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1 Introduction

The possibility of employing the gauge/gravity duality correspondence [1–3] to the analysis

of far-from-equilibrium processes in strongly coupled systems1 has enlarged the realm of

nonperturbative phenomena to which this theoretical method can be applied in a quite

controllable way, while traditional approaches are less effective. Among the different sys-

tems, of particular interest is the one produced in ultrarelativistic heavy ion collisions (HI),

as those taking place at RHIC and at LHC. The features of this system, for time scales

larger than about 1 fm/c, seem to be well reproduced in a hydrodynamic setup involving

a strongly coupled/low viscosity fluid [5, 6], a framework allowing to correctly describe

experimental observables such as the light hadron transverse momentum spectra. In the

hydrodynamic scheme of crucial importance are, after the pre-equilibrium regime following

the collisions, the conditions at the time when the hydrodynamic behavior sets up. In

particular, at this time the system stress-energy tensor Tµν is important. We write it as

Tµν =
N2
c

2π2
diag(−ε, p⊥, p⊥, p‖) , (1.1)

in terms of the system energy density ε and of p⊥, p‖ the pressures along one of the two

transverse directions (with respect to the collision axis) and in the longitudinal direction,

respectively.2 For example, in approaches based on the idea of an initial state described by

color glass condensate with a saturation scale Qs of the order of a few GeV, the initial stress-

energy tensor comes from classical chromo-electric and chromo-magnetic fields and has the

1For a review see [4].
2Along the paper, we refer to energy density and pressures without considering the factor

N2
c

2π2 .
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form Tµν ∝ diag(−ε, ε, ε,−ε). However, such an initial condition has been shown to be

unstable, as soon as one-loop corrections in the strong coupling constant are switched on [7].

In the analysis presented in our study, a prominent role is therefore played by the

stress-energy tensor, which is needed to understand the features of the equilibrium regime,

the time needed to reach equilibrium, and the properties of the dynamics driving the

system towards equilibrium. Questions to be answered are, for a system driven out-of-

the-equilibrium, whether the late-time state is described by hydrodynamics, and whether

the elapsed time needed to reach equilibrium is related to the dynamics during the out-of-

equilibrium state. These issues concerning the transient process from a far-from-equilibrium

to a hydrodynamic regime can be faced in the holographic approach [8], using as a guideline

the conjectured correspondence between a supersymmetric, conformal field theory defined

in a four dimensional (4D) space-time and a gravity theory in a higher dimensional space-

time, a five dimensional Anti de-Sitter space (AdS5) times a five dimensional sphere S5 [1].

The gauge theory is defined on the 4D boundary of AdS5, and the connection has been

extended to the case of nonlinear fluid dynamics [9]. Non-equilibrium can be studied by

solving in the bulk the 5D Einstein equations for the metric subject to suitable time-

dependent boundary conditions. Information about the late-time regime can be obtained

computing various invariants. For example, in ref. [10] the square of the Riemann tensor <2

(the Kretschmann scalar) has been studied as an expansion in inverse powers of the proper

time up to second order, finding that, in the asymptotic τ → ∞ regime, the scalar <2

is free of singularities in the perfect fluid case. The boundary theory stress-energy tensor

results from the solutions of the Einstein equations in the bulk.

Analyses in the case of boost-invariant fluid [11, 12], for some choices of the profile

distortion, have shown the formation of a horizon in the bulk, and have given access to

the components of the boundary theory stress-energy tensor. The investigations have been

extended to samples of initial states characterized by different values of the components of

the stress-energy tensor, without reference to the mechanism producing each state [13–18].

As formulated in [11, 12], the initial off-equilibrium states can be thought as being pro-

duced by external sources distorting the boundary metric for short time intervals. We focus

on this issue, with a study of external distortion profiles, step-shaped or short-duration

sequences repeating themselves with different intensities, with the aim of describing phe-

nomena where a small number of collisions takes place before the system starts evolving

to thermal equilibrium. This study in the boost-invariant framework is useful for more in-

volved cases where a lower symmetry is assumed for the system, for example in shock-wave

collisions [19–22].

There are several reasons to study complex distortion shapes in the boundary metric.

The bulk Einstein equations are nonlinear, and different distorsions produce unrelated re-

sponses. The resulting effective temperature and entropy density follow different profiles as

a consequence of the boundary sourcing. Moreover, it is interesting to investigate whether

the onset of the hydrodynamic regime is related to the distortion curve. Finally, these

analyses have to face problems concerning the stability of the solution of GR equations

with different boundary conditions.
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The plan of the present paper, in which a few of the above issues are examined, is the

following. In section 2 we describe how a system is taken out-of-equilibrium through the

distortion of the boundary metric, as done in [11, 12]. We discuss a suitable procedure

for solving the resulting 5D Einstein equations, providing a few details of the algorithm

and the issue of the stability of the solutions. In section 3 we describe the profiles of the

boundary geometry distortion we have chosen to study, with the motivations. In section 4

we discuss our findings, in particular concerning the equilibration time. The conclusions

are presented in the last section. Details dealing with the calculation of the boundary

stress-energy tensor Tµν are collected in appendix A, while in appendix B we discuss some

aspects of the numerical algorithm.

2 Distorting the boundary

The main idea, as in [11, 12], is to study the effects of a time-dependent deformation of the

metric of the 4D boundary. As a consequence of the deformation, gravitational radiation

is produced and propagates in the 5D bulk, and a black hole is formed together with its

horizon. In this way, one can trade the study of the reach of equilibrium in the 4D boundary

theory for the analysis of the time evolution of the geometry in the 5D bulk.

We set the 4D coordinates xµ = (x0, x1, x2, x3), identifying x3 = x‖ with the axis in the

direction of collisions and along which the plasma expands. Boost-invariance along that

axis is imposed, together with translation invariance and O(2) rotation invariance in the

orthogonal plane x⊥ = {x1, x2}. In terms of the proper time τ and rapidity y, given by x0 =

τ cosh y, x‖ = τ sinh y, the 4D Minkowski line element is given by ds2 = −dτ2+dx2
⊥+τ2dy2.

A distortion of the boundary metric, leaving the spatial three-volume unchanged and

respecting the imposed symmetries, can be obtained through a function γ(τ) which encodes

information about a deformation:

ds2 = −dτ2 + eγ(τ)dx2
⊥ + τ2e−2γ(τ)dy2 . (2.1)

The space-time with the metric (2.1) is considered as the boundary of the 5D space-time in

which the gravity dual is defined. We adopt 5D Eddington-Finkelstein coordinates, with r

the extra-dimension coordinate and the boundary reached for r → ∞. In general, the 5D

bulk metric can be chosen as

ds2 = 2drdτ −Adτ2 + Σ2eBdx2
⊥ + Σ2e−2Bdy2 , (2.2)

with the functions A, Σ and B only depending on r and τ to respect the adopted sym-

metries. The behavior of these functions against the deformation allows us to describe

how the bulk metric changes as a consequence of the distortion of the boundary. With

the metric (2.2), at fixed x⊥ and rapidity y, infalling radial null geodesics correspond to

constant τ , while outgoing radial null geodesics are obtained from dr
dτ = A(r,τ)

2 . Therefore,

for a generic function ξ(r, τ) the derivatives

ξ′ = ∂rξ (2.3)

ξ̇ = ∂τξ +
1

2
A∂rξ (2.4)
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represent directional derivatives along the infalling radial null geodesics and the outgoing

radial null geodesics, respectively.

The 5D metric (2.2) is the solution of Einstein’s equations with negative cosmological

constant. In terms of A(r, τ), Σ(r, τ) and B(r, τ) the equations can be rephrased as [12]:

Σ(Σ̇)′ + 2Σ′Σ̇− 2Σ2 = 0 (2.5)

Σ(Ḃ)′ +
3

2

(
Σ′Ḃ +B′Σ̇

)
= 0 (2.6)

A′′ + 3B′Ḃ − 12
Σ′Σ̇

Σ2
+ 4 = 0 (2.7)

Σ̈ +
1

2

(
Ḃ2Σ−A′Σ̇

)
= 0 (2.8)

Σ′′ +
1

2
B′2Σ = 0 . (2.9)

The five equations (2.5)–(2.9) can be considered as three dynamical and two constraint

equations. The condition that the metric (2.2) produces the 4D metric (2.1) at the bound-

ary, for r →∞, constrains the large r behavior of A(r, τ), Σ(r, τ) and B(r, τ):

A(r, τ)− r2

r
−−−→
r→∞

0 , (2.10)

Σ(r, τ)

r
−−−→
r→∞

τ
1
3 , (2.11)

B(r, τ) −−−→
r→∞

−2

3
log τ + γ(τ) . (2.12)

The invariance of (2.2) under the diffeomorphism r → r+λ(τ) has been exploited to impose

the large r condition for A.

We switch on the distortion of the boundary metric at the initial time τ = τi, starting

from the AdS5 bulk metric:

ds2 = 2drdτ + r2

[
−dτ2 + dx2

⊥ +

(
τ +

1

r

)2

dy2

]
. (2.13)

As discussed in [14], taking the limit r → ∞ and τ → 0 with the Eddington-Finkelstein

coordinates, eq. (2.13), is ambiguous. For this reason, we set τi > 0. The initial conditions

for A, Σ and B are therefore:

A(r, τi) = Aini(r) = r2 , (2.14)

Σ(r, τi) = Σini(r) = r

(
τi +

1

r

)1/3

, (2.15)

B(r, τi) = Bini(r) = −2

3
log

(
τi +

1

r

)
. (2.16)

For r →∞, the Einstein’s equations can be solved starting from the relations (2.10)–

(2.12). As suggested in [11, 12], for A(r, τ), Σ(r, τ) and B(r, τ) the large-r expansions can

be written as

Aasy(r, τ) =
∑
n=0

[an(τ) + αn(τ) log r] r2−n , (2.17)
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Σasy(r, τ) =
∑
n=0

[sn(τ) + σn(τ) log r] r1−n , (2.18)

Basy(r, τ) =
∑
n=0

[bn(τ) + βn(τ) log r] r−n . (2.19)

The conditions (2.10)–(2.12) fix the n = 0 coefficients in (2.17)–(2.19), as well as those

for n = 1 in Aasy. The other coefficients can be determined imposing that eqs. (2.5)–(2.7)

are satisfied by the functions (2.17)–(2.19), but this leaves two coefficients undetermined,

a4(τ) and b4(τ). From eq. (2.9) a relation follows between a4 and b4:

b4(τ) =
1296τ5a′4(τ) + 1728τ4a4(τ) +G(τ)

1728τ4 (−2 + 3τγ′(τ))
, (2.20)

with the primes denoting derivatives with respect to τ , and the function G(τ) expressed in

terms of γ(n)(τ) = dnγ(τ)
dτn :

G(τ) = −576 + 3618τγ′(τ)− τ2
(
6903γ′(τ)2 + 1474γ′′(τ)

)
+τ3

(
4608γ′(τ)3 + 5199γ′(τ)γ′′(τ) + 468γ(3)(τ)

)
+τ4

(
−918γ′(τ)4 − 6480γ′(τ)2γ′′(τ) + 216γ′′(τ)2 − 540γ′(τ)γ(3)(τ) + 306γ(4)(τ)

)
+τ5

(
3240γ′(τ)3γ′′(τ) + 162γ′′(τ)γ(3)(τ)− 459γ′(τ)γ(4)(τ)

)
. (2.21)

In our procedure, a4(τ) and b4(τ) are determined by eq. (2.20) and matching the

computed functions Σ and B with their asymptotic expressions (2.18) and (2.19) for large

r. Using a4(τ) and b4(τ), important observables can be obtained, such as the components

of the boundary stress-energy tensor Tµν , as discussed in next sections.

The details of our method for solving eqs. (2.5)–(2.9) are as follows. In the set of func-

tions Σ, Σ̇, B, Ḃ and A, we treat a given function and its derivative (2.4) as independent.

At τ = τi, Σ(r, τi), B(r, τi) and A(r, τi) are known, eqs. (2.14)–(2.16). To complete the set of

initial conditions, we compute Σ̇(r, τi) and Ḃ(r, τi) solving eqs. (2.5) and (2.6), respectively.

At τ > τi the algorithm is organized in steps.

1. Using the definition (2.4), we determine ∂τΣ(r, τi) and ∂τB(r, τi), which allow us to

obtain Σ and B at the subsequent time τi+dτ , if dτ is small enough for the equations

Σ(r, τi + dτ) = Σ(r, τi) + dτ∂τΣ(r, τi)

B(r, τi + dτ) = B(r, τi) + dτ∂τB(r, τi)

to be valid.

2. Once Σ(r, τi + dτ) and B(r, τi + dτ) are determined, we compute a4(τi + dτ) and

b4(τi + dτ). Indeed, a4(τi + dτ) can be obtained fitting the computed functions

Σ(r, τi + dτ) and B(r, τi + dτ) with their asymptotic expressions (2.18) and (2.19) in

the range ras 6 r 6 rmax (later on in this section, it will be shown how to set ras).

Then, we get b4(τi + dτ) from eq. (2.20).

– 5 –
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3. Σ̇(r, τi + dτ), Ḃ(r, τi + dτ) and finally A(r, τi + dτ) are computed solving eqs. (2.5)–

(2.7); the boundary conditions are fixed using (2.18), (2.19), (2.17), and a4(τi + dτ)

and b4(τi + dτ).

With the functions known at τi + dτ , the cycle is repeated until a chosen final value of τ

is reached. Typically, with the γ functions considered in our analysis we use dτ = 10−2.

At each τ step, our solution algorithm requires three values of the bulk coordinate r:

rmax and rmin, which are the maximum and minimum value of r used in the numerical

calculation, and ras, a value employed to determine a4(τ) from the asymptotic expres-

sions (2.17)–(2.19) used in the range [ras, rmax]. Stability against variation of such param-

eters is used as a criterium to check the numerical results. Particularly relevant is the

minimum value rmin, required to perform an excision in the bulk coordinates. This value is

set in the following way. At fixed τ , for each one of eqs. (2.5)–(2.9) we construct the func-

tion Ri(r, τ) defined as the absolute value of the l.h.s. of the equation divided by the sum

of the absolute value of its addendi (see appendix B for definitions). At τ = τi, we choose a

small initial value of rmin; then, at each τ , rmin is increased by steps of size typically 0.005,

until the differential equations (2.5)–(2.7) and one constraint equation (2.9) are fulfilled,

namely by requiring the condition Ri(rmin, τ) < 0.03 for i = 6, 7, 8, 10. As a result, the bulk

excision is always beyond the apparent horizon. In rmin, the function A(rmin, τ) becomes

negative but not large, hence possible singularities beyond the horizon are avoided. A sim-

ilar procedure is carried out for ras. We initially set ras, and then we gradually increase it

until the condition Ri(ras, τ) < 0.01 for i = 6, 7, 8, 10 is satisfied. Therefore, at this stage,

we monitor the accuracy of the three differential equations and one constraint equation

in rmin and ras. At the end of the procedure, we check that the condition Ri ≤ 0.01 is

fulfilled for all eqs. (2.5)–(2.9), i.e. i = 6− 10, and in the whole (r, τ) range. We find that

this is indeed the case except for few tiny regions. In the largest part of the (r, τ) plane

deviations from zero are smaller than O(10−4), as discussed in appendix B. During the

numerical evaluation, no corrections are required to account for the finite value of the time

step. In spite of the intricacy of the boundary conditions, stable solutions are found.3

3 Models for the distortion of the boundary geometry

We are interested in investigating deformations of the boundary metric characterized by

different duration, intensity and structure. We set the generic form for γ(τ):

γ(τ) = w

[
Tanh

(
τ − τ0

η

)]7

+
N∑
j=1

γj(τ, τ0,j) (3.1)

with

γj(τ, τ0,j) = cjfj(τ, τ0,j)
6e−1/fj(τ,τ0,j)Θ

(
1− (τ − τ0,j)

2

∆2
j

)
(3.2)

3Other methods for the numerical solution of analogous General Relativity equations in the case of initial

value problems are described in [23] and in references therein.
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and

fj(τ, τ0,j) = 1− (τ − τ0,j)
2

∆2
j

. (3.3)

This expression generalizes the one used in [12], and represents sequences of N “pulses”,

each one of intensity cj and duration proportional to ∆j , with the possibility of superim-

posing a smooth deformation, of intensity w, which asymptotically changes the scales of

the coordinates. After their generation, pulses travel in the longitudinal direction x‖, driv-

ing the boundary state out-of-equilibrium. The response of the 5D bulk geometry to this

deformation describes how equilibrium is reached at late times. We choose three different

models, A, B and C, setting the various parameters in eqs. (3.1)–(3.3).

Model A represents two pulses in the boundary metric. The parameters are set to

w = 0 and N = 2, c1 = 1, ∆1,2 = 1, τ0,1 = 5
4∆1, c2 = 2. Moreover, two different values

of τ0,2: τ0,2 = 17
4 ∆2 and τ0,2 = 9

4∆2 are considered, changing the time interval between

the pulses. The final time of the distortion is τAf = 5.25 and τAf = 3.25 for the two cases,

respectively, two quantities important for our discussion.

In model B we set w = 2
5 , η = 1.2, τ0 = 0.25, N = 1, c1 = 1, ∆1 = 1, τ0,1 = 4∆1,

and the short pulse ends at τBf = 5 while a tale of the distortion continues with τ and

approaches a constant value.

Model C combines both the previous ones, and is obtained using

w =
2

5
, η = 1.2, τ0 = 0.25 ,

c0,1 = 0.5, c0,2 = 1, c0,3 = 0.35, c0,4 = 0.3,

τ0,1 = τ0 + 1.5, τ0,2 = τ0 + 3.8, τ0,3 = τ0 + 6.1, τ0,4 = τ0 + 8.4,

∆j = 0.8 (j = 1, 2, 3, 4) .

For this model the last short pulse ends at τCf = 9.45. As mentioned, to avoid in the

Eddington-Finkelstein coordinates the ambiguity in the limits r → ∞ and τ → 0, in all

cases the initial time is τi > 0. The three profiles γ(τ) are depicted in figures 2, 5 and 8.

The distortion profiles are chosen with the purpose of studying different situations.

Model A is the repetition, in the boundary metric, of two short pulses of different inten-

sity, figure 2. In particular, we consider two cases with different interval of time between

the pulses, ranging from the condition of distant perturbations to the case of overlapping

pulses. This model can provide us with information on the horizon formation, in com-

parison with the case of isolated pulse studied in [12], and on the effects related to the

time elapsed between the distortions. Model B has the purpose of studying a combination

of two effects with very different time scales, a short pulse and a slow continuum asymp-

totically producing a rescaling of the boundary coordinates. Model C, a combination of

the previous cases, accounts for the effects of several pulses with various intensities, and

is closer to physical processes driving systems out-of equilibrium in relativistic heavy ion

collisions. In all cases, the horizon formation and behavior are investigated, together with

the various components the boundary stress-energy tensor, looking at the time when the

hydrodynamic regime sets in.

– 7 –
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4 Results and discussions

In the numerical calculation for the models previously described, the solutions of the bulk

Einstein equations allow to obtain the apparent horizon and the event horizon, which

define the system temperature Teff . The apparent horizon is determined as the locus of

points where the condition Σ̇(rh, τ) = 0 is fulfilled.4 The event horizon, which separates

causally disconnected regions, is found drawing outgoing radial null geodesic curves and

looking for the critical curve which separates the geodesics escaping towards the boundary

from the ones plunging back in the bulk. From these curves, the function rh(τ) (rh(τ)

being the position of the horizon at the proper time τ) is determined, which defines the

temperature Teff(τ). Asymptotically in proper time, the apparent horizon and the event

horizon coincide.5 From the solution, Σ(rh, τ)3, the area of each horizon per unit of rapidity,

can be computed.

The three models share common features, which we discuss together with the differ-

ences. Before presenting this analysis, let us recall a few results concerning the boundary

stress-energy tensor Tµν .

As discussed in the Bjorken’s seminal paper [27], under the assumptions of homogene-

ity, boost-invariance and invariance under rotations in the transverse plane with respect

to the fluid velocity, the fluid stress-energy tensor T νµ has well-defined properties, and its

components only depend on the proper time τ , a manifestly boost-invariant condition. Im-

posing T νµ conservation and traceless conditions, the tensor components can be expressed

in terms of a single function f(τ), that can be chosen to be −T 0
0 :

T νµ = diag

(
−f(τ), f(τ) +

1

2
τf ′(τ), f(τ) +

1

2
τf ′(τ), −f(τ)− τf ′(τ)

)
. (4.1)

For a perfect fluid, the equation of state ε = 3p, with p = p‖ = p⊥, fixes the τ dependence:

ε(τ) = const
τ4/3

, stemming from the relations

p‖(τ) = −ε(τ)− τε′(τ) (4.2)

p⊥(τ) = ε(τ) +
τ

2
ε′(τ) . (4.3)

Deviations from the ideal behavior can be included as corrections taking viscous effects

into account, in a gradient expansion. On the gauge theory side, the gradient expansion

corresponds to a late time expansion, with subleading terms identified with the dissipative

ones in the hydrodynamical theory. As shown in [10], the function f(τ) deviates from

4The apparent horizon is the outermost trapped null surface. To compute it, a foliation of spacetime

at fixed times is considered. In each spacelike hypersurface, the apparent horizon is a closed surface such

that [24]:

H = γab∇asb −K + sasbKab = 0 ,

with γab the induced metric and Kab the extrinsic curvature of the hypersurface, K = gabKab, and sa the

outward-pointing spacelike unit vector, normal to the apparent horizon and tangent to the hypersurface.

For the spacetime described by eq. (2.2) this corresponds to the condition Σ̇ = 0.
5Studies of the behavior of the horizons in the gravity dual of a boost-invariant flow can be found

in [25, 26].
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f(τ) = const/τ4/3 if the assumption of perfect fluid behavior is removed. For example, the

case ε(τ) ∼ 1
τs corresponds to p‖ ∼

(s−1)
τs and p⊥ ∼ (2−s)

2τs .6 Subleading corrections to the

perfect fluid behavior relate the energy density

ε(τ) =
3

4
π4Teff(τ)4 (4.4)

to the definition of an effective temperature Teff(τ). The calculation in N = 4 SYM

gives [14, 28, 29]:

Teff(τ) =
Λ

(Λτ)1/3

[
1− 1

6π(Λτ)2/3
+
−1 + log 2

36π2(Λτ)4/3

+
−21 + 2π2 + 51 log 2− 24(log 2)2

1944π3(Λτ)2
+O

(
1

(Λτ)8/3

)]
. (4.5)

This leads to

ε(τ) =
3π4Λ4

4(Λτ)4/3

[
1− 2c1

(Λτ)2/3
+

c2

(Λτ)4/3
+O

(
1

(Λτ)2

)]
(4.6)

p‖(τ) =
π4Λ4

4(Λτ)4/3

[
1− 6c1

(Λτ)2/3
+

5c2

(Λτ)4/3
+O

(
1

(Λτ)2

)]
(4.7)

p⊥(τ) =
π4Λ4

4(Λτ)4/3

[
1− c2

(Λτ)4/3
+O

(
1

(Λτ)2

)]
, (4.8)

and to the pressure ratio and anisotropy:

p‖

p⊥
= 1− 6c1

(Λτ)2/3
+

6c2

(Λτ)4/3
+O

(
1

(Λτ)2

)
, (4.9)

∆p

ε
=
p⊥ − p‖

ε
= 2

[
c1

(Λτ)2/3
+

2c2
1 − c2

(Λτ)4/3
+O

(
1

(Λτ)2

)]
, (4.10)

with c1 = 1
3π and c2 = 1+2 log 2

18π2 . Λ is a parameter to be determined for each one of the

considered models.

Understanding the results of the calculation of the solutions of the 5D Einstein equa-

tions, hence, requires the computation of the boundary stress-energy tensor Tµν in eq. (1.1)

and the comparison with the proper time dependence following the previous equations.

The various components of the stress-energy tensor of the boundary theory can be deter-

mined using the holographic renormalization procedure developed in [30, 31] and shortly

described in appendix A. The functions a4(τ) and b4(τ) in the expansions (2.17) and (2.19),

computed through the Einstein equations, are required, and the energy density and the

longitudinal and parallel pressures are obtained in terms of such functions:

ε = −3

4
a4 + ε̃γ , (4.11)

p⊥ = −1

4
a4 + b4 + p̃⊥,γ , (4.12)

6In [14] the case 0 ≤ s < 4 is studied.
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Figure 1. Model A. The left panel shows the function A(r, τ)/r2, vs τ and 1/r, obtained solving

the Einstein equations (2.5)–(2.9) in the case of two distant (top panel) or close pulses (bottom

panel) in the boundary metric. The color bar indicates the values of the function. The gray lines are

radial null outgoing geodesics, the dashed dark blue line is the apparent horizon, and the continuous

cyan line is the event horizon obtained as the critical geodesic. The excision in the low-r region,

used in the calculation, is shown. In the right panels, the 3d representation of A(r, τ)/r2 is displayed

together with the apparent horizon (continuous line).

p‖ = −1

4
a4 − 2b4 + p̃‖,γ . (4.13)

The functions ε̃γ(τ), p̃⊥,γ(τ) and p̃‖,γ(τ) are related to the distortion profile γ(τ) in the

boundary metric, and are reported in appendix A.

We can now discuss the three considered models, focusing on the effects of the boundary

distortion and on the transient from the far-from-equilibrium state to the hydrodynamic

regime.

Model A. In the case of two distant pulses, the horizon is formed as a two-step process

which follows the sequence of the boundary distortion, as one can infer considering the com-

puted function A(r, τ)/r2 which is depicted in figure 1. The outgoing radial null geodesics

are clearly separated by a critical geodesic, the event horizon, which starts plunging back
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in the bulk immediately after each pulse in the boundary. This can be even more clearly

seen in the plot of the τ dependence of the effective temperature Teff(τ) and in the plot of

the area of the apparent horizon per unit of rapidity, Σ(rh, τ)3, collected in figure 2. The

temperature has two decreasing regimes, the first one after the first pulse, with the system

starting relaxation immediately after the end of the boundary distortion. Time intervals of

about twice the duration of the pulse are very long with respect to the relaxation time. The

same phenomenon is observed considering the function Σ(rh, τ)3, which shows two time

ranges in which it reaches a constant value, soon after the pulses. However, on such time

scales, the components of the stress energy tensor have their own (computed) behavior,

and no isotropization is observed after the first pulse.

On the other hand, for a distortion represented by two close (nearly overlapping) pulses,

no particular structure is observed before the end of the boundary perturbation. The

horizon area per unit of rapidity, Σ(rh, τ)3, has a sharp increase during the distortion, and

reaches the asymptotic large τ value Σ(rh, τ)3 = π3Λ2 soon after the end of the distortion.

The hydrodynamic τ−dependence of Teff(τ) and of the energy density ε(τ), eqs. (4.5)

and (4.6), is reached immediately after the end of the distortion of the boundary τAf , with

values of the parameter Λ which are different for the two cases of different time intervals

between the pulses. The values of Λ obtained from Teff(τ) are collected in table 1. The

temperature can be obtained from the condition Σ̇(rh, τ) = 0, or from the energy density

eq. (4.4), with numerical results differing at the level of 2%. For a quantitative discussion, a

time τ∗ can be fixed imposing that the energy density ε(τ∗) differs from the hydrodynamic

value εH(τ∗) in (4.6) by less than 5%:∣∣∣∣ε(τ∗)− εH(τ∗)

ε(τ∗)

∣∣∣∣ = 0.05 . (4.14)

In both cases of distant or overlapping pulses, τ∗ essentially coincides with the end of the

boundary metric distortion. From the plot of Tµν in figure 3, we observe that at τ∗ the

pressure anisotropy is still sizeable, and the values of ∆p/ε and p||/p⊥ are still much larger

than the ones expected by viscous hydrodynamics. Therefore, we define the “thermalization

time” τp from the condition∣∣∣∣p||(τp)/p⊥(τp)− (p||(τp)/p⊥(τp))H

p||(τp)/p⊥(τp)

∣∣∣∣ = 0.05 , (4.15)

where (p||(τp)/p⊥(τp))H is given by (4.9). Quantitatively, from the condition that p‖/p⊥
differs by less than 5% from the asymptotic NNLO expression, we can set τp = 6.8 for

two distant pulses. The difference τp − τ∗ can be expressed in physical units if one scale

in the system is set. Imposing Teff(τ∗) = 500 MeV corresponds to τp − τ∗ ' 0.60 fm/c,

which indicates the elapsed time between the end of the pulse and the restoration of the

hydrodynamical regime. For two overlapping pulses, the time difference is τp − τ∗ '
1.03 fm/c. The numerical values are collected in table 1. Notice that τ∗ and τp differ in

general, although eqs. (4.2) and (4.3) hold. Indeed, at a generic τ the relation between

energy density and its asymptotic limit can be written as:

ε(τ) = ξ(τ)εH(τ) , (4.16)
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Figure 2. Model A. The panels, for the profile γ(τ) with different time intervals between the

pulses (left and right columns), show (from top to bottom) the function γ(τ), temperature Teff(τ),

horizon area Σ3(rh, τ) per unit of rapidity, and the three components ε(τ), p⊥(τ) and p‖(τ) of the

stress-energy tensor Tµν (apart from the factor
N2

c

2π2 ).

with ξ(τ∗) such that (4.14) is verified. For, e.g., the longitudinal pressure, using (4.2)

and (4.16) one has p‖(τ
∗) = ξ(τ∗) p‖, H(τ∗) − τ∗ ξ′(τ∗)εH(τ∗). Therefore, due to the last

term, the value τp verifying (4.15) does not necessarily coincide with τ∗.

Model B. The purpose of this model is to investigate a boundary distortion characterized

by two largely different time scales. The horizon is formed immediately after the boundary

deformation is switched on, as depicted in figure 4, then starts plugging down in the bulk

until the short pulse becomes active. This can be seen clearly in figure 5, where the effective

temperature and Σ3 display a decreasing and constant regime, respectively, in the proper

time interval τi < τ < τ0,1, after which a violent perturbation takes the system out of

equilibrium. The time τ∗ can be fixed using (4.6). For τ > τ∗ ' τBf the determination of

Λ from Teff and the energy density ε gives Λ = 1.12, with a variation of 3% around this

value. Thermalization is reached at the time τp obtained by the condition (4.15), as one

can infer considering the observables depicted in figures 5 and 6. Setting the scale so that

the temperature is Teff(τ∗) = 500 MeV, we find τp − τ∗ ' 0.42 fm/c.
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Figure 3. Model A. From top to bottom: temperature Teff(τ), components ε(τ), p⊥(τ) and p‖(τ)

of the stress-energy tensor, pressure anisotropy ∆p/ε = (p⊥ − p‖)/ε and ratio p‖/p⊥, computed for

τ > τAf , for the boundary distortion with two distant (left) and two overlapping pulses (right

panels). The short and long dashed lines correspond to the hydrodynamic result and to the NNLO

result in the 1/τ expansion.

Model C. This model is constructed with the aim of representing a situation close to the

physical system during the scattering process, with two different time scales and several

pulses of various number and intensity. Immediately after switching on the boundary

deformation, the horizon is formed in the bulk geometry and follows the profile of the

distortion. Even in short time intervals between the pulses, the horizon starts to plung

in the bulk, with a decreasing temperature and a saturation of Σ3. This can be inferred

considering the computed function A/r2 depicted in figure 7 and, in details, studying the

τ dependence of the effective temperature and horizon area per unit rapidity in figure 8.

Σ3(rh, τ) displays a step-like behavior in proper time, closely following the distortion γ(τ),

and reaches a constant value from τ = τCf on. On the contrary, the various components of

the stress-energy tensor have structures which become regular only for τ > τCf , after the
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Figure 4. Model B. Function A(r, τ)/r2, vs τ and 1/r, outgoing radial null geodesics, event

horizon and apparent horizon. Lines and colours have the same meaning as in figure 1.

Figure 5. Model B. The panels show (from top to bottom) the profile γ(τ), temperature Teff(τ),

horizon area per unit of rapidity Σ3(rh, τ), and the three components ε(τ), p⊥(τ) and p‖(τ) of Tµν .
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Figure 6. Model B. From top to bottom: temperature Teff(τ), components ε(τ), p⊥(τ) and p‖(τ)

of the stress-energy tensor, pressure anisotropy ∆p/ε = (p⊥ − p‖)/ε and ratio p‖/p⊥, computed for

τ > τBf . The dashed lines correspond to the NNLO expressions.

last pulse. As one can observe analyzing the results in figure 9, the energy density reaches

the NNLO hydrodynamic behavior at τ = τ∗ ' τCf , while pressure anisotropy persists

for longer times. The parameter Λ, obtained from different observables, takes the value

Λ = 1.59, with a variation similar to the one in models A and B. The pressure anisotropy

∆p/ε and ratio p‖/p⊥ set the value τp of proper time, as one can infer considering the

results in figure 9; setting Teff(τ∗) = 500 MeV, we obtain τp − τ∗ ' 0.2 fm/c.

5 Conclusions

We have investigated the effects of different types of distortions of the boundary metric,

in a boost-invariant setup. The quenches are introduced as a way to take the boundary

theory out-of-equilibrium, and the distortion profiles are used to describe processes with

different time scales and intensities. As a common feature, we observe a rapid formation
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Figure 7. Model C. Function A(r, τ)/r2, vs τ and 1/r, outgoing radial null geodesics, events

horizon and apparent horizon. The lines and colors are indicated as in figure 1.

model τ∗ τp Λ ∆τ = τp − τ∗ (fm/c)

A (1) 5.25 6.8 2.25 0.60

A (2) 3.25 6.0 1.73 1.03

B 5 6.74 1.12 0.42

C 9.45 10.24 1.59 0.20

Table 1. Numerical values of the relevant quantities for models A, B and C of boundary distortion.

of the horizon in the bulk metric, with the possibility of defining an effective τ−dependent

temperature. In coincidence with the end of each main distortion, the relaxation starts

with the horizon plunging in the bulk. We have seen how sequences of distortions break

the relaxation process. We find that for all the considered distortion profiles, Teff(τ) starts

to follow a viscous hydrodynamic expression as soon as the quench is switched off. At

this time the pressures are different, and evolve towards a common value which is reached

at a later time. Setting Teff(τ∗) = 500 MeV, the elapsed time before the restoration of

the hydrodynamic regime is always a fraction of fm/c. Although the system described by

the holographic approach is in several respects different from the real QCD system, and

boundary sourcing a quite abstract representation of the heavy ion collision process, the

obtained results allow us to argue what can be expected in realistic situations.
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Figure 8. Model C. From top to bottom: profile γ(τ), temperature Teff(τ), horizon area per unit

of rapidity Σ3(rh, τ), and the three components ε(τ), p⊥(τ) and p‖(τ) of Tµν .

A Boundary stress-energy tensor

For the sake of completeness, we briefly describe the main steps of the calculation of the

boundary stress-energy tensor Tµν leading to eqs. (4.11)–(4.13). The 5D metric (2.13) can

be written in ADM form [32],

ds2 = N2dr2 + hµν (dyµ +N µdr) (dyν +N νdr) (A.1)

in terms of the induced metric hµν , of the lapse function N and of the shift vector field

N µ. The stress tensor for the space foliation Mr obtained at constant r, is given by

T̃µν
∣∣∣
r

=
2√
|h|

δS

δhµν

∣∣∣∣
r

, (A.2)
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Figure 9. Model C. From top to bottom: temperature Teff(τ), components ε(τ), p⊥(τ) and p‖(τ)

of the stress-energy tensor, pressure anisotropy ∆p/ε = (p⊥ − p‖)/ε and ratio p‖/p⊥, computed for

τ > τBf . The curves have the same meaning as in figure 6.

with h ≡ det (hµν) and S the gravitational action. The boundary stress energy tensor is

obtained from the limit:

Tµν = lim
r→∞

r2T̃µν
∣∣∣
r
. (A.3)

The action S in (A.2) includes as a counterterm a local functional Sct of hµν , whose

contribution to T̃µν regularizes the divergences at r → ∞ [31, 33]. As a consequence, the

stress-energy tensor is written as

Tµν = lim
r→∞

N2
c

4π2
r2

(
Kµν −Khµν − 3hµν +

1

2
(4)Gµν − σµν 1

r2
log r

)
, (A.4)
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with Kµν the extrinsic curvature, (4)Gµν the boundary Einstein tensor with curvature

tensors defined with respect to hµν . The counterterms −3hµν + 1
2

(4)Gµν cancel the powers

from r2 to r−1 from the first two terms in (A.4), and introduce terms of order r−2 which

contribute to the final result (A.4) [33]. The last term proportional to σµν , with in our case

σµν = diag

{
−3

2
α4(τ), eγ(τ)

[
−1

2
α4(τ) + 2β4(τ)

]
,

eγ(τ)

[
−1

2
α4(τ) + 2β4(τ)

]
, e−2γ(τ)τ2

[
−1

2
α4(τ)− 4β4(τ)

]}
(A.5)

and α4(τ) and β4(τ) in (2.14)–(2.16), cancels the 1
r2

log r contributions in (A.4). The results

for the components of the stress-energy tensor eq. (1.1) are in eqs. (4.11)–(4.13), with:

ε̃γ =
25

144

γ′

τ3
−

65
96γ
′2+ 25

144γ
′′

τ2
+

19
32γ
′3+ 1

96γ
′(τ)γ′′− 5

48γ
(3)

τ
− 57

256
γ′4− 1

8
γ′′2+

5

32
γ′γ(3) ,

(A.6)

p̃⊥ γ =− 1

6τ4
+

409

576

γ′

τ3
−

8
9γ
′2 + 587

1728γ
′′

τ2
+

73
192γ

′3 + 145
288γ

′(τ)γ′′ − 1
288γ

(3)

τ

− 11

256
γ′4 − 21

64
γ′2γ′′ − 1

96
γ′′2 +

5

96
γ′γ(3) +

7

192
γ(4) , (A.7)

p̃‖ γ =
1

3τ4
− 359

288

γ′

τ3
+

49
36γ
′2 + 437

864γ
′′

τ2
−

5
12γ
′3 + 233

288γ
′γ′′ + 7

72γ
(3)

τ

− 11

256
γ′4 +

21

32
γ′2γ′′ − 1

96
γ′′2 +

5

96
γ′γ(3) − 7

96
γ(4) . (A.8)

Energy density and pressures are hence affected by the variations of γ(τ). The above ex-

pressions coincide (after the correction of an overall minus sign in ε̃γ) with the ones in [12]

after the recognition of terms due to the regularization scheme proportional to σµν , related

to the coefficient of the r−4 log[r] term in the large-r expansion of the metric. The covariant

conservation of the stress-energy tensor gives again eq. (2.20).

B Testing the numerical algorithm

To quantify the accuracy of our numerical algorithm, based on the Runge-Kutta method

for the solution of the differential equations in the variable r, we monitor the ratios

R6(r, τ) =
Σ(Σ̇)′ + 2Σ′Σ̇− 2Σ2

|Σ(Σ̇)′|+ 2|Σ′Σ̇|+ 2|Σ2|
(B.1)

R7(r, τ) =
Σ(Ḃ)′ + 3

2

(
Σ′Ḃ +B′Σ̇

)
|Σ(Ḃ)′|+ 3

2

(
|Σ′Ḃ|+ |B′Σ̇|

) (B.2)

R8(r, τ) =
A′′ + 3B′Ḃ − 12Σ′Σ̇

Σ2 + 4

|A′′|+ 3|B′Ḃ|+ |12Σ′Σ̇
Σ2 |+ 4

(B.3)

R9(r, τ) =
Σ̈ + 1

2

(
Ḃ2Σ−A′Σ̇

)
|Σ̈|+ 1

2

(
|Ḃ2Σ|+ |A′Σ̇|

) (B.4)

R10(r, τ) =
Σ′′ + 1

2B
′2Σ

|Σ′′|+ 1
2B
′2|Σ|

(B.5)
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Figure 10. Ratios Ri(r, τ) in the case of model B. The white region corresponds to the excision

in rmin.

in the (r, τ) domain behind the excision r > rmin. The final results are shown in figure 10

in the case of model B. The resulting ratios R6, R7, R8 deviate from zero at a level smaller

than O(10−4), but for a tiny region close to the excision in the case of R6 and R8, and for a
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Figure 11. RatioR9(r, τ = 4) computed in the range 1.2 6 r 6 3.0 for dτ = 10−2 (pink, continuous

curve) and dτ = 0.5 · 10−2 (purple, dashed curve) in the case of model B.

few spots in the range 3 6 r 6 5 (where the source function γ(τ) is peaked) in the case ofR7.

A similar result is obtained forR9 andR10, with larger deviations from zero: this is a conse-

quence, for R10, of the smallness of the two addendi in (2.9), and for R9 of the computation

of Σ̈ = ∂τ Σ̇+ 1
2A (Σ̇)′ through a discretized time derivative. To monitor the time slicing, we

compute R9 for two different time steps in the region 1.2 6 r 6 3.0 at τ = 4, where there is

the largest deviation from zero. Comparing the results for dτ = 10−2 and dτ = 0.5 · 10−2,

as shown in figure 11, one observes the decreasing of R9 by doubling the grid points.
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