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1 Introduction

The BICEP2 discovery [1, 2] of B-modes in the perturbations of the cosmic microwave

background constitutes strong evidence for primordial gravitational waves emitted during

inflation. The large value of the tensor-to-scalar ratio, r = 0.2, provides an interesting

challenge for inflationary model-building. In single-field slow-roll inflation models, a well-

known argument due to Lyth [3] connects a large amplitude for the tensor perturbations

with transplanckian excursions in field space during inflation. Such models are challenging

to place under theoretical control.

One class of models that already pointed toward inflaton excursions beyond Mpl, and

thus to substantial tensor perturbations, is natural inflation [4] (another is chaotic infla-

tion [5]). Natural inflation (NI) models rely on an approximate, spontaneously broken

global symmetry to provide a quasi-flat direction, which we refer to as an axion. Successful

inflation, in the simplest version, requires an axion decay constant substantially larger than

Mpl. Such large decay constants are hard to understand in effective field theory, partic-

ularly if quantum gravity breaks the global symmetry explicitly. In string theory (more

generally higher-dimensional theories) compactification on small volumes can appear to

produce such fields [6]. However, by exploiting various dualities, one can show that the

effective decay constants are not parametrically large [7]. An interesting approach to evad-

ing this difficulty is monodromy inflation. Discussed principally in string theory [8, 9],

the basic idea is to consider axions with subplanckian decay constants, fa < Mpl, and

dynamics that permit angular excursions much larger than 2π.1 Following the BICEP2

announcement, there have been a number of studies updating and extending earlier work

on natural inflation [15] and monodromy inflation [16–21].

1A different approach, involving multiple axionic directions [10–14], will not be explored here.
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To fully understand monodromy inflation in string models is challenging. For example,

to construct a complete model requires understanding all of the details of moduli fixing; in

general, for example, one expects to find moduli with Hubble scale masses during inflation.

Another potential problem is controlling tunneling between branches. These issues are

typically quite complex.

Monodromy inflation has also been realized in some field theory models [22–28]. In

this note we discuss a simple setting for monodromy in a familiar four-dimensional field

theory, supersymmetric QCD (SQCD), where the number of colors is tied to the number

of e-foldings.2 While not necessarily advocating that a large N gauge group at very high

scales describes our universe, such theories provide a theoretically tractable class of toy

inflation models exhibiting the monodromy mechanism. By assumption, for example, there

are no moduli; the potential for the axion is readily calculated, and tunneling issues are

accessible to familiar field theory methods and approximations. We believe some of the

lessons learned here may extend to string theory models, though the details (for example

the precise form of the potential) may not.

In section 2, we briefly discuss globally supersymmetric QCD with a mass term for the

quarks, and show that while it possesses monodromy for an angular field, it does not easily

give large field excursions in that direction unless a separate SUSY-breaking sector is added.

In section 3 we couple the system to supergravity and show that adding a constant to the

superpotential generates, in a manner analogous to anomaly mediation, a natural inflation

potential over O(N) windings of the angle. Stabilizing the radial direction at subplanckian

values during inflation is achieved by adding soft SUSY-breaking terms to the potential. We

discuss the parameter ranges relevant for inflation and check that the hierarchies required

for the validity of the effective field theory analysis can in principle be satisfied. We will

see that an important shortcoming is the presence of a set of meso-tunings3 in the model.4

Finally, we discuss tunneling processes that may bring a premature end to inflation, and

find that they can provide non-trivial constraints in some parameter regimes.

2 Global SUSY

We start with global SQCD with one flavor and a mass term. Although we will quickly see

that this theory is not suitable for large-field inflation, the failure is instructive.

On the Higgs branch, Q̄Q = φ2eiθ, the gauge symmetry is broken to SU(N − 1) plus

a singlet. The phase of Q is our candidate inflaton, and its expectation value (〈φ〉) is the

axion decay constant, fa. Gaugino condensation occurs with

〈λλ〉 = e
2πik
N−1 Λ3

L. (2.1)

2Supersymmetric strong dynamics have also been studied recently in the different context of chaotic

inflation [29].
3Coined in [30] to describe modest tunings, here of order 10−2 − 10−3.
4The multi-axion models of [27] have a number of parallels with the models discussed here. There are

similar meso-tunings. The actual models, in fact, in addition to axion alignment, exhibit monodromy,

though this monodromy is exploited in a somewhat different way.
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ΛL is the scale of the SU(N − 1), and is determined by φ (ΛL < φ). Below ΛL, only the

singlet remains and is governed by the ADS superpotential (essentially Λ3
L) [31],

WADS = Wnp +mQ̄Q = −N − 1

32π2
Λ3
H

(
Λ2
H

Q̄Q

) 1
N−1

e
2πik
N−1 +mQ̄Q (2.2)

where the scales of the high and low-energy theories are related by

ΛL = Λ
3N−1
3N−3

H φ−
2

3N−3 . (2.3)

We have also indicated the existence of different branches, originating from the breaking

of the approximate Z2(N−1) → Z2 symmetry of the low energy theory.

The appearance of the fractional power in the superpotential gives rise to monodromy

for the phase θ. For fixed radius φ, the potential for θ contains a term

V ⊃ 1

16π2
Λ3
Lm cos

(
Nθ

N − 1

)
. (2.4)

The angle θ here takes values between zero and 2π(N−1). Microscopically, θ is only valued

on [0, 2π). This distinction, as is well known, arises because of the different phases of the

gaugino condensate; the transformation θ → θ+2π, k → k+1 is a symmetry of the theory.

After integrating out the gaugino condensate, the branch label remains in the low energy

action, effectively producing the monodromy in the ADS potential.5

This behavior is shown schematically in figure 1 for the case N = 4. Microscopically,

both phases are periodic with period 2π, and the contours depict the qualitative behavior

of the potential. The dashed line is the domain of the low-energy ADS effective theory,

and it wraps three times, correspond to the three branches of gaugino vacua.

It is clear both from figure 1 and eq. (2.4) that this particular exhibition of monodromy

is not useful for large-field inflation. While the periodicity of θ can be � 2π for large N ,

the periodicity of the potential of eq. (2.4) is only 2π(N − 1)/N . Therefore, θ can never

roll more than one cycle before encountering a potential minimum.

To achieve large-field inflation, we want to find a V (θ) ∼ cos(αθ/N) for large N , where

α is independent of N . This potential can generate natural inflation [4], with effective scale

f = Nφ/α.

We can find extensions of WADS in global SUSY that exhibit cos(θ/N). They could

arise from a second term in the superpotential,

W = WADS + C(Q̄Q)−
a−1
1−N , a 6= 1 . (2.5)

Such terms are suggestive of a second gauge sector also higgsed by Q̄Q, which is rather

complicated. In a simpler direction, we could instead add a sector to break supersymmetry,

as in gauge mediation. In particular, if the supersymmetry breaking is such that mλ � ΛL,

then the microscopic potential term

mλλλ+ h.c. (2.6)

5A microscopic picture with a gaugino phase and a squark phase is similar to the Hierarchical Axion

scenario of ref. [32].
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Figure 1. Schematic plot of the potential for the phases of the gaugino bilinear and the Q̄Q

modulus in N = 4, Nf = 1 SQCD. The dashed line is the domain of the effective theory at low

energies, and it passes through multiple vacua (blue). For fixed Q̄Q, there are N − 1 = 3 branches

of gaugino vacua.

generates a low-energy potential

V ∼ mλΛ3
L cos

(
θ

N − 1

)
. (2.7)

Such a model would be ultraviolet complete and completely calculable. However, in

the cosmological context, we must ultimately include gravity and consider the cosmological

constant (now and in the inflationary epoch), and so we will give up complete calculability,

coupling to gravity to linear order. This we will do in the next section, finding in essence

that the anomaly-mediated gaugino mass gives rise to the potential above.

To conclude this section, we note that in addition to introducing gauge-mediated su-

persymmetry breaking, there are other directions in which to extend the model. One can,

for example, include N − 1 > Nf > 1 flavors. This extension adds light phase degrees of

freedom while reducing monodromy, cos(θ/(N − 1)) → cos(θ/(N − Nf )), and we do not

pursue it further here.

3 Supergravity

3.1 Anomaly-mediated model

The models discussed in the previous section illustrate that monodromy of the sort needed

for inflation is a familiar phenomenon in field theory. In order to implement a model

of inflation, it is necessary to couple to (super)gravity, and this coupling introduces new
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possibilities for model building. For the simplest example, physics is now sensitive to the

constant in the superpotential. We will take

W = Wnp +W0 . (3.1)

with 〈W 〉 ≈ W0, so that m3/2 ≈ W0/M
2
pl. Then from the −3|W |2 term in supergravity

potential, we obtain a term

V ⊃ −6|Wnp|m3/2 cos(θ/N) , (3.2)

where we have assumed N is large so that N−1 ≈ N and |Wnp| is approximately a constant

proportional to Λ3
H . In this potential the anomaly-mediated gaugino mass6 has taken the

role of the gauge-mediated gaugino mass discussed in the previous section. To simplify

notation, henceforth we will use Wnp to denote the modulus of its scalar component,

showing phase dependence explicitly and setting the bare theta-angle to zero. We also add

SUSY-breaking terms to the potential, parametrized by

VSB = λ′0m
2
3/2M

2
pl +

1

2
λ′2m

2
3/2(Q̄

†Q̄+Q†Q) +
1

4

(
m3/2

Mpl

)2

(Q̄†Q̄+Q†Q)2 . (3.3)

The primary purpose of the SUSY-breaking terms is to set a zero of the potential and

to stabilize the radial direction |Q̄Q|. Other choices for VSB are possible, and even here

we have not introduced as many parameters as we might. The main point is that the

potential will be minimized with Q̄Q somewhat less than M2
pl; we choose the form of

eq. (3.3) for simplicity.

We can easily write down theories with additional fields that spontaneously break

SUSY and give rise to VSB. For example, one can add terms of the form fX to W and

X†X(1 + λ/M2
plQ
†Q) to K. In any case, replacing Q̄†Q̄,Q†Q → φ2, the leading terms in

the potential have the form

V = λ0m
2
3/2M

2
pl + λ2m

2
3/2φ

2 +

(
m3/2

Mpl

)2

φ4 − 6Wnpm3/2 cos (θ/N) +O

(
W 2
np

M2
pl

)
(3.4)

where the unprimed coefficients differ from the primed coefficients in (3.3) by order-1

contributions from the SUSY-preserving potential.

With this potential, for λ2 < 0, the radial direction is stabilized at a large but sub-

planckian value for small |λ2|,

φ ≈
√
|λ2|/2Mpl . (3.5)

Its mass is of order m2
φ ∼ |λ2|m2

3/2, so |λ2| cannot be too small if φ is to be frozen during

inflation. Moreover, φ cannot be too small without requiring an enormous value for N .

We return to these and other conditions on the parameters in section 3.3.

The potential for θ, integrating out φ and tuning λ0 so that the cosmological constant

vanishes when the cosine is at its maximum, is given by

V (θ) = 6Wnpm3/2 [1− cos (θ/N)] . (3.6)

6Since Wnp is proportional to the gluino condensate, identifying the WnpW
∗
0 term in the low-energy po-

tential provides an effective field theory derivation of the anomaly-mediated gaugino mass in the microscopic

theory [33].
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3.2 Inflation

In the gauge theories of inflation under consideration here, 1/N will act as the small

parameter responsible for slow-roll. In order to obtain a sufficient number of e-foldings,

inflation typically begins when θ ∼ 3Nπ/4. It ends when the slow-roll parameters become

of order one, which occurs near the minimum — zero — of the potential, when θ ≈ 0.

V (θ) has exactly the form of the natural inflation potential, V = Λ4(1−cos(a/f)), with

a product of scales playing the role of the dynamical scale Λ and an effective symmetry

breaking scale f ,

Λ4 ≡ 6Wnpm3/2 , f ≡ Nφ = Nfa. (3.7)

The relevant magnitudes for these parameters and the initial conditions are well-known.

We review them here in brief. For a precise study and detailed review of natural inflation

in light of BICEP2, see [15], in particular figures 1 and 5 (note that for comparison, the

reduced Planck mass used in this work must be converted to the Planck mass used in [15]).

The slow-roll parameters take the NI form,

ε =
M2
pl

2N2φ2
sin2(θ/N)

(1− cos(θ/N))2
, η =

M2
pl

N2φ2
cos(θ/N)

1− cos(θ/N)
. (3.8)

At generic points, both ε and η are of order (Mpl/Nφ)2, so f > Mpl is necessary in NI. In

that case ε→ 1 shortly before η → 1. The value of θ when inflation ends is given by

cos(θend/N) =
2f2 −M2

pl

2f2 +M2
pl

, (3.9)

while the value of θ at NCMB ∼ 60 e-folds before the end of inflation is determined by

cos(θCMB/N) =
4f2

2f2 +M2
pl

e−NCMBM
2
pl/f

2

− 1 . (3.10)

As usual the overall scale of the potential and the effective symmetry breaking scale f are

constrained by the amplitude of perturbations and the scalar spectral index. Using the

relation above for θCMB, the spectral index is approximated by

ns = 1 + 2ηCMB − 6εCMB

= 1−
M2
pl

f2
− 4

eNCMBM
2
pl/f

2
(1 + 2f2/M2

pl)− 2f2/M2
pl

(3.11)

from which we find f & O(10)Mpl for ns = 0.96 (f ≈ 10 when NCMB = 50). Similarly, the

amplitude of density perturbations constrains

∆2
s =

V 3

12π2M6
plV
′2

=
f2Λ4(1− cos(θCMB/N))3

12π2M6
pl sin

2(θCMB/N)

∼ 10−9 , (3.12)

– 6 –
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which, for NCMB ∼ 60 and f ∼ 10Mpl, fixes

Λ = 1.8× 1016 GeV . (3.13)

This corresponds to r ≈ 0.1, and is consistent with the BICEP2 measurement of large r

within uncertainties.7 It is difficult to achieve r = 0.2 in natural inflation as it requires

both large f and a small number of e-foldings, NCMB ∼ 40.

3.3 Self-consistency

Establishing various hierarchies is critical for the internal self-consistency of the analy-

sis. Consistency of the supergravity, SU(N − 1), and moduli effective theories requires

approximate hierarchies of the form

φ/Mpl � 1 , ΛL/φ� 1 , m3/2/ΛL � 1 . (3.14)

Furthermore, we ignored W 2
np/M

4
pl contributions to the φ mass term in the potential.

Therefore, we require

W 2
np

m2
3/2M

4
pl

� 1 . (3.15)

To stabilize the radial direction during inflation, we need

H2

m2
φ

=
Wnp

|λ2|m3/2M
2
pl

� 1 , (3.16)

which implies (3.15) when λ2 is small. All conditions can be satisfied. For example, if the

parameters numerically satisfy

|λ2| ∼ 1/N ,

W 1/3
np /Mpl ∼ 1/N ,

m3/2/W
1/3
np ∼ 1/

√
N , (3.17)

the theory is self-consistent for large N . In this case, φ/Mpl ∼ 1/
√
N and Nφ/Mpl ∼

√
N ,

and the energy scale of inflation is of order N−9/2M4
pl. Therefore, N ∼ 100, and all

hierarchies are satisfied by an order of magnitude or more.8

Needless to say, a gauge group such as SU(100) at a very high energy scale does not

seem a particularly plausible model of nature. Despite these issues, the virtue of the setup

is that it provides a simple field-theoretic realization of monodromy inflation. The parallels

to the string implementation are direct, though the potential does not take precisely the

form in the examples discussed in [8, 9].

7At present there appears to be some tension between Planck [34] and BICEP2 [1]. The value of r cited

by BICEP2 after subtracting estimated foreground dust contributions is r = 0.16. A joint likelihood fit

between Planck and BICEP2 suggests r ≈ 0.15 ± .05 [15].
8Note that Wnp ∼ Λ3

L for N ∼ 100.
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Of course, setting aside phenomenology, other scalings are possible which appear to

permit arbitrarily large N . For example, one could take φ/Mpl ∼ 10−2, ΛL/Mpl ∼ N−3,

ΛL/m3/2 ∼ N−2. However, as we will discuss in the next section, there are fine-tunings in

the model, and even without imposing phenomenological constraints, some these tunings

grow parametrically with N .

3.4 Tunings and higher order corrections

In its simplest version, natural inflation requires large fa and a softly broken, presumably

accidental, shift symmetry. In conventional field theory, these requirements are challenging.

In string theory, the accidental symmetries can result from discrete shift symmetries, but,

as noted previously, large fa does not seem to arise easily. Monodromy inflation avoids

the difficulty. Still, in an effective field theory framework, one might expect that there

are effects that can spoil the story. Potential problems include the renormalization of

Newton’s constant, the destabilization of the φ vacuum by higher dimension operators,

and the violation of slow-roll conditions, satisfied by low dimension terms in the action, by

higher dimension operators.

As emphasized in [12, 35, 36], M2
pl receives quadratically divergent renormalization,

which can be large in the presence of a large number of degrees of freedom and if the cutoff

is of order Mpl. This casts doubt on the validity of effective field theory. One form of the

problem is the potential need to fine-tune the bare Planck mass at the UV cutoff scale,

ΛUV . In terms of the bare mass M2
pl0

and the number of fields Ñ , the effective Planck

mass is

M2
pl ≈M2

pl0
±
ÑΛ2

UV

16π2
, Ñ ∼ N2 . (3.18)

If ΛUV ∼Mpl, thenM2
pl0

must be tuned to a part in (N/4π)2. This sort of percent-level fine-

tuning is an unappealing feature of the model. For fixed ΛUV , the tuning is parametrically

worsened with N . We could lower ΛUV to decrease the tuning, but we would simultaneously

have to reduce φ, which would in turn require that we further increase N (and ultimately

become inconsistent with the phenomenology of inflation). For the rest of this section we

assume ΛUV = Mpl.

Returning to the potential (3.6), dangerous symmetry-breaking operators are sup-

pressed by (φ/Mpl)
p < 1. However, we have seen that φ/Mpl cannot be arbitrarily small.

Therefore, we may expect that we require some additional number of fine-tunings in order

to achieve both the stabilization of the φ potential and the suppression of operators that

would spoil the flatness of the θ potential.

In the φ potential, eq. (3.4), the tuning of the parameter λ0 is the usual tuning of

the cosmological constant; in natural inflation, this tuning also allows inflation to end.

The parameter λ2 must be small to allow φ < Mpl. In the example above, |λ2| ∼ 1/N

implies a tuning of the φ mass parameter of a part in N . On the other hand, terms of

order (Q†Q)2/M2
pl in the Kähler potential provide innocuous corrections once we require

the hierarchies listed in the previous section.

– 8 –
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In the absence of symmetries or some other microscopic considerations, we should

include a variety of terms in the effective theory, among them

OK = Q†QQ̄Q/M2
pl (3.19)

in the Kähler potential, and

OpW = (Q̄Q)pM3−2p
pl , p = 2, 3, 4 . . . (3.20)

in the superpotential. OK contributes to the inflaton potential, giving rise to terms of

order V φ2/NM2
pl cos(θ) and V φ4/M4

pl cos(θ). Such terms do not exhibit monodromy, but

may be sufficiently suppressed by powers of N and φ. The OpW , for p ∼ 2, 3, are potentially

more problematic. The −3|W |2 part of the potential introduces

V ⊃ αp
m3/2φ

2p

M2p−3
pl

cos(pθ) (3.21)

terms in the large N limit, and these must be small compared to the m3/2Wnp cos(θ/N)

term. For p & 3, the αp can be O(1), but for p ∼ 2, 3 we require αp to be small,

αp �
Wnp

M3
pl

·
(
Mpl

φ

)2p

. (3.22)

For the example scalings in the previous section, we require α2 . 10−3 and α3 . 10−1 in

order for the cos(pθ) corrections to be negligible.

Both the problematic symmetry-breaking terms in the Kähler potential and the su-

perpotential can in principle be suppressed by discrete symmetries (we do not expect

continuous global symmetries in theories of quantum gravity). These symmetries do not

need to particularly elaborate to provide adequate suppression.

3.5 Tunneling

As the field θ rolls, except for very small θ, in addition to rolling, the system can tunnel

to a different branch with lower energy. This is analogous to tunneling processes which

have been discussed for stringy monodromy inflation. In SQCD, the tunneling amplitudes

are easily estimated. Whether they are sufficiently small to permit inflation depends on

the parameters.

We are used to the idea that tunneling amplitudes are small, because treated semiclas-

sically, the bounce action is often large. It has been noted, however, that there can be sub-

stantial suppression of the exponent in tunneling between gaugino vacua in SQCD [37–39].

We have to check if the bounce action remains large in the regime of parameters relevant

for inflation. The bounce action can be determined in terms of the parameters Wnp, m3/2,

and N , and is given by [40]

Sb =
27π2T 4

2ε3
, (3.23)

– 9 –
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where T is the bubble wall tension and ε is the energy splitting between the gaugino vacua.

The tension is determined by twice the modulus of the difference in the superpotential

between the two vacua [38]. Recalling that

W = Wnpe
iθ/N +W0 (3.24)

and that θ → θ + 2π shifts the branch of the vacuum by one, the tension is

T = 2Wnp ·
2π

N
. (3.25)

The energy splitting between adjacent vacua is controlled by the cos(θ/N) term in the

potential, eq. (3.2). Therefore we find

∆E = 6Wnpm3/2 sin(θ/N) · 2π

N
. (3.26)

Putting the terms together,

Sb ≥
2π3

N

Wnp

m3
3/2

. (3.27)

Taking the BICEP2 result for the energy scale of inflation [1],

m3/2Wnp ≈ 10−9M4
pl . (3.28)

Requiring m2
φ ≥ H2 ∼ V/M2

pl during inflation gives a lower bound on m3/2. Introducing a

parameter ε < 1, we can write

m2
3/2 =

1

ε

(
Wnpm3/2

M2
pl

)
' 1

ε
10−9M2

pl. (3.29)

Then

Sb ≥
2π3

N
109ε2 . (3.30)

Finally, from the hierarchy m3/2 < W
1/3
np and the relation m2

φ = λ2m
2
3/2, we find bounds

on ε,

10−9/2 < ε < λ2 . (3.31)

So we see that tunneling may or may not be an issue; there is the possibility of significant

enhancement to the rate for small ε, while for larger values tunneling may be sufficiently

suppressed. For the sample scalings given in the previous section, ε is of size N−3/2 ∼ 10−3,

giving Sb ∼ 16π3. The suppression in this case is enough to permit inflation.

– 10 –



J
H
E
P
0
7
(
2
0
1
4
)
1
4
6

4 Conclusions

Monodromy is an implementation of natural inflation that avoids superplanckian axion

decay constants, problematic both in field theory and string theory. In this note we have

described a simple setting for monodromy inflation in a toy field theory. In single-flavor

supersymmetric QCD with a large number of colors, the supergravity potential at low

energies contains an angular degree of freedom valued on [0, 2πN). Soft SUSY-breaking

can stabilize the radial degree of freedom at a value below Mpl, while the effective field

excursion of the angular variable can be transplanckian, as needed to produce a large tensor-

to-scalar ratio. While we stress that this model is unlikely to reflect nature, it provides a

class of field theory models exhibiting viable monodromy inflation, and perhaps can be used

to study properties of the mechanism. In addition to realizing the slow-roll requirements,

it provides a setting in which issues including the constraints on quantum and gravitational

corrections and tunneling processes are readily analyzed. Percent-level tunings are required

to control the Newton constant and the axion decay constant, while global symmetry-

breaking corrections to the potential can be controlled by modest discrete symmetries, and

tunneling provides interesting but not prohibitive constraints on parameters. While string

theory is likely a more plausible setting for monodromy inflation, field theoretic models of

the type presented here provide a useful (and simple) setting to understand the basic issues.
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