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1 Introduction

The Standard Model (SM) of particle interactions successfully describes Nature. However,

the SM is unappealing. For example the SM Higgs sector simply models spontaneous

symmetry breaking, it does not explain it. Furthermore, there is no consistent way to

protect the electroweak scale from higher scales, leading to the SM naturalness problem.

We refer to [2] for a mathematical classification of different degrees of naturality.

It is well known that by replacing the SM Higgs sector with a fundamental gauge

dynamics featuring fermionic matter fields renders the SM Higgs sector natural. Techni-

color [3, 4] is a time-honored incarnation of this idea. The Technicolor Higgs [7–11] is the

lightest scalar excitation of the fermion condensate responsible for electroweak symmetry

breaking. The interplay between the gauge sector and the SM fermion mass sector is rel-

evant because it can reduce the physical mass of the Technicolor Higgs [12]. Other ways

to use fundamental dynamics to replace the SM Higgs sector appeared later in [5, 6]. If

the underlying dynamics has a larger global symmetry group than the one strictly needed

to break the electroweak symmetry successfully, one may be able to choose an electroweak

embedding in a way that the electroweak symmetry remains intact. Differently from the

Technicolor case, here the Higgs state could be identified with one of the Goldstone Bosons

(GB) of the theory. In this case the challenges are not only to provide masses to the SM

fermions but also to break the electroweak symmetry by means of yet another sector which

can also contribute to give mass to the would-be pseudo-GB Higgs.

In reference [1] a first unified description of models of electroweak composite dynamics

was put forward. The description clarified the main similarities, interplay, and shortcom-

ings of Technicolor and composite Goldstone Higgs models. In addition a specific under-

lying realization in terms of fundamental strongly coupled gauge theories was investigated

with a clear link to first principle lattice simulations. It was also shown that for a generic

electroweak vacuum alignment, the observed Higgs is neither a purely pGB state nor the

Technicolor Higgs, but a mixed state. This result has relevant implications for its physical

properties and associated phenomenology.
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Given a possible underlying gauge theory featuring fermionic matter one can imagine

distinct patterns of chiral symmetry breaking [13–19]. First principle lattice simulations

are now in a position to answer these questions [20–33].

The classification of underlying gauge theories relevant for Technicolor models ap-

peared in [17], while for composite models of the Higgs as a pGB can be found in [34, 35].

In reference [1] it was concluded that from the point of view of a fundamental theory with

fermionic matter, the minimal scenario to investigate for having both a minimal Tech-

nicolor and composite GB Higgs model is based on the global symetry breaking pattern

SU(4)→Sp(4), which is locally isomorphic to SO(6)→SO(5). This pattern of chiral sym-

metry breaking can be achieved dynamically via an underlying SU(2)=Sp(2) gauge theory

with 2 Dirac flavors (i.e. four Weyl fermions) transforming according to the fundamental

representation of the gauge group. The difference between the Technicolor and the com-

posite pGB Higgs realization lies in the way one embeds the electroweak theory within the

global flavor symmetry.

We refer the interested reader to [1] for a detailed description of a phenomenologically

viable extension of the Standard Model based on this minimal scenario.

Here we provide state-of-the-art lattice results for the underlying SU(2) gauge theory

with 2 Dirac flavors confirming the breaking of the global SU(4) symmetry to Sp(4), first

observed in [29], via the formation of a non-perturbative fermion condensate, and in addi-

tion we further determine the spin-one spectrum, which is directly relevant for experimental

searches of Beyond SM physics.

The paper is organized as follows: in section 2 we introduce the lattice framework

and detail how the lattice computations of the spectrum are performed; in section 3 the

numerical results are summarised; finally we offer our conclusions in section 4.

2 The lattice method

In the continuum, the Lagrangian for our technicolor template is

L = −1

4
F aµνF

aµν + u(iγµDµ −mu)u+ d(iγµDµ −md)d (2.1)

which can be discretized in the familiar way to arrive at a Wilson action,

SW =
β

2

∑
x,µ,ν

(
1− 1

2
ReTrUµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x)

)
+
∑
x

ψ(x)(4 +m0)ψ(x)

−1

2

∑
x,µ

(
ψ(x)(1− γµ)Uµ(x)ψ(x+ µ̂) + ψ(x+ µ̂)(1 + γµ)U †µ(x)ψ(x)

)
, (2.2)

where Uµ is the gauge field and β the gauge coupling in conventional lattice notation. ψ is

the doublet of u and d fermions, and m0 is the 2×2 diagonal mass matrix.

Mesons will couple to local operators of the form

O(Γ)
ud (x) = u(x)Γd(x) , (2.3)

O(Γ)

du
(x) = d(x)Γu(x) , (2.4)

O(Γ)

uu±dd(x) =
1√
2

(
u(x)Γu(x)± d(x)Γd(x)

)
, (2.5)

– 2 –
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where Γ denotes any product of Dirac matrices. Baryons (which are diquarks in this

two-color theory) will couple to local operators of the form

O(Γ)
ud (x) = uT (x)(−iσ2)CΓd(x) , (2.6)

O(Γ)
du (x) = dT (x)(−iσ2)CΓu(x) , (2.7)

O(Γ)
uu±dd(x) =

1√
2

(
uT (x)(−iσ2)CΓu(x)± dT (x)(−iσ2)CΓd(x)

)
, (2.8)

where the Pauli structure −iσ2 acts on color indices while the charge conjugation operator

C acts on Dirac indices.

We extract the meson masses from the two-point correlation functions

C
(Γ)
ud (ti − tf ) =

∑
~xi,~xf

〈
O(Γ)
ud (xf )O(Γ)†

ud (xi)
〉
.

=
∑
~xi,~xf

Tr ΓSdd(xf , xi)γ
0Γ†γ0Suu(xi, xf ), (2.9)

where Suu(x, y) = 〈u(x)u(y)〉. The quantities of interest are pseudoscalar Γ = γ5, vector

Γ = γk (k = 1, 2, 3), and axial vector Γ = γ5γk mesons. As a source vector we use Z2 × Z2

single time slice stochastic sources [36].

In addition to the meson spectrum we are interested in two other quantities, the quark

mass mq and the Goldstone boson decay constant fΠ. We define the quark mass through

the Partially Conserved Axial Current (PCAC) relation:

mq = lim
t→∞

1

2

∂tVΠ

VPP
, (2.10)

where

VΠ(ti − tf ) = a3
∑

x1,x2,x3

〈u(ti)γ0γ5d(ti)u(tf )γ5d(tf )〉 ,

VPP(ti − tf ) = a3
∑

x1,x2,x3

〈u(ti)γ5d(ti)u(tf )γ5d(tf )〉 . (2.11)

The Goldstone boson decay constant can be calculated as:

fΠ =
2mq

m2
Π

GΠ, (2.12)

where GΠ is obtained from the asymptotic form of VPP at large ti − tf :

VPP(ti − tf ) ∼ −
G2

Π

mΠ
exp [−mΠ(ti − tf )] . (2.13)

To convert the lattice quantities to physical units, one should determine the lattice

spacing for our simulations and the appropriate (mass-independent) renormalization con-

stant. The lattice spacing, in a Technicolor model, is fixed by the requirement that the

(renormalized) Goldstone boson decay constant has the value of 246 GeV, giving the correct

– 3 –
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β Volume m0 Therm. Conf.

2.0 163 × 32 -0.85, -0.9, -0.94, -0.945, -0.947, -0.949 320 680

2.0 324 -0.947 500 680

2.2 163 × 32 -0.60, -0.65, -0.68, -0.70, -0.72, -0.75 320 680

2.2 243 × 32 -0.75 500 ∼2000

2.2 324 -0.72,-0.735, -0.75 500 ∼2000

Table 1. Parameters used in the simulations. The thermalization column refers to the number of

discarded initial configurations and the configuration column refers to the number of configurations

used in measurements.

mass to the electroweak gauge bosons. For the general composite Higgs scenario the elec-

troweak decay constant becomes sin(θ) fΠ with the θ depending on the specific electroweak

embedding. The actual value of θ depends on the electroweak quantum corrections, the top

corrections as well as the effects of other possible sources of explicit breaking of the initial

SU(4) symmetry. The Technicolor limit is recovered for θ = π/2 while the composite pGB

Higgs case corresponds to small, but non-vanishing, θ. Any other value of the θ is allowed

and corresponds to a combination of these two limits. For the details we refer to [1]. For

definitiveness we present the results for sin(θ) = 1 but we will reinstate the dependence on

θ for the spectrum.

The relevant renormalization constant for fΠ, commonly denoted in the literature by

Za, has not been computed non-perturbatively for our simulations. In this work we use

the perturbative value which has been calculated in [22]. For fermions in the fundamental

representation we have:

Za = 1− g2
0

16π2

N2 − 1

2N
15.7

N=2
= 1− 0.2983/β. (2.14)

3 The lattice results

The lattice simulations used in this work extend the results already published in ref. [29].

In particular, we have used larger volumes for the set of parameters closest to the chiral

limit. The bare parameters used for our simulations are listed in table 1, where we also

report the number of thermalized configurations, of length one, used in our analysis below.

Thermalizations are estimated by monitoring the average plaquette expectation value and

the value of the two-point correlation function in the pseudoscalar channel at a time separa-

tion of twelve time slices. These two quantities are shown in figure 1 for two representative

light quark masses on the finest lattices used in this work.

All the ensembles of gauge configurations were created using the GPU version of the

HiRep code [23]. The lattice action used is the plaquette-action SU(2) gauge theory with

two flavors (u and d) of mass-degenerate Wilson fermions. The Hybrid Monte Carlo tra-

jectory length was chosen to be one. The autocorrelation times for plaquette expectation

values and meson correlators were estimated to be about 10. The errors for all quantities

extracted in this work were obtained using a bootstrap procedure.

– 4 –
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β Volume m0 mq mΠ mρ mA fΠ

2.0 32× 163 -0.85 0.1919(6) 0.9163(18) 1.008(20) 1.64(3) 0.1544(4)

2.0 32× 163 -0.9 0.1134(6) 0.708(3) 0.821(3) 1.47(3) 0.1248(5)

2.0 32× 163 -0.94 0.0476(8) 0.451(7) 0.636(5) 1.15(4) 0.089(9)

2.0 32× 163 -0.945 0.038(7) 0.407(5) 0.57(6) 1.08(3) 0.0799(7)

2.0 32× 163 -0.947 0.0327(7) 0.377(6) 0.546(7) 1.02(4) 0.0754(8)

2.0 32× 163 -0.949 0.0307(8) 0.374(6) 0.546(9) 1.02(3) 0.075(12)

2.0 324 -0.947 0.0309(3) 0.3739(14) 0.536(4) 1.0(5) 0.0766(6)

2.2 32× 163 -0.6 0.2296(7) 0.886(3) 0.93(3) 1.371(12) 0.1119(5)

2.2 32× 163 -0.65 0.1637(7) 0.755(3) 0.792(3) 1.229(9) 0.0992(5)

2.2 32× 163 -0.68 0.1205(7) 0.612(4) 0.671(5) 1.068(17) 0.0868(5)

2.2 32× 163 -0.7 0.0968(7) 0.548(5) 0.615(6) 1.018(12) 0.0793(5)

2.2 32× 163 -0.72 0.0686(6) 0.455(5) 0.531(5) 0.884(19) 0.0684(5)

2.2 32× 163 -0.75 0.0264(8) 0.324(8) 0.445(9) 0.76(3) 0.0405(12)

2.2 32× 243 -0.75 0.024(5) 0.258(4) 0.359(8) 0.62(4) 0.0433(9)

2.2 324 -0.72 0.0661(5) 0.4475(8) 0.522(14) 0.81(3) 0.0664(5)

2.2 324 -0.735 0.0456(3) 0.3612(18) 0.446(4) 0.75(3) 0.0568(5)

2.2 324 -0.75 0.0257(5) 0.2649(16) 0.363(5) 0.59(6) 0.0457(7)

Table 2. The values obtained in simulations for PCAC-quark mass, Goldstone boson mass, vector

meson mass, axial vector meson mass, and Goldstone boson decay constant as function of β, volume

and bare quark mass.
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Figure 1. Left: the first 1000 measurements of average plaquette. Right: the first 1000 measure-

ments of the Goldstone boson correlator at time slice 12. The simulations were performed with

volume V = 324 and coupling β = 2.2. The configurations left of black vertical line are discarded

as unthermalized.

In a previous work by some of the authors [29], a first estimate of the Goldstone

spectrum was already obtained. However large finite volume effects were observed — see

figure 5(b) of [29] — for the lightest value of the quark mass on the finest lattice used in

that work, corresponding to the bare parameter couplings (β,m0) = (2.2,−0.75).

Here we perform a more systematic analysis to control finite volume effects, using

simulations on three different lattice volumes V = 32 × 163, 32 × 243, and 324 at the
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Figure 2. The PCAC quark mass, Goldstone boson, vector meson, and axial vector meson mass as

a function of lattice size L, on the most chiral point m0 = −0.75 and β = 2.2. The measurements

on two larger lattices are inside statistical errors.
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Figure 3. The Goldstone boson mass squared and its decay constant as a function of the quark

mass for β = 2.0. Extrapolations to the chiral limit, as discussed in the text, are also shown.

lightest quark mass on the finest lattice. At this quark mass, the results for the smallest

volume 32× 163 suffer clearly from finite volume effects, whereas observables measured on

the two largest lattices agree within statistical errors, as shown in figure 2. From the size of

the statistical errors on the two largest lattices, we estimate that the residual finite volume

effects at our lightest quark mass are below 2% for mΠ, fΠ and mρ and below 10% for mA.

To confirm spontaneous chiral symmetry breaking one should, in principle, reach the

chiral regime of the theory, pushing the quark masses light enough that chiral perturbation

theory (χPT), or the appropriate lattice extension of it, could be used, while keeping

under control all other systematic sources of error which are present on the lattice. It is

well known, by studies of QCD, that this chiral regime is extremely difficult to reach as
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Figure 4. The Goldstone boson mass squared and its decay constant as a function of the quark

mass for β = 2.2. Extrapolations to the chiral limit, as discussed in the text, are also shown.
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Figure 5. Vector and axial vector meson mass as a function of PCAC quark mass with two different

lattice spacings. A linear extrapolation to the chiral limit works well with mq < 0.1.

lattice artifacts and residual finite volume effects tend to make the predictions of χPT

difficult to test.

Keeping this in mind, we analyze our data for signs of spontaneous chiral symmetry

breaking and check how well predictions from χPT fit the measured Goldstone spectrum.

The Goldstone boson mass and decay constant are studied as a function of quark mass,

defined through the PCAC relation and compared with the expectations from (continuum)

chiral perturbation theory at next to leading order (NLO):

m2
Π

mq
= 2B

[
1 + Cx log x+Dx+O(m2

q)
]
, (3.1)
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Figure 6. The vector meson and axial vector meson masses in physical units. The chiral extrapo-

lations have been performed using a linear fit to the points where mq < 0.12.
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Figure 7. A continuum extrapolation of the vector meson mass.

and

fΠ = F
[
1 + C ′x log x+D′x+O(m2

q)
]
, (3.2)

where B, F , D and D′ are (unknown) low-energy constants of the theory, x ≡ 2Bmq

16π2F 2

and C and C ′ are known constants. For our theory C = −1
2 −

1
2Nf

= −3
4 and C ′ =

1
2Nf = 1. Additional terms in the chiral expansion can also be computed for the NNLO

approximations. The relevant expressions can be found in [37], from which the quoted

values for C and C ′ were taken.

Correction to the continuum chiral expansion arise due to the lattice discretisation at

non-zero lattice spacing. For Wilson fermions at NLO the functional form of eqs. (3.1)

and (3.2) remains unchanged, but the coefficients, and in particular C and C ′, depend on

the lattice spacing a. In the limit a → 0 one should recover the continuum values for C
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β range χ2/dof dof LO coefficient

m2
Π 2.0 mq < 0.05 0.48 2 B = 4.2(2.3)

fΠ 2.0 mq < 0.05 2.28 2 F = 0.13(5)

m2
Π 2.2 mq < 0.07 0.32 1 B = 1.34(16)

fΠ 2.2 mq < 0.07 2.01 1 F = 0.028(6)

Table 3. NLO Wilson χPT fits to our data for m2
Π and fΠ. All the fits are acceptable in the

quoted quark mass range. The last column “LO coefficient” refers to the coefficients B and F of

the chiral expansion for the Goldstone boson mass squared and for its decay constant.

and C ′, however for a fixed lattice spacing C and C ′ are two additional free parameters of

the expansion.

We show in figures 3 and 4 our results for m2
Π and fΠ for the two values of the lattice

spacing used in this work. It is possible to use NLO Wilson chiral perturbation theory to fit

our data at small quark masses for both m2
Π and fΠ. We report in table 3 the quark mass

ranges, χ2 and the coefficients B and F for the fits for the two different values of the lattice

spacing used in this work. The relative errors on the fitting parameters are large especially

for the coefficients C and C ′ of the x log x terms of the chiral expansion which suffer from

very large uncertainties ∼ 100%, and are thus compatible with zero. This can be explained

by our data not being yet in a regime where the x log x terms can be clearly distinguished

from the polynomial terms in the expansion, even at the lightest quark masses available.

Given that the chiral logs are subdominant, a simple polynomial fit to the data is

expected to be an adequate description of m2
Π and fΠ. We therefore fit our data setting

C = C ′ = 0. The values for B and F thus obtained are given in table 4. The central values

of B and F are compatible, within statistical errors, with the ones obtained using NLO

Wilson chiral perturbation theory. In the analysis below we use these values of B and F as

our best estimate, and consider the errors from different fitting procedures as systematic

errors. In the last column of table 4, we use the perturbative value of Za from eq. (2.14)

to obtain the renormalized F .

We also note that our data are not well described by NLO or NNLO continuum chiral

perturbation theory, i.e. when the coefficients C and C ′ of the logarithmic terms are fixed.

In this case we can perform a simultaneous fit of both m2
Π and fΠ, and the fit is thus much

more constrained. The resulting χ2/dof ∼ 100 shows that this is not a good description of

our data.

The values of vector and axial vector meson masses, as measured from our ensemble of

configurations, are plotted in figure 5. A linear function represents the data well at small

quark masses mq < 0.1.

Given that fΠ, mρ and mA are well described by a linear function at small quark

masses, one can expect that the two ratios mρ/fΠ and mA/fΠ are also linear functions

of the quark mass close to the chiral limit. These ratios are shown in figure 6, together

with a linear extrapolation to zero quark mass. We will refer to this method of chiral

extrapolation as “method 2”, whereas the first method will be named “method 1” in the

following.

– 9 –
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β B F Za ZaF

2.0 2.52(12) 0.052(3) 0.85 0.0439(18)

2.2 1.26(03) 0.033(1) 0.86 0.0285(08)

Table 4. The fitted values for the coefficients B and F of the chiral expansion. The functional

form used is a polynomial in the quark mass, as explained in the text. The corresponding χ2/dof

are 0.51 and 3.4 for β = 2.0, and 0.28 and 1.5 for β = 2.2 for m2
Π and fΠ respectively. In the last

column we report the value of the renormalized F obtained using the perturbative value of Za.

We use these two different methods as a crosscheck of the chiral extrapolation and

to try to quantify the systematic errors due to the choice of extrapolation function. We

compare in table 5 the results in lattice units for the chiral extrapolations. The methods are

clearly consistent with each other and method 2 leads to an overall smaller statistical error.

Combining the data from the two lattice spacings available in this study, we can

perform a first, crude continuum extrapolation for the masses of the vector and axial

vector mesons. As explained above, the lattice spacing is fixed by the requirement that

the value of the renormalized Goldstone decay constant satisfies fΠ sin(θ) = 246 GeV, as

required to give the correct masses to the electroweak gauge bosons. For concreteness here

we assume sin(θ) = 1, but the dependence on θ can easily be reinstated when required as

done below. The results of the linear extrapolations of mρ/(ZaF ) and mA/(ZaF ) to the

continuum limit are reported in table 6.

Our continuum extrapolation is subject to two major sources of systematic errors.

First our simulations are performed only at two lattice spacings, and therefore we do not

have a good measure of how well our linear extrapolation describes the data. To take this

into account, as a systematic error we quote, quite conservatively, the difference between

the value of the continuum extrapolated value and the data point of the finer lattice.

The second systematic error stems from the renormalization constant Za which we do not

measure non-perturbatively. As a systematic error we then use the difference between the

perturbative value of Za = Zpert
a and Za = 1. In table 6 we list the continuum extrapolated

values of vector and axial vector mesons for both methods 1 and 2 described above for chiral

extrapolation. The vector case is plotted in figure 7.

The results produced by both methods are comparable and well inside each other’s

error bars. As final results for the meson masses we quote the one obtained by method

2. Square summing the errors, the vector meson reads mρ sin(θ) = 2.5± 0.5 TeV and the

axial vector meson mA sin(θ) = 3.3± 0.7 TeV where we have reinstated the dependence on

the angle θ defining the specific electroweak embedding.

From a purely phenomenological point of view in the limit θ = π/2 this model goes

over to non-walking Technicolor-like theories. Assuming a traditional effective four-fermion

way to give masses to the SM fermions (see [11] for a review), a walking theory example

can be achieved starting from this model by adding adjoint matter as put forward in [40].

Although we expect the spectrum of the theory to change, the theory investigated here

is the (lattice) building block to start exploring the more involved but highly interesting

walking version. For any other value of θ we refer to [1] for the different ways one can

address fermion mass generation.
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β Method 1 Method 2

mρ/(ZaF ) 2.0 8.1(5) 8.65(8)

mρ/(ZaF ) 2.2 9.3(4) 9.22(11)

mA/(ZaF ) 2.0 18(2) 16.6(4)

mA/(ZaF ) 2.2 17(3) 15.5(6)

Table 5. The chiral extrapolated values for the vector and axial vector mesons in units of the

renormalized Goldstone boson decay constant. Only the statistical error is reported here.

β Method 1 (GeV) Method 2 (GeV)

mρ ∞ 2840(330)(560)(360) 2520(100)(240)(310)

mA ∞ 4000(1800)(200)(430) 3300(400)(510)(340)

Table 6. The continuum extrapolated values for the vector and axial vector mesons. The conversion

to physical units is done requiring ZaF = a · 246 GeV. The first error is statistical, the second one

is the systematic from a linear continuum extrapolation with only two data points, and the third

one comes from the uncertainty on Za.

Last but not the least it is worth mentioning that light dark matter, in this model,

can be achieved only in the Technicolor limit [1]. This work is therefore complementary to

the one in [29, 32].

4 Conclusions

The SU(2)-gauge theory with two fundamental fermions unifies both Technicolor and com-

posite pGB Higgs models of electroweak symmetry breaking. In this work, we have calcu-

lated the masses of the two lightest non-singlet mesons using the Goldstone boson decay

constant to set the scale. We performed the calculations with two different lattice spac-

ings. With conservative error estimates the mass of the lightest vector meson mρ sin(θ) is

2.5± 0.5TeV. This value is clearly above one TeV and outside the current exclusion limits

set by the LHC [39].

To increase the precision of our results for the spectrum, at least one additional lattice

spacing is required alongside a nonperturbative determination of the renormalization con-

stant Za. This would require a significant increase of computational resources. Furthermore

we are eager to investigate the scalar sector and the vector decay constants.
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