story is quite similar to the BTZ case, γ = 0.

The entanglement entropy grows up until a critical time t∞ = tc ' θ∞, when the areas

of the two surfaces become equal and a phase transition takes place. At that time, the

growth rate of the entanglement entropy suddenly decreases discontinuously, but does not

immediately become zero, unlike the BTZ case. The entanglement entropy continues to

grow very slowly and converges to a constant independent of γ. Hence the final value is

identical with that of the BTZ case, γ = 0, in particular.

Another important difference from the BTZ black hole case is that the initial entan-

glement entropy includes an additional positive term (− L
4GN

log(1− 2γ2)). This term can

be regarded as a kind of boundary entropy, which is the contribution of defects in the sys-

tem [28] (see also [29] for the holographic realization). Note that in our system the defect

is localized along the Euclidean time direction.

– 13 –
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Figure 4. The time t dependence of the extremal surface area A for a subsystem θ = 5, in the

disconnected phase (black dotted line, numerically obtained) and in the connected phase (gray

line). The phase transition from the connected phase to the disconnected phase occurs at their

intersection point t = tc. The disconnected phase surface area Adc is initially well approximated by

the early time limit approximation (3.22) (orange line), and finally well approximated by the late

time limit approximation (3.26) (green line). The whole time-dependence of Adc is qualitatively

reproduced by the calculation (3.27) up to O(γ2) (blue line).

It is difficult to determine the critical time tc analytically for arbitrary γ and θ∞,

because one need to evaluate the disconnected surface area (3.15) around the difficult time

region t∞ ∼ θ∞. Here we evaluate it perturbatively around γ = 0 up to the second order.

The detail of the calculation is given in appendix A. By equating (3.5) and (3.27), we obtain

tc ' θ∞ − 2.058γ2 +O(γ4) . (4.3)

Note that the coefficient of γ2 does not depend on the size of the subsystem θ∞ or r0.

We can also solve the equations of motion for the disconnected extremal surface numer-

ically, to calculate the accurate time-dependence of Adc . The result is plotted in Figure 4,

together with the γ2-perturbation, the early time and late time approximations discussed

in the last section. The figure shows that the γ2-perturbation gives quite a good approxi-

mation around t∞ ∼ tc.

γ2 → 1
2
. When γ2 is very close to 1

2 , the time evolution of the entanglement entropy

does not exhibit a phase transition for a large range of θ∞. The minimal value θc of the

subsystem size θ∞ necessary for the phase transition to happen is determined by solving

Adc(t∞ = 0, θ∞ = θc, γ
2) = Ac(t∞ = 0, γ2) . (4.4)
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Figure 5. The γ2 dependence of the transition time tc of a subsystem θ = 3. The green dots

are obtained by calculating the disconnected phase surface area Adc numerically. The approx line

(orange line) is obtained by substituting the disconnected phase surface area Adc (3.27) calculated

up toO(γ2). The transition time tc decreases with − log(1/2−γ2) almost linearly, and the connected

phase disappears with sufficiently large γ2.

By using the early-time expression (3.22) for the left hand side, we can solve this equa-

tion as3

θc '
1

2
√

2r0

(
− log

(
1− 2γ2

)
− 2 log 2

)
. (4.5)

When θ ≤ θc, the phase corresponding to the disconnected surface is realized from the

initial time t∞ = 0. Furthermore, the initial entanglement entropy is proportional to the

size of the subsystem (∝ θ), which can be also seen by using the early-time approximation.

This is one of the very peculiar point in the γ2 → 1
2 limit.

In summary, although the time evolution of the holographic entanglement entropy in

the Janus black hole is similar to that of the BTZ black hole, there are some significant

differences. First, the growth rate of the holographic entanglement entropy remains positive

even after the phase transition, whereas the HEE for BTZ black hole is constant (i.e., the

growth rate is zero) after tc. Second, the introduction of the parameter γ makes the

connected surface less easy to realize. It in turn brings a result that the transition time

tc becomes earlier. Accordingly, the “critical value” θc for the subsystem size increases

as γ2 grows and approaches to 1
2 . Third, there is a nonzero initial entanglement entropy

in general. In particular, when γ2 is very close to 1
2 , it is proportional to the size of the

subsystem even for relatively large θ∞’s. These results are hard to be understood in the

quasi-particle picture, in contrast to the BTZ results.

It is also interesting to see the time evolution of the mutual information defined by

I(A;B) = S(A) + S(B)− S(A ∪B), (4.6)

3We dropped subleading terms for 1−2γ2, because in (3.22) we already used the r0θ � 1 approximation,

which in turn implies 1− 2γ2 � 1 here.
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which measures the entanglement between two subsystems A and B. Here we take the

subsystem A to be an interval −θ∞ < θ < θ∞ in the right CFT, and B to be the same

interval in the left CFT. The original subsystem we have been considering is the union of

them. Therefore the I(A;B) eventually vanishes in the disconnected phase, t∞ ≥ tc. For

BTZ black holes this critical time is given by half the size of the subsystem t
(BTZ)
c = θ∞ in

the high temperature limit. In [16], they considered the perturbation of BTZ black holes by

a shock wave sent from one boundary, and found that the critical time becomes shorter by

so called scrambling time. Here we see that our γ-deformation also leads to earlier critical

times. The main difference between our case and theirs is that the deviation of the critical

time from the BTZ value tc − t(BTZ)
c is proportional to the inverse temperature β in their

case, while it is not in our case.

5 Conclusions

In this paper, we considered a three-dimensional, time-dependent two-sided black hole

(Janus black hole) which can be regarded as a one parameter generalization of the BTZ

black hole. This black hole contains a long wormhole region, which is causally disconnected

from the conformal boundaries. The black hole is conjectured to be the dual of a particular

CFT state (2.14). The question here is how the information on the long wormhole region

is encoded in the dual CFT state.

As a first step to answer this question, we calculated the time evolution of a holographic

entanglement entropy SA in the black hole geometry, where the subsystem A is the disjoint

union of a region in the original CFT and a region in the thermofield double. In the

calculation of the entropy, we considered the area of two (disconnected and connected)

extremal surfaces in the black hole geometry.

In BTZ black hole geometry, the connected surface is initially chosen, then after the

critical time tc which is proportional to the size of the subsystem, the disconnected surface

becomes chosen. Although the behavior in the Janus black hole geometry shares many

similarities to the BTZ case, there are two notable differences. First of all, we showed that

the critical time is shorter than that in the BTZ case. Intuitively, this is because the Janus

black hole has a longer wormhole region, therefore the length of the connected surface

becomes longer than that of the BTZ black hole. We computed this critical time up to the

second order of the deformation parameter γ. Secondly, we found that the disconnected

surface is always chosen, when γ2 gets sufficiently close to 1/2 with the subsystem size

fixed, namely, when the wormhole region is sufficiently long.

In Figure 3, we numerically plotted the bulk region where the disconnected surface

can arrive, and we found that outside the apparent horizon, there exists a barrier which

any disconnected surface cannot go beyond. As a result, after the phase transition, the

black hole interior region that the entanglement entropy can probe is rather limited. This

limitation is especially strong in the above case when γ2 is close to 1/2.

In [14], it was shown that if we take subsystem A to be the total space of the left CFT,

the extremal surface which computes the holographic entanglement entropy has to be

located in the causal shadow. This property is necessary for the holographic entanglement
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entropy formula to respect the CFT causality. We can easily check this condition in the

Janus black hole, because in the large θ∞ limit the corresponding extremal surface localizes

at the origin (y, t) = (0, 0) (or (µ, τ) = (0, 0) in the coordinate (2.1)).

There are several outlooks for this work. It would be interesting to calculate the entan-

glement entropy on the dual CFT side. One candidate CFT is a free fermion system [30],

for which the explicit form of the twist operator is known [31]. Figure 3 seems to show

that it is not possible for the disconnected surface to penetrate the apparent horizon of the

Janus black hole, and it would be interesting to prove this directly like [32].
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A The γ-expansion of holographic entanglement entropy

In this section, we compute the entanglement entropy and the phase transition time in the

leading order of γ-expansion.

Expansion of y∗. First, let us expand (3.14). The integrand in the left hand side is

expanded as

g̃(y)2√
g̃(y∗)2 − g̃(y)2

=
sech2 y√

sech2 y∗ − sech2 y
+

sech2 y(2− sech2 y + sech2 y∗)

4
√

sech2 y∗ − sech2 y
γ2 +O(γ4) ,

(A.1)

then∫ y∞

y∗

dy
g̃(y)2√

g̃(y∗)2 − g̃(y)2
=

[
tanh−1

(
cosh y∗ sinh y√

cosh2 y∗ − cosh2 y

)]y∞
y∗

+

[
3 cosh2 y∗ + 1

8 cosh2 y∗
tanh−1

(
cosh y∗ sinh y√

cosh2 y∗ − cosh2 y

)

+
1

8 cosh y∗

√
cosh2 y − cosh2 y∗

sinh y

]y∞
y∗

γ2 +O(γ4)

= tanh−1(sech y∗) +

(
3 cosh2 y∗ + 1

8 cosh2 y∗
tanh−1(sech y∗) +

1

8 cosh y∗

)
γ2 +O(γ4) . (A.2)
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By substituting this into (3.14), we obtain

sinh r0θ

cosh r0t
= sinh

[
tanh−1(sech y∗)+

(
3 cosh2 y∗+1

8 cosh2 y∗
tanh−1(sech y∗)+

1

8 cosh y∗

)
γ2+O(γ4)

]
=

1

sinh y∗
+

(
3 cosh2 y∗ + 1

8 cosh y∗ sinh y∗
tanh−1(sech y∗) +

1

8 sinh y∗

)
γ2 +O(γ4) , (A.3)

leading to

sinh y∗ = F

[
1 +

(
3F 2 + 4

8
√

1 + F 2
coth−1

(√
1 + F 2

)
+

1

8

)
γ2
]

+O(γ4) , (A.4)

where

F (t, θ) =
cosh r0t

sinh r0θ
. (A.5)

Disconnected surface area. On the other hand, from (3.15) and (3.17), γ2-

expansion gives

A
(ren)
dc /L = 4 log

2 cosh r0t

r0 sinh y∗
+
(
2 + sech y∗ tanh−1(sech y∗)

)
γ2 +O(γ4) . (A.6)

By using (A.4) above, this results in

A
(ren)
dc /L = 4 log

(
2

r0
sinh r0θ

)
−
(

3F 2 + 2

2
√

1 + F 2
coth−1

(√
1 + F 2

)
− 3

2

)
γ2 +O(γ4) .

(A.7)

Phase transition. The phase transition time tc for a fixed value of θ can be computed

by an equation

A
(ren)
dc = A(ren)

c , (A.8)

with the aid of (3.6) and (A.7). This equation is solved as t = tc, where

tc = t(0)c + t(1)c γ2 +O(γ4) , (A.9)

r0t
(0)
c = cosh−1(sinh r0θ) , (A.10)

r0t
(1)
c = −

(
1

2
+

5

2
√

2
coth−1(

√
2)

)
sinh r0θ√

sinh2 r0θ − 1

' −2.058× sinh r0θ√
sinh2 r0θ − 1

. (A.11)

Then, in particular, in the large θ limit (θ � r−10 ), we obtain

tc ' θ − 2.058γ2 +O(γ4) . (A.12)
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