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1 Introduction

Hydrodynamics is a low-energy effective description of many physical systems in local

thermal equilibrium. Relativistic hydrodynamics for normal fluids is a set of partial dif-

ferential equations expressing the conservation of the energy-momentum tensor and other

conserved currents, such as the baryon number current. Such a description is classical,

rather than field-theoretic, and one can enquire about the low-energy effective field theory

corresponding to the hydrodynamic regime, and how it is related to the classical hydrody-

namic equations. A fundamental object in field theory is the generating functional W [A, g]

where Aµ and gµν = ηµν + hµν are the external sources (gauge field and the metric). The

variations of W [A, g] with respect to the sources give rise to hydrodynamic correlation

functions, i.e. to correlation functions of the energy-momentum tensor Tµν and the current

Jµ in the limit of small frequency and momentum.

The motivation for finding such a W [A, g] is the following. There is a plethora of

n-point real-time response functions, differing by time ordering and symmetrization of the

corresponding operators. These correlation functions can be conveniently classified in the

closed time path (CTP) formalism by labeling the operators according to the two parts

of the time contour [1, 2]. The response functions computed in classical hydrodynamics

by varying the on-shell Tµν
cl and Jµ

cl with respect to the sources are the fully retarded
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functions, or raa . . . a functions, in the notation of ref. [2]. While for two-point functions, all

response functions can be reconstructed from the ra function by the fluctuation-dissipation

theorem, the same is not true for general n-point functions [2]. In classical hydrodynamics,

the fluctuation-dissipation relations are not contained in the hydrodynamic equations, and

have to be imposed by hand.

Second, classical hydrodynamics misses information about thermal fluctuations of the

hydrodynamic degrees of freedom themselves. Such real-time thermal fluctuations will lead

to effects (long-time tails and momentum-space non-analyticities in two-point functions)

which can not be captured by classical hydrodynamic equations [3, 4]. Relativistic fluids

are not immune to such effects, though the fluctuation corrections become suppressed in

the large-N limit [5, 6]. A full real-time generating functional must capture both the

fluctuation-dissipation theorem, and the effects of thermal fluctuations.

One way to arrive at a hydrodynamic effective action is to modify the hydrodynamic

constitutive relations by introducing random stresses and currents whose correlation prop-

erties are chosen so that the fluctuation-dissipation theorem is satisfied in equilibrium [7].

Such a construction is phenomenological: it takes the hydrodynamic equations as given,

while the random stresses and currents become extra dynamical degrees of freedom, to

be integrated over in the hydrodynamic path integral. It is not immediately clear how to

proceed with the systematic derivative expansion and the coupling to external sources in

this formalism. See e.g. [8, 9] for recent discussions in the context of relativistic hydro-

dynamics. From a field-theoretic perspective, it would be more natural to implement the

hydrodynamic equations, the derivative expansion and the coupling to external sources at

the level of the effective action which respects the relevant symmetries of the microscopic

physical system.

The present paper is a step in this direction. We start with the bottom-up approach

in section 2, asking a simple question: what is the generating functional that gives rise to

the known hydrodynamic two-point functions of linearized hydrodynamics in equilibrium?

Incorporating the appropriate background sources, a structure emerges that is consistent

with expectations from the CTP formalism, expressed in the so-called (r, a) basis. Going

beyond linearized hydrodynamics requires understanding the symmetries of the effective

action. In the CTP formalism, the set of symmetries is doubled (call these symmetries G1

and G2), corresponding to the two branches of the time contour. The classical hydrody-

namic equations on the other hand manifest only one symmetry, the diagonal (physical)

Gr. We discuss the symmetries and derive the relevant Ward identities in section 3, which

generalize the classical hydrodynamic conservation equations. These classical equations

have the schematic form of conservation laws

D · Jr = 0, (1.1)

where Jr = Jµ, Tµν , etc. and we have ignored possible explicit symmetry breaking terms

that may be present on the right hand side. Based on the results of the bottom-up analy-

sis, we further argue that the hydrodynamic effective action can be built from the degrees

of freedom that arise in a low energy nonlinear symmetry realization, analogous to the

spontaneous breaking of G1 × G2 → Gr. The degrees of freedom of the effective theory
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thus include modes analogous to the extra Goldstone modes arising from symmetry break-

ing. The effective action has the following schematic expansion in terms of the a-sector

(fluctuation) fields ϕa,

Seff = Ir + Jr · Dϕa +Kr · (Dϕa)
2 + . . . . (1.2)

Here Ir, Jr and Kr are functionals of the r-sector (physical) fields, with indices suppressed.

Dϕa denotes the appropriate covariant derivative of ϕa, which is manifestly invariant un-

der the hidden symmetries Ga, orthogonal to Gr. The term linear in Dϕa, on varying with

respect to ϕa, enforces the classical equations of motion D · Jr = 0, a generic feature of

the CTP action. The term quadratic in Dϕa provides the additional structure necessary

to satisfy the fluctuation-dissipation theorem, and can be interpreted in terms of supplying

fluctuations. It is apparent that the derivative coupling of ϕa is consistent with the de-

pendence expected for Goldstone modes associated with a nonlinear symmetry realization.

We test this expectation at the nonlinear level by writing the general CTP effective action

in a low energy derivative expansion for both the classical hydrodynamic fields, and for the

fluctuation modes ϕa. In section 4 we implement the expansion to first order and identify

all the expected transport coefficients of first-order hydrodynamics in terms of the param-

eters of the effective action, modulo certain constraints associated with the existence of an

equilibrium state. We conclude in section 5 with a list of open questions that need to be

resolved in order to have a complete picture of the hydrodynamic generating functional.

2 Bottom-up approach

2.1 Diffusive mode

We start with linearized hydrodynamics, and consider the simplest hydrodynamic process

which is diffusion. It is described by the diffusion equation

∂tn−D∇
2n = 0 , (2.1)

where n is the charge density fluctuation, D is the diffusion constant, and ∇
2 ≡ ∂i∂

i. The

linear response theory gives the following two-point functions of the charge density n(t,x)

in thermal equilibrium:

Gra(ω,k) =
Dχk2

iω −Dk2
, Gar(ω,k) =

−Dχk2

iω +Dk2
, Grr(ω,k) =

−4i TDχk2

ω2 + (Dk2)2
. (2.2)

The first one is retarded, the second one is advanced, the third one is (−i) times the

anti-commutator, and Gaa is identically zero. Here T is the equilibrium temperature, and

χ ≡ (∂n/∂µ)µ=0 is the static charge susceptibility. What is the effective action which gives

rise to these correlation functions?

In relativistic hydrodynamics, the diffusion equation emerges from the current conser-

vation equation ∂µJ
µ
cl = 0 in the Landau-Lifshitz frame [10], linearized in small fluctuations

close to the equilibrium state at zero chemical potential. We can couple the system to an
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external gauge field Aµ, which gives rise to Jµ
cl[A]. The variation of the hydrodynamic on-

shell current with respect to the source A can give rise to Gra and Gar, but not to Grr. This

is because the linearized current conservation equation in the presence of the source has in it

D and σ = Dχ, but not T . In order to get Grr, hydrodynamic equations coupled to sources

are not enough, and one has to use extra information, namely the fluctuation-dissipation

theorem. The effective action must incorporate both the hydrodynamic equations with

sources, and the fluctuation-dissipation theorem.

It is intuitively clear that there is no local path integral action S[φr, φa] quadratic

in the fields, which would give Gra = −i〈φrφa〉, Gar = −i〈φaφr〉, Grr = −2i〈φrφr〉 with

the response functions (2.2). This is because the response functions (2.2) have k2 in the

numerator, hence the corresponding action will have k2 in the denominator, which is not

local in space. For a quadratic action of the form

S =
1

2

∫

ω,k

φα ∗
ω,k Pαβ(ω,k)φ

β
ω,k (2.3)

in the path integral, the matrix

Pαβ =
1

Dχk2

(

0 −iω −Dk2

iω −Dk2 2iT

)

(2.4)

gives the correct response functions (2.2). Here, the upper left element is rr, upper right

is ra, bottom left is ar, and bottom right is aa. In particular,

〈φαφβ〉 = i(P−1)αβ ,

where the indices run over r, a. The action (2.3), (2.4) is not real: it is complex, but in such

a way that the functional integral with the weight eiS converges. Clearly, the matrix (2.4)

is not analytic in k, and the quadratic action S[φr, φa] is not local in space.

The action can be made local by introducing auxiliary fields. Let us define a new field

ϕa as φa = Dχ∇2ϕa. Consider the following action

S[φr, φa, ϕa, λ] =

∫

dt ddx
[

ϕa(∂t −D∇
2)φr − iϕaTφa + λ(φa −Dχ∇2ϕa)

]

, (2.5)

where the auxiliary field λ is used to impose the constraint which defines ϕa. We can

further define the generating functional as

Z[ar, aa] = eiW [ar,aa] =

∫

DφrDφaDϕaDλeiS+i
∫
dt ddx(aaφr+arφa) ,

where the effective action is given by eq. (2.5), and ar, aa are external sources. The physical

meaning of φr is the density fluctuation field n. By construction, this generating functional

reproduces (2.2). Integrating out λ and φa leaves

Z[ar, aa] =

∫

DφrDϕa exp
[

i

∫

t,x

[
ϕa

(
∂tφr −D∇

2φr +Dχ∇2ar
)

−iϕa TDχ∇2ϕa + aaφr

]]

. (2.6)
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The source ar now appears as a correction to the equation of motion of φr. This is precisely

how the source term should appear, based on the full hydrodynamic description. Indeed,

in relativistic hydrodynamics, the diffusion equation (2.1) arises from current conservation.

To first order in the derivative expansion, the constitutive relation for the current in the

Landau-Lifshitz frame is

Jµ
cl = nuµ − σT∆µλ∂λ(µ/T ) + σ∆µλEλ , (2.7)

where uµ is the fluid velocity satisfying uµuµ = −1, T is the local temperature, µ is the

chemical potential, and ∆µν = ηµν+uµuν . The electric field is Eµ = Fµνu
ν , where Fµν is the

field strength. Let us turn on A0 only. For linearized fluctuations around the equilibrium

state with uµ = (1,0), T = const, and µ = 0, we have J0
cl = n, J i

cl = −σ∂iµ + σ∂iA0.

Charge density and chemical potential fluctuations are related by n = χµ, and the electrical

conductivity is σ = Dχ. Current conservation ∂µJ
µ
cl = 0 now gives

∂tn−D∇
2n+Dχ∇2A0 = 0 ,

modifying the diffusion equation by the source term proportional to ∇
2A0. Thus, by

comparing with (2.6), we identify ar with Ar
0. The hydrodynamic equation coupled to the

source contains both D and χ, but not T . The dependence on temperature comes from

the kinetic term for ϕa in the effective action (2.6).

One can rewrite the kinetic term for ϕa as

eTDχ
∫
ϕa∇

2ϕa =

∫

Dr e
1

4TDχ

∫
ririei

∫
ϕa∂krk . (2.8)

This makes the action linear in ϕa, enforcing the equation of motion for φr with the

Gaussian noise ri in the right-hand side. Integrating out ϕa gives

Z[ar, aa] = 〈ei
∫
aa n[ar,r]〉r ,

where n[ar, r] in the exponent is a solution to ∂tn−D∇
2n+Dχ∇2ar = −∂krk, for a given

source ar(t,x) and noise profile ri(t,x), and the average is over the Gaussian noise ri. This

is the standard relation between stochastic equations and path integrals.

One can write down a covariant generalization of the generating functional (2.6),

Z[Ar, Aa] =

∫

DφrDϕa eiS[φr ,ϕa,Ar,Aa] , (2.9)

where

S =

∫

dt ddx
(
Jµ
cl[φr, Ar]Dµϕa + iTσ∆µνDµϕaDνϕa

)
, (2.10)

and Dµϕa ≡ ∂µϕa + Aa
µ. The gauge field Ar is the physical gauge field, while Aa is only

used as a tool to access correlation functions, and needs to be set to zero at the end of

the calculation. The effective action is invariant with respect to both r-type and a-type

gauge transformations. The conserved current obtained by varying the effective action with

respect to Aa is the classical hydrodynamic current Jµ
cl plus the fluctuation correction,

Jµ = Jµ
cl + 2iTσ∆µνDνϕa . (2.11)
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2.2 Shear and sound modes

Let us now look at the hydrodynamic shear and sound modes. It will be easiest to work

with an uncharged fluid. In the Landau-Lifshitz frame, the energy density fluctuation

ǫ = T 00− ǭ (with ǭ the equilibrium value) and the momentum density fluctuation πi = T 0i

obey

∂tǫ+ ∂kπk = 0 ,

∂tπi + v2s ∂iǫ−Mijπj = 0 ,

where v2s = ∂p̄/∂ǭ is the speed of sound squared, Mij = γη(∇
2δij − ∂i∂j) + γs∂i∂j , and

the damping coefficients are γη = η/(ǭ + p̄), γζ = ζ/(ǭ + p̄), γs = γζ + 2d−2
d

γη. The

hydrodynamic retarded functions are

G ra
πiπj

(ω,k) =

(

δij −
kikj
k2

)[
w̄γηk

2

iω − γηk2
+ ǭ

]

+
kikj
k2

[
w̄ω2

ω2 − k2v2s + iωγsk2
− p̄

]

, (2.12a)

G ra
ǫπi

(ω,k) = G ra
πiǫ

(ω,k) =
w̄ ωki

ω2 − k2v2s + iωγsk2
, (2.12b)

G ra
ǫǫ (ω,k) =

w̄ k2

ω2 − k2v2s + iωγsk2
− ǭ , (2.12c)

where w̄ = ǭ+ p̄. These functions are obtained by first solving the hydrodynamic equations

in the external metric, and then by varying the resulting solution for
√−g Tµν with respect

to the metric, see for example [11]. Note that G ra
πiπj

(ω,k) is analytic as k → 0. All aa

functions vanish identically, while the equilibrium rr functions can be obtained from the

fluctuation-dissipation theorem as

G rr
AB =

4iT

ω
ImG ra

AB . (2.13)

We would like to find an effective action which reproduces the above response functions, as

well as the corresponding rr functions. Let us choose ǫ and πi as our variables. By analogy

with the diffusive generating functional (2.6), one can make a guess for the generating

functional for the shear and sound modes:

Z[hr, ha] =

∫

DǫDπiDϕa
0Dϕa

i exp
[

i

∫

t,x

[
ϕa
i

(
∂tπi + v2s ∂iǫ−Mijπj + w̄ ∂th

r
0i −

1

2
w̄ ∂ih

r
00

)

+ ϕa
0

(
∂tǫ+∂kπ

k
)
− iT w̄ ϕa

iMijϕ
a
j +

1

2
ha00(ǭ+ ǫ+

1

2
ǭhr00) + ha0i(π

i+p̄hr0i)
]]

.

(2.14)

The fields ǫ, πi here are r-type fields, and the auxiliary fields ϕa
0, ϕ

a
i are a-type fields. The

only sources turned on are h0µ. The hr0µ sources in the equation of motion come from

∇µT
µν = 0 in the Landau-Lifshitz frame. The ha0µ sources come from 1

2

√−gr T
µν
r haµν .

An exercise with Gaussian integrals, given in appendix A, shows that the generat-

ing functional (2.14) does indeed reproduce the equilibrium response functions (2.12) of

linearized hydrodynamics in an uncharged relativistic fluid. The fluctuation-dissipation
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theorem (2.13) and the vanishing of all aa functions automatically follow from the struc-

ture of the effective action in (2.14). Just as in the example of diffusion, the generating

functional can be cast into the form of a stochastic equation with Gaussian noise.

One can write down a covariant generalization of the generating functional (2.14),

Z[hr, ha] =

∫

Dφr
µDϕa

µ eiS[φ
r , ϕa, hr, ha] , (2.15)

where

S =

∫

dt ddx
√−gr

(

Tµν
cl [φr, gr]Dµϕ

a
ν + iT Dµϕ

a
ν G

µναβ Dαϕ
a
β

)

. (2.16)

Here Dµϕ
a
ν ≡ 1

2(h
a
µν−∇µϕ

a
ν−∇νϕ

a
µ). To first order in the derivative expansion, the classical

energy-momentum tensor is given by the standard expression in the Landau-Lifshitz frame,

Tµν
cl = ǫuµuν + p∆µν −Gµνρσ∇ρuσ ,

with Gµναβ = η(∆µα∆νβ +∆µα∆νβ − 2
d
∆µν∆αβ)+ ζ∆µν∆αβ , and ∆µν = gµνr +uµuν . The

indices are raised using gr, which is the physical metric, while ha is only used as a tool to

access correlation functions, and needs to be set to zero at the end of the calculation. The

effective action is invariant with respect to both r-type and a-type diffeo transformations.

The latter act as position-dependent shifts of ϕa
µ. The conserved energy-momentum tensor

obtained by varying the effective action with respect to haµν is the classical hydrodynamic

Tµν
cl plus the fluctuation correction,

Tµν = Tµν
cl + 2iTGµνρσDρϕ

a
σ . (2.17)

One can explicitly check that the generating functional (2.15) gives the correct equilib-

rium two-point correlation functions for all components of the energy-momentum tensor in

linearized relativistic hydrodynamics, and that the fluctuation-dissipation relations are sat-

isfied. This is a non-trivial check of the validity of the effective action (2.16) for linearized

hydrodynamic fluctuations.

The structure of the effective action (2.16) is easy to discern. Suppose the kinetic

terms for ϕa
µ were not there. Then integrating over the ϕa

µ would impose ∇µT
µν
cl = 0 as an

exact operator equation. The generating functional then becomes

Z[hr, ha] = e
i
2

∫√−gr T
µν
on-shell[gr ]h

a
µν

where Tµν
on-shell[gr] stands for Tµν [T [gr], u[gr], gr]. Taking the variation with respect to

haµν produces one r-insertion of the on-shell Tµν , and subsequent variations with respect

to hr will produce raa . . . a hydrodynamic functions, obtained in the standard way by

varying the on-shell energy-momentum tensor. The kinetic terms for ϕa
µ are responsible

for the fluctuation-dissipation theorem, and allow one to evaluate correlation functions

with more than one r-insertion. These terms are responsible for thermal fluctuations of

the hydrodynamic modes allowing them to go off-shell, and will give rise to hydrodynamic

loop corrections and running of transport coefficients.
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3 Top-down approach

In order to correctly extend the generating functional W = −i lnZ beyond eq. (2.15) of

linear hydrodynamics, one needs to be more systematic about the underlying symmetries.

The effective action identified in section 2 has the schematic form,

Seff = Ir + Jr · Dϕa +Kr · (Dϕa)
2 + . . . (3.1)

Here Ir, Jr and Kr are functionals of the r-sector fields, with indices suppressed. The

term Ir, which is independent of ϕa, was not present in the earlier linearized discussion,

but we include it here for completeness of the expansion and will return to it below in the

context of the path integral measure. The term linear in Dϕa, on varying with respect

to ϕa, enforces the classical equations of motion D · Jr = 0. The term quadratic in Dϕa

supplies fluctuation corrections, and provides the additional structure necessary to satisfy

the fluctuation-dissipation theorem.

3.1 Non-equilibrium CTP contour

We identify the expansion (3.1) as one that appears naturally within the nonequilibrium

Schwinger-Keldysh CTP formalism, involving a doubled set of fields and symmetries cor-

responding to two time contours, see e.g. [1, 2].

For a quantum-mechanical system with fundamental degrees of freedom q, which at

time t0 is characterized by the density operator ρ, the CTP generating functional is given

by the path integral over the fundamental fields

Zρ[j1, j2] =

∫

dq̃1 dq̃2 dqf 〈q̃1|ρ|q̃2〉
∫

Dq1Dq2 e
i
∫ tf
t0

L(q1,j1)e−i
∫ tf
t0

L(q2,j2) , (3.2)

where j1 and j2 are the external non-dynamical sources, and the boundary conditions

are q1(t0) = q̃1, q2(t0) = q̃2, q1(tf ) = q2(tf ) = qf . The generating functional satisfies

Z[j1, j1] = 1 as well as Z[j1, j2]
∗ = Z[j2, j1], thanks to trρ = 1 and ρ = ρ†. In terms of the

(r, a) variables qr = (q1+q2)/2, qa = q1−q2, the action is

S[q1, j1]− S[q2, j2] =

∫

qaE(qr, jr) +O(ja, q
2
a) , (3.3)

where E(qr, jr) is the classical equation of motion, see e.g. [12, 13]. For a thermal equi-

librium state, the temperature dependence comes from the matrix element of the density

operator. A symmetry G of the classical action will lead to a doubled symmetry G1 × G2

of the generating functional provided the integration measure is invariant, and the density

operator ρ transforms covariantly. For the latter to be true, G1 × G2 must reduce to the

diagonal Gr at the initial time t0, as there is only one (physical) symmetry characterizing

the initial state.1 For local symmetries characterized by a continuous parameter ξ, we have

Zρ[j1, j2] = Zρ′ [j1 + δξ1j1, j2 + δξ2j2] ,

1Note that the doubled symmetry of the generating functional does not mean that the symmetries of the

theory magically double. The two-source generating functional is just a means for convenient classification

of correlation functions, and the time contour can be chosen to run back and forth more than once.

– 8 –



J
H
E
P
0
7
(
2
0
1
5
)
0
2
5

❄

✲
✛

❄

r

r

t0 + i β̄1

2

t0 − i β̄2

2

Figure 1. A contour with two times and two β̄’s.

with ξ1(t0) = ξ2(t0), ξ1(tf ) = ξ2(tf ), and ρ′ = δξ(t0)ρ.

We seek to find a similar two-source generating functional for low-energy excitations of

near-equilibrium states, in which case the effective degrees of freedom are the hydrodynamic

modes (in place of qr) and the corresponding auxiliary fields (in place of qa). The classical

equations of motion for the r-type fields are the conservation laws for the energy-momentum

tensor and other currents. Note that the condition Z[j1, j1] = 1, ensured in the microscopic

theory by the normalization of the initial density matrix, may result in a nontrivial measure

factor at O(a0) when we consider a low energy effective action in place of the microscopic

action (3.3). In this way, we observe that the a-sector expansion of (3.1) can naturally

emerge from the CTP formalism. The doubled symmetry G1 × G2 of the microscopic

description (with the off-diagonal Ga broken by the initial state) needs to be realized in

terms of the effective degrees of freedom. We will subsequently propose that the correct

symmetry realization in the hydrodynamic effective theory is a nonlinear realization of

G1 × G2 with an explicit (linear) realization of the diagonal Gr. The auxiliary a-type

degrees of freedom then couple in the manner expected for the corresponding Goldstone

modes.

3.2 CTP metric sources and conservation laws

To analyze the hydrodynamic regime, we need to consider the CTP formalism in the pres-

ence of sources for the charge current and energy momentum tensor. To that end we first

introduce two metric sources g1µν and g2µν , so that the generating functional is W [g1, g2].

We demand that W is invariant under two sets of diffeomorphisms: D1 which only trans-

forms g1, and D2 which only transforms g2. We anticipate that there will be additional

fields in the theory, such that at low energies we can identify physical (r-sector) fluctuating

modes associated with the hydrodynamic degrees of freedom, e.g. the temperature, fluid

velocity, etc. We will not need to specify these modes explicitly, but we necessarily assume

that their dynamics is consistent with D1 and D2. As one example, we might envisage a

system with an initial equilibrium state, with inverse temperature β̄1 and β̄2 in the two

sectors. The corresponding time contour is depicted in figure 1.

We will be working with linear combinations of the sources which provide easy access

to the retarded and symmetrized functions. We define

gr ≡ 1

2

(
g1 + g2

)
, ga ≡ g1 − g2 .
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The gr source corresponds to the physical metric. The ga source needs to be set to zero at

the end of the calculation. Diffeo invariance of W gives rise to conservations laws of the

energy-momentum tensor. We define

δgW [g1, g2] =

∫
1

2

√

−g1 〈Tµν
1 〉δg1µν −

∫
1

2

√

−g2 〈Tµν
2 〉δg2µν , (3.4)

where

δg1µν = g1µλ∂νξ
λ
1 + g1νλ∂µξ

λ
1 + ∂λg

1
µν ξ

λ
1 , δg2µν = g2µλ∂νξ

λ
2 + g2νλ∂µξ

λ
2 + ∂λg

2
µν ξ

λ
2

are the variations of the metric. Diffeo invariance of W gives

∇1
µ〈Tµν

1 〉 = 0 , ∇2
µ〈Tµν

2 〉 = 0 . (3.5)

These conservation equations can be expressed in the r and a basis. To that end, we define

√−gr 〈Tµν
r 〉 ≡ 1

2

√

−g1 〈Tµν
1 〉+1

2

√

−g2 〈Tµν
2 〉 , √−gr 〈Tµν

a 〉 ≡
√

−g1 〈Tµν
1 〉−

√

−g2 〈Tµν
2 〉 .

The average 〈Tµν
r 〉 is the physical stress tensor. Thus

δgW [g1, g2] =

∫
1

2

√−gr 〈Tµν
r 〉δgaµν +

∫
1

2

√−gr 〈Tµν
a 〉δgrµν . (3.6)

The variations δgr and δga can be expressed in terms of ξr ≡ (ξ1+ξ2)/2 and ξa ≡ ξ1−ξ2.

For the r-metric we have δgrµν = δrg
r
µν + δag

r
µν , where

δrg
r
µν = grµλ∂νξ

λ
r + grνλ∂µξ

λ
r + ∂λg

r
µν ξ

λ
r , δag

r
µν =

1

4

(

gaµλ∂νξ
λ
a + gaνλ∂µξ

λ
a + ∂λg

a
µν ξ

λ
a

)

.

Similarly, for the a-type metric we have δgaµν = δrg
a
µν + δag

a
µν where

δrg
a
µν = gaµλ∂νξ

λ
r + gaνλ∂µξ

λ
r + ∂λg

a
µν ξ

λ
r , δag

a
µν = grµλ∂νξ

λ
a + grνλ∂µξ

λ
a + ∂λg

r
µν ξ

λ
a .

Diffeo invariance of the generating functional (3.6) then gives rise to the conservation laws

for 〈Tµν
r 〉 and 〈Tµν

a 〉. Upon setting ga = 0 these reduce to

∇µ〈Tµν
r 〉 = 0, ∇µ〈Tµν

a 〉 = 0, (3.7)

where by ∇µ we denote the physical covariant derivative, evaluated with respect to gr.

It is straightforward to incorporate external gauge fields A1
µ, A

2
µ, and the corresponding

combinations Ar ≡ 1
2(A

1 +A2), Aa ≡ A1 −A2. The currents are defined by

δAW =

∫
√

−g1〈Jµ
1 〉δA1

µ −
∫
√

−g2〈Jµ
2 〉δA2

µ .

Gauge invariance in the 1 and 2 sectors leads to

∇1
µ〈Jµ

1 〉 = 0 , ∇2
µ〈Jµ

2 〉 = 0 ,
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while diffeo invariance leads to (3.5) with the usual Joule heating terms in the right-hand

side. Again, the conservation laws can be expressed in the (r, a) basis. We define

√−gr 〈Jµ
r 〉 ≡

1

2

√

−g1 〈Jµ
1 〉+

1

2

√

−g2 〈Jµ
2 〉 ,

√−gr 〈Jµ
a 〉 ≡

√

−g1 〈Jµ
1 〉 −

√

−g2 〈Jµ
2 〉 .

The average 〈Jµ
r 〉 is the physical current. Gauge invariance of W then gives

∇µ〈Jµ
r 〉 = 0 , ∇µ〈Jµ

a 〉 = 0 .

The diffeo transformation properties of the r and a gauge fields are δAr
µ = δrA

r
µ + δaA

r
µ,

with

δrA
r
µ = ξνr ∂νA

r
µ +Ar

ν∂µξ
ν
r , δaA

r
µ =

1

4

(
ξνa∂νA

a
µ +Aa

ν∂µξ
ν
a

)
, (3.8a)

as well as δAa
µ = δrA

a
µ + δaA

a
µ, with

δrA
a
µ = ξνr ∂νA

a
µ +Aa

ν∂µξ
ν
r , δaA

a
µ = ξνa∂νA

r
µ +Ar

ν∂µξ
ν
a . (3.8b)

Diffeo invariance of the generating functional then gives rise to the following conservation

laws:

grνλ∇µ〈Tµν
r 〉+ 1

4

(
gaνλ∂µ〈Tµν

a 〉+ Γa
λµν〈Tµν

a 〉+ gaνλΓ
ρ r
ρµT

µν
a

)
= F r

λµ〈Jµ
r 〉+

1

4
F a
λµ〈Jµ

a 〉 , (3.9a)

grνλ∇µ〈Tµν
a 〉+ gaνλ∂µ〈Tµν

r 〉+ Γa
λµν〈Tµν

r 〉+ gaνλΓ
ρ r
ρµ 〈Tµν

r 〉 = F a
λµ〈Jµ

r 〉+ F r
λµ〈Jµ

a 〉 , (3.9b)

where Γλµν = 1
2(∂µgνλ+∂νgµλ−∂λgµν). We have written the conservation laws in this form

to avoid using the inverse of the a-type metric. Taking further variations with respect to

the metric will give rise to Ward identities for two- and higher-point correlation functions

in the ra basis.

4 Derivative expansion for the effective action

To map the general analysis of the CTP effective action onto classical hydrodynamics, we

need to understand how diffeomorphism (and/or gauge) invariance is realized in the low

energy (hydrodynamic) regime.

Let us first consider extending the straightforward realization of diffeomorphism in-

variance in an equilibrium state [14, 15] to the hydrodynamic regime. We can characterize

all near equilibrium states in terms of a timeline vector field βµ = β̄µ + β′µ, where β̄µ is

a timelike Killing vector characterizing the equilibrium state. If we denote the generating

functional in this state as Γ[g, β],2 then for sufficiently well-behaved states, a derivative

expansion for Γ[g, β] exhibiting manifest diffeomorphism invariance can be implemented.

2In equilibrium states, the generating functional of [15] is identified here as Γ[g, β̄] = W [g, S] −∫√−g β̄µSµ, where Sµ is a source for the field βµ, so that β̄µ = 1√
−g

δW [g,S]
δSµ

. For equilibrium states

with no source, Sµ = 0, the energy-momentum tensor is conserved.
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As an example, consider terms up to first order in the derivative expansion. We take

βµ = uµ/T , with T = 1/
√−β·β, then to first order

Γ =

∫

dd+1x
√−g

(

p(T ) + a(T )∇·u+ b(T )Ṫ + . . .
)

,

where Ṫ = uµ∂µT , and p, a, b are arbitrary functions of T . In fact, integration by parts

shows that the two structures Ṫ and ∇·u are not independent; the independent coefficient

can be identified as the combination (b−a′). Varying Γ with respect to the metric (keeping

βµ fixed) gives the following energy-momentum tensor:

Tµν = pgµν + Tp′uµuν + (b−a′)
(

∆µν Ṫ − Tuµuν∇·u
)

︸ ︷︷ ︸

frame−dependent

, (4.1)

where ∆µν = gµν + uµuν is the usual transverse projector. Identifying p(T ) with pressure,

the first two terms give the standard ideal hydrodynamics, as one can see from the ther-

modynamic relation Tp′ = Ts = ǫ + p. The term proportional to (b−a′) looks like a bulk

viscosity contribution, however it is an artefact of using the thermodynamic frame: the

frame-invariant one-derivative scalar [16] vanishes, and the (b−a′) term gives no bulk vis-

cosity and no dissipation. Indeed this symmetry realization appears essentially Euclidean,

and in equilibrium states gives Euclidean (zero frequency) correlators which analytically

continue to retarded correlators in real time.

In order to describe dissipative hydrodynamics, we need to add the a-type sources in

the right way and some dynamical fields to the theory, in order to produce correlation

functions which are not polynomial in spatial momenta. As noted earlier, the bottom-up

construction (2.10) and (2.16) suggests a specific realization of the doubled symmetry D1×
D2 in the hydrodynamic effective theory. Specifically, we assume an a nonlinear realization

with an explicit (linear) realization of the diagonal Dr analogous to the treatment above.

The presence of non-dynamical metric sources implies that the global symmetries of the

theory are in effect weakly gauged.

We can be agnostic about the precise mechanism via which this symmetry realization

arises from the microscopic theory, and carry out a general parametrization of the low

energy degrees of freedom. This is the approach we take in this section, making use of the

natural derivative expansion in the hydrodynamic regime. See [17, 18] for a discussion of

coupling the hydrodynamic degrees of freedom to a different type of Goldstone modes.

4.1 Charge current

Before considering diffeomorphisms in detail, to gain some intuition for the framework

outlined above we first consider the simpler case of U(1) charge diffusion in flat space. The

above picture suggests that we should consider U(1)1×U(1)2 → U(1)r in the hydrodynamic

regime. Denoting the corresponding ‘Goldstone-like’ mode ϕa, on general grounds the low

energy effective action will have the form

Seff [A
µ
1 , A

µ
2 , ϕa] = Seff [ξ

µ
a , F

µν
r ], (4.2)
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where ξµa = Dµϕa = ∂µϕa +Aµ
a is gauge invariant under the off-diagonal U(1)a symmetry,

while Fµν
r = ∂µAν

r − ∂νAµ
r is gauge invariant under the residual U(1)r. See ref. [19] for

a (technically) similar approach to the effective action for zero-temperature superfluids.

The derivative expansion for the Goldstone modes is then equivalent to the expansion in

the a-type fields. Note that consideration of any microscopic example of U(1)1 × U(1)2
symmetry breaking provides some justification for the expectation that while Seff [Ar, ξa]

may naturally be represented in terms of hydrodynamic degrees of freedom at low energy,

this need not be the case if the effective action is written in terms of the 1- and 2-type

degrees of freedom.

To linear order in the a-fields we have

Seff =

∫

Jµ
r (A

a
µ + ∂µϕ

a) +O(a2), (4.3)

where Jµ
r = δSeff/δA

a
µ. The equation of motion for ϕa is then ∂µJ

µ
r = 0 as required. In

writing (4.3), we have dropped the O(a0) terms which only depend on the r-type fields and

the r-type sources of the effective theory. These terms must ensure that the normalization

of the generating functional Z[Ar, Aa] = 1 for Aa
µ = ∂µλ with λ(t0) = 0 is preserved in the

effective description.

To determine the hydrodynamic constitutive relation for Jµ
r , we write down a generic

effective action depending on the allowed variables in the r and a sectors. We choose the

variables for constructing the effective action to be given by the set {T, uµ, µ, ξµa , Fµν
r },

where for the moment we assume a flat background geometry, T denotes a scalar that we

identify with temperature, and uµ is a normalized fluid velocity vector satisfying uµuµ =

−1. We can identify the timelike vector βµ = β̄µ + β′µ discussed above as βµ = uµ/T . In

equilibrium, it is natural to instead start with βµ, which is then necessarily proportional to

a timelike Killing vector, and construct the fluid velocity uµ = βµ/
√

−β2 and temperature

T = 1/
√

−β2. This implies a particular dependence on the background metric as a source,

which we will not need below. We choose to start with the conventional hydrodynamic

variables T and uµ for the following out-of-equilibrium analysis.

In terms of this data, up to O(a) there are three gauge invariant scalars at zeroth order

in derivatives:

α1 = T , α2 = µ , α3 = µa , (4.4)

where µa = uµξaµ. The identification of the a-sector chemical potential µa with the

invariant uµξaµ (sometimes referred to as the Josephson relation) reflects a redundancy

in the set of invariants, as both determine the source dual to the conserved charge, see

e.g. [20]. We will adopt the identification above to remove this redundancy. Note that

α1, α2 ∼ O(a0), and α3 ∼ O(a). Thus we find at this order,

S
(0)
eff =

∫

F (T, µr, µa) +O(a2) =

∫

F,µau
µ Dµϕ

a +O(a2), (4.5)

where F is the effective Lagrangian, and the derivative F,µa ≡ ∂F/∂µa is evaluated at

µa=0. Comparing with (4.3), the current is Jµ
r = F,µau

µ+O(a). Thus we can identify the

charge density at this order as n = ∂p
∂µr

= F,µa .
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At first order in derivatives and up to O(a), we have the following invariants:

{α̇i, α′
i, ∂µu

µ, ∂µξ
µ
a , u̇µξaµ, uµξ̇aµ , uµξνaF

r
µν}.

where α̇i = uµ∂µαi and α′
i = ξµa∂µαi. These terms can appear in the effective action,

multiplied by coefficients which are functions of αi. The number of such terms can be

reduced by integrating by parts and redefining the relevant coefficients, and the action can

be written as

S
(1)
eff =

∫ (

c1Ṫ + c2µ̇+ c3µ̇a + d1T
′ + d2µ

′ + d3ξ
µ
a u̇µ + d4ξ

µ
aEµ

)

+O(a2) , (4.6)

where ci and di are functions of αi, and Eµ = F r
µνu

ν is the r-type (physical) electric field.

This again has the form of (4.3). Combining the contributions from (4.5) and (4.6), the

current to order O(a0) is

Jµ
r = Nuµ + jµ , (4.7)

with uµjµ = 0, and

N = F,µa + (c1,µa−c3,T−d1)Ṫ + (c2,µa−c3,µ−d2)µ̇− c3∂·u , (4.8a)

jµ = d1∆
µν∂νT + d2∆

µν∂νµ+ d3∆
µν u̇ν + d4E

µ . (4.8b)

It is reassuring to see the dissipative contributions to the current emerge from the effective

action formulation. The constitutive relations (4.8) are written in a general “frame”, and

without using the ideal hydrodynamics equations of motion. The identification of the

transport coefficients in terms of the parameters of the effective action needs to be done

after the same expansion in the a-type fields is implemented for the energy-momentum

tensor.

4.2 Neutral fluid

We now proceed along similar lines in considering the following realization of diffeomor-

phism invariance, D1 × D2 → Dr in the low energy hydrodynamic regime. Linearized

diffeomorphism invariance then ensures that the low energy effective action Seff depends

only on the combination ξaµν = 2Dµϕ
a
ν = gaµν − ∇µϕ

a
ν − ∇νϕ

a
µ where ϕa

µ = grµνϕ
ν
a is the

vector ‘Goldstone-like’ mode which transforms by a shift under a-type diffeos, and as a

vector under r-type diffeos. Again, ∇µ stands for ∇r
µ, and the indices can be raised and

lowered with the r-type metric. The effective action is then

Seff [g
1
µν , g

2
µν , ϕ

µ
a ] = Seff [g

r
µν , ξ

a
µν ]. (4.9)

It follows that

Seff =

∫
1

2

√−gr Tµν
r (gaµν −∇µϕ

a
ν −∇νϕ

a
µ) +O(a2), (4.10)

where 1
2

√−gr Tµν
r = δSeff/δg

a
µν . The equation of motion for ϕa

µ is then ∇µT
µν
r = 0 as

required by (3.9a) to O(a2). Again, the unwritten O(a0) terms must ensure the proper

normalization of the generating functional in the effective theory. The data available for
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constructing the effective action is given by the set {T, uµ, grµν , ξaµν}. As above, in equilib-

rium it is more natural to determine both the normalized fluid velocity uµ = βµ/
√

−β2

and the temperature T = 1/
√

−β2 (where β2 = grµνβ
µβν), in terms of a timelike vector

βµ. We will not need to make assumptions about the metric dependence in the r-sector,

so we will work with the conventional variables T and uµ.

In terms of this data, there are three scalars at zeroth order in derivatives up to O(a),

α1 = T , α4 = ξu , α5 = ξg ,

where ξu ≡ uµuνξaµν , and ξg ≡ gµνr ξaµν . Thus at zeroth order in derivatives

S
(0)
eff =

∫ √−gr F (T, ξu, ξg) +O(a2) =

∫ √−gr
[
F,ξuu

µuν + F,ξgg
µν
r

]
ξaµν +O(a2), (4.11)

where F is the effective Lagrangian, and the derivatives F,ξu ≡ ∂F/∂ξu and F,ξg ≡ ∂F/∂ξg
are evaluated at ξu = ξg = 0. We can then read off Tµν

r = 2F,ξuu
µuν + 2F,ξgg

µν
r +O(a), or

Tµν
r = (ǫ+ p)uµuν + pgµνr +O(a) (4.12)

on defining ǫ(T ) ≡ 2F,ξu − 2F,ξg and p(T ) ≡ 2F,ξg . Thus at zeroth order in derivatives the

effective action gives rise to the energy-momentum tensor in ideal hydrodynamics.

At first order in derivatives and up to O(a), we have the following invariants:
{

α̇i ,∇µu
µ , uµξaµν∂

νT , ξaµν∇µuν , uµξaµν u̇
ν , uµuν ξ̇aµν , u

µ∇νξaµν

}

,

where again the dot stands for uµ∇µ. To order O(a), the coefficients of any structures

involving derivatives of ξaµν can only depend on the invariant T , and integration by parts

can be used to remove all terms with derivatives of ξaµν from the effective action, so that

S
(1)
eff =

∫ √−gr

(

f1Ṫ + f2∇µu
µ + f3ξ

a
µνu

(µ∇ν)T + f4ξ
a
µν∇(µuν) + f5ξ

a
µνu

(µu̇ν)
)

+O(a2) .

(4.13)

The brackets denote symmetrization, ∇(µuν) = 1
2(∇µuν+∇νuµ) etc. To linear order in the

a-fields, the coefficients f1, f2 are functions of T , ξu and ξg, while f3, f4, f5 are functions

of T only. Expanding f1, f2 to first order in ξaµν , we can read off the physical energy-

momentum tensor from (4.10). Combining the contributions from (4.11) and (4.13), the

result to order O(a0) can be written as the standard hydrodynamic decomposition

Tµν
r = Euµuν + P∆µν + (qµuν + qνuµ) + tµν , (4.14)

where uµq
µ = 0, uµt

µν = 0, grµνt
µν = 0, and ∆µν = gµνr +uµuν . The coefficients are related

to the parameters of the effective action by

E = 2F,ξu − 2F,ξg + 2(f1,ξu−f1,ξg−f3)Ṫ + 2(f2,ξu−f2,ξg)∇·u , (4.15a)

P = 2F,ξg + 2f1,ξg Ṫ + 2

(

f2,ξg+
1

d
f4

)

∇·u , (4.15b)

qµ = f3∆
µν∂νT + (f5−f4)u̇

µ , (4.15c)

tµν = f4σ
µν . (4.15d)
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Here d is the number of spatial dimensions, and σµν = ∆µα∆νβ(∇αuβ +∇βuα− 2
d
grαβ∇·u)

is the shear tensor. The derivatives with respect to ξu and ξg are evaluated at ξu = ξg = 0.

Expressions (4.15) should be viewed as constitutive relations in first-order hydrodynamics,

obtained from the effective action for the hydrodynamic variables and Goldstone fields.

The energy-momentum tensor (4.14) is a classical O(a0) quantity and will receive O(a)

fluctuation corrections, as expected from (2.17). The classical constitutive relations (4.15)

are written in a general “frame”, and without using the ideal hydrodynamics equations of

motion. The “frame” is inherited from the effective action, similar to the thermodynamic

frame of ref. [15]. There are two transport coefficients in first-order classical hydrodynamics,

the shear viscosity η and the bulk viscosity ζ. They can be identified from frame-invariant

tensor T µν = tµν = −ησµν and scalar S = P(1)− ∂p
∂ǫ
E(1) = −ζ∇·u combinations built from

the one-derivative terms in (4.15) [16]. The identification of the bulk viscosity requires

use of the zeroth-order scalar equations uν∂µT
µν = 0 to relate the structures Ṫ and ∇ · u.

Making use of these relations, we find

η = −f4 ,

as well as

ζ = −2

(

f2,ξg+
1

d
f4

)

+ 2v2s (Tf1,ξg+f2,ξu−f2,ξg)− 2v4sT (f1,ξu−f1,ξg−f3) ,

where v2s = ∂p/∂ǫ is the speed of sound squared.

4.3 Charged fluid

We can generalize this discussion to the case of a charged fluid, by adding a background

chemical potential. A priori, we can simply add the gauge field data for the r and a sectors

to the metric data above. However, the additional vector Aa
µ transforms nontrivially under

a-diffeos, see (3.8b), and thus we need to modify the tensor data appropriately. We will

work with the following basis of tensor data that has manifest invariance under a-gauge

transformations and a-diffeos,

{T, uµ, grµν , ξaµν , µ, Ar
µ, χ

a
µ}, (4.16)

where χa
µ = ξaµ −ϕν

a∂νA
r
µ −Ar

ν∂µϕ
ν
a. (Note that ∇r

[µχ
a
ν] depends only on F r

µν and is a- and

r-gauge invariant.) This data is manifestly invariant in the a-sector, and we can proceed to

build r-gauge and r-diffeo invariants at the appropriate order in the derivative expansion.

At O(a), the effective action is

Seff =

∫
1

2

√−gr T
µν
r ξaµν +

∫ √−gr J
µ
r χa

µ +O(a2) , (4.17)

where as before 1
2

√−gr Tµν
r = δSeff/δg

a
µν , and

√−gr Jµ
r = δSeff/δA

a
µ. The equations of

motion for ϕa and ϕµ
a are

∇µJ
µ
r = 0, (4.18)

∇µT r
µν +Ar

ν∇ρJ
ρ
r = F r

νµJ
µ
r , (4.19)
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respectively. The conservation of the r-current ensures r-gauge invariance as required.

There are five scalars at zeroth order in derivatives up to O(a),

α1 = T , α2 = µ , α3 = µa , α4 = ξu , α5 = ξg , (4.20)

where µa = uµχa
µ, ξu = uµuνξaµν , ξg = gµνr ξaµν as before. Note that µa is not manifestly

r-gauge invariant, and we will need to ensure that current conservation in the r-sector

imposes invariance in the final equations of motion. Thus at this order,

S
(0)
eff =

∫ √−gr F (T, ξu, ξg, µ, µa) + · · · (4.21)

which upon comparing with (4.17) gives T r
µν = 2F (T, µ),ξuu

µuν + 2F (T, µ),ξgg
µν
r + O(a),

as well as Jµ
r = F (T, µ),µau

µ +O(a).
At first order in derivatives and up toO(a), we can combine the analyses of the previous

two subsections to find the following invariants:
{

∇µχ
µ

a
, χµ

a
u̇µ, u

µχ̇a

µ
, χν

a
Er

ν
,∇µu

µ, uµξa
µν
∂νT, uµξa

µν
∂νµ, ξa

µν
∇µuν , uµξa

µν
u̇ν , uµuν ξ̇a

µν
, uµ∇νξa

µν

}

,

together with α̇i = uµ∂µαi and α′
i = χµ

a∂µαi. To order O(a), the coefficients of any

structures involving derivatives of ξaµν and χa
µ can only depend on the invariants T and µ,

and integration by parts along with redefinitions of the other coefficients can be used to

remove these terms from the effective action, so that

S
(1)
eff =

∫ √−gr

(

f1Ṫ + c2µ̇+ c3µ̇a + d1T
′ + d2µ

′ + d3χ
µ
a u̇µ + d4χ

µ
aEµ

+f2∇µu
µ + f3ξ

a
µνu

(µ∂ν)T + f4ξ
a
µν∇(µuν) + f5ξ

a
µνu

(µu̇ν) + f6ξ
a
µνu

(µ∂ν)µ
)

+O(a2) .

(4.22)

The notation for the coefficient functions has been chosen to match the earlier discussion

as much as possible. To linear order in the a-fields, the coefficients f1, f2, c2 are functions

of αi, for i = 1, . . . , 5, while f3, f4, f5 are functions of T and µ only. Following the earlier

discussion, we can expand all the monomials to O(a) and read off the energy momentum

tensor and charge current as follows

Tµν
r = Euµuν + P∆µν + (qµuν + qνuµ) + tµν , (4.23)

Jµ
r = Nuµ + jµ . (4.24)

The coefficients are related to the parameters of the effective action, and for the energy

momentum tensor are given by

E = 2F,ξu−2F,ξg+2(f1,ξu−f1,ξg−f3)Ṫ+2(c2,ξu−c2,ξg−f6)µ̇+2(f2,ξu−f2,ξg)∇·u , (4.25a)

P = 2F,ξg + 2f1,ξg Ṫ + 2c2,ξg µ̇+ 2(f2,ξg+
1

d
f4)∇·u , (4.25b)

qµ = f3∆
µν∂νT + f6∆

µν∂νµ+ (f5−f4)u̇
µ , (4.25c)

tµν = f4σ
µν , (4.25d)
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while the current is

N = F,µa + (f1,µa−c3,T−d1)Ṫ + (c2,µa−c3,µ−d2)µ̇+ (f2,µa − c3)∇·u , (4.25e)

jµ = d1∆
µν∂νT + d2∆

µν∂νµ+ d3∆
µν u̇ν + d4E

µ . (4.25f)

These constitutive relations are presented in a specific hydrodynamic frame, and it is useful

to determine the frame-invariant transport coefficients. For the charged fluid, there is one

tensor, one vector, and one scalar invariant at first order in the expansion [16]. These are

usually identified with the shear viscosity η, the conductivity σ and the bulk viscosity ζ.

In terms of the coefficients in the effective action, the tensor invariant remains as for the

neutral fluid T µν = tµν = −ησµν , and we find again that

η = −f4 , (4.26)

except that f4 is now a function of both T and µ.

The scalar invariant for the charged fluid takes the form S = P(1) − ∂p
∂ǫ
E(1) − ∂p

∂n
N (1)

in terms of the one-derivative data in (4.25). This invariant depends on the three ten-

sor structures Ṫ , µ̇,∇ · u, but using the two longitudinal ideal hydrodynamic equations

uν∇µT
µν = F νρuνJρ = 0 and ∇µJ

µ = 0, we can write S = −ζ∇ · u, with the coefficient

uniquely identified with the bulk viscosity. The result is lengthy, so we will not present it

explicitly.

A new feature of the charged fluid is the existence of a vector invariant. In terms of

the transverse structures in (4.25), it is given by Vµ = jµ− n
ǫ+p

qµ, and depends on the four

transverse vectors ∆αβ∂βT,∆
αβ∂βµ, u̇

α, Eα. The transverse ideal hydrodynamic equations

impose only one constraint among these structures. To isolate the charge conductivity as

the unique transport coefficient in this sector, we require additional constraints that follow,

for example, from the equilibrium generating functional [14, 15] (or from positivity of the

local entropy production). Namely, there is in fact only one linear combination of these

structures which is consistent with the background equilibrium state, ∆αβ∂β(µ/T ) − Eα.

However, these additional constraints are not apparent in the effective action above, which

was derived purely on the basis of a specific (r, a) symmetry realization.

The constitutive relations (4.25) are written in a general “frame” inherited from the

effective action. Hydrodynamic frame transformations are just field redefinitions in the

effective theory, and can be implemented in the standard fashion. To first order in the

derivative expansion, we write the parameters of (4.25) as

E = ǫ(T, µ) + fE(∂T, ∂µ, ∂u) ,

P = p(T, µ) + fP(∂T, ∂µ, ∂u) ,

N = n(T, µ) + fN (∂T, ∂µ, ∂u) ,

where ǫ, p, and n are O(1), and fE , fP , fN are O(∂). Frame transformations are field

redefinitions of the form T ′ = T + δT , µ′ = µ + δµ, u′ = u + δu, where δT , δµ, and δu

are O(∂). For example, choosing δT , δµ, and δu as

∂ǫ

∂T
δT +

∂ǫ

∂µ
δµ = fE ,

∂n

∂T
δT +

∂n

∂µ
δµ = fN , (ǫ+ p) δuµ = qµ ,
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sets E ′ = ǫ(T ′, µ′), N ′ = n(T ′, µ′), q′µ = 0, and corresponds to the Landau-Lifshitz frame.

5 Discussion

The top-down construction of the hydrodynamic effective action in section 4 reproduces

several features of the generating function for linearized hydrodynamics in section 2. How-

ever, there are also certain missing elements, e.g. as noted for charged fluids in the pre-

ceding subsection. We therefore conclude by listing several questions left open by the

present analysis.

• (1,2) Basis: We wrote down the hydrodynamic effective action by demanding r-

and a-diffeo and gauge invariance, although only the r-sector symmetry was linearly

realized. While this is sufficient to reproduce the expected tensor structures in the

classical constitutive relations at O(a), going to higher orders in the a-expansion re-

quires implementing the invariance under 1- and 2-sector symmetry transformations,

for example in order to reproduce the conservation laws (3.9). Manifest (1, 2) gauge

and diffeo invariance is not straightforward in the (r, a) basis, while the classical

hydrodynamic equations are not straightforward to represent in the (1, 2) basis. Un-

derstanding the translation seems important for tackling several of the open questions

below.

• Equilibrium constraints: In classical hydrodynamics, the existence of an equilibrium

state in the presence of sources [14, 15], or (in some cases equivalently) the positivity

of local entropy production, leads to powerful constraints on the possible thermody-

namic response and transport coefficients. It is not immediately clear how to think

about the entropy current from the point of view of the hydrodynamic effective ac-

tion we have described, and in turn the source-dependence of the r-sector fields in

equilibrium is not manifest. Clarifying these features would, for example, allow the

correct identification of the electrical conductivity through a constraint among the

coefficients of the tensors ∆αβ∂βT,∆
αβ∂βµ and Eα.

• Fluctuation-dissipation constraints: In addition to the equilibrium constraints above,

which require the coefficients of certain tensor structures to vanish, it is apparent from

the bottom up construction in section 2 that there are nontrivial relations between

different orders in the a-expansion of the effective action (3.1). For example, the

dissipative transport coefficients enter both Jr and Kr, as required to satisfy the

fluctuation-dissipation theorem. It is important to understand the origin of these

relations, and to determine any connection to the vanishing conditions above for

specific coefficients in the classical constitutive relations.

• External fields: The charged fluid analyzed in section 4.3 raises a question of how

a-sector diffeomorphism invariance can be manifest in the presence of the explicit

violation induced by the background electromagnetic field. The vector χµ
a is not

manifestly invariant under r-sector gauge transformations, and indeed it seems clear

that it should enter only in the combination µa = uµχ
µ
a . This leaves open the question

– 19 –
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of how such terms should enter at quadratic order in the a-expansion, as is required

to restore the fluctuation-dissipation relation.

• Path integral measure: The hydrodynamic effective actions such as (4.21) and (4.22)

are meant to be used in the path integral with both r-type and a-type dynamical

fields. Going beyond O(a) in the effective action requires understanding what the

integration measure is for the r-type (physical) variables. The microscopic definition

implies that Z[g1, g1] = 1, and in the low energy regime the nontrivial measure

factor required to ensure this was (formally) introduced as the functional Ir. For the
linearized hydrodynamics of section 2 the issue does not arise, as the action is linear

in the r-type fields. Knowledge of the correct measure is important to determine

off-shell interactions of the hydrodynamic degrees of freedom.

• Galilean hydrodynamics: The focus of this paper has been on relativistic hydrody-

namics. It would be interesting to develop this approach for systems with Galilean

invariance, taking advantage of the recent understanding of Newton-Cartan sources

in non-relativistic fluids [21–23].

Note Added. As this paper was being finalized, the paper [24] appeared on the arXiv.

The latter work includes a comprehensive classification of non-dissipative transport to all

orders in the hydrodynamic expansion, and has some overlap with section 4 of the present

paper in its treatment of dissipative terms within a CTP-like formalism. It would be

interesting to understand the relations between these two approaches in more detail.
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A Shear and sound response functions

To see that that the generating functional (2.14) does indeed reproduce the required re-

sponse functions given in (2.12), let us go to Fourier space and integrate out the ϕa fields.

This will give rise to an effective action which is non-local, but real. With the properly

normalized measure, we have
∫

Dϕa
k e

∫
Tw̄ ϕa

i Mijϕ
a
j ei

∫
ϕa
i Fi = e

∫
1

4Tw̄
Fi(M

−1)ijFj .

For the case at hand, Mij = −γη(k
2δij−kikj)− γskikj , hence

(M−1)ij = − 1

γηk2

(

δij −
kikj
k2

)

− 1

γsk2

kikj
k2

.

The generating functional now becomes

Z[hr, ha] =

∫

Dπi exp

[∫

ω,k

1

4Tw̄
Fi[π, h

r](M−1)ijFj [π, h
r] +O(ha)

]

,
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where

Fi[π, h
r] = Sijπj − iw̄ωhr0i −

1

2
w̄ikih

r
00 .

We have defined

Sij = ∆η

(

δij −
kikj
k2

)

+∆s
kikj
k2

, (S−1)ij =
1

∆η

(

δij −
kikj
k2

)

+
1

∆s

kikj
k2

,

where ∆η = (−iω + γηk
2), ∆s = (−iω + iv2s

k
2

ω
+ γsk

2). Setting the sources to zero,

we can evaluate the rr function 〈πiπj〉, which is the symmetrized function (half the anti-

commutator). With the sources set to zero, we have

〈πiπj . . . 〉 =
∫

Dπi exp

[
1

2

∫

π†S
†M−1S

2Tw̄
π

]

πiπj . . .

The rr two-point function is therefore 〈πiπj〉 = −2Tw̄
(
S−1MS†−1

)

ij
, or more explicitly

〈πiπj〉 =
i

2
Grr

πiπj
=

2Tw̄ γηk
2

|∆η|2
(

δij −
kikj
k2

)

+
2Tw̄ γsk

2

|∆s|2
kikj
k2

. (A.1)

This agrees precisely with the hydrodynamic rr function (2.13) found from the ra func-

tion (2.12a). The rr functions involving ǫ can be obtained from the energy conservation

constraint,

Grr
ǫǫ =

kikj
ω2

Grr
πiπj

, Grr
ǫπi

= Grr
πiǫ

=
kj
ω
Grr

πiπj
.

Again, they agree with the hydrodynamic rr functions (2.13) found from (2.12b), (2.12c).

The rr functions can of course be obtained by varying the generating functional (2.14)

with respect to the a-type sources,

G rr
πiπj

= 2i
δ2Z[hr, ha]

δha0i δh
a
0j

.

As usual, the sources are set to zero after the variation. In order to find the ra and ar

functions, we need to vary with respect to one r-source and one a-source. Looking at the

generating functional (2.14), this will bring down one factor of πi and one factor of ∂ϕa
i .

Specifically, in our conventions we have

G ra
πiπj

= i
δ2Z[hr, ha]

δha0i δh
r
0j

= iw̄ 〈πi ∂tϕa
j 〉 − p̄δij , (A.2a)

G ar
πiπj

= i
δ2Z[hr, ha]

δhr0i δh
a
0j

= iw̄ 〈∂tϕa
i πj〉 − p̄δij . (A.2b)

Integrating out ϕa
0 and ǫ in the generating functional (2.14) and setting the sources to zero,

we have the following correlation functions:

〈πi ϕa
j . . . 〉 =

∫

DπkDϕa
l ei

∫
ϕa
i Sijπje

∫
Tw̄ ϕa

i Mijϕ
a
j πi ϕ

a
j . . . ,
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with Mij and Sij defined above. This can be schematically represented using the combined

field λa = (πi, ϕ
a
k) as

〈λc λd . . . 〉 =
∫

Dλ e−
1
2

∫
λaKabλb λc λd . . . ,

where the matrix Kab in the πϕa space is

K =

(

0 −iS†

−iS −2Tw̄M

)

, K−1 =

(

−2Tw̄ S−1MS†−1 iS−1

iS†−1 0

)

.

The correlation functions are given by 〈λaλb〉 = (K−1)ab, so we have

〈πiπj〉 = −2Tw̄
(

S−1MS†−1
)

ij
,

〈πiϕa
j 〉 = i

(
S−1

)

ij
, 〈ϕa

i πj〉 = i
(

S†−1
)

ij
,

〈ϕa
iϕ

a
j 〉 = 0 .

The rr function is precisely what we have just evaluated in (A.1) by integrating out the

ϕa
i field first. For the mixed functions, we have from (A.2)

G ra
πiπj

=

(

δij −
kikj
k2

)[
w̄γηk

2

iω − γηk2
+ ǭ

]

+
kikj
k2

[
w̄ ω2

ω2 − k2v2s + iωγsk2
− p̄

]

,

as well as

G ar
πiπj

=

(

δij −
kikj
k2

)[
w̄γηk

2

−iω − γηk2
+ ǭ

]

+
kikj
k2

[
w̄ ω2

ω2 − k2v2s − iωγsk2
− p̄

]

.

The mixed functions agree with the response functions (2.12a) obtained by varying the

on-shell hydrodynamic equations of motion, including the contact terms. The aa functions

all vanish due to 〈ϕa
iϕ

a
j 〉 = 0.

For the response functions involving the energy density we have

G ra
ǫπi

= 2i
δ2Z[hr, ha]

δha00 δh
r
0i

= iw̄〈ǫ ∂tϕa
i 〉 , G ra

πiǫ
= 2i

δ2Z[hr, ha]

δha0i δh
r
00

= −iw̄〈πi ∂jϕa
j 〉 .

The factor of 2 is due to the coupling of h00. These can be evaluated by using ǫ =

klπl/ω, which is imposed in our generating functional (2.14), and the answer agrees precisely

with (2.12b). Similarly,

G ra
ǫǫ = 4i

δ2Z[hr, ha]

δha00 δh
r
00

=
ki
ω
G ra

πiǫ
− ǭ ,

where again the factor of 4 is due to the coupling of h00. This agrees precisely with (2.12c),

including the contact term.
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