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1 Introduction

In this paper, we consider the gravity duals of the supersymmetric Rényi entropies for

three-dimensional N = 2 superconformal field theories, which are defined by [1]

Ssusy
n =

1

1− n log

∣∣∣∣ Zn
(Z1)n

∣∣∣∣ . (1.1)

Here Zn is the supersymmetric partition function on a branched n-covering of a three-sphere

ds2 = dθ2 + sin2 θdτ2 + cos2 θdφ2,

θ ∈ [0, π/2] , τ ∈ [0, 2πn) , φ ∈ [0, 2π) .
(1.2)

The supersymmetric Rényi entropies differ from the usual Rényi entropies of a disk entan-

gling region in R2,1 due to the nontrivial R-symmetry background gauge field for preserving

half of the supersymmetries. Therefore, the existing results of the holographic Rényi en-

tropies [2] can not be applied to them.1

To find the gravity duals, we will look for a half-BPS solution in four-dimensional

N = 2 gauged supergravities. Instead of dealing with the branched n-covering three-

sphere (1.2), one finds it easier to conformally map it by cot θ = sinhu to the spacetime

S1 ×H2 [4]

ds2 = dτ2 + du2 + sinh2 u dφ2,

τ ∈ [0, 2πn) , u ∈ [0,∞) , φ ∈ [0, 2π) .
(1.3)

The advantage of these coordinates is that the conical singularity, which was at θ = 0

in (1.2), is pushed away to the spatial infinity u → ∞ (see figure 1). The AdS/CFT

dictionary [5–7] implies that the dual gravity theory should have U(1) gauge symmetry

corresponding to the R-symmetry background gauge field of the field theory. Thus we are

1Actually, the supersymmetric Rényi entropies are parts of charged Rényi entropies defined in [3].
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φ

Figure 1. The conformal map from the branched covering of a three-sphere (1.2) to S1×H2 (1.3).

The orange circle at θ = π/2 in the left figure is mapped to a circle (also shown in orange color)

along τ direction at u = 0 of the hyperbolic space H2 in the right figure.

led to consider the charged AdS4 topological black holes with half supersymmetries [8] to

construct holographic duals of the supersymmetric Rényi entropies.

The organization of this paper is as follows. In section 2, we start with the super-

symmetric Rényi entropies of three-dimensional N = 2 superconformal field theories. The

partition function Zn is given by the matrix model on a squashed three-sphere S3
b with

the squashing parameter b =
√
n. We calculate Zn for a class of theories whose gravity

duals are described by M-theory in the large-N limit. Then we add a Wilson loop in a

fundamental representation and estimate the shift of the supersymmetric Rényi entropies

for the ABJM theory [9] in the large-N limit. Section 3 is concerned with the gravity duals.

The partition function in (1.1) is given by the Euclidean on-shell action I(n) in the dual

gravity theory, Zn = e−I(n), of the charged topological AdS4 black holes at finite temper-

ature T = 1/(2πn). The on-shell action is evaluated in a standard way. As a gravity dual

of the Wilson loop, we consider the fundamental string and calculate the supersymmetric

Rényi entropies. We find the holographic computations agree with the field theory results

in the large-N limit.

Note added. While this paper was in preparation, [10] appeared, which has a substantial

overlap with this paper.

2 Supersymmetric Rényi entropy

The partition function Zn was calculated by localization method in [1]. It turns out to be

the partition function on a squashed three-sphere S3
b [11, 12] with the squashing parameter

b =
√
n:

Zn =
1

|W|

∫ rankG∏
i=1

dσi e
−Fn ,

Fn = −πik Tr(σ2) +
∑
α

log Γh
(
α(σ)

)
−
∑
I

∑
ρ∈RI

log Γh
(
ρ(σ) + iω∆I

)
,

(2.1)

– 2 –
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where σi are the eigenvalues of the matrix σ and

Γh(z) ≡ Γh(z; iω1, iω2) , ω1 = ω−1
2 =

√
n , ω =

ω1 + ω2

2
, (2.2)

is the hyperbolic gamma function,2 |W| is the order of the Weyl group W of the gauge

group G and k is the Chern-Simons level.3 I labels the types of chiral multiplets and ρ is a

weight in a representation RI of the gauge group G. ∆I is the R-charge of the scalar field

in a chiral multiplet.

Performing the integration of the matrix model (2.1) analytically is limited for simple

theories, while its large-N limit becomes tractable as we will see below.

2.1 Large-N limit

We restrict our attention to a class of quiver Chern-Simons gauge theories which are dual

to M-theory in the large-N limit. Namely, we consider non-chiral gauge theories with the

gauge group G = U(N)k1 ×U(N)k2 × · · · ×U(N)kp and bifundamental fields. The large-N

analysis on a round three-sphere [14–17] shows the theories must satisfy
∑p

a=1 ka = 0 and∑
I∈a(1−∆I) = 2 for every gauge group labeled by a = 1, · · · , p and bifundamental fields

of representation I of the R-charge ∆I . We proceed to assume these conditions for taking

the large-N limit of the partition function (2.1). The result has already been obtained

in [12, 18], and we briefly review it for later use.

For each unitary group U(N)ka , a = 1, · · · , p, there are eigenvalues σa,i with i =

1, · · · , N with respect to which the free energy Fn in (2.1) is extremized, ∂Fn/σa,i = 0. To

solve the saddle-point equations, we take the large-N limit by introducing the eigenvalue

density ρ(x) = 1
N

∑N
i=1 δ(x− xi) and assuming the eigenvalues lie along

σa,i = N1/2xi + iω ya,i . (2.4)

The ω in front of ya,i is put for later convenience. This assumption yields a consistent

solution to the saddle-point equations. The point is the separation of the long and short

range forces between the eigenvalues. We employ the approximation of the hyperbolic

gamma function with ω1 = ω−1
2 [12]4

log Γh(z) ' −πi
2

[
(z − iω)2 +

ω2

3
− 1

6

]
sgn(Re z)

+
π

3
(Im z − ω)

(
(Im z)2 − 2ω Im z +

1

2

)
δ(Re z) .

(2.5)

2The hyperbolic gamma function is a meromorphic function of a single complex variable with two

parameters defined in [13]

Γh(z;ω1, ω2) =
∏

n1,n2≥0

(n1 + 1)ω1 + (n2 + 1)ω2 − z
n1ω1 + n2ω2 + z

, (2.3)

with the integral defined for 0 < =(z) < =(ω1 + ω2) and then analytically continued to the entire complex

plain.
3We can turn on the Fayet-Iliopoulos and real mass terms, but we will not do so here.
4In [12], the approximation of the double sine function sb(z) is obtained, which is related to the hyperbolic

gamma function as Γh(z) = sb(iω − z) for ω1 = ω−1
2 = b.

– 3 –
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With this form, the long range force vanishes and the free energy is proportional to N3/2

Fn/N
3/2 = 2πω

p∑
a=1

ka

∫
dx ρ(x)x ya(x)

+
∑

I∈bi-fund

ω3

3

∫
dx ρ(x)2

(
yI(x) + ∆I

)(
yI(x) + ∆I − 1

)(
yI(x) + ∆I − 2

)
,

(2.6)

where yI(x) = ya(x)−yb(x) for the indices of the gauge groups a, b the bifundamental field

I belongs.

The first line is proportional to ω while the second is to ω3. If one rescales the Chern-

Simons level by ka = ω2k̂a, the whole term becomes ω3 times the free energy for the theory

with the levels k̂a. Since we know the free energy on S3 (i.e., n = 1) of our gauge theories

dual to M-theory is proportional to the square root of the levels [18], we obtain the relation

Fn(N, ka) = ω3F1(N, k̂a) = ω2F1(N, ka) , (2.7)

where we explicitly write the dependence of the free energy on the parameters. Substituting

into the definition (1.1), the supersymmetric Rényi entropy in the large-N limit becomes

Ssusy
n = −3n+ 1

4n
F1 . (2.8)

Finally, we quote the result of the eigenvalue density of the ABJM theory with the

gauge group G = U(N)k × U(N)−k from [14]. It is a constant function on a compact

support

ρABJM(x) =
1

2π

√
k

2
, x ∈

[
− π

√
2

k
, π

√
2

k

]
. (2.9)

Using the eigenvalue density, the supersymmetric Rényi entropy for the ABJM theory in

the large-N limit is given by

Ssusy
n = −3n+ 1

4n

π
√

2

3
k1/2N3/2. (2.10)

2.2 Wilson loop

Next, we consider a Wilson loop at θ = π/2 wrapping around τ direction of the branched

n-covering three-sphere (1.2) (see figure 1). After the conformal mapping, this is equivalent

to a temporal Wilson loop along τ at u = 0 in CFT on S1×H2 given in (1.3). The addition

of the Wilson loop W shifts the entanglement entropy by [19]

SW = lim
n→1

(1− ∂n) log |〈W 〉n| , (2.11)

where 〈·〉n is the expectation value on the branched n-covering three-sphere. Similarly, the

shift of the Rényi entropy due to the loop takes the form

SW,n =
1

n− 1

(
n log |〈W 〉1| − log |〈W 〉n|

)
. (2.12)

– 4 –
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For N = 2 Chern-Simons gauge theories, the supersymmetric Wilson loop in represen-

tation R is

W = TrR P exp

[ ∮
ds
(
iAµẋ

µ(s) + σ|ẋ(s)|
)]
, (2.13)

where xµ(s) is the location of the Wilson loop [20, 21]. The expectation value of the

Wilson loop on the n-covering three-sphere can be obtained by localization following [1],

and reduces to the matrix model [19]

〈W 〉n =
1

Zn|W|

∫ rankG∏
i=1

dσi TrR(e2πω1σ) e−Fn , (2.14)

where we used the notations in (2.1).

In the large-N limit, we can represent the expectation value of the Wilson loop in the

fundamental representation using the eigenvalue density ρ(x) as

〈W 〉n =

∫
dx ρ(x) e2πω1(N1/2x+O(1)) . (2.15)

Let us apply this formula to the 1/6-BPS Wilson loop in the ABJM theory. The eigenvalue

density is given in (2.9), but we need to scale the Chern-Simons level by ω2 on the n-covering

three-sphere as we mentioned above (2.7), resulting in

log〈W 〉n =
π(n+ 1)

2

√
2λ+O(logN) , (2.16)

where λ is the ’t Hooft coupling λ = N/k. Thus combining with (2.12), we obtain the

supersymmetric Rényi entropy of the Wilson loop of the ABJM theory in the large-N limit

SW,n =
π

2

√
2λ . (2.17)

It coincides with the result of [19] for n = 1. Moreover, it does not depend on the parameter

n. In the next section, we will consider the gravity duals of the supersymmetric Rényi

entropies with(out) a Wilson loop and see if they agree with the results in this section.

3 The charged topological AdS black hole

In this section, we construct the gravity duals of the supersymmetric Rényi entropies.

Instead of finding a solution whose boundary is the branched covering of three-sphere (1.2),

we will look for a solution which asymptotes to S1×H2 (1.3) near the boundary. Since we

turn on the U(1) R-symmetry background gauge field for the boundary SCFT to preserve

half of the supersymmetries, there is a U(1) gauge field in the corresponding bulk theory.

We consider the Einstein-Maxwell theory in (Euclidean) four-dimensions

I = − 1

16πG4

∫
d4x
√
g
[
R+ 6g2 − FµνFµν

]
. (3.1)

There exists a charged topological AdS black hole solution whose boundary is S1×H2 [22]

ds2 =
f(r)

g2
dτ2 +

1

f(r)
dr2 + r2(du2 + sinh2 u dφ2) , (3.2)

– 5 –
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where

f(r) = g2r2 − 1 +
2M

r
− Q2

r2
, (3.3)

and the U(1) gauge field takes the form

Aµdx
µ =

(
Q

gr
− µ

)
dτ . (3.4)

Let rH be the largest root of f(r). The chemical potential µ can be determined by de-

manding that Aµ vanishes on the horizon at r = rH :

µ =
Q

grH
. (3.5)

The theory (3.1) can be embedded into the N = 2 gauged supergravity [23] where the

Killing spinor equation arises as a variation of the gravitino[
∇µ +

g

2
Γµ − igAµ +

i

4
FνρΓ

νρΓµ

]
ζ = 0 . (3.6)

Here Γa are the gamma matrices for the local Lorentz coordinates satisfying {Γa,Γb} = 2δab.

Γµ = Γae
a
µ is the pullback by the vielbein ds2 =

∑4
a=1(ea)2. The above solution (3.2)

preserves 1/2 supersymmetries when the following condition holds [8]:

M = Q . (3.7)

We will only consider the supersymmetric solution. Then Q is given by

Q = rH(g rH − 1) , (3.8)

and the temperature of the black hole is

T =
2g rH − 1

2π
. (3.9)

The thermal entropy is

Stherm =
Vol(H2)

4G4
r2
H . (3.10)

To calculate the free energy, we evaluate the action (3.1) of the solution (3.2) with the

boundary and counter terms [24, 25]

Ibdy = − 1

8πG4

∫
B
d3x
√
γ K ,

Ict =
1

8πG4

∫
B
d3x
√
γ

[
2g +

1

2g
RB

]
,

(3.11)

where γαβ is the induced metric on the boundary B, K the extrinsic curvature, and RB the

Ricci scalar of the induced metric. These terms are needed to regularize the UV divergence

coming from the infinite volume of the boundary r = r∞ →∞. After a little computation,

we obtain the free energy of the supersymmetric charged topological AdS4 black hole

Itot = I + Ibdy + Ict ,

=
Vol(H2)

8πG4

g

T

(
− r3

H +
Q

g2
+

Q2

g2rH

)
.

(3.12)

– 6 –
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3.1 Holographic supersymmetric Rényi entropy

We would like to compare the free energy with the result in the dual field theory [1]. The

temperature T given by (3.9) should be identified with Tn = 1/(2πn), which determines

the radius of the horizon

rH =
n+ 1

2gn
. (3.13)

After all, we obtain the holographic free energy from (3.12)5

Fn ≡ Itot =
(n+ 1)2

4n

π

2G4g2
, (3.14)

which satisfies the same relation to the large-N limit of the free energy of the dual field

theory (2.7). It follows that the holographic supersymmetric Rényi entropy also agrees

with (2.8).

On the other hand, the usual holographic Rényi entropy can be written as an integra-

tion of the thermal entropy [2, 3]

Sn =
n

n− 1

1

T1

∫ T1

Tn

Stherm(T )dT , (3.15)

which yields

Sn = −(7n2 + 4n+ 1)π

12n2
F1 . (3.16)

The discrepancy between (2.8) and (3.16) arises from the fact that there is the electric

charge Q and the chemical potential µ which depends on the temperature. Namely, in

deriving the formula (3.15), the thermodynamical relation Stherm = −∂(Itot/T )/∂T |µ: fix

was used [2].

3.2 Holographic Wilson loop

A Wilson loop in a fundamental representation is holographically dual to the fundamental

string in the space-time (3.2) [26, 27]. The string world sheet action with a target space

ds2 = Gµνdx
µdxν

Sstring =
1

2πα′

∫
d2ξ
√

detGµν∂αxµ∂βxν , (3.17)

leads to the expectation value

log〈W 〉 = −Sstring . (3.18)

If we identify the world sheet coordinates with the target space as ξ1 = τ, ξ2 = r, the rest

of the target space coordinates do not depend on ξα because of the rotational symmetry

of the Wilson loop (see figure 2). Therefore, the on-shell action of the fundamental string

on the background (3.2) becomes

Sstring =
n

g2α′
(r∞ − rH) = −n+ 1

2α′g2
, (3.19)

5We use the regularized volume for H2: Vol(H2) = −2π.

– 7 –
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r = rHr = r∞

H2

r

Figure 2. The gravity dual of a Wilson loop in a fundamental representation is given by the

fundamental string in AdS4 spacetime. In our case, it has two ends at the UV boundary r = r∞
and the horizon r = rH . We suppress the τ direction in this figure.

where we regulated the UV divergence near the boundary by the UV cutoff at r = r∞. For

a 1/6-BPS Wilson loop in the ABJM theory with U(N)k × U(N)−k gauge group [28–30],

we can rewrite the above result in terms of the ’t Hooft coupling λ = N/k = 1/(2π2α′2g4)

and obtain

log〈W 〉n =
π(n+ 1)

2

√
2λ . (3.20)

This agrees perfectly with the field theory computation (2.16) in the large-N limit. Again,

it follows that the holographic supersymmetric Rényi entropy of the Wilson loop agrees

with (2.17).
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