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Abstract: In unified N = 1 supergravity scenario the gaugino masses can be non-

universal. The patterns of these non-universalities are dictated by the vacuum expectation

values of non-singlet chiral super-fields in visible sector. Here, we have analysed the model

independent correlations among the gaugino masses with an aim to explain the [1 ÷ 3]σ

excess of muon (g-2) (∆aµ). We have also encapsulated the interconnections among other

low and high scale parameters, compatible with the collider constraints, Higgs mass, relic

density and flavour data. We have noted that the existing non-universal models are not

capable enough to explain ∆aµ at [1 ÷ 2]σ level. In the process, we have also shown the

impact of recent limits from the searches for disappearing track and long lived charged par-

ticles at the LHC. These are the most stringent limits so far ruling out a large parameter

space allowed by other constraints. We have also performed model guided analysis where

gaugino masses are linear combination of contributions coming from singlet and non-singlet

chiral super-fields. Here, a new mixing parameter has been introduced. Following the ear-

lier methodology, we have been able to constrain this mixing parameter and pin down the

promising models on this notion.
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1 Introduction

Supersymmetry (SUSY) is one of the most promising beyond Standard Model (BSM) sce-

narios that solves the gauge hierarchy problem, stabilizes the Higgs mass and also addresses

some of the other shortcomings of the SM. It also provides a weakly interacting massive

particle (WIMP) which can be a viable cold dark matter (DM). In R-parity conserving

scenario, the lightest supersymmetric particle (LSP) happens to be that DM candidate.

From unification view point, SUSY shows an improvement over the Standard Model (SM)

predictions with a consistent grand unification (GUT) scale.

In global minimal supersymmetric standard model (MSSM), the gauge group is same

as that for the SM, but the particle content is extended in form of the supersymmetric

partners. In unbroken SUSY scenario, the supertrace1 vanishes exactly which is due to the

degeneracy in the spectrum and equality in fermionic and bosonic degrees of freedoms in

theory. However, so far experimental data suggests that all the SUSY particles must be

heavier than their respective SM partners. Thus the supertrace must be non-vanishing and,

in general, proportional to the SUSY scale. In other words, we can say that SUSY can be

1Supertrace in supersymmetric theory is defined as: Str =
∑
s(−1)2s(2s + 1)Tr(m2

s), where s,ms are

the spin and mass of the particle respectively.
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realized in nature only in broken form.2 So, the important question that rises in this context

is following: what is the SUSY breaking mechanism? So far we have failed to pin down any

specific breaking scenario, rather fenced by different possibilities. These mechanisms can be

broadly classified into two categories: spontaneous3 and explicit breaking by addition of the

SUSY breaking soft terms in the Lagrangian [3–9]. The later one is not forbidden by any

physical principle but it leads to enormous number of free parameters (more than 100) in

the theory and spoils the beauty of it. We are not elaborating this possibility as this is not

the prime moto of this paper. The outcome of spontaneous breaking depends on which field

is getting vacuum expectation value (VEV). However, as we know, spontaneous breaking

does not change the property of the action. Hence the supertrace which is a signature

of the Lagrangian, is kept unmodified. This is against the experimental observation as

mentioned before and thus ruled out. Again if we start with an exact SUSY Lagrangian,

we are bound to break SUSY only spontaneously [3, 4]. This dilemma can be resolved

if one breaks SUSY in the hidden sector. This information of SUSY breaking can be

brought to the visible sector by different messengers, giving rise to different models, such

as gravity-, gauge-, anomaly-mediated SUSY scenarios. For the sake of our work, let us

further proceed our discussion on the gravity mediated SUSY breaking scenario: N = 1

SUGRA [10–21]. In the minimal SUGRA (mSUGRA) framework, there are only 5 free

parameters compared to over 100 in the general MSSM case: universal scalar mass (m0),

universal gaugino mass (m1/2), tanβ (ratio of the up and down type Higgs VEVs = vu/vd),

tri-linear coupling (A0) and sign of µ term (sgn(µ)). However, it is not necessary for the

gauginos to be degenerate at the high scale itself. If the visible sector possesses an unified

gauge symmetry, the gauginos may become non-degenerate through the VEV of the GUT

breaking scalars [22–34]. Then the high scale input parameters consist of m0,M3, tanβ,A0

and sgn(µ), where, M3 is the mass scale for the SU(3)C gauginos. This also determines

M1 and M2, as they are correlated: M1 : M2 : M3 = a : b : c, where a, b, c depend

on patterns of the symmetry breaking. This enriches the possibility of having different

correlations among these gaugino masses which lead to different compositions of the LSP

at low scale. Thus unlike the mSUGRA case, here, the LSP can be bino, wino, higgsino or

admixture of these three states. This allows us to explore wide range of phenomenologies

driven by non-universal gaugino masses. The phenomenological aspects of non-universal

gaugino mass scenario are discussed in [35–64]. Due to its varieties of LSP configurations,

these models have significant impact on the analyses regarding DM searches and muon (g-

2) excess. These two issues have been explored extensively within mSUGRA framework.

But the present limits on squarks and gluino put severe stringent bounds on mSUGRA

parameter space. This results in unavailability of SUSY spectrum within this framework

that can explain ∆aµ
4 at [1÷ 2]σ level respecting flavour constraints.

2In passing we would like to draw attention to another view as suggested [1] questioning the necessity

of supersymmetry breaking.
3Dynamical supersymmetry breaking is an interesting possibility [2] but is troublesome as it might lead

to charge and colour breaking vacua.
4∆aµ denotes the discrepancy between experimentally measured value of muon (g-2) and the SM pre-

dicted one.
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This has been the motivation of our work. The prime aim of our analysis is to un-

derstand the model independent correlations among the MSSM gauginos which can suc-

cessfully explain the anomalous muon (g-2) excess over the SM, and simultaneously satisfy

different experimental bounds at low energy. In this context we have discussed two scenar-

ios: non-universal gaugino & universal scalars, universal gaugino & non-universal scalars.

We have extended our former framework by adopting existing SUSY-GUT models and

considering the general gaugino spectrum. We also introduce here a new mixing param-

eter that is related to the superpotentials. We have encapsulated the range of this new

parameter while explaining muon (g-2) excess at [1 ÷ 3]σ level.

2 Generation of gaugino masses in N = 1 unified SUGRA models

Here, we have briefly reviewed the Lagrangian based discussion on the generation of gaugino

masses. In N = 1 supergravity framework, the part of the needful Lagrangian which is

associated with the gauge and gaugino sectors is expressed as [13–16, 24–30]

e−1L = −Fαβ
2

λα/Dλβ

2
− 1

4
Tr[FµνF(Φ)Fµν ]

+
1

4
e−G/2Gi(G−1)ji

[
δF∗αβ(Φ∗)

δΦj∗

]
λαλβ + h.c., (2.1)

where, α, β, γ = [1, . . . , Adj].5 Here, we have set MPl/
√

8π = 1. Our nomenclature is

following: G,F ,Φ and λ are the Kähler potential, the super-potential, chiral super-fields

and gaugino fields respectively.

Here, the derivatives of Kähler potential are defined as: Gi = δG
δΦi

, Gij = δ2G
δΦ∗jδΦi

, and

(G−1)ij is the inverse of Gij . The chiral function Fαβ(Φ) is an analytic function of Φ.

These Φ’s are the chiral super-fields belonging to the visible (φ) as well as the hidden (zh)

sectors. The chiral field zh is singlet under the gauge symmetry of the visible sector. The

other chiral super-field φ is non-singlet under such gauge symmetries. The choices of φ are

further restricted from the gauge kinetic term Tr[FµνF(Φ)Fµν ] which dictates that φ can

only belong to the symmetric product of two adjoint representations. In this framework,

both SUSY and unified gauge symmetry are broken spontaneously. The VEV of zh (z0
h)

that breaks local SUSY spontaneously is very large (∼ 1019 GeV) where the VEV of φ

(VGUT) sets the GUT scale (MU ). The generic structure of the chiral function, Fαβ , can be

given as suggested in [28, 30] (neglecting higher order terms which are more suppressed):

Fαβ = F1 δαβ + F2 cαβγ φ
γ , (2.2)

where F1,2 are the functions of chiral super-fields of hidden and visible sectors, and cαβγ
are the group theoretic factors. The first term is the canonical term leading to mSUGRA

like scenario where all the gauginos are degenerate, i.e., universal. The second term is

due to the presence of GUT symmetry breaking scalars which cause splitting in universal

gaugino spectrum of mSUGRA leading to non-universal gaugino masses at the high scale

5For SU(N) and SO(N), Adj is defined as (N2 − 1) and (N2 −N)/2 respectively.
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Figure 1. Schematic flow chart to demonstrate spontaneous breaking of supersymmetry in the

hidden sector through the VEV of the singlet chiral super-field (zh) and successive breaking of

GUT symmetry in the visible sector through the VEV of non-singlet chiral super-filed (φ). As the

outcome of this process, the soft SUSY breaking terms are generated in the visible sector and the

gauginos become non-degenerate at the high scale itself.

itself. The different choices of these φ fields lead to possible non-universalities as the high

scale boundary conditions. For the purpose of our present analysis, we consider that F1,2

are the only functions of zh, and φ. In figure 1, we have summarized this whole process

through a schematic flow chart.

Once SUSY and GUT are broken, one can recast the gaugino mass terms as

Mi = M [P + δi VGUT Q] , (2.3)

where the δi’s are the group theoretical factors for broken and unbroken generators (see

refs. [28–30] for details) similar to cαβγ in eq. (2.2). We can write down i 3 [j,X] where

j and X represent the indices for unbroken and broken generators respectively. To un-

derstand this better, let us consider the breaking of SU(5) to U(1)Y ⊗ SU(2)L ⊗ SU(3)C
(GMSSM ). As an outcome of this mechanism, 12 generators of GMSSM are unbroken, and

rest of the (24 − 12) = 12 generators are broken. In our further analysis, we denote the

gauginos corresponding to the broken generators as X and others are associated with index

j. Here, P and Q are the functions of z0
h, VGUT and derivatives of F1,2, evaluated at [z0

h,

VGUT]. Within SUGRA framework, unfortunately, the exact functional forms of F1,F2

are unknown and same for P,Q. However, in simplified scenario, like mSUGRA, due to

absence of GUT group in the visible sector there is no need of non-singlet field φ in the

theory. This implies that all the δi’s are identically zero leading to all the gaugino masses

to be degenerate, i.e., universal.

But within the unified SUGRA framework, the generic form of the gaugino mass is

given in eq. (2.3) which cannot be further simplified to understand the specific correlations

among them unless we make some assumption. In refs. [31–34] it was pointed out from pure

phenomenological perspective that if P/Q is negligibly small then the ratio of the gaugino

– 4 –
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masses are just the ratios of δi’s. It has been also argued in refs. [28, 30] that to stabilise the

cosmological constant, the masses of the X-gauginos must vanish and also provide unique

mass ratios for MSSM gauginos independent of P and Q. Here, the gaugino masses are

automatically non-universal and posses definite non-universal patterns. To complete this

discussion, we would like to mention that the generation of gaugino masses in context of

supergravity framework was first discussed in refs. [28–30] for SU(5) unified theory. Later

this has been generalised for SO(10) and E(6) GUT groups in refs. [31–34].

The generic form of gaugino masses, without any further assumption, can be recast as:

Mi = M
′
[1 + ℘δi] , (2.4)

where ℘ is the ratio of P,Q and can be thought of as a measure of mixing between singlet

and non-singlet contributions. We will emphasize more on this mixing parameter, ℘, from

muon (g-2) point of view for some specific models.

3 Muon g-2

The precision measurements are leaving very little room for new physics. One of them which

has been measured experimentally with an immaculate accuracy is the muon anomalous

magnetic moment. In the SM, there exists a tree level contribution to muon(`µ)-muon-

photon(Aρ) coupling (ie`µγ
ρ`µAρ). Along with that in BSM scenario, the relatively heavier

and so far unobserved particles may contribute to this vertex through radiative corrections

in the form of an effective operator like (ie/4mµ)aµ`µ[γλ, γρ]`µ(∂λAρ−∂ρAλ). So far, there

is a discrepancy, ∆aµ, among the SM theoretical prediction and experimentally observed

value [65, 66]. Thus the BSM contributions, if there is any, have to be fitted within the

deviation [67]

∆aµ = (29.3± 9.0)× 10−10. (3.1)

It is expected that SUSY can explain this excess through the exchanges of different

sparticles and that has been one of the motivation for TeV scale SUSY. The loop induced

contributions (see figures 2, 3) involving sleptons, neutralinos, charginos and sneutrinos are

very important in this regard [68–71]. In the context of general SUSY scenario, muon (g-2)

has been discussed in [72–79]. Within the unified SUGRA framework the contributions to

anomalous muon magnetic moment are discussed in [79–86].

In this paper, we have started with a framework where all the scalar masses are uni-

versal but the gauginos are non-degenerate at the high scale itself. The other parameters,

say, tan β, sgn(µ), A0(= −2m0), m2
Hu

= m2
Hd

(= m2
0) are chosen suitably. Our intention

is to adjudge the patterns of non-universalities in gaugino masses under the light of ∆aµ at

[1÷3]σ level. In other words, we have used ∆aµ to intrigue unified SUGRA model building.

Computation of the radiative contributions to aµ is very similar to the generic SUSY

scenario. The only difference is in the generation of the low scale SUSY spectrum. Due to

the high scale boundary conditions, our scenario is much more constrained. Thus the low

scale sparticle spectrum cannot be tuned arbitrarily to fulfil the necessary contributions

for muon (g-2). In general the chargino-sneutrino loop (see figure 3) contributes more

– 5 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
8

µ̃L

µ̃L µ̃R

γ

γ

γ

γµ̃L

µ̃R

B̃ H̃

H̃ B̃

W̃ H̃

Figure 2. Feynman diagrams that contribute to muon (g-2) involving neutralinos (B̃, W̃ , H̃) and

smuons (µ̃L,R).

dominantly compared to the neutralino-smuon loop (see figure 2). But this is not always

true as these contributions depend on the right-handed smuon (µ̃R) mass.

The mas parameters masses of sleptons, neutralinos, charginos and sneutrinos play

crucial roles to determine the muon anomalous magnetic moment. The high scale parame-

ters which are involved in these computations are M1,2,m0(≡ µ̃L,R), tanβ,A0 and sgn(µ).

The dependence of ∆aµ on tanβ is linear which is due to the requirement of chirality

flipping through the Yukawa couplings. Thus ∆aµ is very sensitive to tan β and larger

value of tan β is favoured to produce bigger contribution to ∆aµ. However, we are forced

to respect the constraints from flavour data and need to be careful while considering large

tanβ. We would like to notify that the choice of sgn(µ) is also restricted as µM3 < 0 is

severely constrained from the measurement of BR(b → sγ). Also note that ∆aµ prefers

sgn(µ) > 0. Hence throughout this work, we only consider µ > 0.

In our analysis, the scalar masses are universal at the high scale, thus the splitting

between left- and right-handed sleptons are not large. However, through the renormalisa-

tion group evolutions, the off-diagonal terms in the slepton mass matrix can be generated

and that may lead to an open possibility of having contributions from all generations of

sleptons. Again if the µ term, i.e., the higgsino mass parameter is larger than the masses of

the left-handed smuons then the masses of the right-handed smuons play crucial role (see

left-top of figure 2). Then the contribution to ∆aµ from this diagram decreases as mass

of the right-handed smuon increases. Note that this effect is only visible if the diagrams

in figure 2 dominate over the one in figure 3. In general, if the lightest neutralino, lighter

chargino, left- & right-handed smuons and sneutrinos are nearly degenerate (within few

tens of GeV) and also µ term is of the same order, then the following diagrams dominantly

contribute positively to aµ (see top-left of figure 2 and figure 3). Note that if the sneutrinos

are lighter than the smuons and also the µ term (as in our case), the dominant contribution

may come from figure 3.

– 6 –
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W̃±

H̃±
γ

ν̃

Figure 3. Feynman diagrams that contribute to muon (g-2) involving charginos (W̃±, H̃±) and

sneutrino (ν̃).

4 Collider, low energy and dark matter searches constraints

The recent searches at LHC continue to put severe exclusion limits on sparticle masses

and couplings. In case of SUSY, the parameter space is very sensitive to the mass of the

observed Higgs boson and other flavour data. Along with these collider constraints one

cannot ignore the impact of DM searches (direct, indirect) and also needs to respect the

upper bound of relic density. Here, we catalogue the imposed constraints in our analysis.

4.1 Collider constraints

In this section, we first discuss the limits obtained from LEP (I & II) and then from the

LHC searches. The latest search results for long-lived charged particles and disappearing

tracks at the LHC are also crucial for our study. Thus we prefer to discuss these separately

at the end of this subsection.

LEP exclusions

We have implemented the following LEP constraints on the masses of sparticles:

• sleptons: m
l̃L
,m

l̃R
> 100.0 GeV where l = e, µ; mτ̃1 > 86.6 GeV,

• lighter chargino: mχ̃±1
> 103.5 GeV.

More details on these exclusions are discussed in ref. [87].

LHC exclusions

After the completion of LHC Run-I, the exclusion limits on the sparticle masses are much

more stronger now. More specifically, due to the large production cross-sections, con-

straints on the masses of strongly interacting SUSY particles (e.g., gluino, squarks) are

more restrictive. Both ATLAS and CMS collaborations have updated their analyses in n-

leptons+m-jets (with or without b-tagging)+E/T (where n and m can take values 0, 1, 2,. . . )

channels for supersymmetric models like mSUGRA, cMSSM and other simplified SUSY sce-

narios. Apart from the production cross-section, all the limits also crucially depend on the

branching ratios (BRs) and mass separations among the mother and daughter sparticles.

In SUGRA type scenarios, all the gaugino (χ̃0
1, χ̃
±
1 , g̃) masses are correlated: either uni-

versal or non-universal at the GUT scale itself. As we are focussing on non-universal gaug-

– 7 –
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ino scenario, we have incorporated the limits coming from the searches of simplified models

with suitable changes6 for the sake of our analysis rather using direct mSUGRA bounds.

We have mentioned earlier that at the electro-weak (EW) scale, the contributions to

muon (g-2) are controlled by the following parameters: masses of sleptons, lighter chargino,

lightest neutralino and their compositions. As we are working within an unified framework

at the high scale, the low scale spectrum is correlated with the high scale soft SUSY

breaking terms and the hierarchy in low scale spectrum is determined by other parameters

too. For example, one can accommodate light sleptons even satisfying present limits on

heavy gluino (mg̃) and squarks (mq̃) masses.

Higgs mass. We allow only those high scale parameters that lead to the lightest Higgs

boson mass to be: Mh = (122 ÷ 128) GeV considering a theoretical uncertainty of ∼
3 GeV [88, 89].

Limits on chargino and neutralino masses. Most of the LHC analyses on direct

chargino searches [90, 91] are based on the assumption that the LSP is bino type and

the lighter chargino is wino type. For higgsino or mixed type LSP and(or) chargino,

the production cross-sections of χ̃±1 χ̃
0
2 reduce significantly and the limits from trilepton

data [90, 91] become much weaker. Again the limits are slightly sensitive to the masses

of sleptons7 where the LHC collaborations have assumed the slepton masses to be in the

midway between mχ̃±1
and mχ̃0

2
. For bino type LSP and wino type lighter chargino, we

have implemented the conservative limits in our analysis. Here, we have supplemented the

mass limits mentioning specific hierarchical scenarios:

• If m
l̃
< mχ̃±1

, mχ̃0
2
: for mχ̃0

1
< 300 GeV, mχ̃±1

is excluded below 720 GeV [90, 91]. With

an conservative approach having mχ̃0
1

in between 300 to 400 GeV, mχ̃±1
is excluded in

the range of 400 to 700 GeV and for mχ̃0
1
> 400 GeV, the limits are not applicable [90,

91].

• For heavy slepton scenarios (m
l̃
> mχ̃±1

, mχ̃0
2
): χ̃±1 and χ̃0

2 decay via W and Z bosons

and the limits on chargino masses are relatively weaker. Again the lighter chargino

mass below 420 GeV is excluded with mχ̃0
1
. 140 GeV [90].

• When the χ̃0
2 → hχ̃0

1 decay mode dominates, the limits become much weaker in

the heavy slepton scenarios. Masses of χ̃±1 and χ̃0
2 are excluded upto 240 GeV for a

massless χ̃0
1 and the limits are invalidated for mχ̃0

1
> 40 GeV [93].

6The results obtained in simplified models are mainly based on the assumption of single particle pair

production and one or two step decay modes. Thus one needs to be very careful while using these bounds.

The ideal situation would be to calculate the production cross-section for each and every SUSY spectrum and

compute the the LHC bounds accordingly. But this is beyond the scope of our analysis. The methodology

that has been adapted in this paper is conservative and more importantly not capable enough to alter our

predictions.
7For varying slepton masses and different mass hierarchies, using the LHC 8 TeV data the limits are

revisited in a recent analysis [79]. For revised mass limits in higgsino dominated and(or) mixed chargino

scenarios see [92].
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• With light third generation slepton (mτ̃1 < mχ̃±1
, mχ̃0

2
): mχ̃±1

upto 380 GeV is ex-

cluded for mχ̃0
1
< 85 GeV [90].

Limits on slepton masses. ATLAS and CMS have searched for charged sleptons (first

two generations) from direct production of R(ight) and(or) L(eft)-type sleptons [91, 94].

ATLAS limits are slightly stronger than that suggested by CMS. Though we have imple-

mented the limits for R-, L- and R=L-types separately, here, we have discussed only that

for R=L-type slepton scenario as suggested by ATLAS collaboration using di-lepton search

channel [94]. The masses of selectron and smuon (both L- and R-type) are excluded in the

mass region between [90 ÷ 325] GeV with massless mχ̃0
1
. But the sensitivity of exclusion

limit is relaxed once the slepton-LSP mass splitting decreases. For example, for mχ̃0
1

=

100 GeV, common left- and right-handed slepton masses within [160 ÷ 310] GeV are ex-

cluded. We have adopted the conservative bin wise limits on slepton masses from figure 8

of ref. [94]. For example, slepton mass is excluded within [268÷310] GeV for mχ̃0
1

[170÷180]

GeV. We have to keep in mind that these limits exist for LSP mass upto 180 GeV.

Limits on gluino mass. At the LHC, squarks and gluino pair production cross-sections

are the largest among other SUSY production channels. The limits on gluino mass (mg̃)

crucially depend on the decay properties of g̃ and(or) mass hierarchy between squarks,

gluino and other sparticles. If the squarks are lighter than the gluino (mg̃ > mq̃), gluino

decays via q̃q and for such scenario when all squarks and gluinos are produced, the limits

on the strong sector of sparticle is most stringent. In mSUGRA (cMSSM) type of scenarios

with tan β = 30, A0 = -2m0 and µ > 0, degenerate squarks and gluinos are excluded for

masses upto 1.7 TeV at 95 % CL [95]. This limit is applicable for relatively small universal

scalar mass m0 (typically < 1 TeV). For large m0 and small m1/2 (say, ∼ [500÷600] GeV),

gluino decays into t̃1t (note that, the first two generation squarks are much heavier than

stop). In such scenarios (with top quark dominated final states), gluino masses smaller

than 1.4 TeV are excluded from [0−1]`+ 3 b jets+ E/T analysis [96].

In simplified scenarios where gluino decays as: g̃ → q̃q → qq̄χ̃0
1 (q denotes first two

generation squarks) then mg̃ upto 1.5 to 1.55 TeV is excluded for mχ̃0
1

upto 600 GeV [95].

When the squarks are very heavy and gluino decays via g̃ → qq̄χ̃0
1 (first two generations)

then mg̃ below 1.4 TeV is excluded for mχ̃0
1
. 300 GeV [95]. All these limits are weakened

considerably for the compressed scenarios.8 For example, when the difference between mg̃
and mχ̃0

1
is very small then the exclusion limits on mg̃ reduces to ∼ [550 ÷ 600] GeV (for

details see figure 10a of ref. [95]). Even for other scenarios or decay patterns, gluino mass

below 1.1 to 1.3 TeV is excluded for relatively light neutralino. The detail reports on SUSY

searches regarding various limits for different scenarios, one can consult refs. [102, 103].

Limits on squarks mass. As discussed earlier, squark masses are excluded upto 1.7 TeV

when they are degenerate with gluino. For very heavy gluino scenarios we have implemented

the following constraints in our analysis:

8In compressed scenarios, due to small mass difference between the mother and daughter particle, the

missing energy (E/T ) and transverse momentum (pT ) of the jets or leptons become softer. Eventually the

limits become weaker [97–101].
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• Light flavoured squark masses are excluded below 850 GeV for mχ̃0
1
≤ 350 GeV [95].

• For the decay modes t̃1 → tχ̃0
1, the exclusion limit on mt̃1

is upto [600 ÷ 700] GeV

for mχ̃0
1
≤ 250 GeV [104, 105]. Again when stop decays as t̃1 → bχ̃±1 , depending

on the assumption over the chargino masses, ATLAS and CMS collaborations have

excluded stop mass upto [500 ÷ 600] GeV for mχ̃0
1

upto [200 ÷ 250] GeV [104, 106].

For other decay modes, like t̃1 → cχ̃0
1; bWχ̃0

1; bff ′χ̃0
1, these limits become weaker:

mt̃1
≥ [240÷ 260] GeV [104, 106, 107].

• Mass of sbottom below 620 GeV is excluded at 95% CL when LSP mass is ≤ 150 GeV

[108]. For small mass difference between sbottom and LSP, exclusion limit is pushed

upto 250 GeV [107].

LHC searches on heavy charged particles

I. Limits from the search for disappearing track

ATLAS and CMS have recently presented searches for charginos based on the high-pT
disappearing tracks9 when the χ̃±1 is nearly degenerate with χ̃0

1. For ∆M = mχ̃±1
−mχ̃0

1

= 140 (160) MeV, ATLAS and CMS have excluded mχ̃±1
upto 500 (270) GeV, see figure 5

in [110] (CMS) and figure 7 in [111] (ATLAS) for details. We incorporate these exclusion

contours obtained by ATLAS and CMS to find the compatible parameter space in our

analysis. We have to keep in mind that this limit is applicable only when both the lightest

neutralino and lighter chargino are wino like.

II. Limits from the search for long lived charged particle

ATLAS collaboration has published the exclusion limits which are out come of searches

for heavy long-lived charged particles using 8 TeV data10 [112]. When the charginos (χ̃±1 )

are nearly degenerate with χ̃0
1, i.e., ∆M < 135 MeV, then the exclusion limit on chargino

mass becomes more stringent: mχ̃±1
> 620 GeV [112]. CMS has also presented a similar

analysis [113, 114] and the results are in well agreement with ATLAS.

We have noted that these two above mentioned searches play crucial roles and lead

to most stringent constraints. We have discussed the impact of these new limits in the

following sections. In passing we would like to mention that both these exclusion limits,

for nearly degenerate scenarios, crucially depend on the composition of chargino. For

higgsino dominated lighter chargino these limits are relaxed considerably.

9In the nearly degenerate scenarios, χ̃±1 decays via π±χ̃0
1 [109]. Due to the small mass difference between

χ̃±1 and χ̃0
1, the phase space is limited and the chargino has a significant lifetime. On the other hand, the

daughter pion has momentum of ∼ 100 MeV which is typically too small for its track to be reconstructed.

For charginos that decay inside the tracker volume resulting in a disappearing track.
10When charged particles travel with speed slower than the speed of light, they can be identified and their

mass can be determined from their measured speed and momentum. ATLAS collaboration has measured

these quantities using time of flight and specific ionisation energy loss.
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4.2 Flavour physics data

• The measured value of BR(b → sγ) does agree moderately well with the SM pre-

diction and leaves very little room to fit BSM contribution within it. Thus this BR

turns out to be a severe constraint whose impact can not be unnoticed. In the MSSM

framework, the charged Higgs and chargino exchange diagrams may contribute dom-

inantly to this branching ratio. Since light chargino boosts the required enhancement

in ∆aµ, this constraint is very important for our study. However, the contributing

diagrams to BR(b → sγ) interfere destructively if µ and At are of opposite signs.

Hence we choose to work with a positive µ and negative At throughout. We impose

the following constraint for all our points: 2.77× 10−4 < BR(b→ sγ) < 4.09× 10−4

(at 3σ level) [115].

• The flavour physics constraint coming from the measurement of BR(Bs → µ+µ−)

puts strong bounds on the MSSM parameter space. For large tan β, this branching

ratio is proportional to (tan β)6 and inversely proportional to m4
A. Thus this is

expected to be a critical constraint for large tan β scenarios which are favoured to

boost the enhancement in ∆aµ. We impose 0.67 × 10−9 < BR(Bs → µ+µ−) <

6.22× 10−9 (at 2σ level) [116, 117] as a constraint throughout our study.

4.3 Dark matter constraints

I. Relic density

In this work, we have combined WMAP nine year data [118] (2σ bound) with 10% error in

theoretical estimation which together propel the upper bound of relic density to 0.138. Thus

including this range, the 3σ limit as suggested by the PLANCK [119] can be written as:

0.092 < Ωh2 < 0.138. (4.1)

Here, we have adopted the eCMB + BAO + HO combined value of table 4 in ref. [118].

In our case, lightest neutralino χ̃0
1, i.e., the LSP, is the dark matter candidate. In-

stead of taking the 2σ window, we have respected only the upper limit of Ωh2. This is

because the DM candidate need not to be necessarily single-component but can also be a

multi-component one [120–128]. Although while presenting our benchmark points, we only

consider those points which produce the perfect relic density, i.e, 0.1145 < Ωh2 < 0.1253.

II. Direct detection

Apart from the relic density upper limit, we also discuss the implication of direct detection

of DM using XENON100 [129] and LUX [130] data on spin independent neutralino-proton

χ̃0
1p scattering cross-section (σSI

χ̃0
1p

). The t-channel Higgs and s-channel squark exchange

diagrams contribute to σSI
χ̃0
1p

. For heavy squark scenario, the dominant contribution to the

cross-section comes from the Higgs exchange diagram [131]. Again if χ̃0
1 has sufficiently

large higgsino component then σSI
χ̃0
1p

may become large [132].
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5 Strategy of analysis

The prime aim of our analysis is to understand the correlations of the MSSM gaugino

masses at the high scale itself which can explain the [1 ÷ 3]σ excess of muon (g-2). In the

process, we have imposed several constraints, namely, bounds from collider searches and

Higgs mass. We have also forced our solutions to respect flavour constraints and the upper

bound of relic density. The recent searches for disappearing tracks and long lived charged

particles by ATLAS and CMS have put very stringent constraints on the parameter space.

In our analysis, particularly, these have played very crucial roles.

To find the model independent correlations among M1,M2 and M3 we have treated

these gaugino masses as individual free parameters and varied over wide ranges along

with other free parameters, like m0 and tanβ. The tri-linear coupling A0 is taken to

be −2m0 and Higgs parameters are set as m2
Hu

= m2
Hd

= m2
0. Using these high scale

input parameters, we have generated the SUSY spectrum at low scale and sorted out the

parameter space which is compatible with the above mentioned constraints. We have noted

the interconnections among different set of high and low scale parameters which have been

discussed in detail in later section. The same strategy has been implemented to identify

the mixing among singlet and non-singlet contributions for different SUSY-GUT models

from muon (g-2) window.

We have generated SUSY spectrum using SuSpect (v2.41) [133]. Further, for DM relic

density, direct-indirect detection cross-section and flavour physics calculation we have used

micrOMEGAs (v3.6.7) [134] and calcHEP (v3.3.6) [135]. In our analysis, muon (g-2), has

been computed using micrOMEGAs.

6 High scale non-universality vs muon g-2

6.1 Non-universal gauginos and universal scalars — model independent

analysis

For the sake of our analysis we have supplemented the following input parameters at the

high scale: m0,M1,M2,M3, tanβ, sgn(µ). All the gaugino mass parameters (M1, M2, M3)

are varied randomly and individually at the high scale over a wide range along with other

parameters. Below we have listed the ranges of parameters that we have considered for our

detailed analysis:

m0 ∈ (1, 3000) GeV; A0 = −2m0; (6.1)

M1 ∈ (200, 5000) GeV; M2 ∈ (−5000,+5000) GeV;

M3 ∈ (−5000,+5000) GeV; tan β ∈ (1, 60).

We have mentioned earlier that the most stringent constraint is appearing for nearly

degenerate lighter chargino (mχ̃±1
) & lightest neutralino (mχ̃0

1
) scenario. We have noted

that for a large part of the parameter space that leads to [1 ÷ 2]σ excess in ∆aµ contain

nearly degenerate χ̃±1 and χ̃0
1. Understandably, the 1σ points appear only at the low mass

region for χ̃0
1 and hence also for χ̃±1 . In this type of scenario, a consequence of having a
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Figure 4. Impact of constraints from search for disappearing track and long lived particles, see

section 4.1. The region enclosed by the red lines is excluded from long-lived or stable charged

particle search. The area under the slanted black line just above the horizontal red line is excluded

from disappearing charged track search at the LHC.

wino-like LSP is that the lighter chargino can then be as light as the LSP, provided one has

much heavier higgsinos what is exactly what we have here. If χ̃±1 mass is just above the χ̃0
1

mass so that it can decay into a charged pion (π±) and the LSP, one observes a charge track

at the detector. This puts a strong limit on the chargino mass [112]. Now if the degeneracy

between the χ̃±1 and χ̃0
1 masses is such that χ̃±1 cannot decay further, its mass limit becomes

even stronger [110, 111]. Figure 4 shows the distribution of the measure of mass degeneracy

∆M , as a function of chargino mass. The red, blue and cyan colours represent the points

that signify 1σ, 2σ and 3σ excess in ∆aµ respectively. The exclusion limit [110, 111] from

long-lived or stable mχ̃±1
is shown by the red rectangle at the left bottom corner of the

plot. As one can see, all the points below ∆M = 135 MeV are excluded for a chargino mass

upto 620 GeV. The region under the slanted black line just above the horizontal red line

is excluded from disappearing track search of charged particle [112]. This, by far, appears

to be the strongest constraint11 for a wino-like LSP scenario.

From this point onwards, we consider only those points which survive the constraints

imposed by the charged track and stable charged particle search besides all the other

collider, DM and flavour constraints as described in section 4. Colour coding corresponding

to the 1σ, 2σ and 3σ reaches of muon (g-2) remain unchanged in the rest of the paper. In

figure 5 we have shown the distribution of the obtained gaugino mass ratios (Mi
M3

, i=1,2).

We have chosen the range of gaugino masses to encapsulate all the four possible correlations

between the ratios M13 (M1
M3

) and M23 (M2
M3

) including their signs.

11In passing we would like to mention that the numbers we have quoted for the particle masses are

obtained from SuSpect [133] which includes one-loop corrections [136]. However, if one incorporate the

two-loop corrections, the maximum mass splitting can be reduced by 2 to 5 MeV [137] depending upon the

SUSY scale. Thus the real impact of this two loop correction will be hardly visible in our figure 4.
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Figure 5. Model independent correlations among M1,M2,M3 depending on [1 ÷ 3]σ muon (g-2)

excess after satisfying all constraints discussed in the text. The black dots represent the models

encapsulated in tables 1, 2 in ref. [42]. Here, we have shown only few example model points where

other models are out of this frame.

Figure 5 is almost symmetric and all the quadrants are in same footing for the purpose

of our analysis. Hence it is sufficient to concentrate on one of the four quadrants to

understand the nature of the distribution. It is clear that for an enhancement of ∆aµ
at [1 ÷ 2]σ level, one needs to have |M23| ≤ 0.7 and |M13| ≤ 1.1 excluding Mi3 = 0 for

i=1,2. From these ratios, one can have an idea about the composition of the LSP under

consideration. The mass splitting increases as the contribution of bino component increases

in the LSP state. As evident from figure 4 the mass splitting can be as large as 300 GeV

to produce the required [1 ÷ 2]σ enhancement in ∆aµ.

Note that, in this analysis, µ parameter is always relatively higher than M1 and M2 at

the low scale. This a consequence of setting the Higgs soft masses (mHd and mHu) equal to

m0 at the high scale. Hence there is no possibility of having a small higgsino component that

can contribute to the LSP state. Then it is evident that the most dominating contribution

to the muon (g-2) enhancement would come from the processes involving light wino-like

χ̃±1 and light sleptons. This is one of the reason why the constraints from the search of

heavy charged particles are so proactive in our case and rule out a large portion of the

parameter space.

The other parameter that plays a very important role in the muon (g-2) calculation is

tanβ. As discussed earlier, the SUSY contribution to muon (g-2) is directly proportional

to tanβ. As a result, large tan β, say [8÷35], is favoured to achieve 1σ enhancement which

is evident from the figure 6. However, the 2σ enhancement can be obtained for a tan β as

low as 5 and as high as 47.

One can infer from the contributing diagrams in figure 2 that light slepton and LSP

are crucial for the enhancement since they only appear as propagators. From figure 6,

we observe that the LSP mass must be lighter than 400 GeV for our purpose. Similarly,
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Figure 6. Correlations between low scale parameters: (Left panel) lightest neutralino mass (mχ̃0
1
)

vs tan β; (Right panel) smuon mass (mµ̃) vs tan β, depending on [1 ÷ 3]σ muon (g-2) excess after

satisfying all other constraints discussed in the text. A very similar correlation in mν̃ - tanβ plane

is found as given in plot on the Right Panel. The slepton and sneutrino mass difference varies from

5-20 GeV, indicating that the sneutrino-wino loop in figure 3 may also contribute significantly.

figure 6 puts an upper limit (700 GeV) on the smuon masses beyond which 2σ excess is

not found.

Figure 7 shows the correlation between smuon mass and the LSP mass. Since the

SUSY contribution to muon (g-2) decreases with the increase of the smuon mass and(or)

the LSP masses, we would expect a comet like structure in the smuon-LSP mass plane

converging on the lighter side of both the masses, which is reflected in figure 7 (Left). The

plot shows only those points for which χ̃0
1 is the LSP, which has been used as a constraint.

Note that, a light stau(τ̃1) can also have an impact on the muon (g-2) calculation only if

there is a sizeable mixing between smuon and stau states. For our choice of A0(= −2m0),

we observe that this mixing may vary from negligible amount to as large as 10% depending

on the values of m0, M3 and tanβ. Hence we would expect a sizeable impact of the τ̃1 mass

in some part of the parameter space, specially, in the low slepton mass regime. Figure 7

(Right) shows the distribution of mτ̃1 as a function of mχ̃0
1
.

Dark matter searches

6.1.1 Relic density

In our analysis, the lightest neutralino (χ̃0
1) is the LSP and DM candidate since we have

chosen to work in R-parity conserving scenario. We have checked the compatibility of muon

(g-2) allowed parameter space with relic density constraint in figure 8. We consider only

those points for which the DM annihilation and(or) co-annihilation are sufficient such that

there is no over abundance of the lightest neutralino. As evident from figure 8, most of the

favoured points produce a relic density that is much lower than the present upper limit.

In our case, the LSP is composed of either bino or wino or an admixture of both.

Dominant contribution to the DM relic density may come from bulk annihilation of χ̃0
1

with sleptons (mostly τ̃1), co-annihilation of χ̃0
1 with the next to lightest supersymmetric
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Figure 7. Correlations between low scale parameters: (Left panel) lightest neutralino mass (mχ̃0
1
)

vs smuon mass (mµ̃); (Right panel) lightest neutralino mass vs stau mass (mτ̃1), depending on

[1÷ 3]σ muon (g-2) excess after satisfying all other constraints discussed in the text.
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Figure 8. Relic density as a function of the mass of the dark matter, i.e., LSP (χ̃0
1) depending on

[1÷ 3]σ muon (g-2) excess after satisfying all other constraints discussed in the text.

particles (NLSPs) τ̃1, χ̃±1 , χ̃0
2. Thus the muon (g-2) and DM allowed parameter space can

be classified into the following categories:

• Bulk annihilation. The pure bulk annihilation region with light sleptons has been

ruled out in usual mSUGRA scenario by the LHC constraints. The present exclusion

in m0 − m1/2 plane [95, 96] is such that the sfermion is always much heavier than

the LSP resulting in suppression of slepton mediated DM pair annihilation cross-

sections. However, with non-universal gaugino and universal scalar masses, we have

noted that this can be a possibility and specially when mτ̃1 ≤ 130 GeV, it plays an

important role in keeping χ̃0
1 abundance under the specified limit. If other charged

slepton masses are also close to mτ̃1 , they can participate in bulk annihilation as

well with the final state consisting of two charged leptons. Benchmark points (BP)

representing such scenario are illustrated in table 1 (see BP1, BP2).

• Stau co-annihilation. In such scenario, τ̃1 is the NLSP and the co-annihilation

between τ̃1 and LSP is significant to maintain the right relic abundance when χ̃0
1 is

mostly bino-like. Here the χ̃±1 and(or) χ̃0
2 states are much heavier. For light τ̃1 mass,
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Figure 9. Direct detection cross-section as a function of the mass of the dark matter, i.e., LSP (χ̃0
1)

depending on [1÷ 3]σ muon (g-2) excess after satisfying all other constraints discussed in the text.

dominant contribution comes from bulk annihilation process, whereas τ̃1 - χ̃0
1 co-

annihilation contribution is roughly ∼ 15−20% (see BP3 in table 1). With relatively

larger mχ̃0
1

(see BP4), the co-annihilation processes dominate.

• Chargino co-annihilation. Here, χ̃±1 and(or) χ̃0
2 appears as NLSP and conse-

quently χ̃0
1 annihilation with these sparticles are responsible to determine the relic

density assuming the sleptons are much heavier to take part in co-annihilation. When

the mass difference between LSP and NLSP is typically 15-25 GeV, one obtains

PLANCK allowed DM relic abundance (see BP5 and BP6). The final states are

usually dominated by quarks and gauge bosons. On the other hand, if M1 is much

larger than M2, the χ̃±1 and χ̃0
2 become nearly degenerate with the LSP and they

co-annihilate profusely resulting in relic under-abundance.

• Chargino and stau co-annihilation. In such scenarios, τ̃1, χ̃±1 and(or) χ̃0
2 masses

are close to mχ̃0
1
. Along with bulk annihilation, stau co-annihilation and χ̃±1 and(or)

χ̃0
2 co-annihilation give rise to correct relic density (see BP7 and BP8 in table 1).

6.1.2 Direct and indirect detections

In figure 9 we have shown the distribution of spin independent cross-section (σSI) as a

function of the LSP mass. Note that, all the points shown in these plots obey the relic

density upper limit. As evident from the plot, apart from a small part of the 3σ allowed

region, all the other points appear under the most recent exclusion line provided by LUX

on σSI [130] and thus allowed.

The possible contribution to this cross-section comes from t-channel Z-boson, Higgs,

squark mediated diagrams or s-channel squark mediated ones. The squarks being heavy do

not contribute much. On the other hand, Higgs boson couplings to the first two generation

quarks are suppressed. It is well known that within the MSSM framework, the DM-

nucleon scattering cross-section may increase alarmingly if the LSP consists of a sizeable

higgsino component which enhances its coupling with the Z-boson. Now in our scenario

µ � M1,M2 at low scale for most of the parameter space. Hence the LSP state always
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has a negligible higgsino component. In large LSP mass region, the µ parameter can

be comparable with the other gaugino mass parameters and may enhance the scattering

cross-section. However, this region of parameter space is not interesting from the ∆aµ
enhancement viewpoint as discussed earlier. We have also shown in figure 9, the future

projected limit of XENON1T [138] experiment. In case of a null result, it will reduce a

significant portion of the available parameter space. We have also taken into account the

indirect detection cross-section constraints coming from different final states. All our points

lie well within the exclusion limits and hence we do not present them in separate plots.

6.1.3 Some benchmark points

In this section, we have provided some benchmark points from different regime of the

parameter space where ∆aµ, Ωh2 and flavour constraints all lie within the 2σ ranges of

their experimentally measured values. This parameter space is certainly compatible with

other collider and low energy constraints mentioned in earlier sections.

In pure bulk (BP1 & BP2) or stau co-annihilation region (BP3 & BP4), mτ̃1 is rel-

atively light. Since we are working with universal scalar masses at the GUT scale, this

implies either the slepton soft masses are light where the smuons are also expected to be

light (see e.g. BP2) or tan β is effectively large. Both these scenarios may enhance ∆aµ
which is reflected in BP1 - BP4. Light chargino may also produce the required enhance-

ment provided the sneutrino masses are not too large. BP5 - BP6 represent chargino

ao-annihilation region, where χ̃±1 is the NLSP. Hence the required enhancement in ∆aµ is

obtained even with relatively larger smuon mass. BP7 and BP8 have almost degenerate τ̃1

and χ̃±1 masses with large values of tan β. Hence the combined effect of light chargino and

large tan β produce the required enhancement in ∆aµ.

A large tanβ results in light stau’s in the spectrum. For such low scale spectra, from

the production and subsequent decays of the gauginos, one would then expect τ -enriched

final states associated with missing energy. Since the τ ’s mostly decay hadronically, tagged

τ - jets + E/T signature will be the most suitable one to look for such scenarios. However,

the LSP-NLSP mass gap being very small, the τ -jet tagging efficiency will be very small.

The squarks and gluinos are in general heavy in these spectra. Since the gluino mass

is heavier than all the squark masses, it can decay into all the squark flavours abundantly

giving rise to jets + E/T final state. In the usual mSUGRA scenario, on the other hand,

usually the gluino decay via stop into multiple top and neutralinos resulting in the multi

b-jet final state associated with large missing energy (see, for example, ref. [96]). Moreover,

given the present collider exclusion limits, in mSUGRA, with such heavy color sector as

in our benchmark scenarios, it is not possible to achieve a slepton sector light enough to

enhance the muon (g-2) value to the desired range.

6.2 Universal gauginos and non-universal scalars — model independent

analysis

In this section, we have discussed the other possible high scale scenario in the present

context, namely, universal gauginos with non-universal scalars.
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Parameters BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8

M1 -241.8 -248.5 -330.1 -647.7 -274.4 516.2 373.5 581.4

M2 299.9 -951.1 -390.0 453.1 187.2 -299.3 233.5 364.3

M3 1004.1 4573.5 3075.0 1257.9 2275.3 857.1 1396.8 2636.8

m0 325.3 168.7 346.6 386.9 428.9 483.8 301.1 465.3

tanβ 29.2 5.2 16.5 30.0 22.1 29.5 21.7 26.7

mg̃ 2205.5 9034.1 6269.1 2715.8 4751.0 1911.5 3003.5 5431.5

mq̃L 1937.9 7606.3 5327.8 2380.4 4074.1 1724.6 2600.7 4642.6

mq̃R 1938.6 7617.8 5345.4 2379.3 4089.8 1726.6 2609.4 4658.6

mt̃1
1582.8 6579.8 4594.1 1952.8 3479.0 1339.7 2189.8 3970.2

m˜̀
L

370.6 500.3 354.7 484.1 409.7 522.9 323.0 485.6

m˜̀
R

337.8 132.4 354.0 453.5 434.8 520.0 329.4 504.3

mτ̃1 121.4 93.3 146.2 288.4 240.0 374.0 170.9 262.7

mν̃1,2 362.3 494.7 346.2 477.8 402.2 517.0 313.4 479.4

mν̃3 331.8 494.2 337.8 444.4 384.5 474.0 299.8 453.4

χ̃0
1 95.2 75.9 120.9 270.6 100.6 214.1 148.6 235.0

χ̃0
2 232.1 734.1 276.2 358.1 114.0 234.7 169.0 263.4

χ̃±1 232.1 734.1 276.2 358.1 114.0 234.7 169.0 263.4

µ 1294.8 4863.9 3390.9 1582.2 2637.4 1198.1 1708.4 2990.0

(g − 2)µ × 109 2.64 1.82 2.28 1.42 1.54 1.34 2.64 1.51

BR(b→ sγ)× 104 3.18 3.31 3.31 3.24 3.31 3.11 3.30 3.30

BR(Bs → µµ)× 109 3.81 3.07 3.07 3.38 3.08 3.74 3.12 3.09

Ωh2 0.117 0.115 0.121 0.124 0.116 0.122 0.121 0.120

σSI × 1013 (pb) 101.0 11.6 4.6 87.1 6.3 281.9 38.6 6.73

Table 1. High scale input parameters and the relevant sparticle masses along with the muon

(g-2) value for some of the chosen benchmark points satisfying the collider, DM and low energy

constraints discussed in earlier sections. All the mass parameters are written in GeV unit.

If we assume to have a universal mass parameter (m1/2) for all the gauginos at the

high scale, we expect the LSP to be mostly pure bino like at low scale.12 This is due to

the fact that the renormalisation group evolutions determine the gaugino mass ratios to

be M1 : M2 : M3 ' 1 : 3 : 6 at low scale. Hence in such scenario, the χ̃±1 contribution

to the loop diagrams will be smaller. However, the bino component can be sufficiently

light and can contribute to the enhancement, but then the relic density constraint can

be a serious problem as the DM pair annihilation cross-section may not be suitable to

satisfy proper relic abundance. The non-universal scalar scenario can be useful as it may

12We are ignoring the higgsino possibility from the point of our analysis.

– 19 –



J
H
E
P
0
7
(
2
0
1
5
)
0
3
8

 200

 400

 600

 800

 1000

 1200

 0  10  20  30  40  50  60

m
χ~

1
0
 (

G
e
V

) 

 tanβ 

3σ Points

2σ Points

 0

 500

 1000

 1500

 2000

 0  10  20  30  40  50  60

m
µ~
 (

G
e
V

) 
 

 tanβ 

3σ Points

2σ Points

Figure 10. Correlations between low scale parameters: (Left panel) lightest neutralino mass (mχ̃0
1
)

vs tan β; (Right panel) smuon mass (mµ̃) vs tan β, depending on [2 ÷ 3]σ muon (g-2) excess after

satisfying all other constraints discussed in the text. A very similar correlation in mν̃-tanβ plane is

found as given in plot on the Right Panel. We have not found any parameter space in this scenario

that satisfy 1σ excess.

allow a stau (τ̃1) to be light enough which can co-annihilate with χ̃0
1 to make up for the

annihilation cross-section. An added advantage of having a bino-LSP is that long-lived or

stable chargino constraint which proved to be the most severe in the previous case, will

not be applicable here.

In this scenario, the high scale input parameters are following: the universal gaugino

mass (m1/2), slepton mass (m0) and squark mass (m′0). The soft Higgs mass parameters,

mHd and mHu are assumed to be equal to m0 at the GUT scale. The trilinear coupling,

A0(= −2m0) is same as before. We note that this scenario can provide [2 ÷ 3]σ excess in

∆aµ at its best.

It is evident from figure 10 that both the slepton and LSP masses are heavier in this

scenario compared to the earlier case at the low scale. The collider constraints for universal

gaugino masses combine to produce these mass limits which prevent from achieving 1σ

excess of ∆aµ. Assuming a universal gaugino mass at high scale the gluino appears to

be roughly six times heavier than the LSP at low scale. Hence imposing a mass limit of

∼ 1.2 TeV on the gluino mass for heavy squark scenarios automatically implies that the

LSP cannot be lighter than ∼ 200 GeV. This scenario is being reflected in figure 10.

There can be another high scale scenario where both the gauginos and scalars are

non-universal. For this case, the collider and DM constraints put very similar lower limits

on the LSP and slepton masses to that we obtained for the non-universal gaugino and

universal scalar scenario. The LSP composition is also very similar. Hence this scenario

does not provide any new features to highlight.

6.3 Non-universal gauginos and universal scalars — model based analysis

We have discussed the generation of gaugino masses in phenomenological N = 1 super-

gravity scenario in section 2. We have also noted that if the visible sector possesses unified

symmetry, then we need a non-singlet scalar to break that symmetry to achieve the SM

gauge group. We have further discussed that in presence of a singlet and a non-singlet
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Model Number M1 : M2 : M3 Symmetry Breaking

(at MX) Patterns

1 -1/5 : -1 : 1 E(6)
(35,1)⊂650−−−−−−−→ (SU(6)⊗ SU(2)R)

2 19/10 : 5/2 : 1 SO(10)
(1,1)⊂770−−−−−−→ (SU(4)⊗ SU(2)R

3 1/10 : -3/2 : 1 E(6)
(54,0)⊂650−−−−−−−→ (SO(10)⊗U(1))flipped

4 -1/5 : -3/2 : 1 E(6)
(210,0)⊂650,2430−−−−−−−−−−→ (SO(10)⊗U(1))flipped

(SO(10)⊗U(1))flipped
(24)⊂210−−−−−→ SU(5)

5 -1/2 : -3/2 : 1 SO(10)
(24)⊂54,210,770−−−−−−−−−−→ SU(5)

SO(10)
(24,0)⊂54−−−−−−→ (SU(5)⊗U(1))flipped

SO(10)
(1,1)⊂54−−−−−→ (SU(4)⊗ SU(2)R)

6 7/10 : -3/2 : 1 SO(10)
(24,0)⊂210−−−−−−−→ (SU(5)⊗U(1))flipped

Table 2. Gaugino mass models that can explain [1 ÷ 3]σ excess of muon (g-2). Other models are

not compatible with [1÷ 2]σ excess within this scheme.

field in the hidden and visible sectors respectively, the generic gaugino mass terms can be

written as Mi = M
′

[1 + ℘ δi ] (see eq. (2.4)). This function ℘ is the ratio of P,Q (see

eq. (2.3)). The detail structure of ℘ is not easy to reveal. Thus we have encompassed the

numerical ranges of ℘ which can explain the muon (g-2) excess successfully at [1÷2]σ level.

The MSSM gaugino mass ratios at the high scale is depicted as:

M1 : M2 : M3 = (1 + ℘δ1) : (1 + ℘δ2) : (1 + ℘δ3). (6.2)

Earlier in ref. [42], 25 different phenomenological models were analysed under the im-

pression of dark matter search results. There contributions from the singlet scalar was

neglected and prime focus was on the non-universal part only. We have revisited those

models with their generic structures and from muon (g-2) point of view. Here, we have ad-

judged those non-universal models and checked which among them can successfully explain

[1÷ 2]σ excess of ∆aµ (see table 2). We have analysed these models to find out the ranges

of ℘ which is a measure of weighted mixing between singlet and non-singlet contributions.

Note that among those 25 models (see ref. [42]), only 6 can successfully explain observed

muon (g-2) excess at [1÷2]σ level after including the singlet contribution. Few models can

provide 3σ excess but we are not quoting those here. Note that, if this singlet contribution

is neglected, all those 25 models fail to explain ∆aµ excess at [1÷ 2]σ level.

Figure 11 describes the correlation between M1/M3 and ℘ for different models. There

are certain ranges of ℘ for which there exist discontinuities in M13 which are outcome of the

fact that within that range M23 or M13 vanishes. This happens because both are related

for specific models. Around that solution, where M23 or M13 is very small, no parameter
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Figure 11. The variations of mixing parameter ℘ with M13 for different set of models leading to

[1÷ 3]σ excess in muon (g-2). The other models cannot provide ∆aµ excess at level of [1÷ 2]σ.

space is compatible with other imposed constraints. We have also explicitly shown the

dependence of excess of muon (g-2) on the weighted mixing ℘.

7 Conclusion

High scale supersymmetry breaking is at the center of study since long time due to its

minimalistic view. In this paper we have adopted a methodology to understand the corre-

lations among high scale parameters in these type of scenarios, with a goal to explain the

[1 ÷ 3]σ excess of muon (g-2) over Standard Model predictions. To enrich the viability of

our analysis, we have carefully incorporated the collider constraints without being biased

to any particular scenario and also avoided the implementation of just mSUGRA bounds.

The experimental constraints coming from simplified model assumptions have been tuned

suitably. Hence the constraints imposed in our analysis can be taken over mutatis mutandis.

We have categorized our work in two parts: first we have discussed the model inde-

pendent correlations among non-universal gaugino masses, and found out the moun (g-2)

compatible solutions at [1 ÷ 3]σ level. We observe that none of the existing models’ pre-

dictions fit within this. Thus from muon (g-2) point of view, these models are not capable

enough. We have further analysed the high scale parameter space in terms of the low

scale masses of sleptons, smuons, lighter chargino and lightest neutralino (LSP), along

with tan β. Then we have also scrutinized such parameter space in the light of direct and

indirect searches for DM. We have encompassed that regime by showing the dependence

of relic density and spin dependent cross-section (σSI) on mass of the DM.

We have briefly discussed the general structure of the gaugino masses that include the

contributions from singlet and non-singlet chiral super-fields. Thus in such cases there is an
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extra parameter which is a measure of mixing of contributions from both fields. We have

stuck to minimal models, i.e., restricted to one non-singlet field and explored the range of

that mixing parameter from muon (g-2) viewpoint along with other constraints. We have

found only few of the existing models can explain the excess in ∆aµ at [1÷ 2]σ level.

In summary, we have captured the model independent features of non-universality

considering muon (g-2) excess on a serious note. This broadly classified picture is also

grabbed for some particular cases in terms of some specific benchmark points.
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