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atom for these two cases are structurally the same, whether the energy-level shift causes

the Casimir-Polder-like force, in principle, could be as an indicator to distinguish de Sitter

universe from the thermal Minkowski spacetime.
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1 Introduction

The Casimir effect [1], deriving from the fluctuations of quantum vacuum due to the Heisen-

berg uncertainty principle, is related to many fundamental physical fields, such as the

condensed matter physics, statistical physics, atomic physics, nanotechnology, even ele-

mentary particle physics, quantum field theory, gravitation and cosmology [2]. As one of

its specific embodiments, Casimir-Polder force has been fruitfully applied to theoretical

and experimental investigations [2], like the display of the nonlocal properties of field cor-

relations [3, 4], probe of the entanglement [5] and detection of the Unruh effect [6]. It is

believed that the studies of the Casimir-Polder force, besides giving a striking manifesta-

tion of the existence of zero-point fluctuations, could also provide a deeper understanding

of some novel phenomenons, e.g., dispersion forces, in real materials and provide some

guidance as to how to apply the Lifshitz theory to interpret the measurement results.

Because of the presence of conducting boundary, the vacuum fields modes will be

reflected at which, and as a results of that, the vacuum fluctuations are sure to be modified

correspondingly. Thus, as a respond of such modifications, a neutral electric polarizable

atom, which keeps a distance far away from the conducting plate, is naturally expected to

obtain a position-dependent energy-level shift due to the direct interaction between it and

the scattered fields. Interestingly this shift, that can be modified by the motions of atom [7–

9], different boundaries conditions [8, 9] and even curvature of spacetime [10, 11], may lead

to an observable quantity, Casimir-Polder force between the neutral electric polarizable

atom and the conducting plate. So, in this point, we can think that the reshaping of

vacuum fluctuation, being a result of the reflection of field modes at boundary, causes the

Casimir-Polder force. Especially, when an atom is placed in a curved spacetime, such as a

black hole or an expanding universe, the curvature of spacetime can also scatter the vacuum

field modes. Thus, it is naturally to ask whether the scattered vacuum field modes by the

curvature will also induce a energy-level shift of or a Casimir-Polder-like force on the atom

placed in the curved spacetime. And the other way round, whether such quantum effects

resulting from zero-point fluctuation can be used to understand the property of spacetime,

or distinguish different spacetimes.
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We use the open quantum system approach to study the energy-level shift of and the

Casimir-Polder-like force on a two-level atom, which is coupled to a conformally coupled

massless scalar field in the de Sitter invariant vacuum. The reason for our special attention

to de Sitter spacetime stems from the fact that de Sitter space, which is the simplest

nontrivial curved background, enjoys the same degree of symmetry as Minkowski space (ten

Killing vectors), and may be the candidate of our universe in the far past and the far future

suggested by our current observations and the theory of inflation. On the other hand, the

thermal effects perceived by a static detector on the de Sitter invariant vacuum are identical

to that in the case of a thermal ensemble of field particles in flat spacetime [12, 13], such as

the response of a single particle detector [13–15], the correction to Lamb shift [10, 11] and

geometric phase [16] of a two-level atom. Thus, it is worthy to ask whether it is possible to

distinguish de Sitter spacetime from the thermal Minkowski spacetime, i.e., which universe,

de Sitter spacetime and thermal Minkowski universe, is that the inhabitants are exactly in.

In this paper, we investigate the energy-level shift and Casimir-Polder-like force to-

gether with general relativity theory with the hope of detecting spacetime curvature and

especially distinguishing two important and generally studied universes, de Sitter uni-

verse and thermal Minkowski universe, in theory. We firstly treat a two-level atom as an

open quantum system, and derive its energy-level shift from the open quantum system

approach. Then we compare the atomic energy-level shift and Casimir-Polder-like force

caused by this shift when the atom is static in de Sitter spacetime with that in thermal

Minkowski spacetime. And finally we distinguish these two universes by examining whether

the Casimir-Polder-like force is caused by the energy-level shift.

2 Distinguishing de Sitter universe from thermal Minkowski spacetime

by Casimir-Polder-like force

We assume a combined system, consisting of a detector and external fluctuating vacuum

field, to be initially prepared in a uncorrelated state. Without loss of generality, the total

Hamiltonian of the complicated system can be taken as

H = Hs +Hφ +HI , (2.1)

where Hs and Hφ are the Hamiltonian of the detector and scalar field, and HI represents

their interaction. For simplicity, we take a two-level atom as the detector, with Hamilto-

nian Hs = 1
2ω0σz, where ω0 is its energy-level spacing and σz is the Pauli matrix. The

Hamiltonian describing the interaction between the atom and scalar field is described by

HI = µ(σ+ +σ−)φ(x(τ)), in which µ is the coupling constant, σ+ (σ−) is the atomic rasing

(lowering) operator, and φ(x) corresponds to the scalar field operator.

Initially, the total density matrix of the complete system, atom plus field, is assumed to

be ρtot = ρ(0)⊗|−〉〈−|, where ρ(0) denotes the initial state of the atom, and |−〉 represents

the vacuum state of the field. It is worthy to note that this state is uncorrelated at the

beginning. In the frame of the atom, the equation of the motion of the combined system

is given by

∂ρtot(τ)

∂τ
= −i[H, ρtot(τ)], (2.2)

– 2 –
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where τ is the proper time of the atom, and ρtot(τ) denotes the time-dependent density ma-

trix of the atom and the field. By tracing over the field degrees of freedom, i.e., Trφ[ρtot(τ)],

repeating the same processes in refs. [17, 18] we can obtain the dynamics of the atom in

the limit of weak coupling, which can be written in the Lindblad form [19–21]

∂ρ(τ)

∂τ
= −i[Heff , ρ(τ)] + L[ρ(τ)] (2.3)

with

Heff =
1

2
Ωσz =

1

2
{ω0 + µ2Im(Γ+ + Γ−)}σz, (2.4)

L[ρ(τ)] =

3∑
j=1

[2LjρL
†
j − L

†
jLjρ− ρL

†
jLj ], (2.5)

where Γ± =
∫∞

0 eiω0sG+(s ± iε)ds, L1 =
√

γ−
2 σ−, L2 =

√
γ+
2 σ+, L3 =

√
γz
2 σz, γ± =

2µ2ReΓ±, γz = 0, G+(x − x′) = 〈0|φ(x)φ(x′)|0〉 is the field correlation function, and s =

τ − τ ′. It is interesting to note that the effective Hamiltonian, Heff , should be understood

from two important parts, one is 1
2ω0σz which results from the internal energy of the atom,

another term given by

HLS =
1

2
µ2Im(Γ+ + Γ−)σz (2.6)

denotes the energy-level shift of the atom due to the interaction between it and the

external field. Thus the energy-level shifts of the ground state and excited state are

δE− = −1
2µ

2Im(Γ+ + Γ−) and δE+ = 1
2µ

2Im(Γ+ + Γ−), respectively. The relative energy-

level shift (Lamb shift) is then

∆ = µ2Im(Γ+ + Γ−). (2.7)

In order to study how the curvature of de Sitter spacetime affects the energy-level shift

of a static atom in eq. (2.7), we need the Wightman function for the conformally coupled

massless scalar field. To suitably describe the static atom in this spacetime, it is convenient

to take the static de Sitter metric in the form of

ds2 =
(
1− r2

α2

)
dt2 −

(
1− r2

α2

)−1
dr2 − r2dΩ2. (2.8)

We can see from eq. (2.8) that this metric possesses an event horizon at r = α =
√

3/Λ

with Λ being the cosmological constant, and usually we call it the cosmological horizon. It

is of interest to note that an observer at rest in this static coordinates system has a proper

acceleration

a =
r

α2

(
1− r2

α2

)−1/2
. (2.9)

When vacuum fluctuations are concerned in a curved spacetime, a delicate issue arising

then is how to determine the vacuum state of the quantum field. In this letter, we will

– 3 –



J
H
E
P
0
7
(
2
0
1
4
)
0
8
9

choose the de Sitter invariant vacuum sate because it preserves the de Sitter invariance and

is considered to be a natural choice of vacuum state in this spacetime [22]. By solving the

field equation in the static coordinate system, a set of modes will be obtained [23–26]. Then

the Wightman function of the conformally coupled massless scalar field for two spacetime

points where the static atom locates can be easily derived as [27, 28]

G+
ds(x, x

′) = − 1

16π2κ2 sinh2( τ−τ
′

2κ − iε)
. (2.10)

Here κ =
√
g00α and τ =

√
g00t.

Combining eqs. (2.4) and (2.10), after some calculations, we obtain

Heff =
1

2
{ω0 + µ2Im(Γ+ + Γ−)}σz

=
1

2

{
ω0 +

µ2

4π2

∫ ∞
0

dωP

(
ω

ω + ω0
− ω

ω − ω0

)
×
(

1 +
2

e2πκω − 1

)}
σz (2.11)

for the atom at rest in the static coordinate system. Then its relative energy-level shift is

given by

∆DS = ∆0 + ∆s (2.12)

with

∆0 =
µ2

4π2

∫ ∞
0

dωP

(
ω

ω + ω0
− ω

ω − ω0

)
,

∆s =
µ2

2π2

∫ ∞
0

dωP

(
ω

ω + ω0
− ω

ω − ω0

)
1

e2πκω − 1
,

where ∆0 is the same with the energy-level correction to an inertial two-level atom in

a free Minkowski spacetime, which results from the fluctuation of the vacuum field that

the atom coupled to. Obviously, ∆s is the correction to the energy-level of the atom

resulting from the thermal effect with a thermal factor (e2πκω − 1)−1. It is interesting

to note that this term is similar to the correction to that of an inertial atom immersed

in a thermal bath in Minkowski spacetime at the temperature Ts = 1/2πκ (discussed

below). Thus, we conclude that due to the interaction between the static atom and the

massless scalar field in de Sitter spacetime the energy-level of the atom is revised compared

with that of the static atom in a free Minkowski spacetime. Here we need to note that

Ts =
√
T 2
f + T 2

U =
√

( 1
2πα)2 + ( a

2π )2, where Tf = 1
2πα is the Gibbons-Hawking temperature,

and TU = a
2π is the Unruh temperature that is associated with the proper acceleration of

the static atom. Thus, the shift ∆s means that besides the Gibbons-Hawking effect [12],

the static atom also is subjected to a Unruh effect. It is worthwhile to note the Lamb shift

of the static atom in de Sitter spacetime we obtain by open quantum system approach is

the same with that of ref. [10, 11] derived from the Dalibard-Dupont-Roc-Cohen-Tannoudji

formalism [29, 30].

– 4 –
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For comparison, we also discuss the energy-level shift of a static atom immersed in

a thermal bath at temperature T = 1/β in Minkowski spacetime. For such case, the

corresponding Wightman function is given by

G+
β (x, x′) = − 1

4π2

∞∑
m=−∞

1

(t− t′ + imβ − iε)2
. (2.13)

Substituting eq. (2.13) into eq. (2.7), we can also easily obtain the relative energy-level

shift of the static atom immersed in the thermal bath in Minkowski spacetime,

∆MK = ∆0 + ∆β (2.14)

with

∆β =
µ2

2π2

∫ ∞
0

dωP
( ω

ω + ω0
− ω

ω − ω0

) 1

eβω − 1
.

∆β is the pure correction to the energy level of the atom coming from the thermal effect

of the external field, and 1
eβω−1

is the thermal factor. Comparing eq. (2.12) with (2.14),

obviously, these two corrections are the same if we take T = 1/β = 1/2πκ, which means

that only by the means of the correction to the energy level of the atom, the observer can’t

tell which universe, the de Sitter universe or the thermal Minkowski spacetime, he is exactly

in. In this regard, let’s note that it is impossible to distinguish these two universes by the

response of a single particle detector [14, 15] and the correction to geometric phase of an

atom [16] too. Thus, if the inhabitants wish to know whether this perceived thermality is

a result of thermal field in Minkowski spacetime or property of de Sitter spacetime, they

must be more creative.

Because the static atoms in de Sitter spacetime have an inherent acceleration which is

position-dependent, naturally the energy-level shift discussed above depends on the position

of the static atom too. Due to that, this position-dependent energy-level shift is similar to

a Casimir-Polder potential and will cause a Casimir-Polder-like force on the static atom.

Such force may provide us an avenue to differentiate the above two universes. Next we

will show the Casimir-Polder-like force on the static atom at ground state in de Sitter

spacetime. To obtain this force, we focus on its energy-level shift, which is given by

δE− = δE0 + δEr, (2.15)

where δE0 = −1
2∆0 and δEr = −1

2∆s. Obviously, δE0, which is just the Lamb shift of

an inertial two-level ground state atom interacting with a massless scalar field in the free

Minkowski vacuum, is logarithmically divergent, but this divergence can be removed by

taking a cutoff on the upper limit of the integral introduced by Bethe [31, 32]. After doing

like that, we obtain

δE0 ≈
µ2ω0

4π2
ln(

m

ω0
). (2.16)

– 5 –
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Because it is impossible to obtain the analytical result of δEr, we will approximately study

it in the low- and high-temperature limits, i.e., far away from and near the cosmological

horizon, which is given by

δEr ≈
{ −µ2ω0

2π2

[π2T 2
s

6ω2
0

+ π4T 4
s

15ω4
0

]
(ω0 � Ts)

µ2ω0

2π2 ln(ω0
Ts

) (ω0 � Ts).
(2.17)

Due to that Ts is distance-dependent introduced above, naturally the energy-level

shift (2.17) gives rise to a force on the atom at ground state that can be calculated by

taking the first derivative with respect to r, which is

F ≈
{ µ2ω0

2π2

[4π4T 4
f r

3ω2
0g

2
00

+
16π6T 6

f r

15ω4
0g

3
00

]
(ω0 � Ts)

µ2ω0

2π2

4π2T 2
f r

g00
(ω0 � Ts).

(2.18)

Near the cosmological horizon, r = α, the Casimir-Polder-like force is repulsive and actually

diverges due to g00 → 0. It is interesting to note that the classical force that is needed to

keep the atom static from falling into the horizon also diverges. When r → 0, i.e, when

the atom approaches to the central of the cosmology, the Casimir-Polder-like force then

obviously vanishes. However, it always exists as long as r 6= 0. To the contrary, for the

inertial atom immersed in a thermal bath in Minkowski spacetime, the first derivative of

its energy-level shift (2.14) versus position, r, is zero, because its energy-level shift is a

constant, i.e., which is independent of r. Thus, in theory, although the static atom in

de Sitter spacetime behaves as if it were the static atom in a free Minkowski spacetime,

which is immersed in a thermal bath at the temperature that is a square root of the sum of

the squared Gibbons-Hawking temperature and the squared Unruh temperature associated

with the atomic inherent acceleration, a further analysis shows that the energy-level shift

of the static atom in de Sitter spacetime is position-dependent and thus causes a Casimir-

Polder-like force on the atom, that is quite different from the case that the atom is immersed

in the thermal Minkowski spacetime at the same temperature, which experiences no such

force. As a result of that, this distinct difference between them, in principle, could tell the

observer that he is in de Sitter spacetime or in a thermal bath in the Minkowski spacetime.

Now we focus on the numerical analysis of (2.18). If we take the energy-level spacing

of the two-level atom as ω0 ∼ 109Hz, the condition ω0 � Ts approximately means 1028 �
1/
√

1− ξ2 with ξ = r/α. Obviously, such condition are satisfied even though the atom

locates quite near the cosmological horizon, such as r = 0.999999999α, for which the

condition, 1028 � 1/
√

1− ξ2, approximately turns out to be 1028 � 104. In this regard,

let’s note that the approximate result of the Casimir-Polder-like force on the static ground

state atom in de Sitter spacetime, under the condition ω0 � Ts, can be suitably applied to

describing almost all different cases that the atom is placed at different positions from the

center of de Sitter universe, r = 0, to the point quite near the horizon. We assume that the

atom is near the horizon and take 1/
√

1− ξ2 ∼ 1025, then the Casimir-Polder-like force is

estimated to be ∼ 10−14N. In this case the atom, to avoid falling into the horizon, must

have the acceleration a ∼ 1016m/s2, which is a very large value. Such analysis, therefore,

is of theoretical interest.

– 6 –
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3 Conclusions

In summary, we firstly obtain the energy-level shift of a two-level atom by the open quantum

system approach. Then we discuss the Casimir-Polder-like force caused by such shift when

the atom is placed in de Sitter universe and in thermal Minkowski universe. Interestingly,

although the static atom coupled to the fluctuating scalar field in the de Sitter invariant

vacuum behaves the same as if it were in a thermal bath in a flat spacetime at the same

temperature, the energy-level shift for the former case will cause a Casimir-Polder-like force

due to that it is position-dependent. Therefore, this distinct difference, in principle, can

be used to distinguish de Sitter universe from the thermal Minkowski spacetime.
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