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1 Introduction

The hierarchy problem [1–3] has driven much research into physics beyond the Standard

Model (SM) in recent decades. When taken as an effective theory with a large cutoff, it

is difficult to understand how the Higgs boson remains light relative to the large cutoff

effects. With the experimental discovery of the Higgs boson at the LHC, the desire to

understand how scalars can remain light, despite large cutoff-dependent corrections, has

gained urgency in recent years [4–9].

In this work we discuss aspects of the hierarchy problem in effective theories with light

scalars and a large physical ultraviolet (UV) cutoff. We discuss two main points. Firstly,

we note that the (naive) fine-tuning found in an effective theory does not automatically

imply that the UV completion is fine tuned. Rather, it gives a sort of upper bound on

the severity of the actual tuning present in the underlying UV completion; the actual

tuning due to the new physics at the cutoff scale can be less severe than the naive tuning

or even non-existent. Secondly, we note that within an effective theory there appear to

be two types of parameter relations that can alleviate the sensitivity of the scalar mass

to the cutoff; a relationship among dimensionless couplings á la the Veltman condition,

or a relationship among dimensionful parameters. Supersymmetric (SUSY) models give

symmetry-motivated examples in which a technically-natural Veltman-like condition arises,

while scale-invariant models are symmetry-motivated examples where relations between

dimensionful parameters are expected.

In essence, these two points pertain to the two different aspects of the hierarchy prob-

lem, namely the naturalness of new particle thresholds and the tuning associated with

“pure cutoff” effects. If the UV physics takes the form of new thresholds, or behaves simi-

lar to such, the naive tuning can overestimate the actual tuning. This has implications for

model-building approaches to beyond-SM physics [7, 9]. However, if the cutoff accurately

represents the behaviour of the UV physics, one expects a natural theory to shield the

infrared (IR) sector. These points are elaborated within.
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The layout of this paper is as follows. In section 2 we discuss the naive tuning in an

effective theory and consider a simple example where the actual tuning in the UV comple-

tion can be less severe. In section 3 we consider simple relationships among parameters in

an effective theory that can shield the IR sector from cutoff effects. Conclusions are drawn

in section 4.

2 Naive-tuning versus actual-tuning

Consider the effective theory for a self-interacting scalar field S, with Lagrangian

LΛ
S = ∂µS∗∂µS − m̄2

S(Λ)|S|
2 − λS |S|

4 + . . . (2.1)

The parameters depend on the cutoff scale Λ, and the dots denote non-renormalizable irrel-

evant IR operators with mass-dimension d > 4, suppressed by factors of Λ4−d. Calculating

the one-loop corrected mass in the effective theory gives1

m2
S = m̄2

S(Λ) + δm2
Λ ≡ m̄2

S(Λ) + λS

{

Λ2 + m̄2
S(Λ) log

(

m̄2
S(Λ)

/

Λ2
)}

. (2.2)

For large values of Λ, the theory appears to have a hierarchy problem, with small values of

m2
S ≪ Λ2 requiring a fine-tuning between m̄S(Λ) and Λ. The effective theory is said to be

fine-tuned because the origin of this cancellation is understood within the effective theory.

It is important to distinguish two qualitatively different contexts in which eq. (2.2) is

interpreted. In the first case, Λ is merely as a tool to regularize the divergent loop-integral.

Then, both Λ and the Λ-dependent bare parameters are regarded as unphysical quantities.

In fact, one must take the limit Λ → ∞ and remove all divergences by renormalizing

the unphysical bare masses and couplings, leaving finite physical parameters. From the

symmetry perspective, a theory with an unphysical cut-off possesses a scale invariance that

is softly broken by the explicit mass terms and the logarithmic quantum corrections [10].

The softness of the breaking is reflected in the infrared fixed-point structure of the mass

RGEs [11, 12].

The second interpretation of eq. (2.2), of interest here, applies when the cut-off Λ is

physical and therefore associated with a new scale in the UV-completion of the effective

theory. In this case the effective theory has a hierarchy problem [1–3], and the cut-off

Λ, as well as the Λ-dependent bare parameters and the set of irrelevant operators, fully

encode information about the UV theory. Absent knowledge of the underlying theory, one

cannot renormalize away the Λ-dependence. We refer to the fine-tuning associated with

this hierarchy problem as the “naive fine-tuning of the effective theory,” or more simply

as “the naive tuning.” For a given fixed value of λS = O(1) (for example), this naive

tuning requires two parameters of O
(

Λ2
)

to cancel out at a precision of O
(

m2
S

/

Λ2
)

.

With m2
S ≪ Λ2 this tuning is severe.

One can phrase the hierarchy problem of eq. (2.2) in the following way. Consider values

of the parameters in the effective theory that generate some fixed value for the scalar mass

1We suppress numerical loop-factors in this section.

– 2 –



J
H
E
P
0
7
(
2
0
1
4
)
1
5
5

m2
S . Now shift the bare mass m̄2

S(Λ) as follows:

m̄2
S(Λ) → m̄2

S(Λ) + δm̄2
S(Λ), with

δm̄2
S(Λ)

m̄2
S(Λ)

. O(1). (2.3)

This will, in general, induce a shift in the scalar mass:

m2
S → m2

S + δm2
S . (2.4)

The effective-theory has a hierarchy problem if δm2
S

/

m2
S ≫ O(1) — i.e. if small changes

in the bare mass create a large change in the scalar mass. For generic couplings, an

effective theory with m2
S ≪ Λ2 is expected to have a hierarchy problem. One must

fine-tune m̄2
S(Λ) ≃ O

(

Λ2
)

against the Λ2-term to enable m2
S ≪ Λ2. Thus, shifts of

δm̄2
S(Λ)

/

m̄2
S(Λ) = O(1) give δm̄2

S(Λ) = O
(

Λ2
)

, which in turn gives

m2
S → m2

S +O
(

Λ2
)

≫ m2
S . (2.5)

The hierarchy problem manifests through this extreme sensitivity of the physical scalar

mass to small changes in the effective-theory mass-parameter.

With knowledge of the UV completion for the theory LΛ
S , one can investigate the origin

of the naive tuning by calculating the “actual tuning” in the UV completion. One would

like to know if the naive tuning accurately encodes the actual tuning. Our main point in

this section is that the actual tuning can be less severe than the naive tuning and in some

cases may even be absent. One should think of the naive tuning as representing a worst

case scenario for the severity of the tuning associated with the new physics at the scale Λ.

We demonstrate this with a simple example.

The scale Λ is assumed physical, in the sense that new physics appears at this scale.

There are, in principle, two classes of UV completions that one could consider. In one

class, the scalar S persists as a physical degree of freedom beyond the scale Λ, and the

new physics takes the form of additional degrees of freedom with mass MH ∼ Λ. A typical

example occurs when the theory is UV completed by a new heavy scalar, H. If the two

scalars couple via a quartic interaction, λmixS
2H2, the UV completion generates a mass

correction for the light scalar of the form

δm2
S,H = λmixM

2
H log

(

M2
H

/

µ2
)

, (2.6)

where µ denotes a renormalization scale in the UV completion.2 With regard to fine-tuning

due to H, one can differentiate three cases:

• For λmix ∼ O(1), there is a hierarchy problem and a light scalar with mS ≪ MH re-

quires a fine-tuned UV completion. The required tuning is at the level of O
(

m2
S

/

Λ2
)

,

occurring between quantities of O
(

Λ2
)

. In this case the actual tuning agrees with

the naive tuning of the IR observer. An analogous example is the UV comple-

tion of the SM by a renormalizable Grand Unified Theory, with unification scale

MGUT ∼ Λ ≫ 102GeV.

2For our purpose in this section it suffices to take the cutoff for the UV theory merely as a regulator.

We further discuss cutoff effects in the next section.
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• For m2
S

/

M2
H ≪ λmix ≪ 1, there is still a hierarchy problem and the UV com-

pletion remains fine-tuned. However, now the actual tuning is at the level of

O
(

m2
S

/[

λmixM
2
H

])

, between quantities of O
(

λmixM
2
H

)

≪ Λ2. The actual tuning

due to the physics at Λ is less severe than the naive tuning. An analogous example

is the UV completion of the SM by heavy right-handed neutrinos, to generate neu-

trino masses via the seesaw mechanism, with heavy Majorana masses in the range3

1012 ≫ (MR/GeV) ≫ 107. Radiative corrections to the Higgs mass then exceed the

observed value, necessitating a tuning between parameters of O
(

y2νM
2
R

)

≪ Λ2, where

y2ν ⇔ λmix is the Dirac Yukawa-coupling.

• For λmix . m2
S

/

M2
H , there is no hierarchy problem. The loop-correction does not

exceed the physical scalar mass and the theory is technically natural. This case is

contrary to the naive expectation of the IR observer; the naively-tuned effective-

theory possesses a technically-natural UV completion. An analogous example is the

UV completion of the SM by heavy right-handed neutrinos, giving neutrino mass via

the seesaw mechanism, with heavy Majorana masses (MR/GeV) . 107 [9, 13–15].

Radiative corrections to the Higgs mass are less than the observed value, and the

theory is devoid of tuning. Another example is the invisible axion model, which can

solve the strong CP-problem and give a dark matter candidate [7, 9, 16].

Note that the second and third cases are only possible if values of λmix ≪ 1 are

technically natural. This is true if, e.g., the limit λmix → 0 gives an enhanced Poincaré

symmetry [9], as occurs here. This example shows that the naive tuning in an effective

theory can be more severe than the actual tuning due to the physics at the scale Λ.

In the other class of UV completions for LΛ
S , there is a transition to a new theory

at the scale Λ, such that the degrees of freedom are different and the scalar S ceases to

exist. For example, this occurs if S is a low-energy composite object4 and the transition

to more-fundamental “quarks” occurs at Λ, and similarly if Λ is a minimal length-scale in

the UV theory5 or a type of non-locality scale such as in string theory. In these examples

the actual tuning required in the UV completion is expected to be as severe as the naive

tuning.

Note that an IR observer cannot differentiate between these two classes of UV comple-

tions, absent information about the UV physics. When faced with a naively-tuned effective

theory an IR observer can, at best, conclude that the underlying UV completion may be

fine tuned, due to new physics at the scale Λ. The naive tuning provides a type of upper

bound for the severity of the actual tuning in the UV completion as a result of the new

physics at the scale Λ; the actual tuning in the completion can be less severe or in some

cases even non-existent.

3The upper bound results from the standard seesaw expression, assuming O(1) Dirac Yukawa-couplings

and that the SM neutrinos have masses mν ∼ 0.1 eV.
4In general, one would expect more IR composite states than a single scalar for this case.
5Analogous to the role played by the inter-atomic spacing when describing spin-correlation functions of

a magnetic system by an effective scalar field theory.
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The physical origin of the fine-tuning in the two classes of UV completions is distinct.

The Λ2-term in (2.2) encodes the mass correction to the IR scalar S, due to the UV

(Euclidean) momentum modes with |pE| ∼ Λ for the IR degree of freedom. In the first

class of models, where heavy new physics with mass MH ∼ Λ appears, the origin of the

actual tuning differs from the source of the naive tuning. The actual tuning, if present, is

due to mass corrections from the heavy UV physics, while the naive tuning results from

UV momentum modes for the IR fields. These two effects have distinct physical meanings

and this is why the naive tuning and the actual tuning can differ. One should think of the

naive tuning as being a proxy for the actual tuning — the existence of a naive tuning in

the IR theory indicates that the UV completion may contain an actual tuning. Note that,

from the perspective of the UV theory, there is nothing special about modes with |pE| ∼ Λ

for the IR scalar; these just happen to have the same momentum as the new physics scale.

In the case where S does not persist in the UV, the momentum modes with |pE| ∼

Λ for the IR scalar S are “special” in the sense that modes with |pE| > Λ simply do

not exist. Now the Λ2-term has a clear physical meaning and one understands why the

modes |pE| ∼ Λ would give a mass correction of greater physical significance than modes

with, e.g., |pE| ∼ Λ′ ≪ Λ. In this case there is no obvious reason why the bare mass and

the cutoff should cancel-out so precisely; the natural value for the scalar mass is expected

to be mS ∼ Λ. Said differently, the naive tuning is expected to well-approximate the

actual-tuning.

Finally, we note that there are examples where a tree-level tuning of O
(

m2
S

/

Λ2
)

occurs in the UV. Such tunings can be slightly more severe than the tuning in the effective

theory due to the loop suppression of the latter. However, taking the naive tuning as being

O
(

m2
S

/

Λ2
)

, as done here, means the actual tuning is not more severe than the naive

tuning in these cases.

3 Removing the cutoff via parameter relations

We now turn to a different aspect of the hierarchy problem. Having focused mainly on new

threshold effects in the preceding, we now focus on the Λ2-term, assuming that it encodes

a real physical effect that must be dealt with, for the theory to be natural. We consider

the simplest possibilities for alleviating the cutoff sensitivity within the effective theory,

namely by parameter relations that shield the light scalar mass from cutoff effects. To

discuss this matter it is helpful to consider a more detailed IR sector.

Consider the effective theory for a system of real scalars S = (s1, s2, . . .)
T, gauge fields

V , and Weyl fermions F , assumed valid up to a large UV cut-off Λ, which is understood

in the Wilsonian sense. If present, a hierarchy problem would manifest in the relevant

operators SaSb that appear in the quantum-corrected effective action. The coefficients of

these operators are given by the non-derivative part of the 2-point functions Γ
(2)
ab . In the

1-loop approximation they are:

(

m2
S(Λ, µ)

)

ab
=
(

m̄2
S(Λ)

)

ab
+

∑

A=S,V,F

(−1)2JA (2JA+1)
(gA)abcd
16π2

[

Λ2δcd−
(

m̄2
A(Λ)

)

cd
ln

Λ2

µ2

]

,

(3.1)
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where m̄2
A(Λ) is the effective bare-mass for the field A of spin JA, and µ is an arbitrary

renormalization scale, |mA| < µ < Λ . Here gA denotes the matrix of dimensionless

couplings between the field A and the scalars S, defined through the interaction terms as

1

4!
(gS)abcdSaSbScSd,

1

2
(gV )abcdVaVbScSd and (yF )abcF̄aFbSc, (3.2)

where (yF )abk(yF )cdk = (gF )abcd. As before, for light values of m2
S ≪ Λ2, the effective

theory has a hierarchy problem.

How can one remove this sensitivity to the cutoff? From the perspective of the effective

theory, there appear to be two types of relationships that could remove the cutoff sensitivity

in eq. (3.1). One could consider a relationship among dimensionless couplings that cancels

the Λ2-term, or a relationship among dimensionful quantities that relates the bare mass to

the UV scale. For such a relationship to provide a viable explanation (i.e. not transfer the

tuning to a different sector), it should be motivated by a symmetry. We discuss these two

cases in turn.

3.1 Relationships among dimensionless couplings

First consider the case where the Λ2-dependence is removed by a relationship among di-

mensionless couplings. We discuss two examples, differentiated by the absence/presence of

an underlying symmetry.

The Veltman condition. The Λ2-term in eq. (3.1) disappears if the dimensionless cou-

plings in the theory are related:

∑

A=S,V,F

(−1)2JA (2JA + 1) (gA)abcc = 0. (3.3)

This possibility was introduced by Veltman [17], and studied prior-to (after) the Higgs

discovery in refs. [18–20] ([21–25]). In an effective theory satisfying eq. (3.3) an IR observer

can experimentally measure the couplings and determine that eq. (3.3) holds. When applied

to the SM, this can be converted into a mass relation:6

m2
h + 2m2

W +m2
Z − 4m2

t = 0, (3.4)

giving mh ∼ 300GeV, in conflict with the data. However, a variant of this relation might

be satisfied in the UV, with additional beyond-SM fields also participating [21–25]. If the

Veltman condition is realized, the Λ2-term in eq. (3.1) cancels out and the bare Higgs

mass is similar to the observed mass, m2
h

/

m̄2
h(Λ) = O(1). Consequently, small changes

to the bare mass give small changes to the Higgs mass, and the theory appears natural.

However, the (generalized) Veltman condition is not motivated by any symmetry. From

the perspective of the effective theory, one cannot understand why such a relationship

exists, nor how it remains radiatively stable. If a Veltman-like relation holds, the hierarchy

6In general, models with related couplings do not predict a mass relation. This feature of the SM arises

because the masses for all fundamental particles are set by the Higgs vacuum value. More general theories

can have vector-like fermions or scalars with explicit masses not related to symmetry breaking.
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problem is revealed by looking at small shifts in individual dimensionless couplings. Under

a small shift gA → gA + δgA for a particular coupling gA, the cancellation of the Λ2-term

ceases to function and the need for fine-tuning is manifest. Thus, the hierarchy problem

of the effective theory is not resolved; one has simply exchanged a tuning among mass-

parameters for a tuning amongst couplings.

Supersymmetry. Models with exact SUSY possess an equal number of bosonic and

fermionic degrees of freedom (i.e.,
∑

A=S,V,F (−1)2JA (2JA + 1) = 0). Furthermore, SUSY

forces relationships among dimensionless coupling constants, and requires multiplets to be

mass-degenerate, namely
∑

A=S,V,F

(−1)2JA (2JA + 1) (gA)abcc = 0 (3.5)

and
∑

A=S,V,F

(−1)2JA (2JA + 1) (gA)abcd(mA)
2
cd = 0. (3.6)

These equations reflect the perturbative non-renormalization theorem [26], according to

which only wavefunction renormalization is required in N = 1 SUSY theories. Eq. (3.5)

solves the hierarchy problem because it forces the coefficient of the Λ2-term to vanish in

eq. (3.1). Note the similarity with the Veltman condition; it is clear that SUSY models

can be thought of as symmetry-motivated examples where a Veltman-like condition is

automatically achieved.

In realistic applications, effective theories describing supersymmetric extensions of the

SM cannot possess exact SUSY. However, eq. (3.5) also holds in softly-broken SUSY theo-

ries, since the soft SUSY-breaking terms are dimensionful parameters that do not appear

in (3.5). On the other hand, eq. (3.6) is modified because the soft-breaking terms lift the

fermion-boson mass degeneracy, and set the SUSY-breaking scale,
∑

A=S,V,F

(−1)2JA (2JA + 1) (gA)abcd(mA)
2
cd ∼ M2

SUSY. (3.7)

Then, provided MSUSY ≪ Λ, light scalars with mass m2
S = O

(

M2
SUSY

)

are technically

natural in softly-broken SUSY models. In terms of the bare scalar mass, this corresponds

to m̄2
S(Λ) . O(MSUSY), so a small shift induces the change δm2

S . O
(

M2
SUSY

)

in the

physical mass, manifesting naturalness.

If SUSY is broken in the UV completion, then presumably the fermion-boson mass

degeneracy is broken by large O(Λ) effects in some heavy (hidden) sector of the theory.

The light (visible) sector must couple to the heavy sector with sufficiently weak couplings

to enable m2
S ∼ M2

SUSY ≪ Λ2. This is what happens in most of the realistic particle

physics models, where SUSY is spontaneously broken at a high energy scale in a heavy

hidden sector, and feebly communicated to the visible sector.

In the case of hard SUSY-breaking, eq. (3.5) is also violated and the SUSY-breaking

scale is set by
∑

A=S,V,F

(−1)2JA (2JA + 1) (gA)abccΛ
2 ∼ M2

SUSY. (3.8)
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Light scalars can only be accommodated if the hard SUSY-breaking dimensionless cou-

plings are sufficiently small, i.e. the relation (3.5) is satisfied with sufficient accuracy. We

stress that hard SUSY-breaking also allows technically-natural light scalars, as the limit

when eq. (3.5) is strictly satisfied corresponds to an increased symmetry in the theory. In

fact, small, hard SUSY-breaking terms frequently appear in SUSY models without causing

problems.

Recall that, although the Λ2-term canceled out in models with a Veltman condition,

the hierarchy problem manifested under small shifts to the dimensionless couplings, gA →

gA + δgA. SUSY cures this problem by demanding that the shift gA → gA + δgA is

accompanied by complimentary shifts g′A → g′A + δg′A in any couplings related to gA
through SUSY. One must enforce a relationship among dimensionless couplings to ensure

that eq. (3.5) is satisfied. To vary a single coupling without varying the SUSY-related

couplings would amount to a departure from the physical content of the theory. This

symmetry-motivated origin for the coupling-relation ensures its stability under radiative

corrections and tells us the couplings are likely born in some related way.

To summarize, in the presence of two (or more) sectors with hierarchically different

masses, SUSY can ensure stability of the hierarchy if it is broken softly with all the soft-

breaking mass parameters being of order MSUSY ≪ Λ, as in softly-broken SUSY GUTs. In

other cases, the heavy hidden sector should couple to the light visible sector very weakly.

The latter case may or may not be technically natural, depending on details of the model [9].

3.2 Relationships among dimensionful couplings

SUSY models and the Veltman-condition both cancel out the quadratic divergences via a

relationship among dimensionless couplings. The other possibility is that the sensitivity

to the cutoff in eq. (3.1) is alleviated by a relationship among dimensionful parameters

in the effective theory. Indeed, the hierarchy problem of the SM manifests as a tuning

between the bare scalar-mass and the UV scale — this sensitivity between the only two

dimensionful parameters of the effective theory may suggest a deeper connection.

Relationship without symmetry. In analogy with the Veltman condition, one can

imagine a UV completion that triggers a relationship between the dimensionful parameters

in the effective theory. However, for arbitrary relations among dimensionful parameters,

that are not motivated by a symmetry, one cannot understand the origin of the relation

within the effective theory. The relation is therefore equivalent to a tuning. For example,

if the UV completion triggered the relation

(

m̄2
S(Λ)

)

ab
+

∑

A=S,V,F

(−1)2JA (2JA + 1)
1

16π2
(gA)abccΛ

2 = M2
ab, (3.9)

for some fixedM2
ab ≪ Λ2, such that the bare scalar masses and the UV scale are related, this

would “remove” the quadratic divergence. However, the IR observer could not distinguish

this from a fine-tuning — this relation is the standard expression for the fine-tuning!

It requires a large bare mass, m̄2
S(Λ) ∼ Λ2, that precisely cancels the cutoff effects to

allow a light scalar. As with the Veltman condition, one cannot understand how such a

– 8 –
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relationship remains stable under radiative corrections in the effective theory framework,

so the tuning persists. This is evidenced by the fact that a small shift in the bare-mass,

δm̄2
S(Λ)

/

m̄2
S(Λ) = O(1), corresponds to δm̄2

S(Λ) = O
(

Λ2
)

, giving a large shift in the

physical mass that drags it up to the UV scale. Note that the dimensionless couplings

measured by the IR observer do not satisfy eq. (3.3) in this case, revealing that the Λ2-

term does not vanish and that the bare mass must be large.

Scale invariance. Within an effective theory, scale-invariance appears to be badly bro-

ken. In addition to the bare masses m̄A(Λ), and the logarithmic quantum-anomalous terms,

which break scale-invariance softly, one encounters hard -breaking relevant operators ∼ Λ2,

which introduce the quadratic sensitivity of the light masses to the cut-off scale. Never-

theless, the effective theory can describe an underlying UV theory that maintains scale

invariance, at least at the classical level. The renormalized mass terms computed (within

the perturbative framework) in a scale-invariant theory are necessarily zero because all

bare mass terms are absent as a result of the scale invariance [27]. On the other hand,

the mass terms computed in a scale-invariant UV theory should match the corresponding

mass terms m2
S(Λ, µ), computed in the low-energy effective theory, at the matching scale

defined by the effective theory cut-off, µ = Λ [28].7 It follows from eq. (3.1) that the IR

effective theory for such UV theories automatically satisfies the relation,

(

m̄2
S(Λ)

)

ab
+

∑

A=S,V,F

(−1)2JA (2JA + 1)
1

16π2
(gA)abccΛ

2 = 0, (3.10)

ensuring the effective theory accurately matches the UV theory at the matching scale Λ.

Thus, only a logarithmic sensitivity to the UV scale remains:

(

m2
S(Λ, µ)

)

ab
=

∑

A=S,V,F

(−1)2JA (2JA + 1)
1

16π2
(gA)abcd

(

m2
A

)

cd
ln

Λ2

µ2
. (3.11)

It is important to emphasize that although classical scale-invariance is broken by quantum

effects (the trace anomaly) this only introduces a logarithmic scale dependence, not hard

Λ2 terms. Thus, once the symmetry structure of the UV theory is understood, the ap-

parent sensitivity of the scalar mass to the effective-theory cutoff is removed, leaving the

logarithmic scale-dependence mandated by the trace anomaly.

Eq. (3.10) is a concrete example of a symmetry-motivated relationship among dimen-

sionful parameters that removes the quadratic cutoff dependence of the scalar mass. In the

previous section, the hierarchy problem in the effective theory was revealed by varying the

bare mass while keeping the UV scale and the dimensionless couplings fixed; small changes

in the bare mass induced large changes in the physical mass. However, in a scale-invariant

theory, a shift made to the bare mass while keeping the other parameters fixed amounts to

a departure from the physical content of the UV theory. That is, if the UV and IR scales

are born in some common way, due to an underlying scale invariance, the shift

m̄2
S(Λ) → m̄2

S(Λ) + δm̄2
S(Λ), with

δm̄2
S(Λ)

m̄2
S(Λ)

. O(1), (3.12)

7A number of works have studied scale-invariance in relation to the hierarchy problem [29–71], and

discussion of quadratic divergences appears in refs. [72, 73].
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also requires a shift

Λ2 → Λ2 + δΛ2, with
δΛ2

Λ2
. O(1), (3.13)

to ensure an accurate low-energy effective-theory description. If the couplings are held

fixed, a small change in the bare mass of the form (3.12) must come partnered with a small

change in the UV scale of the form (3.13) to ensure that eq. (3.10) holds. More generally,

the shift in the bare mass should be partnered with a compensating shift in the couplings

and/or the UV-scale to ensure they remain related by eq. (3.10). Only then does the

effective theory accurately encode the relationship between the two scales that is inherent

in the parent theory.

Note that the soft-breaking masses m̄A in scale invariant theories emerge from the

spontaneous breaking of scale invariance, the mechanism known as dimensional transmuta-

tion [27]. Thus, for a single source of symmetry breaking, all such masses are proportional

to the scale of this breaking, MSI. As with SUSY models, we again encounter two distinct

possibilities: (i) MSI ≪ Λ and all the dimensionless couplings, and hence masses, are of the

same order of magnitude [30, 31], or (ii) MSI ∼ Λ and a hierarchy of masses exists due to a

hierarchy among dimensionless coupling-constants; that is, hierarchically separated sectors

of the theory interact sufficiently weakly to preserve the hierarchical scales [9, 32, 33].8

Finally, we note the similarity between the SUSY and scale-invariant narratives. If the

SM is an effective theory that is UV completed by the MSSM, new symmetry-motivated

degrees of freedom appear at the cutoff scale to enable a Veltman-like condition among

dimensionless couplings. This protects the weak scale from quadratic divergences. In the

scale-invariant case, a new scale appears in the UV which enables a symmetry-motivated

relationship among dimensionful parameters, ensuring the IR scale of the effective theory

is related to the UV scale. Quantization of course breaks scale-invariance softly via lnΛ

operators, but this only affects marginal, d = 4 operators in the low-energy effective theory.

4 Conclusion

In this work we discussed aspects of the hierarchy problem in effective theories with a

light scalar. We sought to make two main points, namely: (1) The naive tuning in an

effective theory can be more severe than the actual tuning in the UV completion; the

naive tuning gives a type of upper bound for the severity of the actual tuning associated

with the new physics at the cutoff scale. (2) There appear to be two classes of parameter

relations that can alleviate the quadratic cutoff-dependence in an effective theory; relations

among dimensionless couplings (of the Veltman type), which ensure that the quadratic

divergences cancel out, or relations among dimensionful parameters, which indicate the

IR and UV scales are related through some common birth. SUSY can be thought of as a

symmetry-motivated example that generates a natural relation of the former type, while

scale-invariant UV completions provide symmetry-motivated examples of the latter type.

8Recent works have focused on threshold effects, assuming the quadratic divergences are dealt with by an

as-yet unknown mechanism [7, 9] (the so-called “miraculous cancellation” [8]). Scale-invariance provides a

symmetry-based rationale for the neglect of quadratic divergences, offering a motivation for this perspective.

– 10 –
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