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1 Introduction

The holographic correspondence [1, 2] is one of the most important discoveries in string the-
ory. It establishes two important lines of enquiry. Firstly it allows the analysis of strongly
coupled phases of gauge theory through our understanding of semiclassical gravity, and
secondly it allows investigation of the quantum aspects of gravity via direct computation
in gauge theory.

Gravity analyses have revealed remarkable properties of supersymmetric gauge theo-
ries. For example, the thermal energy density, €, of (p+ 1)-dimensional large- N maximally
supersymmetric Yang-Mills (SYM) theories at strong coupling (1 < \,/T3P < N 2<75fipp))
are predicted by gauge/gravity duality to be precisely the same as that due to the semi-

2(7—p) —3=P
classical thermodynamics of a black Dp-brane, and hence € = a, N?T 5> )\, > " where \,

is the 't Hooft coupling, and a, is a known constant. This behaviour is quite distinct both

from the Stefan-Boltzmann law (e ~ N2TPt1) of weak coupling, or confining behaviour
€ ~ O(N) typical of non-supersymmetric gauge theories. Likewise, for the (2+1)- and
(541)-dimensional superconformal field theories describing the low energy dynamics of M2
and M5 branes, holographic duality predicts from a black brane analysis that the thermal
energy densities go as ~ N3/2T3 and ~ N3T® respectively. Such gravity calculations have
not only allowed thermodynamic behaviour of these supersymmetric gauge theories to be
precisely determined, but also have shown these behaviours are not those familiar in other
gauge theory settings.

Ideally we would like to be able to compute these thermodynamic behaviours directly in
the gauge theory. However, failing that, we would like to have a gauge theoretic understand-
ing of how they arise. Unfortunately a naive extrapolation of weak coupling perturbation
theory provides little insight into this, as clearly the perturbative behaviour e ~ N27P+1
bears little resemblance to the behaviour above for black p-branes. Hope was glimpsed in
the special conformal case of p = 3, where weak and strong coupling do indeed have the
same functional dependence on N and T, differing only by a factor of 4/3 [3, 4]. However,
as we see, this is a peculiarity of the conformal case, and in general the situation is more
complicated. Indeed for the conformal ABJM theory of M2 branes weak coupling predicts
€ ~ N2T3. Now the temperature dependence agrees with black M2-branes, due again to
conformal symmetry, but the N dependence is wrong.

The challenge then is to find new ways to compute thermal behaviour at strong cou-
pling. One promising analytic approach, explored for p = 0 is a method analogous to the
mean field approximation [5-7], although recent work indicates that one still cannot see
the above thermal behaviour [8]. Numerical approaches were initiated for p = 0 in [9-12]
and confirmed the behaviour predicted by gravity, with the latest results being [13, 14].
For p = 1 numerical evidence [15] also supports predictions from gravity. Other numerical
approaches have focussed on dynamics within the thermal setting [16]. These numerical ap-
proaches are a very exciting prospect for the future, but are unlikely to shed light on why the
above behaviours emerge at strong coupling. The purpose of this paper is to present a sim-
ple, yet predictive approach, that using direct calculation only in gauge theory allows one
to understand the origin of the important features of the strong coupled thermal behaviour.



The approach we take builds on our recent work exploiting the special fact that the
theories we are considering have exact moduli spaces associated to the Coulomb branch
vacua. One may derive an effective moduli theory by integrating over the remaining degrees
of freedom. This calculation is controlled by being far out on the Coulomb branch, implying
these remaining degrees of freedom are very massive. Thus the moduli action can be
computed as a weakly coupled loop expansion, although it is worth emphasising this is not
the usual perturbative expansion in the 't Hooft or gauge coupling.

The thermal strongly coupled regime does not correspond to these distant regions of the
Coulomb branch, and so one must consider this moduli theory to be strongly coupled when
describing the thermal physics of interest. The crucial point is that whilst this moduli the-
ory is computed in a weakly coupled regime, naive extrapolation to strong coupling appears
to yield results that reflect the behaviour expected from gravity. It has long been known
that it encodes the dynamics of a probe brane [17-22], and this played a key role in the
identification of M-theory and the holographic correspondence [1, 2]. Non-renormalisation
theorems due to the supersymmetry play a crucial role in allowing these weakly coupled
results to yield information about strong coupling [23, 24]. Following earlier related ideas
in the context of p = 0 [25-28] which considered a somewhat different phase than the one
discussed above (associated to M-theory rather than D0-branes), and the work of [29] again
for p = 0 which argued one could deduce the temperature dependence of black DO-brane
behaviour, it was proposed in [30] that both the N and temperature dependence of all the
black Dp-branes could be recovered by naive estimates of the strongly coupled behaviour of
the moduli theory. In fact the thermal behaviour of a certain mass deformation of the p = 0
theory (the BMN matrix quantum mechanics [31]) was predicted in [30], and this has been
very recently confirmed in a dual supergravity analysis [32]. Then [33] argued that using
ABJM [34] one could recover the thermal N3/? dependence of black M2-branes, and even,
under modest assumptions about the M5-theory, a thermal N3 behaviour in that case.

A new development was made in [35], where it was argued that for any black p-
brane system, by constructing a field theory derived from considering the dynamics of
nearly parallel branes weakly interacting gravitationally, then naive thermal estimates at
strong coupling would yield the entire dependence on all physical parameters of the energy
density, and further related the vevs of scalars in the field theory to the horizon radius
of the black brane. Rather mysteriously it also allows certain transcendental factors with
a geometric origin to be deduced. In the cases where the branes have a known gauge
theoretic description (Dp and M2), this field theory was a subset of the full moduli theory,
precisely due to the fact mentioned above that these moduli theories reproduce gravity
dynamics. More recently [36] have applied these ideas to the D1-D5-P system to correctly
reproduce the parametric dependence of the free energy on temperature, including certain
transcendental factors. This generalisation to an intersecting brane system using the same
methods of estimation in fact works despite important differences from the coincident brane
case, and we regard it as good evidence for the validity of this approach.

In this paper we study the full moduli effective theory of maximally supersymmetric
(p + 1)-dimensional Yang-Mills at finite temperature, focusing on the bosonic sector, and
also with a compact spatial direction. In addition to the phase described by a dual black



Dp-brane there are other regimes of the theory, some with black brane gravity duals related
by S-duality or a lift to M-theory, and others without gravity dual [2, 37]. We also consider
compactifying the theory on a spatial circle, which allows for phase transitions with dual
Gregory-Laflamme descriptions [38—42]. Using the ideas of [35], we argue that the moduli
theory encodes all the strongly coupled phases, and also predicts where transitions will
occur. Furthermore it allows not only the behaviour of the energy density to be found, but
also predicts the behaviour of other observables, such as the Polyakov-Maldacena loop. In
addition, the moduli effective theory reproduces not only the dynamics of the dual Dp-
branes as discussed in [35], but also encodes correctly the dynamics of the M2, M5, F1 and
NS5 branes that are dual in certain parameter regimes.

This paper is arranged as follows. We begin in section 2 by discussing the effective
moduli approach to study the strongly coupled thermal phases of SYM theory. This section
considers the large IV regime where the temperature is of order one in units of the 't Hooft
coupling - this is the regime where the black Dp-brane is the gravity dual. Then in section 3
we show how the moduli theory is modified when the SYM has a spatial direction that is
compact. We argue that the moduli theory then correctly predicts a transition in thermal
behaviour which is dual to the gravity Gregory-Laflamme phase transition. In section 4 we
discuss the corrections to the moduli theory that become relevant at very strong coupling,
where the temperature in units of the ’t Hooft coupling scales with a power of N. We argue
that the various transitions in behaviour predicted by gravity may be understood directly
in the moduli theory. The main result of these discussions is that the strongly coupled
phases of the SYM phase diagrams, with a compact spatial direction, can be elucidated
simply by the moduli theory. In contrast the dual description is very complicated involving
many different dual gravity theories, branes and transitions. This entire picture is discussed
in detail in the appendix A. We conclude the paper with a discussion in section 5.

2 Review of effective moduli theory for thermal maximally supersym-
metric Yang-Mills

We review the derivation of the moduli theories for (p + 1)-dimensional maximally super-
symmetric Yang-Mills theories. We then review how this theory encodes the dynamics of
weakly interacting Dp-branes and how a naive extrapolation to strong coupling yields the
thermal behaviour of black Dp-branes of the holographic gravity dual [35]. The (p + 1)-
dimensional maximally supersymmetric U(N) Yang-Mills theory has an action,

N 1 1 1
—— A/dm% Tr [—4Ffw - §D“<I>IDM<I>I +3 (@, <1>J]2 + fermions (2.1)
P

where the scalar fields ®/ (I =1,2,...,9—p) and gauge field A* (u=0,...,p) are N x N
hermitian matrices transforming in the adjoint of the gauge group. A, is the 't Hooft
coupling defined as

p—3

A = gy N = (2m)P*Ngy(a') 2 (2.2)

where g5 and o' are the string coupling and the Regge slope respectively.



Consider the thermodynamics of this theory on flat space and finite temperature 7'
Then the theory has two dimensionless parameters: the dimensionless effective coupling

At = A\p T2 (2.3)

and N. We focus on the large- N limit where thermodynamical properties are determined
by the strength of this effective coupling Aeg.! We note that for p = 3 the theory is
famously conformal. For p > 3 the theory becomes subtle due to its non-renormalizability.
However, various arguments in string theory indicate that at least for p = 4,5 the theory
may have a good UV completion and hence can be thought of as an effective low energy
description of a more fundamental theory on the world volume of Dp-branes [2]. Whilst
for completeness we will also consider the p = 6 case, we emphasise that it is likely there
is no decoupled world volume description for D6-branes.

2.1 The perturbative limit

In the weak coupling region (Aeg < 1) one may perform the standard QFT weak coupling
perturbation around ®/ = 0. Through a dimensional analysis, we can estimate the thermal
energy density € and the scale of the scalar fields as?

e~ N2 TP &~ Ay T. (2.4)

Here we see the Stefan-Boltzmann law mentioned above for the energy density. The cou-
pling dependence of the scalar is obtained by renormalizing the scalar to the canonical one,
and the N? is determined by the number of UV degrees of freedom. As emphasised in the
introduction, a naive extrapolation of these formulae into the regime where Aeg > 1 fails
to reproduce the behaviour of the theory that we deduce from holographic arguments.

2.2 Moduli dynamics from a weakly coupled regime on the Coulomb branch

At zero temperature the maximally supersymmetric theory admits an exact moduli space,
parameterized by the scalar field ®' hermitian matrices being constant and commuting.
We may write such vacua as,

(Aﬂ)ab = aﬁf%b ) (q)l)ab - (bglléab ) \I’gb =0 (25)

where ¢! are constants parameterizing the breaking of U(N) — U(1)", and we have
also included constant commuting gauge fields parameterized by the constants a*. Such

!'We note that as argued in [2, 43] the gravity analyses show that the canonical ensemble may not be
well defined for p > 5. In these cases a natural dimensionless parameter is A\p,x* > rather than Aeg, where
X is the characteristic scale of the adjoint scalars.

2These dimensional arguments are naive as we have ignored IR divergences. Especially for p = 0,
DO-branes can dilute and the free energy diverges [8, 9, 44]. This is a weakly coupled moduli regime we
will discuss in section 2.2. However DO-branes can compose a bound state too and the quantities scale
as € ~ N?T and ® ~ (A\oT)"* for small \eg [41, 45]. Indeed the scaling for the scalar differs from the
naive dimensional analysis (2.4) due to the large fluctuations of the thermal zero modes. This bound state
would be stable if we take the strict large- N limit, and would continue to strong coupling regime where the
thermodynamics agree with black DO brane.



a vacuum configuration encodes a mass scale, ](Eab\ due to the separation of the scalars
where we have introduced the vector notation ¢! « gzﬁa, thinking of the moduli as belng
valued as vectors in R%7P. We have further introduced the notation gf)ab = d)a ¢b and
will likewise use a' b = =al — ab Consequently fluctuations about this configuration can be
thought of as being light with respect to this scale, or heavy and of this scale. Since we
have a moduli space of vacua, there are light modes which describe the dynamics of these
moduli, namely the long wavelength fluctuations in the parameters of the vacuum, a4 and
#!, the diagonal components of the bosonic fields. Conversely the off-diagonal excitations
of the fields are massive, with a scale set by ~ ]q;ab]. In the limit where this mass scale
is suitably large, far out on the Coulomb branch, we might hope to integrate out the off
diagonal degrees of freedom and generate an effective theory for the moduli fields.

Now consider finite temperature 7. Provided we consider \$Gb| > T, then the same
picture applies. We may separate the light degrees of freedom, which are still the fluctua-
tions in ak and ¢!, and consider their effective theory from integrating out the remaining
off diagonal degrees of freedom. The difference is that now the moduli theory will itself be
at finite temperature, and will receive additional temperature dependent corrections.

If the corrections to the classical moduli action from integration over the massive
degrees of freedom are weak then the moduli would have a free thermal behaviour

e~ NTPTL, (2.6)

However this free thermal behaviour, having entropy going as O(NV), would be dominated
by the typical O(N?) entropy of large-N gauge theories.> This may imply that this free
thermal behaviour is unstable if we turn on the interactions for the moduli.

The loop expansion for the calculation of the interactions is controlled by the dimen-
sionless couplings A,/ |$ab|3_p and we emphasise that it can be computed for all p (including
the subtle p > 3 cases). It is important to understand that this computation, while weakly
coupled, is quite distinct from the usual perturbation theory. For example, for p < 3 here
we may consistently have Aeg > 1, and regain control provided that A,/ |g5ab|3_p < 1, s0
that we are far enough out on the Coulomb branch. Integrating out the massive degrees
of freedom, one obtains the finite temperature effective moduli theory,

SYM SYM SYM SYM
S Scl Sone loop Stwo loop ey (27)
SYM _ non-thermal thermal
Sone—loop - Sone—loop Sone loop -

Here SCSIYM is the classical term directly from the original action (2.1),

SSYM — /dep:U Z ( (8¢a)? éll(F‘/;V)z + fermions)

= / drdp:zzz< (FMNy2 +ferm10ns> (2.8)

a=1

3For p = 0 the moduli may behave as free particles, and the entropy may show IR divergences and
dominate. See also footnote 2.



where F}, = J,ay, — 0yay,. Here we have introduced 10-dimensional SYM notation, where
Fi;n (M = (p,I)) is the field strength of the 10-dimensional SYM theory. Through
classical dimensional reduction this can be viewed as the parent of our (p + 1)-dimensional
theory, where scalar fields are encoded in the extra gauge components in 10-dimensions,
Al = ¢!, so,

FiynFirn = 20u6a - 0" 0 + Fi, FL,. (2.9)

Since we are interested in finite temperature we consider the theory in Euclidean time,
7, periodically identifying 7 ~ 74 1/T". Whilst there is no explicit temperature dependence
in the classical part of the moduli action (2.8), we emphasise that these light moduli fields

‘feel’ the finite temperature due to this periodicity of Euclidean time.*
The weakly coupled massive modes yield loop corrections. Sgrilffoop are the quantum

and thermal corrections induced by the one-loop integral of the off-diagonal components.
The quantum contribution that arises at zero temperature, which we therefore term ‘non-
thermal’, takes the form (again using the 10-d SYM notation),’

27)4-P
Snon—thermal - _ ( 210
one-loop 32(7 — p)ngp ( )
2
o faniay SRR ~ (a3 (o (7))
N P
a<b ‘ ab) ab

for small (F$2y)?/#%,, and where again we use the notation F{2\ = F{ — Fb, . Here
(= o 3" / F(g%p)) is the volume of a unit (8 — p) sphere. We may explicitly expand
in terms of (p + 1)-fields,

- -\ 2 - -

FipnFRFk ity =2 (0ubas - Ouban) + 40ubas - 0,0 i Fil + Fi PR FAVFSL . (2.11)
We note there is no explicit temperature dependence, but as with the classical terms
periodicity of Euclidean time implicitly records the temperature. An important comment is
that these zero temperature corrections start at four derivative order, since supersymmetry
protects the moduli from developing a potential, and maximal supersymmetry also protects
the two derivative kinetic terms from corrections.

At one-loop the effective theory also receives corrections due to finite temperature.
Since finite temperature manifestly breaks supersymmetry, the form of these corrections is
more complicated, and there are corrections at zero, two, four derivative order and beyond,
as computed in [30]. For example, the potential is the simplest correction at one-loop, and

4There is a subtlety that we have brushed over. The scalar part of the classical moduli action above
appears to be a sigma model in the target space ], R°~P. However, we have ignored the SYM gauge
transformations that simply permute the diagonal components of the SYM matrix fields. Hence really
we should identify the classical moduli theory under such permutations (q_ﬁ’a,af;) — (gpa,a’;a), for P a
permutation (1,2,...,N) — (P1, Ps,..., Py). Doing so for all permutations, then the sigma model target
space for the scalars becomes the symmetric product SyR%™P. This will be relevant for p = 1 [46-48] in
the later section 4.1.

5This one-loop result is derived in appendix B.



takes the form,

, * * . N p/2
Siﬁi‘”i‘ii Pt = _(2;)619/2 /dep:EZ We‘ﬁl%H <B\¢ab|) / (2.12)
a<b
where U, is the Polyakov loop around the Euclidean time circle, so that U, = ¢l $daa —
ei$drag 6 We see explicitly for this potential that it is proportional to exp(—p |q_§a - $b|)
which is the Boltzmann factor of the off-diagonal components which have mass o |q§a — $b|.
Likewise, the contributions at higher derivative order are similarly controlled by the same
Boltzmann factor dependence [30].

As discussed above, at zero temperature this moduli action encodes the dynamics of N
nearly parallel Dp-branes in flat 10-dimensional space, interacting weakly via the gravita-
tional sector [35]. In particular, if we consider zero temperature, and identify X! = 2ra/¢?L
as the transverse positions of the nearly coincident N Dp-branes, then the leading two
derivative term above gives the dynamics due to the brane tensions, and the four deriva-
tive term accounts for classical exchange of the 10-d supergravity graviton, dilaton and
form field. This agreement is of course well known [18], resulting from non-renormalisation
theorems, and is the basis for postulating the holographic correspondence between the
gauge theory and a dual closed string theory.

At finite temperature we argued in [35] that as usual for an interacting thermal system
it should obey a virial relation, where the dynamics due to the leading two derivative kinetic
term is balanced by the interaction terms. This assumes a good thermal vacuum exists and
does not apply to the case where it is simply dominated by the leading free two derivative
terms. The virial relation immediately implies that the theory will be strongly coupled,
since one cannot assume the higher order terms are small, and in our moduli theory we
have an infinite set of higher loop terms which we believe all become equally relevant.

The crucial point is that whilst a naive extrapolation of usual perturbation theory to
strong coupling yields unphysical results, a naive extrapolation of the moduli theory to
strong coupling reveals many of the features of black Dp-brane dynamics.

2.3 Recovering the dual black Dp-brane phase

The dual black Dp-brane phase in ITA or IIB supergravity is the canonical strongly coupled
phase of SYM, and in particular this phase applies in the 't Hooft regime. The black p-
brane describes the thermal theory in the large N limit, for effective coupling Aeg ~ O(NY).
However an analysis of o’ corrections [2]| in supergravity shows that this gravitational de-
scription only applies for, )

1< A, (2.13)

1
and as mentioned above for the opposite regime )\jf}” < 1 the SYM becomes perturbative

if p < 5.
As we will discuss later, this phase in fact extends beyond this 't Hooft thermal regime
even though for all p the dual IIA or IIB black brane description eventually breaks down

%Note that for p = 0 this potential term was computed in [44].



2 _1
for N™=» < A\ 5" due to strong string coupling. For some p there then is a phase transition

to a new behaviour at sufficiently strong coupling. To begin our discussion, we now review
how the moduli theory may be used to see the existence of the dual black Dp-brane phase
directly in the SYM for Ag ~ O(N).

In order to proceed we will assume that only a subset of the terms in the moduli action
are required to describe the thermal state. We call these the ‘leading’ contributions [35]. By
this we mean the lowest derivative terms at each loop order of the non-thermal corrections.
We will assume that all higher derivative terms, controlled by (F,)2/ ¢, at a given loop
order, are negligible comparable to the lowest derivative term. Further we assume that the
thermal corrections are subdominant to these leading non-thermal ones. We then argue
that these assumptions are self-consistent within our extrapolation to strong coupling.

Next we assume that the gross properties of the thermal state scale are controlled by
one physical scale, x, which we can think of as characterising the thermal vev of the scalars.
In the spirit of a mean field approach, we then estimate the vev of a local operator by using
the following rules. Where one sees scalars in the vev, or differences between scalars, we
estimate by the physical scale ¥,

G~ ba— Py~ X - (2.14)
Derivatives are estimated using the thermal scale,
Op~mT (2.15)

provided that only the Euclidean time direction is compact with anti-periodic fermion
boundary conditions. Thus we estimate aﬂgﬁa ~7mTyx.

We note that for p # 3 there is another dimensional scale in the problem as well as T,
namely the coupling A\,. The reason that we estimate time derivatives with the scale T,
rather than with for example a scale derived from the coupling is that the thermodynamics
is believed to occur in a scaling regime, where the temperﬁture T is far separated from

the scale set by A,. Recall the regime of interest is 1 < )\esfpr with Aeg = Ap TP~3. Hence
assuming the theory is not trivial (so there is no mass gap) at such temperatures, then the
only relevant energy scale should be the temperature itself.

We make the same estimate for the gauge field, so that d,a,, ~ Fu, ~ 7T x. In
particular this means that where we see FaM NorF C{\g[ N'in a vev we make a replacement,

EMN  FMN nTy. (2.16)

a

We might be tempted to treat the gauge field without derivative in the same manner as

the scalars, so that,
aly ~ @k —ay ~x. (2.17)

We note however, that the constant mode of the gauge field about the thermal circle has
a potential from a different source in equation (2.12) than the scalars, which obtain a
potential directly from the non-thermal one-loop term (2.10). We will later argue that
the potential (2.12) will be negligible in the regime we are interested in, and therefore the



estimate above in (2.17) may not hold due to this lack of potential for the constant mode.
Of course this does not affect the estimate for the derivatives of a4 in (2.16) which do not
care about the constant mode.

A very important point to emphasise is that one may see above we are including factors
of 7 in our estimation, and we will later also consider geometric factors from sphere volumes.
This is for the simple reason that it apparently reproduces the correct answer. At present
we have little understanding for why, but presumably it is due to non-renormalisation
properties of the theory. We emphasise that in estimating the derivative above it is natural
to include a factor of 7, since a Matsubara mode takes the form,

Un(7) = T Oy, = 2n iy, (2.18)

and hence keeping factors of 7 it is (77") that is associated to 7 derivatives.

As we will see later, we will have factors of powers of 7 in our expressions as well as
(8 — p)-sphere volumes, Qg_,, originating from the non-thermal one-loop term in (2.10).
Now again recalling Qg_p,(= 2W%TP/F(9%Z’)), then we see for integer p that Qg_), is simply
a power of m multiplied by a rational number, and therefore for integer p there is no need
to separately account for factors of 7 and factors of {23_,, they may simply be combined
into powers of m. We emphasise that in this work we will implicitly consider p to be a
continuous parameter that we may continue away from the integer values, and in this case
the sphere volume involves a non-trivial factor due to the Gamma function, so that it is
not simply powers of m up to a rational number. Considering p as a continuous parameter
then it makes sense to treat factors of powers of m and {23_,, separately as we shall do.

Lastly any sums over colour index are estimated in the obvious manner, >, ~ N,
> acp ~ N? ete. .., where we focus on the large N limit only.

Let us illustrate this by considering the operators of the classical and leading one-loop
densities in the moduli action (ignoring fermions);

N
N 1
Lo= 5 dpy,
P a=1

Lo ' S ARRF PR — (i Fiy)” (2.19)
1T 82(T - p)sp s |7 ' '

ab

Firstly consider the (renormalised) finite temperature vev of Ly. We may use our rules to
estimate,

(Lo) = (

x N x (nTx)? = ———2- (2.20)

~10 -



where we emphasise that we have dropped any rational constants (going from the first to
the second lines), but have kept the transcendental geometric factors involving the 7’s. For
Ly we estimate the (renormalised) vev,

_ 2
(R AP P PR, — (P Pih)”
= — 7
37— Py 2 i
4—p ( T )4 N2 8—pT4
™ TLX ™
8—p X 8—pX

Using these simple rules we argue that one can estimate the (renormalised) vevs of
local operators. However, we have an undetermined scale x. This we fix by the assumption
that the thermal state is strongly coupled and virialised. If we ignored all higher loop
terms, and focus on the zero- and one-loop leading terms in the moduli action, we would

obtain a (Euclidean) virial theorem,”

(/ drdPz (2Ly — (3 —p)L2)) =0. (2.22)
Assuming spatial homogeneity this implies the finite temperature relation,
(Lo) ~ (Lo) (2.23)

where we have dropped dependence on rational constants. Using our estimation methods
for these vevs from above then implies,

N27T2T2X2 N27T8_pT4 . 5 p )\p,].r6pr2
)\p QS—pX3_p X QS—p

(2.24)

and hence fixes our unknown physical scale.

Thus at strong coupling we estimate that each leading term in the classical and one-
loop moduli action contributes with the same parametric form, with the scalar and gauge
fields contributing in the same way. We have only considered the leading one-loop term,
but as we have argued in [35] we expect that all the leading higher loop terms in the moduli
action also have precisely the same parametric dependence.®

The virialised state exhibits a low energy scale invariance at strong coupling, governed
by the leading terms at all loop orders. As noted in [35], the classical and one-loop leading

terms scale covariantly under the rigid transformation,

) 5— 5-p . o 2 o 2
(r,2') = (A5 rr, A5 52, $g— AT5¢,, a — ATral (2.25)
with,
2(7—p) 2(7—p)
Lo— A3 Lo, Lyg— A3=r Lo. (226)

"This can be derived from the Lorentzian moduli theory in the usual manner and continued to Euclidean
time, or obtained directly from the Euclidean path integral as a suitably renormalised Schwinger-Dyson
equation associated to the scaling of the fields, ¢ — (1 + €)@a, a’ — (1 + €)a’ for infinitesimal .

8Note that while the virial relation (2.22) becomes trivial for p = 3 really we are concerned with strong
coupling where all leading terms at arbitrary loop order contribute with the same parametric form, not just
the first two terms.
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The non-thermal corrections to the leading terms which we ignore,

(9)° - A2M (2.27)

¢ ot
5—
scale to zero as we take A — 0. Note that the temperature scales as T" — AFHT.
Then the Boltzmann factor of the thermal corrections also scales to zero,

e Py g PN (2.28)

in the A — 0 limit. Based on this scaling property we can say that the strongly coupled
regime is dominated by the terms which scale covariantly in the same manner as the
classical and one-loop terms, and we expect that at each loop order there are such terms
present in the non-thermal theory.

Consider now the energy density of the theory. The (Euclidean) stress tensor of the
Yang-Mills theory is,

Ty = )Z\\;Tr F..F,*+D,®'D,® —1,, (leF2 + %(D‘IZ'I)2 - i [<I>I, @J]2>} + fermions.

(2.29)
Just as with the Euclidean action where we could integrate out the off-diagonal modes to
produce an effective action governing the moduli, we can consider the vev of the stress ten-
sor in terms of these moduli degrees of freedom. At leading classical order since the moduli
are diagonal all commutators vanish, and the classical contribution to the stress tensor is,

(B = (G 52 [ (B Fo), ™ = T BV 4. (230

a
where the ellipsis represents corrections from integration over the off-diagonal modes. We
could equally obtain this expression by considering the stress tensor of the effective moduli
action. In particular the terms given above are from the classical term, 9Lo/0g.., and the
ellipsis above would be due to the higher loop terms, such as dL2/0g,,,. The important
point is that using our naive strong coupling extrapolation we can estimate this vev, to

obtain,
N
(L) ~ (3 Y F)un(Fa)pol + )
p a
N N2 2T2 2
~ L XN x (iTy)? = 2 X (2.31)
Ap Ap

which of course is the same estimate as for (Ly) and (Lg), essentially the statement that
the vev of the Euclidean Lagrangian density is related to the free energy density, which in
this phase behaves in the same way as the energy density, and hence has the same estimate.

Then, using the fact that we have determined the scale x using our strongly coupled
virial assumption,

2(7—p)

2

N2 2T2 A G—pT2 5—p __2 224 __1 5— 1+p

(Tp) ~ —— il N2 T (TA, ) AT (2.32)
X s, p
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which gives an estimate for both the energy and pressure of the strongly coupled thermal
phase (we note this still correctly applies in the conformal case p = 3).”

Now we compare this stress tensor vev to that predicted by the thermodynamics of
a black Dp-brane in the gravity dual. The string frame metric and dilaton for the black
Dp-brane is [2],

1
T-p\ 2 o T—p\ ~
o lds? = <U > (—fdt* + da'dx") + <U )

=

1
<de2 + U2dQ§p)

dpAp dpAp
3—p
Ap [(dpAp \ 1
¢ _ 2-p 2p [ “p7p
e? = (27) N <U7P>
T—p 3 _
f=1- <%’> 7 d, = 9T-2p 252 <72p> (2.33)

where the radial coordinate U has units of energy, and the horizon is located at U = Uy, and
in addition the p-form field also has a non-trivial radial profile. Then using standard black
hole thermodynamics one finds that the energy density € in terms of entropy density s is,

1
(243—7p7r13—3p(9 _ p)—(g_p)r (9;1)>2> 2(7—p) %
_Dpb
5= N? — AT (2.34)
which using the first law, and the relation,
2 2—P
Ogp= —0 (2.35)
T (9;17)
2
gives,
1
931—5p 22—4p 5—p ) _ﬁ 2(7—p) %
e=(9—p) ((7 —p)3(7_p)Q§_p N2(TA, *7P) 572 A
= pr 98717 T °7P T)\p )\p 5 bp = (9 — p) m (236)

and we note that up to the factor b,, which does not contain the geometric factors = and
Qg_p, our estimate above from the stress tensor precisely reproduces this. We emphasise
that this expression also applies in the case p = 3.1°

We note that these Yang-Mills theories have been argued to enjoy a generalised con-
formal symmetry [49]. Such a symmetry, if indeed it survives in the quantum theory, is

9Note that we have not considered or used any additional information from Lorentz structure, or as-
sumptions of generalised conformal symmetry [49, 50] that would further constrain the vev of the stress
tensor. Obviously here, the Lorentz symmetry, which is broken by finite temperature, would constrain
the stress tensor to be static and have an isotropic pressure. The generalised conformal symmetry would
constrain the trace of the stress tensor.

10T he results agree with SYM even at p = 6. However in this case, the specific heat is negative, indicating
the instability of the thermal state in SYM.
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powerful in constraining non-local operators, such as correlation functions and transport
coefficients [50]. However, as we see explicitly in [50], it does not constrain the form of
the entropy (2.34) above beyond constraints already deduced from dimensional analysis.
Hence it is important to note that our analysis is providing non-trivial information about
the strong coupling behaviour that cannot simply be deduced from (generalised) symmetry
of the full gauge theory.

2.4 o corrections to the Dp-brane phase

The transition from weak to strong coupling is at Aeg ~ O(1), and in the dual black Dp-

brane solution is understood to be due to o’ corrections. Considering the black brane (2.33)
one finds,

Ug—p _ 213 2pﬂ_11 Qp)\pTQ

(7 - p)SQE%fp

and then we see that the radius, R(g_p), of the (8 — p)-sphere at the horizon measured in

(2.37)

string frame is,

1
dpp )
Rig_p) = Vo' ( : p) (2.38)

and hence for the o/ corrections to be negligible we require R(s_p) to be large in string
length units (which is sufficient for the string metric everywhere to be weakly curved in
units of o), and hence,

A —3=p 52
1< Ug’ip = 1< Ay (AWT?) 77 = A 5". (2.39)
0
Thus the condition for o/ corrections to be negligible is,
_1
1< A" (2.40)

and in the opposite regime where these corrections are strong one expects SYM perturba-
tion theory to be valid if p < 5 [2]. A challenge to our moduli description is that it should self
consistently determine that the approximations made do not apply to this weakly coupled
region of SYM, which as discussed in 2.1 has a very different thermodynamic behaviour.

As emphasised in [30] for p < 3, and then extended to the cases p > 3 in [33] the moduli
theory indeed achieves this. Remember that our estimates above come from considering
the leading terms in the moduli action. We have discarded corrections to the non-thermal
action, controlled by (0¢ap)?/|das|*, and also the thermal corrections which are controlled
by the Boltzmann factor e~1%tl/T We may use our estimates to consider when this is self
consistent, finding,

2 T 2 X
G (T) . ommech o

Hence both corrections are negligible when 1 < x /T, and using our estimate for y, the
corrections are negligible for,

1 1
X 1 )\p7r6_pT2 5—p 0P N, \ 5P
< T T ( Qg_p Qg_p T3-p ( )
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14(57[) )in agreement with gravity for

and hence we recover precisely the condition that 1 < A,
all p. Note we see that the dependence on p in the power is quite non-trivially reproduced
and is relevant when considering the subtle cases p > 3 where the SYM itself is rather exotic.

Thus we assumed that only the leading terms were relevant in the strongly coupled
regime, and then we see our estimates are only consistent with this if 1 <« )\if/f(s)_p ), although
O(NY), which is precisely when the Dp-brane phase is a good dual. For weaker coupling,
o corrections spoil this, and the gauge theory behaviour transitions over to the usual
perturbative regime.'! We note that numerical studies for DO [9, 10] and D1-branes [15]
appear to be consistent with a smooth cross-over, and such a smooth transition has been
argued in the context of the correspondence principle [51].

Whilst the moduli theory predicts when o’ corrections become important, an interest-
ing question is whether it can quantitively describe these sub-leading corrections. Naively
we would assume from (2.10) that the fractional size of the corrections to the leading be-
haviour would go as ~ (9¢)%/¢* ~ (T/x)?. However in the cases p = 0 and p = 3 dual
gravity arguments indicate that in fact the fractional size of the correction goes as the cubic
power ~ (T/x)? [52, 53]. Recall that our moduli theory is computed when it is weakly cou-
pled, and then our estimates naively extrapolate its thermal behaviour to strong coupling.
As we have said above, the fact that this apparently works for the leading behaviour must
be due to non-renormalisation properties of the leading moduli theory. It seems unlikely
to us that sub-leading terms also enjoy such protection, and hence it is not surprising that
we are unable to accurately estimate the size of the sub-leading corrections. That said,
clearly this would be interesting to explore further.

2.5 Predictions for other observables

Beyond simply estimating the energy density in the thermal theory at strong coupling by
naive extrapolation of our moduli theory applied to the stress tensor vev, we might also
make predictions for the behaviour of various other observables in the Yang-Mills theory.
Of course it is possible, for reasons currently unknown to us, that our moduli estimates work
only in estimating the stress tensor vev. However, it seems reasonable to assume that if our
estimation method works, it does so for a wider class of operators. One possibility is that
it applies to operators that are dual to supergravity modes - in the p = 3 conformal case
these are operators whose dimension are protected at strong coupling. However, another
possibility is that the estimates apply to a wider range of observables than these, and we
shall give some evidence that this is the case, finding they also correctly account for the
vev of the Polyakov-Maldacena loop.
Consider estimating the vev of an operator,

1

where we will not be specific about the spacetime index contractions - for example we
may contract them with some constant tensor which we assume contains no transcenden-

HEor p = 5, see section 2.7. At p = 6, both gravity and gauge theory descriptions are good if Aeg < 1.
It may imply that these two states lie separately in the Aeg < 1 regime [43].
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tal factors. Again we take the weakly coupled moduli approximation to it, and naively
extrapolating to strong coupling obtain,

1 - 1
O (@2 ~ <Nz¢“¢“+'“> ~ % x Ny?

2

ApmOPT? 5>

~<1’7T98> ’ (2.44)
-p

where the ellipsis represents higher loop corrections, which will all have the same parametric
form after estimation, and hence we just use the first term as an estimate.

We note that large-INV factorisation of multi traces is obviously respected by these
estimates. For example if we consider,

1 1
O (Tr®?) N (Tr®?)) (2.45)

then the leading classical moduli contribution yields,

O @y2(0)2 = % (Z ¢3> % (Z ¢§> +..) (2.46)
a b

and we will simply obtain an estimate where O(g)2(g)2 ~ (O(@)2)2 as we should expect at
leading order at large N.

Consider the issue of whether our estimates correspond to general operators or only
those dual to supergravity fields. In the conformal case p = 3, as we see from above, our
estimate predicts O(gy2 ~ A T2. Consider for the operator the particular index contraction
<%Tr [‘I>I &/ ]) so this is not a chiral primary operator. Recall a chiral primary requires
the SO(6) indices to be contracted by a totally symmetric traceless SO(6) tensor. Hence
this operator is not dual to a supergravity field, but rather to a bulk stringy excitation.
Correspondingly it has a large scaling dimension in the supergravity limit A — oo, with A ~
Al/4. Given the only dimensional scale is T, then naively we might expect the thermal vev
of our operator to have temperature dependence going as O(gyz ~ T A in disagreement with
our estimate O(gy2 ~ T? above.'? This example in p = 3 appears to be evidence against our
estimates applying to general operators which are dual to stringy bulk degrees of freedom.

Thus we expect that if one computes the 1-loop correction to the vev (2.43) we would
expect that for operators dual to supergravity fields this should yield the same parametric
estimate as the classical behaviour above in (2.44). On the other hand, considering an
index contraction that corresponds to a stringy mode, rather than a supergravity mode,
we would expect the 1-loop contribution no longer to have detailed cancelations between
the off-diagonal fermion and boson contributions, and presumably this 1-loop contribution
no longer has the same parametric form under our estimates as the classical term. It would
be interesting to confirm this by direct calculation.

We note that while our estimates may in principle apply to operators dual to super-
gravity fields, we should expect the vevs of many such operators may be forced to vanish

12YWe are very grateful to the referee of this paper for emphasising this point.
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due to symmetry. Thus we may get the parametric dependence correct, but it comes with a
coeflicient that is zero. For example, for p = 3 we would expect the vev of <%Tr [<I>] &/ ] Arg)
for the symmetric traceless SO(6) tensor Ay; to vanish, as from a dual point of view the
operator can only have a vev if the thermal state breaks the bulk symmetry of the S,
and we know the planar AdS-Schwarzschild supergravity black holes does not. Of course
if one were able to accommodate rotation on the S® in our estimation scheme then such
operators would become non-trivial.

Finally, let us consider a different non-local observable, the Maldacena loop about the
Fuclidean time circle. This is interesting as it can be computed in the supergravity, but in-
volves physics beyond the supergravity fields themselves. This Polyakov-Maldacena loop is,

1 .
W = ([ Tvef aramsore)

) (2.47)

where generally n!(7) € R?7P is a unit vector valued over the time circle but we shall
consider it is constant. Now at weak coupling the moduli theory gives,

W = Z 6§d7’(i(l2+n1¢£)+... > (248)

v

The argument in the exponential comprises both an imaginary part from the gauge field,
and a real part from the scalars. We have discussed above that an estimate for the gauge
field constant mode is subtle. However for the real scalar part we estimate ¢ dr (nl ¢£) ~
%X- Without treating the gauge field constant mode, we can only use this real part to
bound the estimate for W as,

1
WSNxNxe% (2.49)

since the phase part may potentially contrive to cancel the contributions to W. However,
let us assume it does not. Then we conclude,

1
% 1 )\p7r6pT2> 5-p
loeW ~ & = — | ——— . 2.50
g T=T ( . (2.50)

In fact this result may simply be checked from the dual black brane. The p = 0 computa-
tion in [54] can be generalised straightforwardly to arbitrary p, where for the metric (2.33)
one finds logW ~ Uy/(7nT). From the relation (2.37) and the estimate (2.24) we see
that Uy ~ mx. Using this we see the gravity calculation of log W precisely agrees with
our estimate above logW ~ x/T, including the 7 and sphere volume factors. Thus the
Polyakov-Maldacena loop is a nice example of an observable that does seem to be estimated
using our methods, but is beyond the case of local operators dual to bulk supergravity fields.

Note we assumed no phase cancellations in the estimation above, and it would be good
to provide justification of this, perhaps by considering loop corrections to the observable.

2.6 Horizon size

We now briefly discuss how the black hole horizon radius in the dual supergravity is related
to our estimates. In order to discuss the horizon radius of the black brane dual we need
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a measure of it. The most natural measure is the radius of the horizon as measured by
the branes themselves. As discussed in [35], a probe brane that is nearly parallel to the N
branes giving rise to the metric (2.33) sees the transverse space,

ds? = tar g 2q02 ) po1- (@)H’ (2.51)

f b z

where z = /U and 2, = o/Uy. Note that this is the superspace metric for the moduli that
describe the probe brane embedding into the background (2.33), and is neither a projection
of the Einstein frame, nor the string frame metric, but is related by additional powers of
e?. In this natural transverse brane metric the proper radius of the horizon is zj,.

As emphasised in [35], the relation between the transverse probe brane positions X} =
2ma’ ¢l and the moduli ¢! at weak coupling is suggestive that at strong coupling the size
of the black brane horizon, zp, which it is natural to associate with the thermal scale of
the brane positions X/, is given by,

zp ~ malx (2.52)

where ~ indicates equality including dependence on N, dimensional parameters and 7’s
and sphere volumes, but not including possible non-transcendental constants. Using our
estimate for x then this gives,

, )\p7T6_pT2 511’
zp ~ T | —————— . (2.53)
Qs—p

Up to a remaining numerical factor (not involving 7 or sphere volumes) this indeed gives
the correct relation for zj in the black brane solution, which we see directly in gravity using
zp, = &'Up and the black brane relation (2.37).

We note that a simple Yang-Mills observable yielding the black hole radius is the
Maldacena loop discussed above, as proposed in the case p = 0 [54]. Since we know from
explicit gravity calculation, and from our estimates, that log W ~ x /T, then we see,

2h wTlog W (2.54)
(0%

up to a non-transcendental constant of proportionality, which can be computed explicitly
from gravity if required.

2.7 The Hagedorn case p = 5

The case p = 5 exhibits Hagedorn behaviour, where the temperature is constant, yet the
energy density may vary. We have to apply our estimates more carefully in this special
case, but we find they still correctly work.

Firstly our estimate in (2.24) for p = 5 yields the Hagedorn temperature itself,

s

T2 ~ —.
As

(2.55)
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Thus the temperature is constant and the scale x giving the vev of the scalars is now the
variable in the thermodynamics. Then from (2.31), we obtain,

(Tyw) ~ 1 n2g 2T\ = N2 (2.56)
As )\5

which is a function of y. Hence we relate the energy density and pressure to the vev of

the scalars, determined by x. Note that from the above, z, ~ ma/y, and using this for the

stress tensor vev above correctly reproduces the black hole energy density and pressure as

a function of horizon size zj,.

3 SYM on a spatial circle

We now consider the super Yang-Mills where we compactify a spatial direction. In this case
dual gravity arguments indicate interesting new phase structure in the strongly coupled 't
Hooft regime, where 1 < )\if/f(&p) but still ~ O(N?).

3.1 Dp-branes winding a circle

In the N Dp-brane system, suppose that one of the spatial directions (say x,) in the
worldvolume is compactified to have radius L. If we took it to have anti-periodic boundary
conditions for fermions, then in the Euclidean picture it would manifest analogously to
the periodic Euclidean time direction, and hence would yield terms that are exponentially
suppressed in L|¢pgp| > 1, of precisely the form of the thermal corrections above but with
B — 2w L. However, we will focus on the more interesting case, where the fermion boundary
conditions are periodic. In this case, as we discuss in detail in appendix B, in fact at one
loop exponentially suppressed corrections in L|@gp| > 1 are generated, but the difference
with the anti-periodic case is that instead of correcting all derivative orders, they correct
only four derivatives and higher. Indeed the form of the four derivative correction which

we compute in the appendix at one loop is,13
2
SEtanee = [ o] / 0y YOS Y AR FER RS — (Fif Fif)
compact 27'I'L o = 32 Qg » ) B 5 g_Tp .
n P
(= ety +[u])

(3.1)
There are then two interesting limits to this one-loop term. Firstly when L|pg,| > 1 this
harmonic potential can be expanded to give our usual one in (9 — p) transverse dimen-
sions (2.10), plus exponentially suppressed corrections in L|¢gl;

2
Bt [ [T e (0 AR FS P, — (Fih P
compact — T T 0 Lp 32(7 —p)Qs o |T—p
a<b P Gab
(1 + e 2 Hbarl (27, |¢ab|) 7 cos (2wLa?,) + .. ) . (3.2)

13This one-loop term is governed by a harmonic potential in a transverse space which includes an extra
compact direction, with coordinate a?, with radius inversely related to L. This is of course the harmonic
interaction mediating gravity exchange between D(p — 1)-branes derived from the Dp-brane dynamics after
a T-duality on the compact circle so that its radius L — o'/L.
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Now consider the thermodynamics of this system by using our usual estimates. A key
assumption is that for periodic boundary conditions on the spatial circle we should still
estimate 0 ~ 7wT. Obviously if § = 1/T < L then temperature is the dominant energy
scale. However, for 5> L one might imagine that the energy scale 1/L should be used to
estimate the derivatives. Our use of T is precisely related to the fact that we are assuming
a non-trivial scaling dynamics at low temperatures, and indeed for temperatures well below
the scale ~ 1/L, and therefore it should be this lowest scale that determines the behaviour

of quantities such as derivatives.

We obtain our usual black Dp-brane behaviour if we treat the correction term as
negligible. However, we must check to ensure this assumption is self consistent, which
requires that L |¢g| > 1 in the expression above in order to suppress the correction term.
Our estimates yield,

La| ~ Ly ~ L(AT?)57 (3.3)

where since we just wish to determine the regime where the corrections are negligible we
ignore geometric factors. Hence this implies that a deviation from the Dp-brane behaviour
(as detailed in section 2.3) will occur when,

L~ (\T?) 5. (3.4)

This indeed agrees with the dual closed string predictions [38-40, 42, 56]. Defining the
critical length for a given temperature as L. = ()\pTz)*ﬁ, then precisely when L ~ L.
string winding modes about the compact spatial direction become unstable. These can
be understood by performing a T-duality on the circle, so that one is considering a black
D(p — 1)-brane smeared over the circle. Since the thermodynamics of such a black brane
is invariant under T-duality, this smeared D(p — 1)-brane has the same behaviour as the
original black Dp-brane that wraps the circle. However, such a smeared solution becomes
classically unstable in gravity to localising its horizon on the compact circle (the Gregory-
Laflamme instability [58, 59]), and this yields a phase transition to a new behaviour dual
to a black D(p — 1)-brane which is localised on the circle.' For L < L. the horizon
of this black D(p — 1)-brane is much smaller than the size of the T-dual circle (length
o//L) and so the energy density of the gravity solution (and hence the SYM, recalling
thermodynamics is T-duality invariant) behaves as that of a black D(p — 1)-brane in a
non-compact transverse space. More precisely, the energy density of the SYM integrated
over the compact circle should give the energy density of a non-compact black D(p — 1)-
brane solution. So for L <« L. we expect fOQﬂL dxp € to be given by equation (2.36) with

141f we had taken anti-periodic boundary conditions on a spatial circle, then we would not obtain such a
non-trivial dynamics at low temperature, and this would be reflected by estimating 9 ~ 7 max (%, ﬁ),
and a transition in behaviour will occur at 2wL = 8 where the lowest scale is flipped. A corresponding
phase transition does indeed occur in the dual supergravity [55-57].

5Evidence for this large N phase transition has been found in direct numerical studies for p = 1 [15].

Phase transitions in related Yang-Mills theories have been studied in [40, 41, 60, 61].
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the replacements p — p — 1 where the resulting parameter \,_; after this replacement is
related by dimensional reduction to the original Yang-Mills coupling so A\, = 27rL/\p_1.16

One important comment is that this transition from Dp-brane to D(p — 1)-brane be-
haviour is highly non-trivial in the dual description of the SYM. Firstly it requires a T-dual
frame to examine the gravity, and secondly it involves the Gregory-Laflamme transition.
We emphasise that it does not simply arise from a ‘dimensional reduction’ of a black Dp-
brane, which since it is wrapping the circle, cannot be reduced to give an appropriate
D(p — 1)-brane solution.

We have seen above that the correction to our moduli theory in (3.1) in the limit
L > L. precisely predicts the transition in behaviour. In fact as we shall now argue, we
may also estimate the D(p — 1)-brane behaviour for L < L. from our moduli action in
the compact case (3.1). Above the transition for L > L., we have argued L |¢q| > 1 and
hence the corrections in (3.1) due to the presence of the circle are negligible. Well below
the transition for L < L. in the new phase with D(p — 1) behaviour, we expect,

Ligh|. L|ab] <1 (3.6)

I

. and aﬁ » have the same estimate. Note that previously in section 2.3

where we assume ¢
we have estimated the gradients 0¢! in the same way as the gradients of the gauge fields,
F,, but were careful to point out that an estimate for the gauge field itself was subtle as
there are no explicit potential terms for the gauge field in the leading action. However, we
see in the leading action with a compact circle now al does have an explicit potential at
1-loop, and hence we are indeed justified in making the estimate ¢£b ~ a?, ~ x for at least
this p-component of the gauge field.

In the case L < L. we see that only the n = 0 term in the sum in (3.1) is important,

and hence the classical and one-loop terms of the moduli action can be simplified to,

1 [>L  9xLN N/
SZmpact = 5=+ / da / drd” 'z (f(FaMN)Q>
pact = onL J, W ; 4

2L 5—p 4Fab Fab Fab Fab _ Fab Fab 2
sEa = L / dxp/dep_le (2m) i PV P Fichy = M i) (3.7)
2rL Jy b 32(8 — p)Qo—p 9 o2\ =
(@@ +[7)
We may trivially rewrite these expressions as,
N
2 1 2l N / —1 1 MN\2
= — dx,—— [ drd? —(F, .
Scompact 27I'L /0 mp )\p—l T :E(; 4( a ) (3 8)
a a a a a a 2
S et = _— /%L dmp/dep’le (2m)*— D AP N R FER Fidv — (FiinFirn)
compact = 79T —32(7— (p— 1))Qs—(p-1) o

16WWe can see how this picture works more explicitly by recalling that in section 2.6 we used our discussions
in [35] to argue the horizon size should be estimated by the scalar vev, with specific factors of a’ and 7 as
in equation (2.52). Then at the transition point Ly ~ 1 we find that (dropping geometric factors),

!

zn ~aly ~ % = L) (3.5)

and hence the horizon size is of order the radius of the T-dual circle, Ly = o' /L, it is smeared over. This
is precisely when a Gregory-Laflamme transition occurs.
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where A\, = 2nrLA,_1, and gg’ o= ((Ea, ah). We immediately see that apart from the integral
over xP in both terms, structurally the moduli action is that for SYM in one lower dimen-
sion, p — (p — 1), where the gauge field component al in that direction is now playing

1)

the role of the extra scalar, ¢Z*(p ~ . Hence our estimation now yields the correct answer.

Explicitly, writing p = p — 1, our virial relation,

N 5 2
N 1 27)4—P QFab pab pab pab - (prab  pab
< Z < (Fé\JN)2>> ~ <Z 5 ( 7T) MN- NL" LK™ KM ( MN MN) > (39)

N i \4 (7T—p)s—p J. P

a<b

is estimated as,

N2( TX>2 N N2 7r4ff) (WTX)4 . X5—15 N )\jrﬁfﬁTZ
/\p~ Qg_ﬁ X7_ﬁ

(3.10)

and from earlier (2.31) the SYM stress tensor gives the vev of the energy density, €, to be,

(3.11)

N2n2T%2 1 N2q2T? 6-FT2\ 557
€~ — 5 q .
8—p

Ap s Ap

Then the energy density integrated over the circle (assuming it to be homogeneous) will be,

2

2L 2272 6-p72\ 55

N*mT PN\ 5-p

/ dxpe ~ 2w Le ~ u ()\ﬁﬂ ) (3.12)
0 Ap 55

which recalling the earlier relation for the Dp-brane energy density, (2.32), shows that
fo%L dz,e does indeed reproduce the energy density of a Dp-brane, where of course p = p—1.
So we have seen that considering a spatial direction to be compact, for large L > L.
introduces negligible corrections to the leading terms in the moduli action. The terms grow
in our estimates, and when L ~ L. the terms are ~ O(1) corrections, and thus the behaviour
must change. This is precisely where in the T-dual gravity picture a Gregory-Laflamme
transition occurs. Furthermore, we see that for small L < L, this T-dual picture predicts
a D(p — 1)-brane behaviour, and indeed our moduli theory exactly agrees with this.
Apart from the details of the thermal behaviour near L ~ L. our moduli estimates,
using the full action computed for the compact circle (3.1), are therefore able to reproduce
both the thermodynamics of the small and large L phases. We emphasise that just as
in section 2.5 we demonstrated how to estimate various local operator vevs, this can be
extended simply to the case with compact circle. Obviously for L > L., we will just obtain
the same estimates for these operators. However, for L < L., it should be clear that we will
obtain different estimates, but they will simply be the same ones but with p - p=p — 1.
Finally we note that in [62] it was argued that (p+1)-SYM compactified on one spatial
circle (with periodic fermion boundary conditions) is equivalent to a p-dimensional SYM
theory with non-compact spatial directions, but with a different gauge group, related to that
of the (p+ 1)-d theory after an orbifolding. This gives the action of T-duality on the circle
from the Dp-brane world volume SYM perspective, giving the dual world volume theory of
the D(p — 1)-branes. We note that in this theory the moduli action can be computed and,
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by construction, gives precisely the same answer as (3.1). From the point of view of the
p-dimensional SYM with orbifold gauge group, there is the same phase transition, which is
now interpreted simply as a Gregory-Laflamme transition in the compact direction of the
transverse space of the D(p — 1)-branes.

4 Very strong coupling: beyond the 't Hooft regime

Up to this point we have applied our estimates in the 't Hooft regime where Aeg =
Ap/T37P ~ O(N?) in the large N limit. We have seen that the moduli theory, com-
puted in its weakly coupled limit, correctly estimates the dual black brane behaviour when
naively extrapolated to strong coupling.

Furthermore, it correctly encodes when o/ corrections become important and hence the
behaviour crosses over to thermal SYM at weak coupling, via corrections to the leading
terms in the moduli action. Introducing a compact spatial circle radius L we may again
compute the moduli action when it is weakly coupled, and again the corrections to the
leading moduli action (2.19) correctly predict the transition at radius L. for fixed temper-
ature in behaviour for both anti-periodic fermion boundary conditions (where L. ~ 1/T),
or the more interesting case of periodic conditions (where L. ~ (A\,7?) 5-7).

In this section we wish to emphasise one of the most interesting parts of using naive
strong coupling extrapolation of the moduli theory. For simplicity we now assume our
spatial directions are non-compact. Then the strongly coupled phase dual to the Dp-brane
has the thermodynamic behaviour as in (2.36) in the 't Hooft regime. A natural question
is what happens as we go to even stronger coupling, so N9 <« )\ﬁ for ¢ > 0 - does this
behaviour persist?

The first thing to emphasise is that the dual black Dp-brane description breaks down
at strong coupling as the ITA/B string loop corrections become large at the black brane
horizon. The condition that the dilaton becomes of order one occurs when,

_1 2

Ny? ~ N> (4.1)

-1/(3-p) _ )\—ﬁl/(i’)—p)

at a dimensionless temperature T = Xy which we call T, Dp» SO,

2(5—p)

Tpy ~ N~ TG, (4.2)

Beyond this coupling and temperature then this ITA or IIB gravity dual description breaks
down. However, we note that this scale does not appear in the moduli theory, and hence
we might imagine that the estimates for the thermal behaviour still persist even beyond
this point. Indeed this is the case. We regard this as one of the most powerful aspects of
the moduli approach as we will now describe.

In all the cases of p =0, ...,6, when one pushes the temperature past T Dp to stronger
coupling, one is able to change to an alternate gravity dual. For p even, this is found by
uplifting the ITA black Dp-brane to M-theory. Since such an oxidation of a black brane does
not change the thermodynamics, we see that while the description requires a new gravity
dual, in fact the thermodynamics are not changed. In the cases where p is odd, one may
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perform a IIB S-duality, gs — 1/gs, on the black Dp-brane. The large string coupling near
the horizon is now controlled in the new S-dual frame. The type of black brane changes,
so D1 — F1 and D5 — NS5, with D3 being self dual. However, the transformation of the
black brane solution under S-duality does not change the thermodynamics.

Hence extrapolating the moduli to strong coupling and estimating the thermodynamics
not only gives the correct behaviour of the dual black Dp-brane, but also gives the correct
behaviour going to stronger coupling where the black Dp-brane description breaks down.

Consider the odd p cases. The reason this works is of course that the moduli theory
deduced from the SYM describes not only the Dp-branes, but is S-duality invariant, and
thus is also the moduli theory that describes the S-dual black branes in the sense of [35].
Hence the same estimates give the correct behaviour of this S-dual black brane. Consider
only the scalar degrees of freedom of the leading moduli theory, written in terms of the
gravitational variables X/ (given in terms of Yang-Mills variables earlier in section 2.6),

1t
= (27?)*pg;10/77p and 2x2 = (27)7g2a/*, which up to one loop are,

N
scalar __ M v \2
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+ O(xY) (4.3)

and precisely give the weakly coupled dynamics of nearly parallel p-branes in 10-dimensions
as discussed in [35]. Under an appropriate re-identification of y and x? in terms of string
theory parameters the action also describes the S-dual brane. For example, in the case
p = 1 for the black Dl-brane in IIB we have u ~ 1/(gs’) and 2 ~ g2a™. However
following [35] the S-dual brane, a black Fl-string, has the same moduli action with the
same p and x2, now regarded as p ~ 1/(a/f1) and k% ~ (gf1)%(a/F1)* in terms of the

'"F1 — g.o/. A detailed discussion of the

S-dual IIB string parameters gf'! = 1/g, and «
various cases of p is given as part of appendix A.

We now focus on what happens at even stronger coupling. In some cases the M-theory
descriptions, or S-dual IIB black brane descriptions predict a new phase transition, or a
new physical behaviour. We will see that in certain cases this new physical behaviour can
be understood precisely as being due to new sources of corrections to the moduli theory
that become important. In other cases we currently have only a qualitative understanding
for why the moduli description must change.

One interesting point to note is that the weakly coupled moduli theory itself has a
thermal behaviour ¢ ~ NTP*! (2.6), while the strong coupling estimates for the moduli
theory give the behaviour of a Dp-brane (2.36) € ~ N2T2(7=2)/(5-0) \(142)/(3-P)  These two

behaviours coincide at the dimensionless temperature Tf.c., where,

~ _ _5-p
Tfree ~ N G-»?, (44)
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Now recall the strong coupling regime is valid only for 1 < )\:ﬁ? = T-B-p)/(5-P) otherwise
the non-leading terms in the moduli action become important (being dual to o effects
becoming important). Firstly we must check whether the temperature Tfree is in the allowed
range where the strong coupling estimate is valid, which requires,

3—p 1

1< Ty " =N (4.5)
and since we are considering large N, we see the free moduli regime only coincides with
our strong coupling behaviour in equation (2.36) for p < 3. Then going to temperatures
T< Thee, SO to stronger coupling, assuming the Dp-brane behaviour is not modified, then
the free moduli behaviour will dominate the partition function. It will be interesting to note
that for p = 2 in fact a new strong coupling transition occurs before this weak thermal
scale is reached, due to monopole effects, which changes the strong coupling behaviour
to a conformal phase € ~ N3/2T3 which therefore always dominates the weak thermal
behaviour. However for p = 0 and p = 1 at sufficiently low temperatures one does indeed
reach this weak thermal scale. As we shall discuss, for p = 1 this results in the free orbifold
CF'T behaviour. For p = 0, the status of this weakly coupled thermal behaviour is less
clear due to IR divergences, but would represent a weakly interacting gas of DO-branes.
However, in fact there is another strongly coupled phase of the theory which becomes
relevant at low temperature, also dominating the black DO-brane behaviour of (2.36). This
has an M-theory dual and we shall discuss it shortly.

4.1 p = 1: free orbifold CFT

For p = 1 at strongly coupled low temperatures T <Tpi~N -5 a IIB S-duality on the
black D1-brane gives a controlled description in terms of a dual black F1-string solution,
with the same thermodynamic behaviour. However at sufficiently low temperature this
solution also breaks down, and the theory is expected to transition to the free orbifold
CFT behaviour [46-48]. This occurs at T ~ T, free ~ 1/N, and for lower temperatures a
thermodynamics,

€~ NT? (4.6)

is expected. In fact this free orbifold CFT is nothing other than the weakly coupled moduli
theory. For p = 1 the gauge fields have no local dynamics, and at weak coupling the bosonic
degrees of freedom are free conformal scalar fields. The subtlety we noted at footnote 4 is
that the target space metric for the scalar fields is not that of (R*)Y, but rather it is the
symmetric product Sy R®, due to the branes being identical. As discussed, in the gauge
theory derivation of the moduli action this orbifolding occurs due to the residual gauge
transformations that permute the diagonal entries in the scalar matrices.

Thus the moduli theory for p = 1 naively extrapolated to strong coupling for T<1
correctly yields the thermal behaviour which in the regime Tp; < T is described by the
black D1-brane, and for T free < T < TDl is described by an S-dual black F1-brane. However
at T ~ Tfmc the weakly coupled moduli behaviour dominates that of the virialised phase,
and this is precisely the free orbifold CFT.
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4.2 p = 2: M2 brane transition on the 11-circle

Perhaps the most elegant very strong coupling example is that for p = 2. The black M2-
brane dual description valid where the D2-brane description breaks down at the strongly
coupled temperature scale T < Tpy ~ N =% is the dimensional oxidation of the D2, and the
M2 brane is smeared over the M-theory 11-circle. As the temperature further decreases
gravity analysis of the smeared M2 brane implies a Gregory-Laflamme transition will occur
to a black M2 localised on the 11-circle at a dimensionless temperature Tn ~ N3, For
T < Ty the gravity dual will have a new thermodynamics, that of a localised black M2
brane, where in our Yang-Mills variables,
16t a0 s
efggﬁiN/T (4.7)

and we note the conformal behaviour is governed only by the temperature, and not the
coupling Ao.

Now let us consider the (2 + 1)-dimensional SYM theory. It is known that for SU(2)
gauge group in (2 + 1)-dimensions, there are monopole corrections to the one-loop action
going as [63, 64];

4 b—i¢8
SHSYM / drdzx?;; %’ (1 Lo B .. ) | (4.8)
Here ¢® is the dual of the three-dimensional gauge field, which is a periodic variable ¢® ~
#® + 2mg? ;. In [63, 64] it was argued that higher instanton corrections re-sum so that
the 4 derivative term is multiplied by the harmonic function associated to the transverse
brane space in the 11-d M-theory, with the dual gauge field ¢® playing the role of the
11-coordinate. Such corrections can be generalised to SU(N) [65], which we expect yields,
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