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1 Introduction

The search for supersymmetric vacuum configurations in Type II supergravity has repre-

sented in the past a fruitful area of interplay between mathematics and physics. On the

one hand the study of string theory compactifications to four dimensions in the absence of

fluxes has driven to a lot of efforts in studying Calabi-Yau manifolds, leading to important

progresses in understanding the geometrical properties of these spaces; on the other hand
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generalized complex geometry [1, 2] proved to be a powerful tool in order to study the

more complicated (and interesting) story of vacuum solutions in presence of fluxes.

Generalized complex geometry was applied to the study of vacua in presence of fluxes

for the first time in [3]. In that paper the authors found that the conditions for unbroken

supersymmetry for four-dimensional N = 1 vacua are elegantly rewritten in terms of first-

order differential equations involving a pair of pure spinors on the generalized internal

tangent bundle T6 ⊕ T ∗6 ; this fancy formulation allowed to find a large number of explicit

vacuum solutions.

A very interesting (and perhaps unexpected) observation was done in [4]: it was found

that the conditions for a Mink4 vacuum, when expressed in the pure spinors formulation,

are in one-to-one correspondence with the differential conditions satisfied by the calibration

forms for all the admissible, static, magnetic D-branes in such a background.1 It is natural

to ask whether the correspondence (which we will call the supersymmetry-calibrations

correspondence) is also valid in more general situations and can be applied in dimensions

different than four.

Motivated by this question, in [6] it was checked that the supersymmetry-calibrations

correspondence continues to hold also for Mink6 vacua preserving eight real supercharges,

and this led to formulate the following conjecture: the supersymmetry-calibrations cor-

respondence is valid for all Minkd vacua (with d even) preserving a Weyl spinor on the

external manifold.

Specializing the discussion to the case of Mink2, N = (2, 0) vacua, the authors of [6]

conjectured that the conditions for unbroken supersymmetry should be

dH(e2A−φReψ1) = ± α

16
e2A ∗8 λ(f) ,

dH(e2A−φψ2) = 0 , (1.1)

where dH ≡ d − H∧ and ψ1 = 1
eA
η1

+η
2†
∓ , ψ2 = 1

eA
η1

+η
2c†
∓ are polyforms constructed as

bilinears of the internal SUSY parameters η1
+ and η2

± (which are Weyl spinors); finally the

upper (lower) sign is for IIA (IIB). It is worth emphasizing that the correspondence was

formulated for η1
+ and η2

± being pure spinors on the internal manifold;2 this assumption

implies that the structure group on the generalized tangent bundle T8 ⊕ T ∗8 reduces to

SU(4)× SU(4).

In [7] it has been shown, by making the additional assumption that η1
+ and η2

+ are

proportional, that in type IIB the conjecture of [6] fails to be valid: the authors indeed

have shown that the equations (1.1) are not completely equivalent to supersymmetry and

that they must be completed, in this particular case, with the condition

dJ2H (e−φImψ1) = − α

16
f , (1.2)

1An analogous story holds also for AdS4 vacua [5].
2Contrary to what happens in lower dimensions, in eight dimensions not every Weyl (not Majorana)

spinor is pure: as reviewed in section 4.1 an eight-dimensional Weyl spinor is pure if and only it satisfies

an additional algebraic condition (4.1). From this it follows that the situation considered in [6] is not the

most general one for a Mink2, N = (2, 0) vacuum.
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where dJ2H ≡ [dH ,J2·] (used for the first time in physical context in [8]), and J2 is the

generalized almost complex structure associated to the pure spinor on the generalized

tangent bundle ψ2 (further details are given in section 4.1). They also gave a geometrical

interpretation of this equation in terms of calibrations, motivated by the results obtained

in dimensions greater than 2.

It should be noted that the assumption that η1
+ and η2

∓ are proportional is a strong

assumption and can be made only in type IIB, since in type IIA η1
+ and η2

− have different

chiralities and cannot be proportional. In this case we have a reduction of the structure

group to strict SU(4) and this allows the use of ordinary complex geometry instead of

generalized complex geometry.

The authors of [7] conjectured that the final result does not change by removing the

assumption of proportionality between η1
+ and η2

+, but they did not test this final statement;

however they suggested that the ten-dimensional system found in [9] could be useful in order

to show such a conjecture. In this paper, motivated by the elegant result obtained in [7] and

using the strategy that the authors conjectured to be useful, we remove the assumption of

proportionality between η1
+ and η2

∓ and show the validity of the results of [7] in the general

case with non proportional spinors.

As a further generalization we will show that the conditions for unbroken supersymme-

try can be recast in an elegant form every timeM8 enjoys an SU(4)× SU(4) structure, no

matter whether η1
+ and η2

∓ are pure or not. In other words, we will see that the conditions

for unbroken supersymmetry take an elegant formulation if we assume that it exists a pair

of pure spinors η̃1
+ and η̃2

∓ (which in general will not coincide with the SUSY parameters

η1
+ and η2

∓).

Here is a description of the strategy that we will follow. We begin by considering the

ten-dimensional system given in [9]. This system gives a set of differential equations, writ-

ten in terms of differential forms using again generalized complex geometry on T10 ⊕ T ∗10,

which an arbitrary ten-dimensional configuration must satisfy in order to preserve su-

persymmetry. Some of the equations (the so-called symmetry equations (3.4a) and the

exterior equation (3.4b)) are concise and reminiscent of the pure spinor equations for four-

dimensional vacua. Unfortunately they are not in general sufficient for supersymmetry

to hold, and must be completed with the so-called pairing equations (3.4c) and (3.4d);

these last equations are much more cumbersome than the others and they involve addi-

tional geometrical quantities that are not defined by the SUSY parameters ε1 and ε2. In

some situations they are redundant (for example for four-dimensional and six-dimensional

Minkowski vacua), but in general they are non trivial.

Having at disposal the ten-dimensional system (here reviewed in section 3.1), the only

thing that we need to do is to specialize it to the case of a Mink2, N = (2, 0) vacuum. In

this way we easily obtain (in section 3.2) the conditions for supersymmetry for a general

Mink2, N = (2, 0) vacuum, without making any assumption about the internal SUSY

parameters η1
+ and η2

∓. In other words, the equations that we obtain in this section are

more general than the ones in [6] (and refined in [7]) and can be applied also for vacua in

which the internal SUSY parameters are not pure spinors on the internal manifold.

As a further step we impose the condition that both η1
+ and η2

∓ are pure (but not nec-
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essarily proportional) and, using generalized complex geometry and more specifically the

so-called generalized Hodge diamond, we deduce that the exterior equation (3.4b) simply

reproduces both the equations (1.1) conjectured in [6] on the basis of the supersymmetry-

calibrations correspondence, whereas the pairing equations are completely equivalent

to (1.2). This concludes the proof of the validity of the system found in [7] also in the

case of SU(4)× SU(4) structure. It is worth noting that, using this strategy, the computa-

tions to obtain the result are much simpler than the ones used in [7] for the case of strict

SU(4) structure, and this represents one of the main advantages of the system [9]. We note

also that, in the limit of vanishing fluxes, equations (1.1) and (1.2) give the well-known

results of Calabi-Yau four-fold for Type IIB and manifolds with G2 holonomy for Type IIA.

Summarizing this first part of the work, we show that the exterior equation simply

reproduces both the equations conjectured in [6] using calibrations, whereas the pairing

equations reproduce (1.2), which expresses the failure of the correspondence. By combining

this observation with the fact that in d = 4 and in d = 6 the correspondence holds and

the pairing equations are completely redundant, it becomes reasonable to conjecture that

the pairing equations parametrize the failure of the correspondence. Indeed the validity

of this last statement is shown in full generality in [10]: in that work it is shown that the

symmetry equations (3.4a) and the exterior equation (3.4b) are the only equations of the

ten-dimensional system necessary to identify the calibrations of D branes and F1 strings;

on the other hand the pairing equations have nothing to do with calibrations (of D branes

and F1 strings at least).

Finally, in the last part of the paper, we remove the condition that η1
+ and η2

∓ are pure

spinors but we continue to assume that a pair of pure spinors η̃1
+ and η̃2

∓ exists. Such an

assumption allows us to rewrite the equations for unbroken supersymmetry in terms of the

pure spinors on the generalized tangent bundle ψ̃1 and ψ̃2. We show that the exterior equa-

tion (3.4b), when rewritten in terms of ψ̃1 and ψ̃2, continue to reproduce the equations (1.1)

without any modifications. The pairing equations (3.4c), (3.4d) are different from (1.2) but

nevertheless they continue to have an elegant formulation (equation (5.16)), similar to (1.2)

but deformed with additional pieces. Therefore our analysis reveals that the exterior equa-

tion in the system (3.4) is sensible only to the condition of SU(4)×SU(4) structure, whereas

the pairing equations takes into account whether η1
+ and η2

∓ are pure or not.

The paper is organized as follow. In section 2 we discuss our spinorial Ansatz and

the geometry defined by a Weyl spinor in two dimensions. In section 3 we discuss the

ten-dimensional system [9] and we specialize it to the case of Mink2, N = (2, 0) vacua. In

section 4 we specialize further the system by requiring that the internal SUSY parameters

are pure spinors on the internal manifold. In section 5 we remove the assumption that the

internal SUSY parameters are pure spinors and in section 6 some conclusions and future

projects are outlined. Finally, in the appendices we give some technical details about the

computations of the main text.
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2 Spinorial Ansatz and two-dimensional geometry

In this section we will discuss how the ten-dimensional SUSY parameters ε1 and ε2 decom-

pose in order to have an N = (2, 0), Mink2 vacuum, namely a configuration of the form

Mink2×M8 (withM8 compact) enjoying the maximal symmetry of Mink2 and where two

real supercharges are preserved. We will also describe what kind of geometrical quantities

are defined by a single Weyl (Not Majorana) spinor ζ in two dimensions.

2.1 Spinorial Ansatz

We consider configurations with a metric of the form

ds2
10(x, y) = e2A(y)ds2

Mink2
(x) + ds2

M8
(y) , (2.1)

xµ are the coordinates on Mink2 and ym are the coordinates on the internal manifold

M8. As usual for vacuum solutions the manifold is given by a simple product M10 =

Mink2 ×M8, and the external part of the metric depends on the internal coordinates via

the so-called warping factor A(y) only.

Moreover we are interested in N = (2, 0) configurations, i.e. configurations like (2.1)

preserving supersymmetry for any given two-dimensional, complex, Weyl spinor ζ. There-

fore the ten-dimensional SUSY parameters ε1 and ε2 take the form

ε1 = ζη1
+ + ζcηc 1

+ ,

ε2 = ζη2
∓ + ζcηc 2

∓ , (2.2)

where the upper sign is for IIA, the lower for IIB. ζ denotes a Weyl spinor (of positive

chirality) in two dimensions and ηi± are two Weyl spinors on M8.3 Since we are not

imposing also a Majorana condition on ζ (recall that in two dimensions Majorana-Weyl

spinors can be defined) we see that ζ defines two real supercharges in two dimensions

and (2.1) is an N = (2, 0) vacuum. Similarly to (2.2), the ten-dimensional gamma matrices

ΓM decompose as

Γµ = eAγµ ⊗ 1 , Γm = γ(2) ⊗ γm , (2.3)

where γµ and γm are the real two-dimensional and eight-dimensional gamma matrices

respectively, and γ(2) is the chiral operator in two dimensions. M goes from 0 to 9.

To have a vacuum solution we need that the external spinor ζ satisfies a Killing spinor

equation like

Dµζ = 0 . (2.4)

It is worth noting that a spinorial decomposition like (2.2) is not compatible with an AdS2

vacuum: indeed in this case the Killing spinor equation (2.4) becomes

Dµζ+ = µγµζ− , (2.5)

3We will work with real gamma matrices both in Mink2 and in M8; such a basis in eight dimensions

can be defined in terms of octonions [11]. Therefore the Majorana conjugates ζc and ηc i
± are just the naive

conjugates (ζ)∗ and (ηi±)∗.
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where ζ+ (ζ−) is a spinor of positive (negative) chirality, and µ is a constant proportional

to the cosmological constant; it can be easily shown that ζ and ζc have the same chiralities

and so we conclude that the spinorial Ansatz (2.2) is not compatible with (2.5).

2.2 Geometry defined by two-dimensional spinors

Given the spinorial Ansatz (2.2) we want now to develop what kind of geometrical quantities

can be defined using ζ and ζc.

Given ζ of positive chirality we can introduce the barred spinor ζ̄ = ζ†γ0 and a straight-

forward calculation shows that it has negative chirality. We can now define the bilinears

ζ ⊗ ζ̄ and ζ ⊗ ζ̄c obtaining a couple of one-forms (or vectors), zµ and aµ:

ζ ⊗ ζ̄ =
1

2
ζ̄γµζγ

µ = zµdx
µ ,

ζ ⊗ ζ̄c =
1

2
ζ̄cγµζγ

µ = aµdx
µ ; (2.6)

our aim is now to understand the geometrical properties of both.

To start with, z and a are null: a simple Fierz computation gives4

2zζ = ζ̄γµζγ
µζ = γµζζ̄γµζ = 0 , (2.7)

where we used the well-known relation γµCkγµ = (−)k(d − 2k)Ck. From (2.7) it follows

z2 = 0 and an identical computation shows that also a is null. Moreover z and a are

proportional since we have

zζζ̄c = 0 , (2.8)

as an obvious consequence of (2.7); recalling the formula γµCk = (dxµ ∧+gµνιν)Ck, (2.8)

can be rephrased as

z ∧ a = zxa = 0 , (2.9)

telling us that a is proportional to z

a = g(x)z . (2.10)

Finally, recalling that in two Lorentzian dimensions we have the identification

γ(2)Ck = ∗2λCk , λCk ≡ (−1)b
1
2
kcCk , (2.11)

relating the action from the left of the chiral operator to the Hodge dual operator, we

conclude that both z and a are self-duals

∗2 z = z , ∗2a = a . (2.12)

We can also determine the reality properties of these vectors. Evaluating the expression

γ0(ζζ̄)†γ0 (and the analogous one including ζζ̄c) one deduces that z is real and a is complex.

4We will make systematically use of the Clifford map dxm1 ∧ · · · ∧ dxmn → γm1...mn to identify as usual

forms with bispinors.
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To conclude this section we note that z and a are d-closed: indeed the external differ-

ential acts on a bispinor of odd degree as

dz = d(ζζ̄) =
1

2

[
γµ, Dµζζ̄

]
, (2.13)

and using (2.4) one obtains

dz = da = 0 . (2.14)

3 Supersymmetry conditions: general discussion

In this section we will review the conditions for unbroken supersymmetry in type II super-

gravities. We will then specialize them to two-dimensional N = (2, 0) vacua obtaining a

set of conditions for these particular backgrounds. Some of the equations will look a bit

scary at first sight but in the next sections we will see that the situation is completely

different when M8 enjoys an SU(4)× SU(4) structure.

3.1 Review of the ten-dimensional system

Let us review the conditions for unbroken supersymmetry in ten dimensions as derived

in [9]. All the material presented in this section is not new but we review it in order to

have a self-contained discussion.

Using the ten-dimensional SUSY parameters ε1 and ε2 we can construct two different

vectors (or equivalently one-forms)

KM
i ≡

1

32
ε̄iΓ

M εi , K ≡ 1

2
(K1 +K2) , K̃ ≡ 1

2
(K1 −K2) . (3.1)

We can also consider the polyform

Φ = ε1ε̄2 , (3.2)

defining many different G-structures on the ten-dimensional tangent bundle, all of them

corresponding to a single structure on the generalized ten-dimensional tangent bundle

T10 ⊕ T ∗10. The situation would appear to be completely analogous to what happens for

four-dimensional N = 1 vacua, where the pure spinors φ+ and φ− define together an

SU(3)×SU(3) structure on the generalized tangent bundle of the internal manifold T6⊕T ∗6 ,

however one can show that Φ is not a pure spinor and as a consequence of this fact it is not

sufficient to fully reconstruct the metric and the B-field. This feature forces us to introduce

additional geometrical data and indeed in [9] two additional vectors e+1 and e+2 satisfying

e2
+i = 0 , e+i ·Ki =

1

2
, i = 1, 2 , (3.3)

are introduced.

– 7 –
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We can now reformulate the conditions for unbroken supersymmetry in terms of the

geometrical data (K, K̃,Φ, e+i) just discussed, obtaining the following system

LKg = 0 , dK̃ = ιKH ; (3.4a)

dH(e−φΦ) = −(K̃ ∧+ιK)F ; (3.4b)(
e+1 · Φ · e+2,Γ

MN

[
± dH(e−φΦ · e+2)+

1

2
eφd†(e−2φe+2)Φ−F

])
= 0 ; (3.4c)(

e+1 · Φ · e+2,

[
dH(e−φe+1 · Φ)− 1

2
eφd†(e−2φe+1)Φ−F

]
ΓMN

)
= 0 . (3.4d)

((3.4a) already appeared in [5, 12] and [13].) Here, φ is the dilaton, H is the NSNS three-

form, and dH ≡ d −H∧. F is the total RR field strength F =
∑

k Fk (where the sum is

from 0 to 10 in IIA and from 1 to 9 in IIB), which is subject to the self-duality constraint

F = ∗10λ(F ) . (3.5)

( , ) is the ten-dimensional Chevalley-Mukai pairing of forms that, in d dimensions, is

defined by

(α, β) = (α ∧ λ(β))d , (3.6)

where d means that we keep only the d-form part, α and β are two (poly)-forms and the λ

operator acts on a k-form αk as defined in (2.11).

Equations (3.4) are necessary and sufficient for supersymmetry to hold [9]. To also

solve the equations of motion, one needs to impose the Bianchi identities, which away from

sources (branes and orientifolds) read

dH = 0 , dHF = 0 . (3.7)

It is then known (see [14] for IIA, [15] for IIB) that almost all of the equations of motion

for the metric and dilaton follow.

It should be noted that equations (3.4a) and (3.4b) are very elegant: apart from the

first equation in (3.4a) (expressing that K has to be a Killing vector) they are formulated

in terms of differential forms and exterior calculus only and they are much simpler to treat

than the original SUSY conditions. Unfortunately, they are necessary to supersymmetry to

hold but not sufficient and they must be completed with (3.4c) and (3.4d) (which we will

call pairing equations). One can show that in some particular situations (3.4c) and (3.4d)

can be dropped since they are redundant (this is the case for four-dimensional vacua, for

example) but in general they carry additional content (examples of such situations can be

found in [16–18] and [19]).

Of course it is possible that a better version of the pairing equations exists, and this is

one of the aims of this paper: we will see that for N = (2, 0), Mink2 vacua pairing equations

can be rewritten in an elegant form if the internal manifold enjoys an SU(4) × SU(4)

structure, in particular without making any use of the Chevalley-Mukai pairing and using

only exterior calculus. It should be emphasized that this is not just a particular (and a

particularly lucky) case: in [9], a decomposition of the SUSY parameters εi in terms of

– 8 –
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a two-dimensional Majorana-Weyl spinor ζi and of an eight-dimensional Majorana-Weyl

spinor ηi is often used. Therefore it is conceivable that some of the results presented in

the following sections suggest a way to find a better formulation of the pairing equations

in more general situations.

3.2 Factorization

As explained in section 2 we will consider backgrounds with a metric of the form (2.1) and

with a spinorial Ansatz like (2.2), we will also impose that our configuration is a vacuum,

i.e. that the maximal symmetry of Mink2 is preserved by all the fields.

Given the spinorial Ansatz (2.2) we can immediately compute the polyform Φ (equa-

tion (3.2))

Φ = ∓
(
(ζζ̄)(η1

+η
2†
∓ ) + (ζcζ̄)(η1cη2†

∓ ) + c.c.
)

= ∓2Re
(
eAz ∧ ψ1 + eAa ∧ ψ2

)
, (3.8)

where the decomposition (2.3) of the ten-dimensional gamma matrices is used. In (3.8) z

and a are the two-dimensional vectors defined in (2.6), whereas with ψ1 and ψ2 we denote

the eight-dimensional bilinears

ψ1 ≡ η1
+η

2†
∓ , ψ2 ≡ η1

+η
2c†
∓ . (3.9)

Notice that, since not every eight-dimensional Weyl spinor η+ is pure, ψ1 and ψ2 are not

in general pure spinors on the generalized eight-dimensional tangent bundle T8⊕T ∗8 and so

in general they do not induce a reduction of the structure group to SU(4)×SU(4). Further

details about this point will be presented in section 4.

We need also the vectors K and K̃ appearing in (3.1). To this end we start by

computing K1 obtaining

32K1 = e−A
[
4z||η1

+||2 + 2a(η1
+)2 + c.c

]
, ||η1

+||2 ≡ η
1†
+ η

1
+ , (η1

+)2 ≡ (η1t
+η

1
+) (3.10)

notice that ||η1
+||2 is real, and (η1

+)2 is complex. If we now impose5

||η1
+||2 = ||η2

∓||2 , (η1
+)2 = (η2

∓)2 , (3.11)

we see that K2 takes exactly the same expression of K1. Therefore we conclude that K

and K̃ are

K =
e−A

8

(
z||η1

+||2 + Re(a(η1
+)2)

)
, K̃ = 0 . (3.12)

It remains to consider the factorization of the fluxes and of the NSNS three-form H. The

request of maximal symmetry in two dimensions imposes that all these fields (and also the

5When M8 is compact a famous no-go theorem requires the presence of sources with negative tension

like orientifold planes [20, 21]. The request that such orientifolds be supersymmetric imposes the condi-

tions (3.11) that therefore has to be considered as a necessary condition and not as an assumption [22].

– 9 –
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dilaton) do not depend on the external coordinates xµ. Moreover the indices structure of

them must be of the form

H = H0 +H2 ,

F = F0 + F2 = f + e2Avol2 ∧ ∗8λ(f) , (3.13)

where the indices indicate the number of external components, f is an internal polyform

and the self-duality of F (equation (3.5)) is used. We can now move to discuss the system

of equations (3.4) for these particular vacua.

3.3 Symmetry equations

To begin we consider the symmetry equations, i.e. the equations (3.4a). The first equation

require that K would be a Killing vector, however K takes the expression (3.12) and we

already know that z and a are Killing vectors by construction (they are constant), therefore

we obtain the constraints

||η1
+||2 = αeA ,

(η1
+)2 = (β + iδ)eA , (3.14)

where α, β and δ are real constants. Moving to the second equation in (3.4a) it is straight-

forward to see (using (3.12)) that this equation implies

H2 = 0 , (3.15)

therefore in the following we will write H to simply indicate H0.

3.4 Exterior equation

We turn now to discuss the exterior equation (3.4b) that, as remarked at the end of

section 3.1, in some situations contains all the information that we need.

We start by evaluating the r.h.s. in (3.4b); it reads

− (K̃ ∧+ιK)F =
1

8
(α+ βRe(g)− δIm(g))e2az ∧ ∗8λ(f) , (3.16)

where we used (3.12), (3.13), (3.14), (2.10), the self-duality of z and the relation (valid for

any d even)

∗ λ(dxµ∧) = −ιµ ∗ λ . (3.17)

Therefore, using the expression (3.8) for the polyform Φ, equation (3.4b) becomes

dH
(
eA−φRe(z ∧ ψ1 + a ∧ ψ2)

)
= ∓ 1

16
(α+ βRe(g)− δIm(g))e2Az ∧ ∗8λ(f) , (3.18)

that can be decomposed in the couple of equations

dH(eA−φReψ1) = ± α

16
e2A ∗8 λ(f) ,

dH(eA−φψ2) = ±β + iδ

16
e2A ∗8 λ(f) . (3.19)
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3.5 Pairing equations

It remains to consider the pairing equations (3.4c) and (3.4d). We will present the compu-

tation only for (3.4c) since (3.4d) is completely parallel. The first part of the analysis will

be very similar to the corresponding one presented in [9] for four-dimensional vacua and

therefore we will be brief.

To start with, we have to choose the vectors e+1 and e+2. Since we have K1 = K2 = K

we can take e+1 = e+2 = e+ as well, moreover we take e+ purely external as K and the

action of the gamma matrices
→
γ+ and

←
γ+ takes the form

→
γ+= eAe+ ∧+e−Ae+x ,

←
γ+ (−)deg = eAe+ ∧ −e−Ae+x . (3.20)

Now we can compute the various terms appearing in (3.4c): since e+ is purely external

the term containing d†(e−2φe+) vanishes, moreover the term dH(e−φΦ·e+) can be massaged

using {
d,
←
γ+ (−)deg

}
= e−A∂+ + dA∧

→
γ+ . (3.21)

Summarizing, (3.4c) becomes(
γ+ · Φ · γ+,Γ

MN
[
dA ∧ γ+e

−φΦ− 2f
])

= 0 , (3.22)

where we used (3.5) and (3.13).

We have now to evaluate (3.22) for the various possible choices of the indices M and

N . It is straightforward to see that for M and N both internal or external the equation

reduces to an identity and so it has no content. Therefore the only non trivial equations

come when we have M = m and N = µ. We start by computing the factor

− 2
(
γ+ · Φ · γ+,Γ

mΓµf
)

= ± 1

16
ε̄1γ+ΓmΓµfγ+ε2 , (3.23)

where we used the identity

(
γ+1 · Φ · γ+2, C

)
= −(−)degΦ

32
ε̄1γ+1Cγ+2ε2 , (3.24)

that can be found in [9]. Using now the equations (2.2) and (2.3), we can further mas-

sage (3.23) obtaining

−2
(
γ+ ·Φ ·γ+,Γ

mΓµf
)

=
1

16

(
ζ̄γ+γ

µγ+ζ η
1†
+ γ

mfη2
∓+ ζ̄γ+γ

µγ+ζ
c η1†

+ γ
mfη2c

∓ +c.c.
)
, (3.25)

where the reality of the gamma matrices γm and γµ was used.

A similar treatment can be reserved to the other term in (3.22) which finally takes the

form

e−φ
(
γ+ · Φ · γ+,Γ

mΓµ[dA ∧ γ+Φ]
)

=

±e
−φ

4

(
ζ̄γ+γ

µγ+ζ η
1†
+ γ

m∂Aη2
∓ + ζ̄γ+γ

µγ+ζ
c η1†

+ γ
m∂Aη2c

∓ + c.c.
)
. (3.26)
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To proceed further we observe that the two-dimensional bilinears take the form

ζ̄γ+γ
µγ+ζ ∝ eµ+ ,

ζ̄γ+γ
µγ+ζ

c ∝ ḡeµ+ , (3.27)

therefore, requiring that (3.22) has a solution which is independent from ζ, we conclude

that (3.25) and (3.26) give rise to the following equations

Re(4η1†
+ γ

m∂Aη1
+ ± eφη

1†
+ γ

mfη2
∓) = 0 ,

4η1†
+ γ

m∂Aη1c
+ ± eφη

1†
+ γ

mfη2c
∓ = 0 , (3.28)

that can be recast in a more familiar fashion

ReTr

(
η2
∓η

1†
+ γ

m

(
4∂A

η1
+η

2†
∓

||η2
∓||2
± eφf

))
= 0 ,

Tr

(
η2c
∓ η

1†
+ γ

m

(
4∂A

η1c
+ η

2c†
∓

||η2
∓||2

± eφf

))
= 0 , (3.29)

or, in terms of the eight-dimensional Chevalley-Mukai pairing, as

Re

(
γmψ̄1, dA ∧ ψ1 ∓

α

8
eφ+A ∗8 λ(f)

)
= 0 ,(

γmψ̄2, dA ∧ ψ̄1 ∓
α

8
eφ+A ∗8 λ(f)

)
= 0 . (3.30)

Finally, equation (3.4d) can be treated in the same way and the final result is

Re

(
ψ̄1γ

m, dA ∧ ψ1 ∓
α

8
eφ+A ∗8 λ(f)

)
= 0 ,(

ψ̄2γ
m, dA ∧ ψ1 ∓

α

8
eφ+A ∗8 λ(f)

)
= 0 . (3.31)

3.6 Summary

We have rewritten the conditions for unbroken supersymmetry (equations (3.4))

for a Mink2, (2, 0) vacuum solution. The resulting system of equations is given

by (3.14), (3.15), (3.19), (3.30) and (3.31). Unfortunately equations (3.30) and (3.31)

are not as elegant as (3.19) and this is a typical feature of the system (3.4). However

we will see that, assuming that the structure group of M8 is SU(4) × SU(4), the pairing

equations can be recast in a concise and elegant form.

4 Supersymmetry conditions: the pure case

In this section we will see (motivated by the results found in [7]) how SUSY conditions can

be rewritten in a compact form if we make the assumption that the internal spinors η1
+ and

η2
∓ are pure.6 In this case it is possible to show that the structure group of the generalized

6Recall that a spinor is said to be pure if it is annihilated by exactly half of the gamma matrices.
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tangent bundle T8 ⊕ T ∗8 reduces to SU(4) × SU(4) and this allows a better formulation

of the pairing equations. The equations that we will find are already present in [7] but,

contrary to that work, we will not assume that the two spinors η1
+ and η2

∓ are proportional

(notice that such an assumption can be done in Type IIB only). Therefore our results in

this section can be seen as the extension from the strict SU(4) case (treated in [7]) to the

SU(4)× SU(4) case.

4.1 Pure spinors and generalized Hodge diamonds

Let us start by reviewing what the purity condition on eight-dimensional spinors implies

and what geometrical structures can be defined on M8 when η1
+ and η2

∓ are pure.

Contrary to what happens in lower dimensions, in eight dimensions Weyl spinors are

not necessarily pure, as shown by a simple counting argument: in eight dimensions the

space of pure spinors has real dimension 14 whereas the space of Weyl spinors has real

dimension 16. More explicitly, a given eight-dimensional Weyl spinor of (say) positive

chirality η+ is pure if and only if it satisfies the additional algebraic condition

ηt+η+ = 0 . (4.1)

Notice that a Majorana-Weyl spinor cannot be pure. In this section we will suppose that

both η1
+ and η2

∓ satisfy (4.1) and hence that they are pure.

In general, it is well known that a pure spinor in 2d dimensions implies that the

structure group on the tangent bundle reduces to SU(d). This is equivalent to saying that

on the manifold a real two-form J and a (d, 0)-form (with respect to the almost complex

structure defined by J) called Ωd can be defined. J and Ωd can be obtained from η+ via

the relations

iJmn = η†+γmnη+ , Ωm1...md
= ηt+γm1...md

η+ , (4.2)

and they satisfy
1

2d
Ωd ∧ Ω̄d =

1

d!
Jd = vol2d , J ∧ Ωd = 0 , (4.3)

that can be shown from (4.2) by Fierzing. Having introduced J we can reformulate the

purity condition of η+ by saying that it is annihilated by the gamma matrices holomorphic

with respect to the almost complex structure defined by J .

It is also known that the situation is much more involved when we consider a pair of

pure spinors η1
+ and η2

∓, indeed we have that the structure group depends on the chirality

of the two spinors and also it can acquire a dependence on the points of the manifold.

To treat all these different situations on the same footing it is often useful to consider

the generalized tangent bundle T ⊕ T ∗, since in this enlarged space the structure group is

always SU(d)× SU(d).

On T ⊕T ∗ we can define a Cl(2d, 2d) algebra, with the corresponding gamma matrices

given by

ΓΛ =
{
∂1x, . . . , ∂2d, dx

1∧, . . . , dx2d∧
}
, (4.4)

and with spinors simply given by the differential forms of all degrees. Now the key point

is the following: starting from the pure spinors η1
+ and η2

∓ (which are pure spinors with

– 13 –
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respects to the usual Cl(2d) algebra), we can define the polyforms ψ1 and ψ2 that we

defined in (3.9) and, thanks to the purity of η1
+ and η2

∓, we are sure that they are pure

with respects to the Cl(2d, 2d) algebra defined in (4.4).

To any given pure spinor ψi on the generalized tangent bundle one can associate a

generalized almost complex structure Ji (GACS), i.e. an operator Ji : T ⊕ T ∗ → T ⊕ T ∗

such that J 2
i = −1; the relation between ψi and Ji is given by the requirement that the

i-eigenbundle of Ji coincides with the annihilator of ψi.

Finally, it can be shown that ψ1 and ψ2 constructed as bilinears of η1
+ and η2

∓ are

compatible which means that the corresponding GACSs commute.

Specializing now the discussion to the eight-dimensional case, we want to introduce an

appropriate basis for the differential forms on M8. To this end it is useful to consider the

so-called generalized Hodge diamond, which constitutes a basis for the differential forms of

any degrees constructed starting from ψ1 and ψ2. We can represent this basis as follows:

ψ1

ψ1γ
i2 γ ī1ψ1

ψ1γ
i2j2 γ ī1ψ1γ

i2 γ ī1j̄1ψ1

ψ2γ
ī2 γ ī1ψ1γ

i2j2 γ ī1j̄1ψ1γ
j2 γi1ψ̄2

ψ2 γ ī1ψ2γ
ī2 γ ī1j̄1ψ1γ

i2j2 γ ī1ψ̄2γ
i2 ψ̄2

γ ī1ψ2 γi1j1ψ̄1γ
ī2 γi1ψ̄1γ

ī2j̄2 ψ̄2γ
i2

γi1j1ψ̄1 γi1ψ̄1γ
ī2 ψ̄1γ

ī2j̄2

γi1ψ̄1 ψ̄1γ
ī2

ψ̄1

(4.5)

where the action of the gamma matrices on ψi is obviously obtained from the same action

on the spinors ηi.

This basis has the property of being orthogonal : every form has vanishing Chevalley-

Mukai pairing with every form in the diamond, except with the ones symmetric with respect

to the central point. So for example ψ1 has non vanishing pairing only with ψ̄1, ψ1γ
i2 only

with ψ̄1γ
ī2 and so on. Another important technical property of this basis is that its entries

are eigenfunctions for the action of (J1·,J2·) corresponding to ψ1 and ψ2, and also for the

operator ∗8λ. More explicitly, the eigenvalues for all these operators are

(J1· ,J2·) : (4i, 0)

(3i, i) (3i,−i)
(2i, 2i) (2i, 0) (2i,−2i)

(i, 3i) (i, i) (i,−i) (i,−3i)

(0, 4i) (0, 2i) (0, 0) (0,−2i) (0,−4i)

(−i, 3i) (−i, i) (−i,−i) (−i,−3i)

(−2i, 2i) (−2i, 0) (−2i,−2i)

(−3i, i) (−3i,−i)
(−4i, 0)

∗8λ : +

+ −
+ − +

+ − + −
+ − + − +

− + − +

+ − +

− +

+

.

(4.6)
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4.2 Rewriting SUSY conditions in the pure case

We have now all the instruments necessary to massage the system of equations found in

section 3 with the assumption that η1
+ and η2

∓ are pure.

First of all, to stay closer to the results of [7], we perform the following redefinitions:

ψ1 =
1

eA
η1

+η
2†
∓ , ψ2 =

1

eA
η1

+η
2c†
∓ . (4.7)

Next we move to the symmetry equations (3.14): it is straightforward to see that the second

equation implies

β = δ = 0 , (4.8)

since η1
+ and η2

∓ are pure. Therefore we can interpret the geometrical role of β and δ as

parametrizing the departure from the purity condition. We will discuss this last statement

in a more geometrical language in section 5.

Moving to the exterior equations (3.19), taking into account the redefinition (4.7) and

the vanishing of β and δ, they become

dH(e2A−φReψ1) = ± α

16
e2A ∗8 λ(f) ,

dH(e2A−φψ2) = 0 . (4.9)

It remains to consider the pairing equations. To start with we see that, using the

orthogonality of the generalized Hodge diamond, the second equation in (3.30) can be

simplified

(γi1ψ̄2, f) = 0 , (4.10)

and analogously the second equation in (3.31) becomes

(ψ̄2γ
i2 , f) = 0 . (4.11)

Collecting the results we have the following expression for the pairing equations7(
γi1ψ̄1, dA ∧ ψ1 ∓

α

8
eφ ∗8 λ(f)

)
= 0 ,

(γi1ψ̄2, f) = 0 ,(
ψ̄1γ

ī2 , dA ∧ ψ1 ∓
α

8
eφ ∗8 λ(f)

)
= 0 ,

(ψ̄2γ
i2 , f) = 0 . (4.12)

By a direct computation, using the properties contained in (4.6), it can be shown that

the equations in (4.12) are equivalent to the single equation

dJ2H (e−φImψ1) = ± α

16
f , (4.13)

where dJ2H ≡ [dH ,J2·]. The equivalence between (4.12) and (4.13) is in appendix A.

7Notice that we have removed the real part in front of the first equations in (3.30) and (3.31). This is

due to the fact that now the holomorphic (or anti-holomorphic) gamma matrices appear.
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4.3 Summary

Let us summarize the results of this section. We have shown that, assuming the purity of

the spinorial parameters η1
+ and η2

∓, SUSY equations can be reformulated in terms of three

conditions

dH(e2A−φReψ1) = ± α

16
e2A ∗8 λ(f) ,

dH(e2A−φψ2) = 0 ,

dJ2H (e−φImψ1) = ± α

16
f . (4.14)

These equations were already found in [7] under the simplifying hypothesis of strict SU(4)

structure (and so only Type IIB theory was considered in that work). Therefore we have

shown in this section that the results of [7] can be extended to the more general situation

in which the SUSY parameters are not proportional, and this allows to treat Type IIA and

Type IIB on the same footing.

As already emphasized in the Introduction, our result is in perfect agreement with

the results of [10]: in that work it is shown that the calibrations issues involve only the

symmetry equations (3.4a) and the exterior equation (3.4b). On the other hand the pairing

equations (3.4c) and (3.4d) have no counterpart in the calibrations recipe and indeed we

find that the additional equation (4.13) is given exactly by the pairing equations.

Of course it would be interesting to look for a generalization of the supersymmetry-

calibrations correspondence which takes into account the pairing equations. Obtaining such

a correspondence could give a more geometrical understanding of the pairing equations and

perhaps a better formulation for them.

5 Beyond the pure case

In this section we will remove the hypothesis that η1
+ and η2

∓ are pure spinors on M8.

Nevertheless we will assume that a pair of pure spinors η̃1
+ and η̃2

∓ on M8 exists. In other

words we will assume that the structure group of the generalized tangent bundle on M8

is still SU(4) × SU(4) but the SUSY parameters η1
+ and η2

∓ are not the spinors realizing

the reduction of the structure group. It will become clear in section 5.1 that, at least

locally, given a Weyl spinor η one can always obtain a corresponding pure spinor η̃, by

simply taking its real and imaginary parts and by rescaling them; however globally some

obstructions can occur. In this section we will assume that such global obstructions do not

occur and that we can find a pair of globally defined pure spinors.

5.1 Parametrization of non-pure spinors

Given the assumption that a pair of pure spinors on M8 exists we want to determine a

parametrization of η1
+ and η2

∓ in terms of the pure spinors η̃1
+ and η̃2

∓.

To this end we start by recalling that a Weyl spinor (not Majorana) η8 can be written

in terms of two Majorana-Weyl spinors χ1 and χ2 as follows

η = χ1 + iχ2 . (5.1)

8We have not written the chirality of η since the discussion does not depend on it.
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(5.1) gives us a simple geometrical interpretation of the purity condition (4.1) as an or-

thonormality property of the spinors χ1 and χ2: indeed it is straightforward to see that η

is pure if and only if χ1 and χ2 satisfy

χt1χ1 = χt2χ2 , χt1χ2 = 0 . (5.2)

In other words, a Weyl spinor η is pure if and only if its Majorana-Weyl components χ1

and χ2 have the same norms (the first condition in (5.2)) and they are orthogonal (the

second condition in (5.2)). On the other hand, we see that the obstacles to the purity of η

are given by a difference in the norms of χ1 and χ2 or if they are not orthogonal.

To proceed, suppose that we have, beyond the non-pure spinor η, a pure spinor η̃

with the same chirality and with components χ̃1 and χ̃2. For future convenience we take

the norms of χ̃1 and χ̃2 to be equal to eA(y) (where A(y) is of course the warping factor

appearing in (2.1))

χ̃t1χ̃1 = χ̃t2χ̃2 = eA(y) ⇒ ||η̃||2 = 2eA(y) , (5.3)

we also apply a rotation to η̃ in order to put χ̃1 along χ1. A pictorial description of this

construction is given in figure 1 which shows that η can be parametrized in terms of η̃ (and

its complex conjugate) via the formula

2η =
(
A1 + iB1e

−iθ1)η̃ +
(
A1 + iB1e

iθ1
)
η̃c , (5.4)

where the real quantities A1 and B1 are given by

A1 =

√
χt1χ1

eA(y)
, B1 =

√
χt2χ2

eA(y)
, (5.5)

and θ1 parametrizes the angle between χ1 and χ2.

As a check of the validity of this parametrization notice that η̃ is a pure spinor of

fixed norm, hence it has 13 real components; on the other hand A1, B1 and θ1 are real

coefficients. This gives us a total of 16 real components for η which is correct for a Weyl

non-pure spinor on M8. We note also that in the pure limit we have A1 = B1 and θ1 = π
2

for a total of 14 real components as it should.

These considerations can be applied to the SUSY parameters η1
+ and η2

∓ which in terms

of the pure spinors η̃1
+ and η̃2

∓ read

2η1
+ = c1η̃

1
+ + c2η̃

1c
+ ,

2η2
∓ = c3η̃

2
∓ + c4η̃

2c
∓ , (5.6)

where

c1 ≡ A1 + iB1e
−iθ1 , c2 ≡ A1 + iB1e

iθ1 ,

c3 ≡ A2 + iB2e
−iθ2 , c4 ≡ A2 + iB2e

iθ2 , (5.7)

we will see in a moment that all these coefficients are constant on M8. Thanks to the

parametrization (5.6) we can now massage the conditions for unbroken supersymmetry

deduced in section 3.
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Figure 1. A pictorial description of the parametrization (5.4). The Majorana-Weyl components of

the non-pure spinor η are χ1 and χ2; they can be represented as a couple of vectors with different

norms and forming an angle θ1. On the other hand the Majorana-Weyl components of the pure

spinor η̃ are given by χ̃1 and χ̃2; they have the same norm χ̃t1χ̃1 = χ̃t2χ̃2 = eA(y) and they are

orthogonal. A1 and B1 appearing in (5.4) are given by A1 =

√
χt
1χ1

eA(y) , B1 =

√
χt
2χ2

eA(y) .

5.2 Symmetry equations

We start by massaging the symmetry equations that we already wrote in full generality

in (3.14). Putting (5.6) in (3.14) and using the assumption that ||η̃1
+||2 = ||η̃2

∓||2 = 2eA we

obtain, after some manipulations, the equations

β + iδ = c1c2 , β + iδ = c3c4 ,

2α = |c1|2 + |c2|2 , 2α = |c3|2 + |c4|2 . (5.8)

If we recall the definitions of the coefficients ci given in (5.7), we see that (5.8) leads to

α = A2
1,2 +B2

1,2 , β = A2
1,2 −B2

1,2 , δ = 2A1,2B1,2 cos θ1,2 , (5.9)

which clarifies the geometrical interpretation of β and δ: they express the departure from

the purity condition, β parametrizes a difference in the norms of the Majorana-Weyl com-

ponents, δ keeps into account a lacking of orthogonality.

As an immediate consequence of (5.9) we see that c1 = c3, c2 = c4 and, more important,

that they are constant as promised. We therefore rewrite (5.6) as

2η1
+ = c1η̃

1
+ + c2η̃

1c
+ ,

2η2
∓ = c1η̃

2
∓ + c2η̃

2c
∓ . (5.10)

5.3 Exterior equations

Let us now consider the exterior equations (3.19). Having introduced the pure spinors η̃1
+

and η̃2
∓ we can use the parametrization (5.10) to deduce an analogous parametrization of

the bilinears ψ1 and ψ2 in terms of the pure spinors ψ̃1 and ψ̃2 constructed from η̃1
+ and η̃2

∓:

ψ1 =
1

4

[
|c1|2ψ̃1 + |c2|2 ¯̃

ψ1 + c1c̄2ψ̃2 + c̄1c2
¯̃
ψ2

]
,

ψ2 =
1

4

[
c1c2(ψ̃1 +

¯̃
ψ1) + c2

1ψ̃2 + c2
2

¯̃
ψ2

]
, (5.11)
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in the pure limit we have ψ1 = A2
1ψ̃1 and ψ2 = A2

1ψ̃2 as it should. (5.11) can be put

into (3.19) that becomes

2αdH
(
e2A−φReψ̃1

)
+ c1c̄2dH

(
e2A−φψ̃2

)
+ c̄1c2dH

(
e2A−φ ¯̃

ψ2

)
= ±α

4
e2A ∗8 λ(f) ,

2c1c2dH
(
e2A−φReψ̃1

)
+ c2

1dH
(
e2A−φψ̃2

)
+ c2

2dH
(
e2A−φ ¯̃

ψ2

)
= ±c1c2

4
e2A ∗8 λ(f) , (5.12)

where we used 2α = |c1|2 + |c2|2. At first sight these equations are not as pleasant as one

might wish however, by simply expressing the coefficients c1, c2 and α in terms of A1, B1

and θ1 as in (5.7) and (5.9), and by separating the real and the imaginary part in the

second equation in (5.12), it can be shown with some simple manipulations that they are

equivalent to

dH(e2A−φReψ̃1) = ±1

8
e2A ∗8 λ(f) ,

dH(e2A−φψ̃2) = 0 . (5.13)

Rewritten in this form the geometrical content of these equations is much more transparent:

apart from the trivial redefinition ψ̃1 → α
2 ψ̃1 we see that (5.13) take exactly the same form

of the equations (4.9) which are valid in the pure case. In other words, we have deduced

that, given the assumption that the structure group on T8 ⊕ T ∗8 is SU(4) × SU(4), the

exterior equations, when expressed in terms of pure spinors on the generalized tangent

bundle, take always the same form, no matter whether the spinorial parameters η1
+ and

η2
∓ are pure or not. It is possible that a better understanding of such a behaviour can be

obtained from the calibrations perspective.

5.4 Pairing equations

It remains to massage the pairing equations that, as usual, are much more intricate than

the others. The strategy can be easily described: as we have seen in section 4 and in

appendix A, generalized complex geometry (and in particular the generalized Hodge dia-

mond (4.5) and its properties (4.6)) gives us a way to rewrite the pairing equations in a

fancy form when η1
+ and η2

∓ are pure. It is therefore conceivable that a similar simplifica-

tion arises also in the non-pure case, thanks to the generalized Hodge diamond constructed

from ψ̃1 and ψ̃2.

Given the strategy just described we show in appendix B that the pairing equa-

tions (3.30), (3.31) can be rewritten in terms of the pure spinors ψ̃1 and ψ̃2 as9

(
γi1

¯̃
ψ1, dA ∧ ψ̃1 ∓

1

4
eφ ∗8 λ(f)

)
= 0 ,(

¯̃
ψ1γ

ī2 , dA ∧ ψ̃1 ∓
1

4
eφ ∗8 λ(f)

)
= 0 , (5.14a)

9The indices i1 and i2 should be intended as ĩ1, ĩ2, meaning that we are taking holomorphic indices with

respect to the almost complex structures defined by the pure spinors η̃1+ and η̃2∓ respectively. However we

will use the notations i1 and i2 just for simplicity.
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and (
γi1

¯̃
ψ2, ∗8λ(f)

)
∓ 8c̄eφ

α

(
γi1

¯̃
ψ2,

dA

4
∧ ψ̃2

)
= ±ωi1 ,

( ¯̃
ψ2γ

i2 , ∗8λ(f)
)
∓ 8c̄eφ

α

(
¯̃
ψ2γ

i2 ,
dA

4
∧ ψ̃2

)
= ±σi2 , (5.14b)

where we defined

ωi1 ≡ ∓(b+ 2α)d̄e2φ

2αē

(
γi1

¯̃
ψ1, ∗8λ(f)

)
,

σi2 ≡ ∓(b+ 2α)d̄e2φ

2αē

(
ψ̃1γ

i2 , ∗8λ(f)
)
, (5.15)

and the quantities b, c, d, e are defined in (B.2). We note that, apart from the trivial redef-

inition ψ̃1 → α
2 ψ̃1 already noted after (5.13), (5.14a) again reproduces the corresponding

ones valid in the pure case (first and third equations in (4.12)), on the other hand (5.14b)

are similar to the pure case (second and fourth equations in (4.12)) but contain additional

deformation pieces (that of course vanish in the pure limit). It is therefore natural to look

for a formulation of (5.14) which is similar to (4.13), and indeed, using the same techniques

of appendix A, we can recast (5.14) as

dJ̃2H
(
e−φImψ̃1

)
= ±1

8
f −Re

(
2c̄eφ

α
∗8 λ(dA∧ ψ̃2)

)
+ Re

(
γ ī1ψ̃2ω̂ī1

)
−Re

(
ψ2γ

ī2 σ̂ī2
)
, (5.16)

where we introduced

ω̂ī1 ≡ δī1j1
(
γj1

¯̃
ψ2, γ

l̄1ψ̃2

)−1
δl̄1i1ω

i1 , σ̂ī2 ≡ δī2j2
( ¯̃
ψ2γ

j2 , ψ̃2γ
l̄2
)−1

δl̄2i2σ
i2 . (5.17)

5.5 Summary

Summarizing the results of this section, we have removed the purity condition (4.1) on the

spinorial parameters. Nevertheless we have assumed that a couple of pure spinors η̃1
+ and η̃2

∓
on M8 exists and in this way we have obtained the parametrization (5.6). The conditions

for unbroken supersymmetry enforce the coefficients of this parametrization to be constant

on M8. Moreover we have shown that the exterior equations (3.19), when rewritten in

terms of the pure spinors ψ̃1 and ψ̃2, take exactly the same form of the pure case (4.9). On

the other hand the pairing equations (3.4c), (3.4d) are different but nevertheless can be

recast in an elegant form (5.16) which can be interpreted as a deformation of (4.13) valid

in the non-pure case. The final system of equations is

dH(e2A−φReψ̃1) = ±1

8
e2A ∗8 λ(f) ,

dH(e2A−φψ̃2) = 0 ,

dJ̃2H
(
e−φImψ̃1

)
= ±1

8
f − Re

(
2c̄eφ

α
∗8 λ(dA ∧ ψ̃2)

)
+ Re

(
γ ī1ψ̃2ω̂ī1

)
− Re

(
ψ2γ

ī2 σ̂ī2
)
,

(5.18)

where the quantities ω̂ī1 and σ̂ī2 are defined in (5.17).
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6 Conclusions and future projects

In this paper we have obtained the conditions for unbroken supersymmetry for a Mink2,

N = (2, 0) vacuum in terms of generalized complex geometry. The use of the ten-

dimensional system [9] allowed us to deduce easily these conditions for a completely general

vacuum, without assuming anything about the purity of the internal SUSY parameters.

When specialized to the case of pure internal SUSY parameters, the system can be recast

in the form (4.14) which extends the validity of [7] to the case of SU(4) × SU(4) struc-

ture. Our result also confirms the existence of a precise relation between the failure of the

supersymmetry-calibrations correspondence and the pairing equations [10]. It would be

interesting to look for an extension of the supersymmetry-calibrations correspondence that

take into account also the pairing equations. As a further generalization we have removed

the hypothesis that η1
+ and η2

∓ are pure but we have continued to assume that the structure

group is SU(4) × SU(4). In this way we were able to rewrite SUSY equations in terms of

pure spinors also in this case obtaining the system (5.18). A particularly nice feature of

this system (that could be analysed from the calibrations perspective) is that the exterior

equations (5.13) remain unchanged, whereas the pairing equations exhibit a deformation

piece with respect to the pure case.

Of course the supersymmetry-calibrations correspondence is not the only reason of

interest in two-dimensional vacua. First of all there is the issue of N = (1, 1), AdS2 vacua,

a particular class of solutions interesting for black holes applications: four-dimensional, non

rotating, extremal black holes enjoy a near-horizon geometry of the form AdS2×Σ2 with Σ2

denoting a Riemann surface (an example is given by the well-known Reissner-Nordström

black holes which enjoy a near horizon geometry of the form AdS2 × S2). Obtaining the

conditions for supersymmetric AdS2 vacua in Type II supergravities would be interesting

in order to study the possibility of lifting such horizons to string theory. See [23] and [24]

for recent works on this topic.

Another possible development is the search for AdS3 solutions. Usually, when obtained

from the ten-dimensional system (3.4), the equations for vacua of the kind AdSd ×M10−d
with d odd are more complicated than the corresponding ones with d even. Fortunately a

different strategy is viable: by considering AdSd as a warped product of Minkd−1 and R, the

equations for AdSd can be easily deduced starting from the ones for Minkd−1 (this strategy

was applied, using generalized complex geometry, in [25] for AdS5 vacua and recently in [26]

for AdS7 vacua but it has a very long story: for example it appears, in the AdS3 context,

in [27] and [28]). A systematic study of AdS3 solutions in Type IIB supergravity started

in [29], which determined the conditions for the internal geometry when the only RR field

non trivial is the five-form flux. After this work a large number of explicit solutions were

found (see for example [30]), and a further development occurred in [31] where a non trivial

three-form flux was turned on. On the other hand the situation is less studied in Type

IIA. Since the pure spinor approach is substantially identical for Type IIA and for Type

IIB, it is conceivable that this gap can be filled starting from the conditions for unbroken

supersymmetry in Mink2 expressed in terms of pure spinors.
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A Massaging the pairings: the pure case

In this section we will show the equivalence between the equations (4.12) and (4.13); we

will restrict to the IIB case since the story for IIA is identical.

First of all we need to record some further properties about the generalized Hodge

diamond (4.5) and about how the deformations of the pure spinors can be arranged into

the diamond. Recalling that in type IIB ψ1 and ψ2 are even forms onM8, we see that each

row in the diamond has definite parity: the first row, the third and so on contain even forms,

whereas the second, the fourth and so on contain odd forms. It is also straightforward to

verify that γ ī1 (on the left) and γi2 (on the right) act as descending operators, whereas γi1

(on the left) and γ ī2 (on the right) act as raising operators: so for example by acting with

γ ī1 and γi2 on ψ1 it descends to the second row, whereas by acting with γi1 and γ ī2 on ψ̄1

it jumps to the eighth row.

We move to discuss the deformation issues and the recipe is very simple: δψi contains

only terms of the form γmnψi. Concretely this means that δψ1 sits in the zeroth and third

row of (4.5), and δψ2 sits in the zeroth and third column of (4.5) (and of course an identical

statement is true for complex conjugates). By combining a deformation with the action

of the gamma matrices we conclude that dHψ1 sits in the second and fourth row in the

diamond, whereas dHψ2 sits in the second and fourth column.

We can now show the equivalence between (4.12) and (4.13). Our strategy is simple:

we consider (4.13) and the first equation in (4.9) and, by expanding both on each position

of the diamond, we will see that they are completely equivalent to (4.12) plus the first

equation in (4.9).

Let us start for example with the expansion in the ψ1γ
i2 position: the first equation

in (4.9) rewrites

(
ψ̄1γ

ī2 , 2dA ∧ ψ1e
−φ + dH(e−φψ1)

)
= −

(
ψ̄1γ

ī2 ,
α

8
f

)
, (A.1)

whereas (4.13), using the properties summarized in (4.6), reads

(
ψ̄1γ

ī2 , dH(e−φψ1)
)

=

(
ψ̄1γ

ī2 ,
α

8
f

)
, (A.2)

and, simply by subtracting the two we obtain(
ψ̄1γ

ī2 , dA ∧ ψ1 +
α

8
eφf

)
= 0 , (A.3)

– 22 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
1

which is precisely the third equation in (4.12). An identical consideration shows that by

considering the expansion in the γ ī1ψ1 position we simply reproduce the first equation

in (4.12). Next we consider the expansion along ψ2γ
ī2 : the first equation in (4.9) gives(

ψ̄2γ
i2 , dH(e−φψ1)

)
= −

(
ψ̄2γ

i2 ,
α

8
f

)
, (A.4)

whereas (4.13) gives

3
(
ψ̄2γ

i2 , dH(e−φψ1)
)

=

(
ψ̄2γ

i2 ,
α

8
f

)
, (A.5)

and the two equations imply
(
ψ̄2γ

i2 , f
)

= 0 which is equivalent to the fourth equation

in (4.12). We move to the expansion along γ ī1ψ1γ
i2j2 : the pairing equations (4.12) say

nothing about this position and indeed both the first equation in (4.9) and (4.13) say(
γi1ψ̄1γ

ī2j̄2 , dH(e−φψ1)− α

8
f

)
= 0 , (A.6)

therefore we conclude that (4.13) is redundant in this position.

Identical computations can be repeated for the other positions of the diamond and so

we conclude that (4.12) and (4.13) are equivalent as we claimed.

B Massaging the pairings: the non-pure case

In this section we will describe how the pairing equations (3.4c), (3.4d) can be massaged

in the non-pure case in order to obtain the equations (5.14). We will discuss the equa-

tions (3.4c) only, since the discussion for (3.4d) is almost identical.

To start with, we recall that for a general Mink2, N = (2, 0) vacuum configuration the

pairing equations take the form (3.30) and (3.31). Let us go to consider the first equation

in (3.30); by putting the parametrizations (5.11) into the equation we obtain(
γm[a

¯̃
ψ1 + bψ̃1 + c

¯̃
ψ2 + c̄ψ̃2],

1

4
dA ∧ [aψ̃1 + b

¯̃
ψ1 + c

¯̃
ψ2 + c̄ψ̃2]∓ α

8
eφ ∗8 λ(f)

)
+

+

(
γm[b

¯̃
ψ1 + aψ̃1 + c

¯̃
ψ2 + c̄ψ̃2],

1

4
dA ∧ [bψ̃1 + a

¯̃
ψ1 + c

¯̃
ψ2 + c̄ψ̃2]∓ α

8
eφ ∗8 λ(f)

)
= 0 ,

(B.1)

where the gamma matrix γm has to be intended real and we have introduced the shortcuts

a ≡ |c1|2 = A2
1 +B2

1 + 2A1B1 sin θ1 , b ≡ |c2|2 = A2
1 +B2

1 − 2A1B1 sin θ1 ,

c ≡ c̄1c2 = A2
1 +B2

1 cos(2θ1) + iB2 sin(2θ1) , d ≡ c1c2 = A2
1 −B2

1 + 2iA1B1 cos θ1 ,

e ≡ c2
1 = (A2

1 −B2
1 cos(2θ1) + 2A1B1 sin θ1) + i(2A1B1 cos θ1 + 2B2 sin θ1 cos θ1) ,

h ≡ c2
2 = (A2

1 −B2
1 cos(2θ1)− 2A1B1 sin θ1) + i(2A1B1 cos θ1 − 2B2 sin θ1 cos θ1) . (B.2)

Now by taking γm ≡ γi1 (see footnote 9 for the meaning of the index i1), (B.1) simplifies to(
γi1 [a

¯̃
ψ1 + c

¯̃
ψ2],

1

4
dA ∧ [aψ̃1 + c̄ψ̃2]∓ α

8
eφ ∗8 λ(f)

)
+

+

(
γi1 [b

¯̃
ψ1 + c

¯̃
ψ2],

1

4
dA ∧ [bψ̃1 + c̄ψ̃2]∓ α

8
eφ ∗8 λ(f)

)
= 0 , (B.3)

– 23 –



J
H
E
P
0
7
(
2
0
1
4
)
1
1
1

that is(
γi1

¯̃
ψ1,

a2 + b2

4
dA∧ ψ̃1 ∓

α

8
(a+ b)eφ ∗8 λ(f)

)
+ 2c

(
γi1

¯̃
ψ2,

c̄

4
dA∧ ψ̃2 ∓

α

8
eφ ∗8 λ(f)

)
= 0 .

(B.4)

Moving to the second equation in (3.30), we can perform the same procedure but in

this case we obtain a pair of equations: the first one is obtained by taking m = i1 and the

second one is obtained when m = ī1

d̄

(
γi1

¯̃
ψ1,

b

4
dA ∧ ψ̃1 ∓

α

8
eφ ∗8 λ(f)

)
+ ē

(
γi1

¯̃
ψ2,

c̄

4
dA ∧ ψ̃2 ∓

α

8
eφ ∗8 λ(f)

)
= 0 ,

d̄

(
γ ī1ψ̃1,

a

4
dA ∧ ¯̃

ψ1 ∓
α

8
eφ ∗8 λ(f)

)
+ h̄

(
γ ī1ψ̃2,

c

4
dA ∧ ¯̃

ψ2 ∓
α

8
eφ ∗8 λ(f)

)
= 0 . (B.5)

Before to proceed we note that in the pure limit we have a = e 6= 0 whereas b = c = d =

h = 0; therefore in this case the equations (B.4), (B.5) collapse to the first two equations

in (4.12) that are valid in the pure case. To proceed we rewrite the first equation in (B.5) as(
γi1

¯̃
ψ2,

c̄

4
dA ∧ ψ̃2 ∓

α

8
eφ ∗8 λ(f)

)
= − d̄

ē

(
γi1

¯̃
ψ1,

b

4
dA ∧ ψ̃1 ∓

α

8
eφ ∗8 λ(f)

)
, (B.6)

that we can put in (B.4) and in the complex conjugate of the second equation in (B.5)

obtaining the algebraic system(
a2 + b2 − 2cd̄b

ē

)
x+

(
a+ b− 2cd̄

ē

)
y = 0 ,(

da− hd̄b

ē

)
x+

(
d− hd̄

ē

)
y = 0 ,

x ≡
(
γi1

¯̃
ψ1,

1

4
dA ∧ ψ̃1

)
, y ≡

(
γi1

¯̃
ψ1,∓

α

8
eφ ∗8 λ(f)

)
. (B.7)

It can be verified that the determinant of this algebraic system vanishes and so we

remain with the single equation

x = − ē(a+ b)− 2cd̄

ē(a2 + b2)− 2cd̄b
y = − 1

2α
y , (B.8)

where the last equivalence can be verified using the explicit expressions (B.2). Summarizing

the pairing equations (3.30) rewrite as(
γi1

¯̃
ψ1, dA ∧ ψ̃1∓

1

4
eφ ∗8 λ(f)

)
=0 ,(

γi1
¯̃
ψ2,∓

α

8
eφ ∗8 λ(f)

)
=−̄c

(
γi1

¯̃
ψ2,

dA

4
∧ψ̃2

)
− d̄
ē

(
γi1

¯̃
ψ1,

b

4
dA∧ψ̃1∓

α

8
eφ ∗8 λ(f)

)
.

(B.9)

The same strategy can be applied of course for the equations (3.31).
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