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1 Introduction

1.1 Two-dimensional gravity and cosmological models

The analysis of quantum gravity effects in realistic, four-dimensional cosmological models

is hampered by our present inability to quantize gravity in cosmological spacetimes. In

two spacetime dimensions, one does have a renormalizable theory of gravity — Liouville

field theory [1] and variants thereof. As we review below in section 2, Liouville theory
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describes 2d gravity around a de Sitter or anti-deSitter background; coupling to matter,

one finds two-dimensional versions of the Friedmann equations of cosmology [2]. Thus

we have an ideal setting to investigate the structure of gravitational backreaction at the

quantum level — there is enough structure in the single spatial dimension to accommodate

the inhomogeneous fluctuations that lead to structure formation, while gravity might be

under sufficient control that we can hope to track the quantum back-reaction of the metric

on the quantum matter fluctuations.

Of course, the gravity sector does not have independent field-theoretic degrees of free-

dom in 2d; there are no transverse traceless tensor fluctuations. There is however a sector

of scalar metric fluctuations, and as we show in section 3 these behave precisely like their

four-dimensional counterparts. We develop a variant of Liouville theory for which there

is a one-to-one correspondence between the scalar geometric perturbations in Liouville

gravity and those of four-dimensional Einstein gravity. The behavior of these fields under

linearized gauge transformations is identified, and invariant combinations are constructed.

The quadratic effective action is written in terms of a precise analogue of the Mukhanov-

Sasaki variable [3, 4], which possesses linearized gauge invariance and exhibits a scale

invariant fluctuation spectrum at this order. Thus we have an ideal situation in which

to model quantum gravity effects in inflationary cosmology – a renormalizable theory of

gravity whose field content and perturbative structure matches that of the scalar sector of

four-dimensional Einstein gravity.

1.2 The idea of slow-roll eternal inflation

A situation in which quantum effects play a key role is that of inflation. The solutions to

the classical equations of motion in an inflation model involve a scalar field, the inflaton

X, slowly descending its smooth potential V(X). If the descent is slow enough, potential

energy dominates over kinetic energy, and the matter equation of state approximates that

of a cosmological constant. The quantitative measure of “slow enough” is that the slow-roll

parameters which measure the rate of variation of the Hubble scale H,

ǫH = − Ḣ

H2
, ηH = − Ḧ

2HḢ
= ǫH − 1

2

ǫ̇H
HǫH

, (1.1)

are much smaller than one over the course of the inflationary epoch.

In the quantum theory of a scalar field rolling down its potential in curved space-

time, there are fluctuations about the classical field value. These fluctuations back-react

on the geometry to make curvature perturbations — indeed, these curvature perturba-

tions are thought to seed the fluctuations in the Cosmic Microwave Background that we

observe today.

The idea of slow-roll eternal inflation is that large coherent fluctuations δX over

Hubble-size volumes, seemingly far out on the tails of the scalar field probability distribu-

tion, nevertheless have an extraordinary effect on the structure of the wavefunction [5–9].

Consider what happens in a single Hubble volume H−n in n spatial dimensions, over a

Hubble time H−1. The classical motion shifts the inflaton from its initial value Xi by
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δXcl ≈ ẊclH
−1. The wavefunction of the inflaton is centered on the classical value, with a

width |δXqu| . H/2π [10–12]. The net shift of the inflaton

δX = δXcl + δXqu (1.2)

determines an effective cosmological constant V (Xi + δX). The amount of inflation in

instances where δX shifts the field to a higher value of the potential is greater than in

instances where it shifts the field to a lower value of the potential. If δXqu is sufficiently

larger than δXcl, then there is a substantial probability to make large volumes where the

inflaton has fluctuated up, relative to the spatial volume generated by the classical mo-

tion. Eventually, when one looks at large volume, the probability density is concentrated

on field configurations where the inflaton has never rolled down its potential. A quanti-

tative analysis [13, 14] indicates that a phase transition to this eternally inflating state

occurs when

π1+n/2

nΓ(n/2)

Ẋ2

Hn+1
. 1 . (1.3)

1.3 Quantum dS spacetime, and slow-roll eternal inflation in 2d

To investigate the mechanism of slow-roll eternal inflation in the full quantum theory, in

section 4 we focus on the particular choice of potential V(X) = exp[−βX] for a scalar

matter field X in a modified two-dimensional Liouville gravity. For small β, this potential

satisfies the criterion (1.3) for slow-roll eternal inflation. On the other hand, a simple field

redefinition relates this theory to pure de Sitter Liouville gravity and a decoupled free

matter field X̃. Tracked through the field redefinition, the prediction of slow-roll eternal

inflation translates into a force pushing the field X̃ in a preferred direction, which on the face

of it seems absurd. In particular, in conformal gauge the field X̃ is completely decoupled.

The generalization from an exponential quintessence potential to a cosh potential exhibits

similar inconsistencies. Thus, to the extent that these models capture the structure of

inflationary dynamics, it appears that the paradigm of slow-roll eternal inflation is logically

inconsistent, since it is not invariant under field redefinitions. Possible objections to the

analysis are raised and discussed.

This result leads us to examine the quantization of de Sitter Liouville theory in sec-

tion 5, using both WKB analysis as well as a relation to free field theory via the (canon-

ical) Bäcklund transformation. We undertake this analysis in part to address some of the

concerns raised in section 4, but also because this theory is a model of two-dimensional

quantum de Sitter spacetime and therefore of interest in its own right. Classically, the

Bäcklund transformation is a canonical change of variables; at the quantum level, it is the

functional equivalent of an integral transform [15–18], and allows one to quantize the dual

free field, then construct the wavefunctional of the Liouville theory as an integral trans-

form of the free field wavefunctional; the kernel of the integral transform is given by the

generating functional of the canonical transformation. We explore some properties of the

resulting Liouville wavefunctional.
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2 2d gravity and 2d inflationary cosmology

2.1 Timelike Liouville field theory

Einstein gravity is trivial in two dimensions — the Einstein-Hilbert action is a topological

invariant (the Euler character of the two-dimensional spacetime); hence the Einstein tensor

vanishes identically. Liouville gravity [1] provides a useful substitute, however – especially

when it comes to cosmology [2, 19]. The Liouville action (for a review and further references,

see [20]; our conventions differ slightly so as to conform more closely to Einstein gravity in

higher dimensions)

SL =
1

2πγ2

∫

d2ξ
√

−ĝ
[

−(∇̂φ)2 −QR̂[ĝ]φ− Λe2φ
]

(2.1)

describes the dynamics of the scale factor φ of the Lorentz (−,+) signature 2d metric in

conformal gauge

ds2 = e2φĝabdξ
adξb . (2.2)

Here ĝ is a fixed background metric, whose scalar curvature is R[ĝ]. Classically, conformal

invariance requires Q = 1; the classical equation of motion

R[e2φĝ] = e2φ
(

−2∇̂2φ+R[ĝ]
)

= −2Λ (2.3)

is solved by constant curvature ‘dynamical’ metrics g = e2φĝ, i.e. two-dimensional

(anti)de Sitter spacetimes. The parameter γ2 plays the role of Newton’s constant here;

weak coupling is small γ. In contrast to Einstein gravity in higher dimensions, the cou-

pling γ is dimensionless.

Quantum consistency of 2d gravity coupled to conformally invariant matter requires

the vanishing of the total stress tensor

0 = 〈T tot
ab 〉 = 〈TLiou

ab + Tmatter
ab + T ghost

ab 〉 (2.4)

which includes contributions from the quantum Liouville field theory, conformal matter

fields, and Faddeev-Popov ghosts for the coordinate gauge choice (for the moment, we

work in conformal gauge where ĝ is fixed). In particular, the contributions to the confor-

mal anomaly

〈T a
a 〉 = −2πĝab

δSeff

δĝab
=

c

48π
R[ĝ] (2.5)

must cancel; this leads to a condition relating the various contributions to the conformal

central charge c

ctot ≡ cL + cmatt + cgh =

(

1 + 12
Q2

γ2

)

+ cmatt − 26 = 0 (2.6)

where the coefficient Q appearing in the Liouville central charge receives a modification

from its classical value Q = 1 due to the quantization of the Liouville field itself,

Q = 1 + 1
2γ

2 . (2.7)
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This modification is determined by the condition of scale invariance of the exponential

potential for the Liouville field at the semiclassical level.

Conformally invariant matter only couples to the Liouville field through the conformal

anomaly and requirements of residual symmetry under conformal transformations, i.e. only

through the requirement (2.6) of vanishing of the total central charge, and through the

stress tensor constraints (2.4). In this case, the classical solution to the Liouville dynamics

is a constant curvature dynamical metric e2φĝab. More generally — either when the matter

is non-conformal, or in gauges other than conformal gauge — the gravitational and matter

sectors interact non-trivially.

In Einstein gravity, the natural (de Witt) metric on deformations δgab in the metric

configuration space has negative signature for deformations of the conformal factor δφ.

This feature allows a nontrivial solution to the Hamiltonian constraint of the theory, for

generic initial conditions in the classical theory; in cosmology, the timelike signature of the

scale factor a = eφ allows one to think of the scale factor as a measure of time in eras of

uniform expansion or contraction. To mimic this property in the 2d model, one wants the

kinetic term of the Liouville field to similarly have a sign opposite to that of the matter

fields. The kinetic term in (2.1) is positive as written, for real γ; this is the spacelike regime

for Liouville gravity. To engineer a timelike signature in field space, one takes cmatt > 25,

which leads to pure imaginary γ via (2.6)-(2.7), and results in the desired opposite sign

kinetic term for the metric conformal factor. In order to restore reality to the gravitational

coupling, and make all the minus signs explicit, one maps γ → −iγ. The action for this

timelike Liouville theory reads

STL =
1

2πγ2

∫

d2ξ
√

−ĝ
[

(∇̂φ)2 +QR̂[ĝ]φ− Λe2φ
]

(2.8)

where now Q = 1 − 1
2γ

2. The requirement cmatt > 25 can be satisfied by having a large

number of matter fields; free scalars have c = 1, free fermions c = 1
2 . In the language of

inflationary cosmology, there is a large number of isocurvature modes. Gravity is semiclas-

sical in the limit of large cmatt. For the remainder of this work we consider exclusively the

timelike Liouville theory.

2.2 More general models — Quintessence

Models of inflationary cosmology arise if we allow a nontrivial potential for some of the

matter fields, dressed by the dynamical metric [2]. A generic parity-symmetric action for

scalar matter coupled to Liouville gravity is

S =
1

8π

∫

d2ξ
√

−ĝ
[

ĝab∇̂aX
µ∇̂bX

νGµν(X) + Φ(X)R[ĝ]− V(X)
]

, (2.9)

where we account for the timelike Liouville dynamics via a Lorentz signature field space

metric, together with the identification X0 = φ among the d+1 fields Xµ. We continue to

work in conformal gauge, where the only gravitational degree of freedom is the Liouville

field. At the semiclassical level, the gravitational equations of motion imply the vanishing

of the beta functions for the quantum field theory with this action; these are conditions

– 5 –
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on the coupling functions G, Φ, and V [21–25] At leading semiclassical order, one solution

to these conditions is timelike Liouville theory coupled to d > 25 free scalar matter fields;

another solution which we will consider is the quintessence model

SQ =
1

8π

∫

d2ξ
√

−ĝ
[

4

γ2
(∇̂φ)2 − (∇̂X)2 + R̂[ĝ]

(

4Qφ
γ2

φ−QXX

)

− µ2 exp
[

2αφ− βX
]

]

(2.10)

together with d − 1 additional, decoupled free matter fields. The conditions of conformal

invariance are

−
12Q2

φ

γ2
+ 3Q2

X
+ cmatt − 24 = 0 , −

(

γ2α2 + 2Qφα
)

+
(

β2 +QXβ
)

+ 2 = 0 . (2.11)

We will be interested in weakly varying matter potentials for which β ≪ α, and thus α ∼ 1,

so that the gravitational dressing of the matter potential is close to the classical one.

Let us consider the equations of motion in the proper time coordinate τ instead of

conformal time t,

dτ = eφdt ≡ adt , (2.12)

and specialize to spatially homogeneous field configurations, and canonically scaling matter

potential α ≈ 1. In terms of the ‘Hubble expansion rate’

H =
ȧ

a
= φ̇ (2.13)

(here overdots denote proper time derivatives), and the matter potential V(X) = µ2e−βX ,

the equations of motion and the Hamiltonian constraint then become

0 = Ẍ + nHẊ + V,X

Ḣ = −γ
2

4

[

Ẋ2 + ρ⊥ + P⊥ − 1

a2

(

2 +
1

4

(

4Q2
φ

γ2
−Q2

x

))]

H2 = +
γ2

4n

[

Ẋ2 + V(X) + ρ⊥ − 1

a2

(

2 +
1

4

(

4Q2
φ

γ2
−Q2

x

))]

. (2.14)

Here n = 1 is the number of spatial dimensions, and ρ⊥, P⊥ are the spatially homogeneous

energy density and pressure of the additional matter fields. For n > 1 spatial dimensions,

these are precisely the Friedmann equations of Einstein gravity, if we identify γ2 with

the Newton constant GN . The 1/a2 terms in the last two equations are Casimir energy

corrections to the stress tensor in a compact spatial geometry, and are absent if space is

non-compact. Thus the timelike Liouville/quintessence dynamics is very much the d = 2

version of standard cosmological dynamics.

The conditions for slow-roll inflation are then that the dimensionless parameters

ǫH = − Ḣ

H2
≈ 1

2

4

γ2

(V,X
V

)2

ηH = ǫH − 1

2

ǫ̇H
HǫH

≈ 4

γ2

[

(V,XX
V

)

− 1

2

(V,X
V

)2
]

(2.15)
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are much smaller than one. Slow-roll in the quintessence potential (2.10) thus holds pro-

vided (β/γ)2 ≪ 1, which is simply the condition that the metric and matter potential have

approximately their canonical scaling dimensions.

2.3 Gauge-invariant formulation

We will be interested in formulating cosmological perturbation theory in the above models,

in a framework that allows comparison to results in four dimensions. In particular we wish

to begin from a gauge invariant starting point, rather than selecting conformal gauge at a

very early stage of the analysis. In the classical limit Q = 1, a covariant generalization of

the conformal anomaly term in the action (2.1) is

∫ √
gR

1

∆

√
gR , (2.16)

where the spacetime curvature R and scalar Laplacian ∆ are written in terms of a general

metric gab. Upon choosing conformal gauge gab = e2φĝab, this action yields the Liouville

kinetic term and background curvature coupling, up to a total derivative. Its shortcoming

is that it is nonlocal. Therefore we introduce an auxiliary field χ and write

Sgrav =
1

2πγ2

∫ √−g
[

−(∇χ)2 −Rχ− Λ
]

, (2.17)

which yields (2.16) upon eliminating χ via its equation of motion. Thus (2.17) is a fully

gauge invariant local action which is classically equivalent to Liouville theory.

At the semiclassical level, this action receives quantum corrections and in the conformal

gauge (2.2) becomes

Sgrav =
1

2πγ2

∫

√

−ĝ
[

−(∇̂χ)2 −QR̂χ− 2∇̂χ · ∇̂φ− Λe2φ
]

. (2.18)

Because χ is a null direction in the field space, the R̂χ term generates no net contribution

to the central charge, and the condition (2.6) on the total central charge is cmatt = 24, i.e.

as a string theory one has a light-like linear dilaton in the critical dimension. This property

is readily seen by diagonalizing the kinetic term; introducing ξ = χ+ φ, one has

Sgrav =
1

2πγ2

∫

√

−ĝ
[

(∇̂φ)2 − (∇̂ξ)2 −QR̂(ξ − φ)− Λe2φ
]

, (2.19)

i.e. timelike Liouville theory together with a free matter field ξ having a conformally im-

proved stress tensor. The conformal improvement terms of the spacelike ξ and timelike

φ contribute equal and opposite amounts to the central charge. The scale dimension of

the cosmological term e2φ determines again Q = 1 − 1
2γ

2, shifted from the classical value

Q = 1. This value only arises after resumming self-contractions of the φ exponential, and

one might expect the quantum corrections of the effective action to look different in other

gauges. In principle one could determine systematically the quantum corrections in other

gauges, however this exercise lies beyond the scope of our present discussion.

– 7 –
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While on the subject of the covariance of 2d gravity, it is worth noting that an analysis

of Liouville theory as a constrained Hamiltonian system was carried out by Teitelboim [26].

The action takes the form

S =

∫

πφ∂tφ−N tH−NxP (2.20)

where the Hamiltonian and momentum constraints are

H =
1

2

(

κπ2φ +
1

κ
(∂xφ)

2

)

− 2

κ
∂2xφ− Λ

κ
eφ (2.21)

P = πφ∂xφ− 2∂xπφ . (2.22)

Naively one might think that this leads to a Lorentz covariant, gauge invariant theory when

one allows the lapse and shift to be arbitrary, however upon passing to the Lagrangian

formalism there are non-covariant terms involving the lapse and shift. Upon eliminating

the field momentum from the action, one finds

S =
1

2κ

∫
[

1

N t
(∂tφ−Nx∂xφ− 2∂xN

x)2 −N t
(

(∂xφ)
2 − 4∂2xφ− 2Λeφ

)

]

. (2.23)

This can be organized into the form (2.8) with the background metric

ĝab =

(

−N2
t +N2

x Nx

Nx 1

)

, (2.24)

apart from a term (∂xN
x)2/N t. This residual term has no Lorentz covariant expression.

Thus, while the Hamiltonian dynamics (2.20), when coupled to matter, seems to have local

reparametrization symmetry, it is not Lorentz invariant in a general gauge. In particu-

lar, when performing the cosmological perturbation theory described in the next section

around a slow-roll background, we have found that the action for small fluctuations is gener-

ically not Lorentz covariant. Therefore, in what follows we will work with the covariant

action (2.17), as well as its specialization to conformal gauge, equation (2.18).

3 Cosmological perturbation theory

For the purposes of this section, we will analyze the classical generally covariant 2d gravity

theory (2.17) coupled to classical matter, since that is the procedure followed in analyz-

ing cosmological perturbations in higher dimensional Einstein gravity. The strategy is to

expand the action in small fluctuations, and at leading order, to extract the quadratic

effective action and the equations of motion satisfied by the linearized perturbations. In

principle, one could fix a particular gauge and consider this procedure in the quantum

theory, which will lead to quantum corrections to the coefficients in the effective action.

The form of these corrections is known in conformal gauge, and leads to the effective ac-

tion (2.18). Determination of the quantum corrected effective action in other gauges is left

for future work.
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A standard parametrization of the 2d metric is

gab = e2φĝab = e2φ

(

−N2
t +N2

x Nx

Nx 1

)

. (3.1)

We expand around a spatially homogeneous background

χ = χ̂(t) + χ(t, x)

φ = φ̂(t) +ϕ(t, x)

N t = N̂ t(t) + n
t(t, x) (3.2)

Nx = N̂x(t) + n
x(t, x)

X = X̂(t) + x(t, x)

and examine the structure of the perturbations following [4, 27] (for a recent review, see

e.g. [28]).

3.1 Background solutions

Working in conformal gauge (and in particular, conformal time) for the background, N̂ t =

1, N̂x = 0, the background equations of motion are

0 = φ̂′′ + χ̂′′

0 = χ̂′′ + Λe2φ̂ +
γ2

4
α e2αφ̂V(X̂) (3.3)

0 = X̂ ′′ +
1

2
e2αφ̂V,X(X̂)

(here prime denotes derivative with respect to conformal time); one also has the Hamilto-

nian constraint

0 = (χ̂′)2 + 2χ̂′φ̂′ + Λe2φ̂ +
γ2

4

[

(X̂ ′)2 + e2αφ̂V(X̂)
]

. (3.4)

For instance, when V = 0 one has deSitter solutions. There are three general classes

of such solutions for homogeneous backgrounds:

Λ exp[2φ] =































ε2

sinh2(εt)
1

t2

ε2

sin2(εt)

(3.5)

where t is conformal time. Evaluating the stress-energy tensor of these solutions

T±± =
2

γ2
[

(∂±φ)
2 − ∂2±φ

]

= H±P (3.6)

(in light-cone coordinates x± = t ± x, with compact spatial sections x ∼ x + 2π), one

finds the Liouville field energy EL = (1 + ε2)/2γ2 for the first, ‘hyperbolic’ solution; EL =

– 9 –
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1/2γ2 for the second, ‘parabolic’ solution; and EL = (1− ε2)/2γ2 for the third, ‘elliptic’

solution. These various solutions can be used to satisfy the stress tensor constraints (2.4)

for homogeneous states of the matter fields, depending on their energy. The matter vacuum

is paired with the global de Sitter solution, i.e. the elliptic case (3.5) with ε = 1; increasing

the matter energy decreases the Liouville momentum ε, pinching the neck of the de Sitter

“bounce”, until at the critical value ε→ 0 and the neck pinches off. Increasing the matter

energy further leads to the hyperbolic solutions, which have a Milne-type cosmological

singularity as t → −∞. The additive contribution 1/2γ2 in the stress tensor can be

thought of as the Casimir energy of the matter fields on a spatial circle. If we choose to

work in a geometry with non-compact spatial sections (which is allowed for the parabolic

and hyperbolic solutions), this Casimir term is absent, and the geometry is that of the

parabolic solution.

3.2 The quadratic fluctuation action

We now wish to derive the effective action for perturbations to quadratic order [4, 27].

Substituting the expansion (3.2) into the action (2.17), expanding to second order in fluc-

tuations, and using the background equations of motion, one finds

S2 =
1

2πγ2

∫
(

(χ′)2 − (∂xχ)
2 + 2ϕ′

χ
′ − 2(∂xϕ)(∂xχ)

+
γ2

4

[

(x′)2 − (∂xx)
2 − 1

2
e2φ̂V,XX(X̂)x2 − 2e2φ̂V,X(X̂)xϕ

]

+

[

γ2

4
(X̂ ′)2 − (φ̂′)2

]

(

(nt)2 + 2ntϕ+ 2ϕ2
)

+2∂xn
x

[

γ2

4
X̂ ′

x− 2φ̂′ϕ− 2χ′

]

(3.7)

+2nt
[

−φ̂′∂xnx + ∂2xχ+ φ̂′ϕ′ − γ2

4

(

X̂ ′
x
′ − 1

2
e2φ̂V,X(X̂)x

)])

,

up to total derivatives. The equations of motion of the lapse and shift n
t and n

x yield

constraint equations that can be solved for the lapse and shift, with the result

n
t =

(γ2/4)X̂ ′
x− φ̂′ϕ− χ

′

φ̂′
, (3.8)

∂xn
x =

(

1− γ2

4
(X̂ ′/φ̂′)2

)[

−γ
2

4
X̂ ′

x+ χ
′

]

− γ2

4
(X̂ ′/φ̂′)x′ +ϕ

′ +
∂2xχ

φ̂′
− γ2

8

e2φ̂V,X(X̂ ′)

φ̂′
x .
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Substituting into (3.7) (which is allowed because these variables are non-dynamical),

one finds

S2 =
1

8π

∫
(

(x′)2 − (∂xx)
2 + (X̂ ′/φ̂′)2(χ′)2 − (X̂ ′/φ̂′)2(∂xχ)

2

+2(X̂ ′/φ̂′)
[

x
′
χ
′ − (∂xx)(∂xχ)

]

+

[

2

(

1− γ2

4
(X̂ ′/φ̂′)2

)

X̂ ′ +
e2φ̂V,X(X̂)

φ̂′

]

xχ
′

−γ
2

2

(

1− γ2

4
(X̂ ′/φ̂′)2

)

(X̂ ′)2x2

−1

2

[

γ2(X̂ ′/φ̂′)e2φ̂V,X(X̂) + e2φ̂V,XX(X̂)
]

x
2

)

(3.9)

(again up to total derivatives). Note that the effective action is independent of ϕ.

Having solved the constraints, the resulting action should be expressible in terms of

gauge invariant quantities. Under linearized gauge transformations

t→ t+ ξt(t, x) , x→ x+ ξx(t, x) , (3.10)

the fields transform as

n
t → n

t + ∂tξ
t − ∂iξ

x

n
x → n

x − ∂iξ
t + ∂tξ

x

ϕ → ϕ+ φ̂′ξt + ∂iξ
x (3.11)

χ → χ+ χ̂′ξt

x → x+ X̂ ′ξt

As in 4d, the quadratic effective action depends only on the analogue of the gauge invariant

Mukhanov-Sasaki variable [3, 4]

v = x+ (X̂ ′/φ̂′)χ , (3.12)

in terms of which one can rewrite (3.9) as

S2 =
1

8π

∫
(

(v′)2 − (∂xv)
2 +

z′′

z
v2
)

(3.13)

where

z = (X̂ ′/φ̂′) . (3.14)

In fact, the map between perturbations of our 2d theory and the scalar sector of 4d

cosmological perturbations can be made quite precise. A standard parametrization of the

scalar metric perturbations in 4d is [27, 28]

ds24d = a(t)2
[

−(1 + 2Φ)dt2 + 2B,idx
idt+ [(1− 2Ψ)δij + 2E,ij ]dx

idxj
]

. (3.15)

– 11 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
3

Under linearized gauge transformations

t→ t+ ξt(t, x) , xi → xi + ∂iξ(t, x) , (3.16)

the 4d scalar modes transform as

Φ → Φ+ ∂tξ
t +

a′

a
ξt

B → B − ξt + ξ′

E → E + ξ (3.17)

Ψ → Ψ− a′

a
ξt

δX → δX + X̂ ′ξt .

One can arrange combinations of the fields (Φ,Ψ, E,B, δX) such that the trans-

formations (3.16) cancel, leading to the gauge invariant combinations (the so-called

Bardeen potentials)

ΦB = Φ+
1

a

[

(B − E′)a
]′

ΨB = Ψ− a′

a
(B − E′) (3.18)

XB = δX + X̂ ′(B − E′) .

Comparison to the linearly perturbed 2d metric (3.1)

ds22d = e2φ̂
[

−
(

1 + 2(ϕ+ n
t)
)

dt2 + 2nxdx dt+ 2ϕdx2
]

, (3.19)

together with its gauge transformation properties (3.10), suggests the classical

identifications

n
t ↔ Φ+Ψ− ∂2i E

n
x ↔ ∂iB

ϕ ↔ −Ψ+ ∂2i E (3.20)

χ ↔ Ψ

x ↔ δX .

Including the auxiliary field χ, the gravitational sector in 2d has as many scalar modes as

that of 4d; χ provides the necessary fourth scalar mode in this correspondence. The 2d

analogue of the Mukhanov-Sasaki variable (3.12) is thus in fact precisely the same as its

4d analogue

v4d = a

(

δX +
X̂ ′

a′/a
Ψ

)

= a

(

XB +
X̂ ′

a′/a
ΨB

)

, (3.21)
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apart from a canonical normalization factor of a = eφ̂; while similarly the quantity z again

differs by a canonical scaling by a

z4d = a2X̂ ′/a′ . (3.22)

This different factor of a results in a time-dependent tachyonic mass z′′/z = −2t−2 for the

perturbation v4d in four-dimensional slow-roll, whereas in two dimensions z′′/z = 0 and

the variable v is an ordinary massless free field. This difference in scaling is just what is

needed to have a scale-invariant spectrum in both cases.

Since v is a standard, conformally invariant free scalar field in the slow-roll approxi-

mation, the physical fluctuation spectrum in 2d is scale invariant, as in higher dimensions.

However the normalization of the 2d fluctuations is of order

|δXqu| ∼ O(1) (3.23)

rather than of order H as in 4d (as one might have predicted on the basis of dimensional

analysis). In the quintessence model (2.10), the condition that δXqu ≫ δXcl is simply the

slow-roll condition β/γ ≪ 1, and so slow-roll eternal inflation predicts that the inflaton is

always trying to climb its potential.

For completeness, it is worth displaying the full set of equations of motion in the

standard 4d parametrization of the metric. This exercise extends to the fluctuations the

remarkable parallel between Liouville cosmology in 2d and Einstein cosmology in 4d, ob-

served at the level of homogeneous backgrounds in [2], see equations (2.14). Using the

identifications (3.20), the perturbed Hamiltonian and momentum constraint equations for

the quadratic effective action (3.7) read

δH = 0 =
4

γ2

[

φ̂′Ψ′ + (φ̂′)2Φ− ∂2x
(

Ψ− φ̂′(B − E′)
)

]

+

[

X̂ ′δX ′ +
1

2
e2φ̂V̂,X δX − (X̂ ′)2Φ

]

δQ =

∫ x

δP = 0 =
4

γ2

[

Ψ′ + φ̂′Φ
]

− X̂ ′δX . (3.24)

These two can be combined into a constraint equation for the Bardeen potential ΨB which

has precisely the same form as its counterpart in Einstein gravity

∂2xΨB =
γ2

4

(

δHmatt − φ̂′ δQmatt

)

. (3.25)

The dynamical equations of motion can also be written in forms closely resembling

their 4d counterparts; under the map (3.20), the ϕ equation of motion becomes, after

using the Hamiltonian and momentum constraints,

Ψ′′ + φ̂′(Ψ′ +Φ′)−
(

(φ̂′)2 − φ̂′′
)

Φ =
γ2

4

[

X̂ ′
(

δX ′ − φ̂′δX
)

− 1

2
e2φ̂V̂,X δX

]

(3.26)

which is the counterpart of the trace component of the spatial Einstein equations δGij =

δTij ; the traceless part of these equations also has an analogue in the χ equation of motion

0 = Φ +Ψ+B′ − E′′ = ΦB +ΨB ; (3.27)
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and finally, one has the inflaton equation of motion

0 = −δX ′′ + ∂2xδX − 1

2
e2φ̂V̂,XX δX + X̂ ′

(

Φ′ +Ψ′ − ∂2xE
′ + ∂2xB

)

− e2φ̂V̂,X Φ . (3.28)

The equations of motion (3.26)-(3.28) and constraints (3.24) are direct analogues of

the equations of linearized cosmological perturbation theory in four dimensions [27, 28].

The expressions above differ slightly because the coefficients of various terms are

dimension dependent.

The correspondence between two- and four-dimensional scalar perturbations means

that one has available in two dimensions all the standard gauge choices used in cosmological

perturbation theory. Some standard gauges are

• Newtonian gauge. Here one chooses B = E = 0, so that the metric is diagonal. The

Bardeen potentials (3.18) simplify, and the χ equation of motion sets Φ = −Ψ in 2d

(similarly Φ = Ψ in 4d if there are no anisotropic stresses), while Ψ is determined by

the Gauss-type constraint (3.25). The physical fluctuation is the inflaton δX.

• Uniform density gauge. One chooses a time slicing such that the inflaton is a global

clock, δX = 0; and spatial reparametrizations allow one to set E = 0 (in 2d, one

could alternatively set ϕ = 0). This gauge is singular if the classical inflaton velocity

X̂ ′ vanishes, because one cannot then adjust the time slicing forward or backward to

eliminate δX (i.e. the gauge slice fails to be transverse). In this gauge, the constraints

can be solved for Φ and B; the physical, fluctuating degree of freedom is Ψ, which in

four dimensions is the scalar curvature perturbation

R = −Ψ− φ̂′

ρ̄′
δρ . (3.29)

The scalar R determines the scalar curvature perturbation via R(3) = (4/a2)∇2R.

Of course, in 2d there is no spatial curvature, nevertheless R is a gauge invariant

observable equal to −Ψ in this gauge.

• Spatially flat gauge. Here one sets Ψ = E = 0 (i.e. ϕ = χ = 0 in 2d), so that the

spatial scale factor is a global clock, and solves the constraints for the lapse and shift

perturbations Φ and B. This gauge is singular when the expansion rate φ̂′ vanishes,

such as at the de Sitter bounce. The dynamical variable is the inflaton fluctuation

δX, and the observable R in (3.29) is determined by the matter density fluctuations

rather than directly in terms of the metric. Discussions of slow-roll eternal inflation

usually take place in this gauge.

• Synchronous and conformal gauges. Gauge choices where one fixes the Lagrange

multipliers for the gauge constraints, such as synchronous gauge

Φ = B = 0 (3.30)

or conformal gauge

n
t = Φ+Ψ− ∂2xE = 0 , n

x = ∂xB = 0 , (3.31)

– 14 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
3

leave additional fluctuating fields to be quantized, and the constraints that eliminate

the unphysical ones are only imposed weakly on the space of states, after quantiza-

tion. This leads to a potential difficulty — there are negative metric fluctuations,

and so instabilities are a concern. In string theory, one typically deals with this is-

sue through analytic continuation of the fields to/from some regime where the path

integral is convergent.

This last point is underscored by the fact that ϕ in 2d, and E in 4d, are absent from

the gauge-invariant effective action (3.13). We will see below that Liouville perturbation

theory suffers large infrared divergences; this does not mean that de Sitter timelike Liouville

theory is doomed, but it does mean that a more sophisticated approach is called for.

Physical gauges such as spatially flat or uniform density gauge are convenient, in that

the only fluctuating quantities are physical degrees of freedom. The quadratic effective

action (3.13) is written directly in terms of the gauge invariant quantity v for which we can

choose as representative either the spatial metric perturbation Ψ or the density perturba-

tion δρ (which is basically δX). These gauges have a sensible perturbation theory, since

part of the gauge choice is E = 0 in 4d, or ϕ = 0 in 2d. However, the expansion of the

effective action in these gauges is cumbersome; it may be worth braving the subtleties and

pitfalls of conformal gauge, if one can make sense of de Sitter timelike Liouville theory —

the action is quite simple, even if its quantization is subtle. We will explore some aspects of

conformal gauge quantization after we have related our two basic models (2.8) and (2.10).

4 Relating quintessence to pure de Sitter gravity

It turns out that the two models discussed above — the de Sitter timelike Liouville the-

ory (2.8) and the Liouville-quintessence model (2.10) — are related by a field redefinition.

In this section, we exhibit the field redefinition and point out that the Liouville quintessence

appears to provide a counterexample to the phenomenon of slow-roll eternal inflation. A

generalization to a cosh potential for the inflaton provides a further counterexample. We

then proceed to discuss a variety of potential objections to this line of reasoning. We end

with a brief exploration of four-dimensional analogues of the Liouville-quintessence model.

4.1 Field redefinitions

The quintessence model (2.10) with fields φ̃, X̃ is related to Liouville theory (2.8) with

fields φ, X by a ‘boost’ field redefinition1

(

2φ̃/γ

X̃

)

=M(λ)

(

2φ/γ

X

)

, M(λ) =

(

coshλ sinhλ

sinhλ coshλ

)

, (4.1)

which leaves the kinetic term and the path integral measure invariant, and relates the

parameters in the respective actions via
(

2Q̃φ/γ

Q̃X

)

=M(λ)

(

2Qφ/γ

QX

)

,

(

α̃

β̃/γ

)

=M(λ)

(

1

0

)

(4.2)

1Our conventions for which fields carry a tilde are henceforth reversed relative to the introduction.
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(in the modified Liouville, theory, one must also shift the auxiliary field χ to maintain the

form of the action). Thus the potentials in the two frames are related by

e2φ = e2α̃φ̃−β̃X̃ (4.3)

with α̃ = coshλ, β̃ = γ sinhλ. For sinh(λ) ≪ 1, the slow-roll conditions (2.15) are satisfied.

With this choice, we can immediately write down the solution of the model at linearized

order using the results of the previous section.

The field redefinition (4.1) relates the background solution for quintessence to that of

the de Sitter solution of Liouville theory (3.5), plus an additional free field. Let us choose

non-compact spatial sections; then the quintessence solution is

2

γ
φ̃ = −coshλ

γ
log[Λt2] + sinhλ X̂ (4.4)

X̃ = −sinhλ

γ
log[Λt2] + coshλ X̂ . (4.5)

This classical solution has the property that X̃ → +∞, i.e. small potential, as one evolves

to large volume φ̃ → +∞, as one would expect. If, on the other hand, slow-roll eternal

inflation is in operation, one expects the dominant measure for X̃ at large volume φ̃→ ∞
to be concentrated on configurations with X̃ → −∞. The field redefinition (4.1) then

implies the behavior

X = coshλ X̃ − 2

γ
sinhλ φ̃→ −∞ (4.6)

of the free matter field X in Liouville gravity. For X̃ to climb its potential via slow-roll

eternal inflation implies, in the other frame, the presence of a mysterious drift force that

pushes the free field X to large negative values X → −∞. It is not clear how such a drift

force could arise, since in conformal gauge the free field X is completely decoupled from

the gravitational sector.

Note that nowhere in this argument does one need to invoke the small fluctuation ex-

pansion elaborated above in section 3. Thus, on the one hand, the class of two-dimensional

models being considered has exactly the same perturbative content and structure of scalar

fluctuations as inflationary models in higher dimensions, and for an appropriate parameter

regime satisfies the criteria for slow-roll eternal inflation; on the other hand, it is related by

an exact field redefinition to free field theory in de Sitter space. In the latter description,

the sorts of fluctuations predicted by slow-roll eternal inflation do not seem to occur. It is

hard to see how slow-roll eternal inflation could arise in this model.

4.2 More general models

The quintessence model is free field theory in disguise, therefore it has many hidden sym-

metries. One might object that these symmetries secretly suppress eternal inflation in the

2d quintessence model, but since they are not generic, the mechanism of slow-roll eternal

inflation might still be valid in general. However, already this argument should give one

pause, since it suggests that the standard argument involving gravitational back-reaction of
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gravity on decohered matter fluctuations would need to be refined in light of this subtlety,

since it would seem to apply as well to the quintessence model.

We believe that such hidden symmetries are not the reason for the apparent absence

of slow-roll eternal inflation. Instead of a quintessence potential as in (2.10), consider a

potential with several exponentials. There will then be no field redefinition that exhibits a

large class of hidden symmetries, and yet field redefinitions lead to apparent contradictions

with the slow-roll eternal inflation paradigm.

For example, let the potential for the inflaton be

Ṽ = µ2e2α̃φ̃ cosh(β̃X̃) (4.7)

with Q̃X = 0 so that both exponentials in the cosh have the same scale dimension. Again,

for β̃ sufficiently small, according to the standard criteria this potential exhibits slow-roll

eternal inflation where the inflaton X̃ is driven to large positive values, or large negative

values, depending on whether the initial condition is placed at positive or negative X̃; on

the other hand, classical evolution always predicts that the inflaton X̃ is driven to zero at

large scale factor φ̃.

We can now apply boost field redefinitions that convert either of the exponentials into

a pure cosmological constant term; the transformation (4.1) that leads to (4.3) for instance

relates the original potential (4.7) to

V =
µ2

2

(

e2φ + e2αφeβX
)

,

(

α

β/γ

)

=M(λ)

(

α̃

β̃/γ

)

.

In the redefined frame, slow-roll eternal inflation predicts that X is always driven to +∞
at large scale factor φ, independent of the initial value of X, whereas classical evolution

predicts thatX is driven to −∞. If we had boosted in the opposite direction, we would have

predicted that there is only quantum jumping in the direction of minus infinity, whereas

classical evolution drives the redefined field to plus infinity.

Translating back to the evolution in the cosh frame φ̃, X̃, slow-roll eternal inflation in

X predicts the dynamics for X̃

X̃ = coshλ X +
2

γ
sinhλ φ→ +∞ , (4.8)

independent of the initial value of X̃. If we had performed the boost in the opposite

direction, we would have concluded that the field X̃ is always driven to minus infinity,

independent of its initial value.

Thus, the issue is not whether one has a model that is secretly free field theory;

rather it’s that the logic of slow-roll eternal inflation is internally inconsistent — when one

applies that logic to the same theory viewed in different coordinate frames in field space,

one predicts different outcomes, not remotely compatible with one another.

4.3 Possible objections

The preceding result flies in the face of conventional wisdom. Therefore, it behooves us to

consider whether there are any subtleties that might prevent the above quintessence model
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from being a counterexample to the logic of slow-roll eternal inflation. Let us list here

a few:

The theory might not exist. It is not clear that the action (2.8) describes a conformal

field theory. The exponential potential solves the conformal invariance condition at semi-

classical order, but it is not clear that this remains true at large φ where the exponential

becomes large; yet this is precisely this late-time de Sitter regime of large scale factor that

we wish to consider. In the semiclassical spacelike Liouville theory (cL large and nega-

tive, and the AdS sign of the cosmological constant), the exponential is self-consistent for

small Liouville energy ε since the dynamics never explores the regime of large values of the

potential. The weak-coupling perturbation expansion is fully self-consistent. The status

of timelike Liouville theory, with the de Sitter sign of the cosmological constant, is much

less clear.

There have been a few investigations of the structure of the beta functions in the pres-

ence of potential interactions (a ‘tachyon background’ in the language of string theory).

In two dimensions, the generalized beta functions that determine the conditions for scale

invariance are thought to be derivable from a variational principle on the space of cou-

plings (this is the target space effective action in the string theory interpretation of the 2d

dynamics). There are claims [29] that, due to field redefinition ambiguities, one could take

the form of the field space effective potential for the 2d coupling V(X),2 in this field space

effective action to be given exactly by −V2, which would seem to indicate that the growth

of V never subsides; on the other hand, [30] argued for a modification to −V2e−V , which

would seem to lead to an endpoint to ‘tachyon condensation’, since the potential for V
has a minimum. A more recent analysis [31] showed that there is no target space effective

action involving the couplings V , G, and Φ of (2.9) satisfying certain expected properties

— that when the 2d action is a sum of decoupled field theories, the beta functions factorize

in an appropriate way. Tachyon dynamics was also studied in [32–36]. The situation seems

at the moment rather murky.

For our purposes, what is needed is that there is no endpoint to ‘tachyon condensation’

in the coupling space — that the exponential growth of the potential V persists for an

arbitrarily long time, so that the 2d dynamics is some approximation of de Sitter geometry

all the way out to arbitrarily large φ, and thus arbitrarily large spatial volume.3 Actually,

this property may not be completely necessary — it should be sufficient that there is some

sufficiently long epoch in which the 2d classical dynamics looks like de Sitter expansion, and

there are many e-foldings of that expansion during which the criteria for slow-roll eternal

inflation are met, while at the same time we can find a field redefinition that orients the

2Note that there are two uses of the notion of ‘potential’ here which need to be distinguished. The 2d

potential V(X) is a coupling in the 2d field theory describing dynamics in 2d ‘spacetime’. There is also

an effective potential in the space of couplings V, G, Φ etc, which governs which forms of V(X) lead to

consistent quantum theories of 2d gravity; it is the properties of this effective potential in the space of

couplings that is the subject of the present discussion.
3Of course, if there were an endpoint to tachyon condensation, that would also be interesting, as it would

be an example of a mechanism for dynamical relaxation of the cosmological constant through quantum

effects.

– 18 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
3

gradient of V along the φ direction (this would be the approximately decoupled ‘Liouville

plus free field’ frame).

Note that the late time properties of local (sub-Hubble scale) observables in this class

of models is intimately bound up with the ultraviolet behavior of the Liouville field theory

at large positive φ, since fixed proper distance becomes ever smaller coordinate separation

as the scale factor continues to grow. Thus it would be helpful to understand the nature

of closed string tachyon condensation in string theory well above the critical dimension

cmatt ≫ 25 (or in the modified Liouville theory, which is critical string theory with a large

light-like dilaton).

Timelike Liouville theory might exist, but not have the requisite properties.

The timelike Liouville theory that appears in conformal gauge has been the subject of a

number of investigations [37–42], which have sought to adapt to the timelike regime (cL ≤ 1)

the conformal bootstrap technology that solves the spacelike (cL ≥ 25) Liouville theory.

The bootstrap considers the properties of correlation functions involving insertions of a class

of degenerate operators (operators having a null vector in its tower of descendants under the

action of the conformal algebra). Conformal Ward identities then lead to constraints on the

correlators. Additional analytic properties of the correlators, such as crossing symmetry

and factorization, together with the conformal Ward identities and the assumption of a

unique operator of each conformal highest weight, lead to a set of discrete functional

identities on correlators. For cL ≥ 25, these relations are sufficient to uniquely specify the

correlation functions [43, 44]. For cL ≤ 1, the corresponding exercise leads to two candidate

solutions for the correlation functions [37–42], neither of which satisfies all the expected

properties of a conformal field theory such as vanishing of the two-point function for two

conformal fields of different scale dimension. Thus, at the moment there are unresolved

issues with the conformal bootstrap. Even if these are resolved, one will then need to

understand whether these largely Euclidean techniques are applicable to the intrinsically

Lorentz signature issues being addressed here.

Nevertheless, the semiclassical expansion around the de Sitter background seems no

less consistent than in higher dimensions, and has the additional advantage of perturba-

tive renormalizability. We have seen that there is a precise map between the auxiliary

field Liouville-quintessence model in two dimensions, and the scalar sector of cosmological

perturbation theory in four dimensions. In both cases there is a scale-invariant spectrum of

linearized perturbations, and the small fluctuation expansion is quite similar in structure.

At the perturbative level, the theory seems fully consistent, provided that there is a scheme

to renormalize UV divergences, and a method to regulate and resum IR singularities. We

propose in the next section a complete definition via a nonlinear canonical transformation

to free fields.

There might not be an interpretation in terms of a single universe. Since 2d

gravity can also be interpreted as string theory, there is the issue of topology change in the

2d geometry — it would be difficult to give a single-universe interpretation to the dynamics

if there is a significant probability of a catastrophic topology-changing event occurring in a

given spatial domain. The coupling Φ(X)R in the 2d action can be thought of as governing
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the amplitude for topology-changing processes for string worldsheets, which here represent

an ensemble of 2d cosmologies. In timelike Liouville theory, the coupling R̂φ enhances the

likelihood of topology change at large negative φ where the exponential Liouville potential

is vanishingly small, and exponentially suppresses topology change in the regime of large

positive φ which governs the late-time de Sitter dynamics. Thus, while the early history

of the 2d cosmology at small spatial volume may be rife with topology-changing processes,

at late time and large spatial volume, these processes are highly suppressed. If one adopts

a Hartle-Hawking ansatz for the generation of the expanding universe through a tunneling

process, the region of strong topological fluctuation is in an exponentially suppressed region

of field space.

On the other hand, consider the rate of string pair production in timelike Liouville

theory. This rate was estimated in [45], where it was shown that string pair production

is exponentially suppressed as Γ ∼ e−2πε/γ for a string (i.e. 2d universe) with energy

(Liouville momentum) ε. However it is exponentially enhanced by the density of states of

unitary matter

ρ ∼ e4πε/γ , (4.9)

and so the total rate of production ρΓ diverges. If we are forced to think about an ensemble

of universes, according to this analysis that ensemble is dominated by the proliferation of

highly excited states in the Hilbert space of a single universe.4 This is the density of states

when the spacelike fields have no (or very small) conformal improvement terms in their

stress tensor; large conformal improvement terms of these fields will reduce the density

of states. For instance, in the modified Liouville theory (2.17) with light-like dilaton, the

density of states only grows as e4πε and for small enough γ the pair production rate of

excited states is finite.

Conformal gauge might be pathological. The disparity between the predictions of

slow-roll eternal inflation and conventional semiclassical dynamics is particularly stark in

conformal gauge for the quintessence model (2.10), where in the redefined frame one has

a decoupled Liouville field and free field. The conclusion might be on somewhat shakier

ground if conformal gauge were somehow pathological; and indeed, we will see below that

the small fluctuation expansion is problematic. Outside of conformal gauge, there is a

coupling between the gravitational sector and the matter sector through the curvature

term R̂X, which now contains dynamical fields. One could then worry that fluctuations of

R̂ provide some sort of drift force that indeed pushes the inflaton X in a preferred direction

through an effective potential 〈R̂〉X. However, one can choose to start with a conformal

improvement in the quintessence frame which is cancelled by the field redefinition, leaving

X as an ordinary free field with no curvature coupling, or one can choose either sign of this

coupling through an appropriate value in the quintessence frame. It seems unlikely that

the effects of the improvement term alter the conclusion. Furthermore, the more general

example of the cosh potential doesn’t really need conformal gauge to exhibit an internal

inconsistency in the logic of eternal inflation.

4The back-reaction of this proliferation of excited strings was argued in [46, 47] not to cause a significant

perturbation of the background at late times.
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4.4 Four-dimensional models

The two-dimensional models parallel the structure of four-dimensional cosmology quite

closely. However, one might wish to study directly a four-dimensional cosmological model

exhibiting the same structure as the 2d quintessence model explored above. Are there

four-dimensional quintessence models similarly related to free field theory?

Consider the class of 4d metrics

ds2 = e2φĝab = e2φ
[

(−N2 +NiN
i)dt2 + 2Nidtdx

i + ĝijdx
idxj

]

(4.10)

where spatial indices are raised and lowered with the unit determinant metric ĝij . The 4d

Einstein action coupled to a scalar inflaton X is

S4d =
m2
p

2

∫

√

−ĝ e2φ
[

R̂+ 6(∇̂φ)2 − 6(∇̂X)2 − e2φ V(X)
]

, (4.11)

where to simplify further developments we have chosen a non-canonical normalization for

X. The analogue of (modified) timelike Liouville theory is Einstein gravity with a cosmo-

logical constant V(X) = 6Λ, and we similarly couple it to a free scalar field.

The gradient terms in square brackets again are invariant under a boost transformation

(

φ̃

X̃

)

=M(λ)

(

φ

X

)

(4.12)

under which the action transforms into

S4d =
m2
p

2

∫

√

−ĝ e2(αφ̃−βX̃)
[

R̂+ 6(∇̂φ̃)2 − 6(∇̂X̃)2 − e2(αφ̃−βX̃) V(αX̃ − βφ̃)
]

, (4.13)

with α = coshλ, β = sinhλ. This action is the analogue of the Liouville-quintessence

model (2.10). Unfortunately, it cannot be written in Einstein frame — that would get us

back to (4.11). However, this canonical normalization is not necessary for investigating

the logic of slow-roll eternal inflation. In the slow-roll approximation in a Jordan frame

such as (4.13), both the effective gravitational coupling and the Hubble scale are evolving

slowly. The standard argument, that quantum fluctuations trump classical displacement

of the inflaton, is not affected by this slow evolution of the Newton constant, any more

than it is affected by the slow classical evolution of the Hubble scale; both are slow-roll

suppressed effects, and the claim is that quantum fluctuations of the inflaton far outweigh

them in the eternal inflation regime. We have

m2
p,eff = m2

pe
2[(α−1)φ̃0−βX̃0] , m2

p,effH
2
eff ≈ Λe4[(α−1)φ̃0−βX̃0)] (4.14)

where φ̃0(t), X̃0(t) constitute the slowly evolving background values, locally constant over

a Hubble volume. To leading order in the slow-roll approximation, the equation of motion

of X̃ is

2Heff
˙̃X0 ≈ βΛe2[(α−1)φ̃0−βX̃0] , (4.15)
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and thus the slow-roll eternal inflation criterion (1.3) is then met when

m2
p,eff

˙̃X2

H4
eff

≈ β2
m2
p

Λ
≪ 1 . (4.16)

Again, the standard paradigm predicts slow-roll eternal inflation where clearly it does

not happen.

5 Semiclassical quantization of timelike Liouville

In this section, we collect some results on the quantization of timelike Liouville theory in

conformal gauge. A sensible quantization would help allay some of the potential concerns

raised above; and provide us with a theory of quantum two-dimensional de Sitter spacetime.

5.1 Perturbation theory is insufficient

At small coupling γ, the semiclassical approximation to the Liouville dynamics should be

accurate, however perturbation theory is not. Expanding the action (2.8) around a classical

solution

φ = φ̂+ ϕ , (5.1)

we choose the background de Sitter solution

φ̂ = −1

2
log
[

Λt2
]

. (5.2)

The linearized equation of motion for fluctuations ϕ about this background is

∇̂2ϕ+ 2Λe2φ̂ ϕ = 0 . (5.3)

The solutions (in momentum space for the spatial coordinate x) are the same spherical

Bessel functions that appear in the analysis of inflaton dynamics in four dimensions:

ϕk =
1

2

√

π

k

√
−ktH(1)

3/2(−kt) =
1√
2k

(

1− i

kt

)

e−ikt (5.4)

and its Hermitian conjugate. These solutions describe modes which oscillate as positive

frequency plane waves in the far past, freeze out at horizon crossing, and then grow as 1/t

at late times. The field then has a mode expansion

ϕ(t, x) =

∫

dk

2π

(

âkϕk(t)e
ikx + â†kϕ

∗
k(t)e

−ikx
)

. (5.5)

The equal-time position space two-point function is a measure of the quantum fluctu-

ations of the metric. It has the form

〈0|ϕ(t, x)ϕ(t, x′)|0〉 =
∫

dk

2π

(

(kt)2 + 1

2k(kt)2

)

eik(x−x
′) , (5.6)

and exhibits a strong infrared divergence at late times. In particular the fluctuation spec-

trum of superhorizon modes of the scale factor φ is not scale invariant. This fact does not

– 22 –



J
H
E
P
0
7
(
2
0
1
4
)
0
5
3

imply a breakdown of this property for physical fluctuations; we have seen above that the

gauge-invariant fluctuation spectrum of the geometry is that of a canonical free scalar field

v (with positive, not negative kinetic energy). Rather, the point is that the fluctuations of

φ are not gauge invariant; moreover, we will see below that their divergences are at worst

logarithmic, not power law — the linearized approximation breaks down well before the

power law growth of the linearized solution takes over.

In gauges such as conformal gauge or synchronous gauge, one first quantizes all the

modes of the metric apart from g0a or Na, including the scale factor mode φ whose kinetic

energy has the “wrong” sign; then one imposes the positive (negative) frequency compo-

nents of the constraints on the “in” (“out”) states. However, one will have to solve that

quantization problem at the fully nonlinear level, and then impose the gauge constraints

on the set of solutions.

Note that, even if the field modes are placed in the Bunch-Davies vacuum at early

times t → −∞, this does not imply that they are in a physical state at late times, due to

mode amplification in the time-dependent background. A similar issue occurs in Hawk-

ing radiation along a macroscopic string captured by a black hole [48]; if the modes are

quantized in conformal gauge and placed in the Bunch-Davies vacuum, then there will be

Hawking radiation of longitudinal modes and Faddeev-Popov ghost modes as well as the

transverse modes of the string. Without solving the black hole evaporation problem in its

entirety, one should at least impose the physical state constraints on the outgoing radia-

tion on the string. Alternatively, one can work in a physical gauge, and quantize only the

transverse modes of the string. Similarly, when working in conformal gauge for Liouville

cosmologies, one should impose the physical state constraints on the late time state; this

will tie fluctuations of the conformal mode φ to those of the matter fields.

The large late-time fluctuations of φ are not specific to two dimensions. Consider the

linearized fluctuations φ = φ̂ + ϕ of the scale factor in the class of 4d metrics of the form

eφĝab. They obey a wave equation whose mode solutions are ϕk ∝ (−kt)3/2H(1)
5/2(−kt), and

so again blow up as −1/t at late times t→ 0−. If we are not working in a physical gauge,

then to tame these strong, unphysical IR fluctuations, we should understand them at the

nonlinear level; and we should impose the constraints at late times.

Liouville perturbations can be understood at the nonlinear level using exact classical

solutions. Any solution of the classical equation of motion (2.3) can be expressed locally as

e2φ = − 4

Λ

∂+A∂−B

(A−B)2
, (5.7)

where A(x+) and B(x−) are arbitrary functions of the left and right moving coordinates

x±. In other words, the metric e2φηab is related to the canonical de Sitter metric ds2 =
1
Λ(−dt2+dx2)/t2 by a coordinate transformation x+ → A(x+), x− → B(x−). For instance

for the homogeneous hyperbolic solution in (3.5) has

A = eεx
+

, B = e−εx
−

. (5.8)

The parabolic and elliptic cases may be obtained from this by taking ε → 0 or continu-

ing ε→ iε.
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Consider a plane wave perturbation on the parabolic background

A = x+ + ae−ikx
+

, B = x− ; (5.9)

it generates a perturbed Liouville field

e2(φ̂+∆φ) =
1

Λ

1− aike−ikx
+

(

t+ a

2 e
−ikx+

)2 , e2∆φ =
1− aike−ikx

+

(

1 + a

2
e−ikx

+

t

)2 . (5.10)

The perturbation ∆φ doesn’t satisfy the Liouville equation, but the fact that φ̂ and φ̂+∆φ

are solutions implies

∇̂2(∆φ) + Λe2φ̂
(

e2∆φ − 1
)

= ∇̂2(∆φ) + Λe2φ̂
(

2∆φ+
1

2
(2∆φ)2 + · · ·

)

= 0 . (5.11)

The first term in brackets gives the linearized equation of motion (5.3). Substituting the

form (5.10) of e2∆φ and expanding in a,

1 + 2∆φ+O(∆φ2) = 1− aike−ikx
+

(

1− i

kt

)

+O(a2) . (5.12)

The linear approximation matches ϕ (5.4), but at late times the higher order terms in

the expansion become important before the power law singularity takes over. The actual

singularities in the Liouville field perturbations are at worst logarithmic (and complex,

since we have chosen a complexified perturbation), as (5.10) shows.

The logarithmic singularities of ∆φ represent a shift in the coordinate time location of

conformal infinity. To see this, consider a general perturbation of the functions A,B which

locally describe the Liouville field:

A→ eεx
+ (

1 + ∆A(x+)
)

, B → e−εx
− (

1 + ∆B(x−)
)

. (5.13)

The perturbed Liouville field is

e2(φ̂+∆φ) =
ε2

Λ

(

1 + ∆A+ (∆A)′/ε
)(

1 + ∆B − (∆B)′/ε
)

(

sinh εt+ 1
2e
εt∆A− 1

2e
−εt∆B

)2 . (5.14)

The singularity in φ no longer occurs at t = 0, in general. Instead, each spatial point x

reaches a singularity at a time t∞(x) which solves

1 + ∆A
(

t∞(x) + x
)

− e−2εt∞(x)
[

1 + ∆B
(

t∞(x)− x
)]

= 0 . (5.15)

Assuming the perturbations ∆A,∆B are bounded, t∞(x) always exists. The singularity

of the metric is always of the form 1/(t − t∞(x))2; thus we expect perturbations of the

Liouville field to grow logarithmically at late times, as the parameter time location of the

conformal boundary is shifted by the perturbation.
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5.2 The WKB limit

The minisuperspace approximation to Liouville theory provides some intuition about the

form of the wavefunctional as a function of the Liouville field φ. The zero mode truncation

of the Liouville Hamiltonian

H =
1

2
∂2φ + Λe2φ (5.16)

governs quantum mechanics in an upside down exponential potential, whose energy eigen-

functions are Hankel functions; these have an integral representation

e−επ/2H
(1)
iε (eφ) =

1

πi

∫ ∞

−∞
e−ie

φ coshψ e−iεψdψ . (5.17)

The large φ asymptotics is readily determined by the WKB or saddle point approximation

to this integral to be

e−επ/2H
(1)
iε (z) ∼

√

2

πz
eiz−iπ/4 . (5.18)

One expects a similar structure in the full theory — the WKB approximation should be

accurate at large scale factor eφ, and also for small coupling γ. Indeed there is a remarkable,

explicit WKB wavefunctional in the modified Liouville theory (2.18) (with Q = 1). The

Hamiltonian density of this theory is

H =
γ2

4

(

−π2φ + 2πφπχ

)

+
1

γ2

(

(∂xχ)
2 + 2∂xφ∂xχ− 2∂2xχ+ Λe2φ

)

. (5.19)

In the WKB approximation, the momenta πφ, πχ are given by the functional derivatives

−iδScl/δφ, −iδScl/δχ of the classical action. One can readily verify that the ansatz

Scl[φ, χ] =
2

γ2

∫

dx

(
∫ φ

dϕ
√

Λ e2ϕ + (∂xχ)2
)

=
2

γ2

∫

dx

(

√

Λ e2φ + (∂xχ)2 − ∂xχ arctanh

[

√

Λ e2φ + (∂xχ)2

∂xχ

])

solves the Hamilton-Jacobi equation of the model for zero energy. Thus the WKB wave-

functional for the gravity sector at ε = 0 is

Ψε=0[φ, χ] ∼ exp
[

iScl[φ, χ] + S1 +O(γ2)
]

, (5.20)

where the fluctuation determinant correction S1 has the large volume behavior

S1 = −1

4

∫

dxµ log
[

Λe2φ + (∂xχ)
2
]

(5.21)

up to corrections of order e−2φ; here µ is a UV regulator scale for the coincident point

singularities of the quadratic terms in functional derivatives δ2S/δφ2 and δ2S/δφδχ. The

large φ asymptotic of this wavefunctional agrees nicely with that of the minisuperspace

wavefunction, eq. (5.18). Since the effects of the Liouville momentum ε are subdominant

at large volume, one expects that just as the leading asymptotic (5.18) of the Hankel
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function is independent of ε, this wavefunction should similarly approximate reasonably

well the full wavefunction for any Liouville momentum, if the volume is sufficiently large.

The fact that the WKB wavefunctional is independent of ∂xφ at large scale factor

agrees nicely with the analysis of perturbations in section 5.1, in particular eq. (5.11).

Once a given fluctuation of φ passes outside the horizon, the spatial gradient term in this

equation becomes irrelevant compared to the time derivative term and the nonderivative

terms due to the rapid growth of the background e2φ̂, and so it should not be surprising

that fluctuations of the spatial gradient of φ are unsuppressed in the large φ wavefunction.

5.3 Bäcklund transformation

In order to gain further control over Liouville theory at the nonlinear level, we need some

tools. One such tool is the Bäcklund transformation, a nonlinear canonical transformation

which maps pure Liouville theory on a flat background (ĝab = ηab, R̂ = 0) to a free field

theory [15, 16].

In the minisuperspace approximation, the integral transform in equation (5.17)

Ψ(φ) =

∫

dψ eiW (φ,ψ) Ψ̃(ψ) , Ψ̃(ψ) =

∫

dφ eiW (φ,ψ)Ψ(φ) (5.22)

with the kernel W (φ, ψ) = eφ coshψ, maps the Liouville quantum mechanics Hamiltonian
1
2∂

2
φ+e

2φ to the free Hamiltonian 1
2∂

2
ψ and vice versa; and maps the Liouville eigenfunctions

Ψ(φ) = H
(1)
iε (eφ) to plane waves Ψ̃(ψ) = e−iεψ, and vice versa.

This property has a remarkable generalization to the full 2d field theory. The free field

ψ is related to the Liouville field φ by the Bäcklund equations

∂tφ = ∂xψ +
√
Λeφ coshψ , ∂xφ = ∂tψ +

√
Λeφ sinhψ . (5.23)

These equations determine a canonical transformation

∂tφ =
δW

δφ
, ∂tψ = −δW

δψ
, (5.24)

with generating functional

W [φ, ψ] =

∫

dx
(

φ∂xψ +
√
Λeφ coshψ

)

. (5.25)

Differentiation of the Bäcklund equations (5.23) implies ∇̂2ψ = 0, and

∇̂2φ+ Λe2φ = 0 . (5.26)

This is the timelike Liouville equation of the action (2.8) on a flat background. Our

conventions for the Bäcklund transformation are chosen to make φ and ψ real for the

cosmological solutions (Λ > 0) of interest. To compare with [16], note that the timelike

and spacelike Liouville equations in conformal gauge are related by Λ → −Λ.

For the exact classical solution (5.7), the Bäcklund transformation (5.23) leads to

ψ =
1

2
ln(−∂+A/∂−B) . (5.27)
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The homogeneous backgrounds (3.5) correspond to ψ = εt for the hyperbolic case, and its

continuation ε → 0 or ε → iε for the parabolic and elliptic cases. The quantization of the

Liouville theory in terms of the modes of the Bäcklund field was pursued from a somewhat

different perspective in [49–52].

5.4 Ground state wavefunctional

Consider the Schrödinger picture wavefunctional for ψ(x) at time t, denoted by Ψ̃[ψ](t). It

formally satisfies the Schrödinger equation

i
∂

∂t
Ψ̃[ψ] = HψΨ̃[ψ] (5.28)

with free timelike Hamiltonian

Hψ =

∫

dx

2π

(

γ2

4

δ2

δψ2
− i∂x

δ

δψ
− 1

γ2
(∂xψ)

2

)

. (5.29)

Comparing to the timelike Liouville Hamiltonian

Hφ =

∫

dx

2π

(

γ2

4

δ2

δφ2
− 1

γ2

(

(∂xφ)
2 − 2∂2xφ− Λe2φ

)

)

, (5.30)

one finds the Schrödinger equation for the Liouville field, i∂tΨ[φ] = HφΨ[φ], is formally

solved by

Ψ[φ](t) =

∫

Dψ e(2i/γ2)W [φ,ψ]Ψ̃[ψ](t) . (5.31)

That is, the wavefunctionals for φ and ψ are related by a Bäcklund transformation at each

time t.

For compact spatial sections, the free field ψ and its conjugate momentum πψ on a

spatial slice is expanded as

ψ(x) = ψ0 +
γ√
2

∑

k 6=0

eikxψ(k) ,

πψ(x) = pψ +

√
2

γ

∑

k 6=0

eikxπψ(k) , (5.32)

with reality conditions ψ†(k) = ψ(−k), π†ψ(k) = πψ(−k). One then defines the mode

operators

a(k) =
1√
2

(√
ωk ψ(k) +

i√
ωk

πψ(k)
)

(5.33)

with ωk = |k|, which evolve as a(k, t) = e−iωk(t−t0)a(k, t0), and obey canonical commutation

relations

[a(k, t), a†(q, t)] = δk,−q (5.34)

In terms of these mode operators, one has

ψ(k) =
1

√

ωkγ2

(

a(k) + a†(−k)
)

, πψ(k) = −i
√

ωkγ2

4

(

a(k)− a†(−k)
)

. (5.35)
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To connect to the standard description of worldsheet string theory, we can split the oper-

ators into those for positive and negative k; those with k > 0 are the right-movers, while

those with k < 0 are the left-movers (and α′ = γ2/2).

The ground state wavefunctional Ψ̃0[ψ] is just a Gaussian for each nonzero mode, times

a plane wave for the zero mode:

Ψ̃0[ψ](t) = C0 e
−iE0t−ikψψ0

∏

k>0

e−ωk|ψk|
2/γ2 (5.36)

where C0 is a normalization constant, and again k > 0 corresponds to right-movers, k < 0

to left-movers. The ground state satisfies the time-independent Schrödinger equation

HψΨ̃0[ψ] = E0Ψ̃0[ψ] , E0 = −γ
2

4
k2ψ +

1

γ2
Q2
φ . (5.37)

The zero-mode momentum kψ corresponds to the parameter ε of the classical homogeneous

solutions (3.5).

5.5 Semiclassical quintessence

In section 4, we saw that timelike Liouville was related by a field redefinition to a

quintessence model with a soft exponential matter potential. This raised a puzzle, as

the quintessence model is expected to exhibit slow-roll eternal inflation, while the free field

matter theory is not. The nonperturbative semiclassical wavefunction provided by the

Bäcklund transformation helps explain what is going on. Let us apply the field redefini-

tion (4.1) to the semiclassical ground state wavefunctional. We take the latter to be given

by the Bäcklund transform (5.31) of the free field wavefunction (5.36), tensored with the

matter free field wavefunction for X (we suppress the spectator free fields needed to put us

in the weak-coupling limit of Liouville theory, as they are not important for what follows):

Ψ[φ,X](t) = Ψ0[X](t) Ψ0[φ](t)

Ψ0[X](t) = CX exp

[(

−iEXt− ikXx0 −
∑

k>0

ωk
2
|Xk|2

)]

(5.38)

Ψ0[φ](t) =

∫

Dψ e(2i/γ2)W [φ,ψ]Ψ̃0[ψ](t)

Ψ̃0[ψ](t) = Cψ exp

[

2

γ2

(

−iEφt− ikψψ0 −
∑

k>0

ωk
2
|ψk|2

)]

.

Here x0 is the zero mode ofX, and EX = k2
X
+ 1

4Q
2
X
. The dependence of the combined wave-

function on coordinate time disappears when the zero mode of the Hamiltonian constraint

is imposed; this condition (which in string theory terms is the mass-shell condition) sets

− 1

γ2
k2ψ + k2

X
+ k2⊥ =

1

4

(

4

γ2
Q2
φ −Q2

X
−Q2

⊥

)

(5.39)

where k2⊥ is the contribution of free matter fields other than the (field-redefined) inflaton.

As written, the wavefunctions for the zero modes are wavelike and delocalized, but we may
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take superpositions that localize the fields as suitably localized wavepackets. Now consider

the field redefinition (4.1). The wavefunctionals are now localized separately in

φ = +φ̃ coshλ− γ

2
X̃ sinhλ

X = −2

γ
φ̃ sinhλ+ X̃ coshλ . (5.40)

These results help explain what has happened to the supposed dynamics of slow-roll eternal

inflation. Suppose the wavepacket for the free field X is gaussian localized near X = 0.

Then fluctuations away from 2
γ φ̃ sinhλ ∼ X̃ coshλ are gaussian suppressed. The standard

logic of eternal inflation posits that the inflaton fluctuates on its potential, and then the

back-reaction of gravity on the fluctuated matter favors a large growth of the scale factor in

parts of the wavefunction where the field has fluctuated up the potential over other possible

outcomes. However, what we see in the Liouville-quintessence model is that a fluctuation

of the inflaton X̃ up its potential is inextricably correlated with a fluctuation of the scale

factor φ̃ to smaller values — you can’t have one without the other, because X is gaussian

localized. Slow-roll eternal inflation requires the geometry and inflaton to be independent

actors, whose fluctuations feed one another to generate a sort of runaway behavior; in the

Liouville-quintessence model, they are not independent, and there is no runaway.

Configurations with the inflaton located further up the potential at a given value of the

scale factor, or larger scale factor for a given point on the potential, are in the dominant

part of the probability distribution for a state built with X localized around a different

value. One must be careful about making such an assertion — two-dimensional scalars

don’t have expectation values [53–55]. However, this property refers to the delocalization

of massless scalars in 2d due to long-time infrared wandering of the field, or to observations

on extremely short time scales. Here we are interested in what is happening to the matter

field X over finite time scales, in finite volume; we can localize the field in a wavepacket,

which will undergo quantum spreading, but only by a finite amount in the finite conformal

time it takes the scale factor to reach infinite spatial volume.

While the center of mass will not wander appreciably over finite worldsheet conformal

times, the width of the matter wavepacket might be considered to be spreading substan-

tially, depending on what is deemed the appropriate cutoff in the theory or what is an appro-

priate observable. For instance, we may wish to consider the spread in X at a fixed proper

distance ∆ = eφdx; since eφ ∼ 1/t, we will have dx ∼ t and thus 〈X(x)X(x+∆)〉 ∼ log(t).

Nevertheless, these effects are not anything that the dynamics is responding to, and more-

over they don’t push the X field in the preferred direction that would be required by

slow-roll eternal inflation.

The standard slow-roll eternal inflation logic requires there to be two independent

actors interacting with one another — the inflaton and the geometry — when in fact

there is only one gauge invariant degree of freedom. This was already apparent at the

linearized level, where the quadratic action depends only on the Mukhanov-Sasaki variable

v. The accounting of symmetries guarantees this result. The geometry has four scalar

degrees of freedom, both in the modified Liouville gravity and in four-dimensional Einstein

gravity; the inflaton makes a fifth scalar. There are two scalar gauge invariances, local time
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reparametrizations and the longitudinal component of spatial reparametrizations. These

two invariances permit us to make two gauge choices, and enforce two constraints. These

four restrictions on the configuration space leave one physical field theoretic degree of

freedom out of the original five, not just at the linearized level but in the full nonlinear

theory. In the Liouville-quintessence model, there appears to be sufficient control over the

full nonlinear theory to conclude that there is no runaway instability of the sort predicted

by slow-roll eternal inflation.

An important actor here is the Hamiltonian constraint, which ties the configuration

of the scale factor to that of the inflaton. Before it is imposed, the two are independent

dynamical fields; one could entertain the notion that the fluctuations of one drive the

other. One should not (as is often done in semiclassical treatments of gravity) impose the

Hamiltonian constraint in some averaged way, having gravity back-react independently and

classically on the expectation value (or on some tail of the probability distribution) of the

quantum-fluctuating matter fields. Instead, one should impose the Hamiltonian constraint

in the fully quantum theory of both matter and geometry. The prediction of slow-roll

eternal inflation is that a matter field in the quintessence frame jumps up its potential,

by having gravity classically back-react on the quantum state of matter. In the Liouville-

quintessence model as viewed in the pure de Sitter frame, this dynamics corresponds to a

preferred direction of motion of a free matter field on its flat potential. Classically, there

is no such motion, and the additional quantum motion represents additional stress energy

that has not been accounted for in applying the Hamiltonian constraint. The Hamiltonian

constraint forbids the sort of field dynamics that would allow slow-roll eternal inflation

to proceed.

5.6 Excited states

Matter excitations above the homogeneous de Sitter background must be properly gravi-

tationally dressed, so that the state continues to satisfy the gauge constraints. In string

theory, the physical, transverse oscillation modes Xi, i = 1, . . . , d − 2 of the string can

be used to construct physical, gauge invariant states when appropriately dressed by the

timelike and longitudinal modes X0, Xd−1, and the Faddeev-Popov ghosts b, c in conformal

gauge. The idea is that any given excited state built on the ground state of zero-mode

momentum kµ by exciting the oscillator modes of the Xi, Xd−1 whose polarizations are

transverse to the spatial momentum ~k, and satisfying the mass shell condition

− k20 +
~k2 +N + Ñ − 1

4

(

Q2
0 − ~Q2

)

= 0 (5.41)

as well asN = Ñ for the total oscillator excitation levelsN and Ñ of left- and right-movers,

respectively, characterizes a representative of a distinct BRST cohomology class. One can

find another representative of that same class which satisfies the Virasoro highest weight

condition for the Xµ, and has no Faddeev-Popov ghost excitations. This characterization

of the physical state space holds outside the critical dimension d = 26 provided one suitably

improves one or more of the free field stress tensors of the Xµ as in eq. (3.6) [56–58].

In the application to 2d de Sitter cosmology, the modified Liouville theory provides a

pair of scalars φ, χ which play the role of the timelike and longitudinal coordinates; and
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Xi are the matter fields. More precisely, let ξ be the field space direction orthogonal to φ

in the gravity sector (i.e. ξ = φ + χ is a free field, decoupled from the Liouville field φ in

conformal gauge). One then identifies the timelike coordinate φ with X0, and the spacelike

coordinate ξ with Xd−1. In the Bäcklund representation, ψ plays the role of X0. Implicitly

the construction of elements of BRST cohomology is a form of gravitational dressing of

the matter excitations — we can apply an arbitrary collection of the creation operators of

the matter fields to a ground state, solve the mass shell condition (5.41), and the result

will be a physical state up to BRST trivial contributions. There will be some equivalent

state with additional excitations of ξ and ψ that satisfies the positive frequency half of

the Hamiltonian and momentum constraints without Faddeev-Popov ghost excitations.

The Bäcklund transform of this state is a physical excited state of matter in 2d de Sitter

spacetime, as a functional of the matter fields Xi and the gravitational degrees of freedom

φ, ξ or equivalently φ, χ.

One can adapt a bit of early string theory technology — the DDF operators [59] —

to make the construction of physical states in the modified Liouville theory a bit more

explicit. Let Xi(t, x) be free massless scalar matter fields. The creation and annihilation

operators appearing in the mode sum

Xi = xi0 + 2πpi t+
∑

n 6=0

1√
2n

(

aine
in(t+x) + ãine

in(t−x)
)

(5.42)

are not gauge invariant, so if one applies them to the oscillator vacuum one will not obtain

a physical state. Consider instead the operators

Ain =

∮

dx

2π
∂+X

ieinκX
+

, Ãin =

∮

dx

2π
∂−X

ieinκX
+

(5.43)

where X+ is another free field parametrizing a null direction in the (Minkowski) field space

metric which is orthogonal to those parametrized by the Xi. These operators commute

with the constraints and have a canonical commutation algebra among themselves,

[Ain, A
j
m] = mδijδm,−nκp

+ , [Ãin, Ã
j
m] = mδijδm,−nκp

+ . (5.44)

Acting on a ground state of zero-mode momentum q, the operators Ain, Ã
i
n are single-

valued if we fix κ = 1/q−. Here X− is the null direction conjugate to X+ and q− is

the corresponding zero-mode momentum. These operators thus provide a gauge-invariant

version of the commutation relations of the transverse oscillator modes. Modified Liouville

theory changes this story slightly, due to the light-like linear dilaton. One must ensure that

the DDF operators still commute with the constraints; this will still be true if we identify

X+ with the null direction χ (or its analogue ξ − ψ in the Bäcklund representation).

A coherent state of the DDF operators Ain, Ã
i
n is a semiclassical excited state [60]. In

the familiar case of a single harmonic oscillator of frequency ω, a coherent state is labelled

by a complex number α and is built from the vacuum by the displacement operator D(α):

|α〉 = D(α)|0〉, D(α) = eαâ
†−α∗â . (5.45)
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It evolves under the harmonic oscillator Hamiltonian as

|α, t〉 = e−iωt/2|α(t)〉, α(t) = αe−iωt , (5.46)

and its wavefunction is a minimal uncertainty wavepacket

ψα(x, t) = ei∂txcl(t)[x−xcl(t)/2]ψ0

(

x− xcl(t), t
)

, (5.47)

where ψ0(x, t) is the Gaussian ground state wavefunction. The expectation value of the

position operator is the classical trajectory

xcl(t) =

√

2

ω
Re
(

α(t)
)

. (5.48)

Coherent states are non-orthogonal and their mutual overlaps are time-independent,

〈ψα|ψβ〉 = e−
1

2
|α|2− 1

2
|β|2+α∗β , (5.49)

with the overlap falling rapidly for |α− β|2 & 1.

A coherent state of the gravitationally dressed free fields Xi(t, x) is defined in com-

plete analogy,

exp

[

∑

n>0

(

αinA
i
n − α∗i

n A
i
−n + α̃inÃ

i
n − α̃∗i

n Ã
i
−n

)

]

|Ψ̃0〉 . (5.50)

We thus expect a coherent state wavefunctional that is a localized, minimal uncertainty

wavepacket evolving in the physical time X+, or ultimately the Bäcklund field ψ, with

overlaps of these states given by (rewriting α̃in ≡ αi−n)

〈Ψ̃α|Ψ̃β〉 = exp

[

−
∑

n 6=0

n

2

(

|αn|2 + |βn|2 − 2α∗
nβn

)

]

, (5.51)

independent of X+. The de Sitter space wavefunctionals in terms of φ, χ are given again

by the Bäcklund transform of the wavefunctional of ψ, and the longitudinal free field ξ

replaced by φ + χ. The Liouville-quintessence wavefunctionals are given by the further

field redefinition (4.1), where X is one of the transverse matter fields Xi.

5.7 To infinity. . . and beyond!?

In de Sitter geometries, the scale factor blows up at finite conformal time coordinate,

just as it blows up at finite conformal spatial coordinate in anti-deSitter space. In the

latter case, there is a natural conformal boundary condition for Liouville theory — the

Zamolodchikovs’ ZZ boundary state [61]. The boundary state formalism in 2d conformal

field theory characterizes the boundary conditions on conformal fields at a finite conformal

boundary; for instance they characterize D-branes in string theory. The ZZ boundary

state is roughly equivalent to a Dirichlet boundary condition that sets φ = ∞ at the

conformal boundary. In the presence of the ZZ boundary, correlation functions scale as the

locations of operators approach the conformal boundary in the manner that one expects
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in two-dimensional AdS space; in particular, e2φ has all the properties of the AdS scale

factor. This result led one of the authors to propose in [62] that the natural description of

conformal infinity in two-dimensional de Sitter space would be the analytic continuation

of the ZZ boundary state to timelike Liouville theory.

The characterizing property of conformal boundary states is that they impose reflecting

boundary conditions on the stress-energy tensor,

T++ = T−− . (5.52)

In classical Liouville theory, the stress tensor is the Schwartzian derivative of the free fields

A and B:

T++ =
1

γ2

[

∂3+A

∂+A
− 3

2

(

∂2+A

∂+A

)2
]

T−− =
1

γ2

[

∂3−B

∂−B
− 3

2

(

∂2−B

∂−B

)2
]

. (5.53)

It was shown in [49] that two functions that have the same Schwarzian derivative are related

by a constant Möbius transformation

B(x) =
aA(x) + b

cA(x) + d
, ad− bc = 1 . (5.54)

For the conformal boundary we are interested in, if we place the boundary at t = 0, the

boundary condition is B(x − t))|t=0 = A(x + t)|t=0 = f(x), i.e. a = d = 1, b = c = 0; this

determines φ = ∞, and also sets ψ = 0 at the boundary. Thus, at the semiclassical level,

the de Sitter Liouville boundary state seems to be an ordinary D-brane boundary state for

the Bäcklund field ψ. Formally, the Liouville boundary state wavefunctional would then

be given by the Bäcklund transformation of the free field Dirichlet boundary state for ψ.

If the gravity state of the system at φ = ∞ is a Liouville boundary state, that state

should be tensored with a boundary state of the matter fields and Faddeev-Popov ghosts.

This leads to a puzzle: the boundary condition for free matter fields is also something

of the same sort, for example a Dirichlet or Neumann boundary state. Such a boundary

state reflects left-moving modes into right-moving modes. This implies a halving of the

number of independent states one can define on a Cauchy surface, since the left-moving

and right-moving initial data have to be correlated in such a way as to satisfy the reflecting

boundary condition in the future. The puzzles here seem to be of much the same sort as

those that arise in the ‘black hole final state’ proposal of [63]. In the black hole context,

the final state boundary condition must accomplish a similar feat, correlating the infalling

matter that made the black hole with the negative energy partners of the Hawking quanta,

which fall into the singularity. In the cosmological context, it would seem much more

sensible to allow arbitrary initial data, but then the classical solution moves the conformal

boundary to another location, see for example equation (5.15). One will also need some

suitable modification of the matter boundary conditions if the initial data is allowed to be

arbitrary. The gauge constraints should correlate the matter initial data to the Liouville
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initial data, and the matter and Liouville boundary states. In other words, the ‘final state

boundary condition’ in such a scenario must have some sort of initial state dependence if

we demand the initial data allow independent values to be set for left- and right-movers.

These issues are arising because the notion of a Penrose diagram for de Sitter space

(and indeed, more generally — for instance in the black hole evaporation problem) is to

some extent a fiction, an artifact of the classical approximation. For classical de Sitter

space, the classical geometry reaches infinite scale factor φ = ∞ at finite conformal time

t. In the quantum theory, asking the question ‘at what coordinate time does the quantum

mechanical variable φ reach the value φ0’ is a meaningless question, and so we should not

be able to say with certainty where the conformal boundary is located, if it is defined as

the coordinate time when φ = ∞ is reached.

It is also not clear how seriously to take the implicit classical relation (5.7), (5.27)

between the Bäcklund field ψ and the Liouville field φ, at the quantum level. For semi-

classical wavepackets, the saddle point of the Bäcklund transformation is concentrated at

the classical value for each field; however, the integral over ψ(x) in the transform on the

third line of (5.38) runs over all values of ψ, not just the negative ones that appear classi-

cally for homogeneous de Sitter space. So if we let ψ range over all the reals, what is the

wavefunction defined by the Backlund transform describing?

5.8 ‘In-in’ formalism

An intriguing possibility is suggested by an analysis of Mathur [64].5 Suppose that, instead

of calculating the ‘in-out’ transition amplitude between some initial state and a boundary

state at conformal infinity, we were interested in computing some ‘in-in’ amplitudes for a

given ‘in’ state. According to [64] (see also e.g. [65]), the Schwinger-Keldysh formalism [66–

70] calculates such processes in the first-quantized path integral along a contour that runs

from the infinite past to the infinite future, and then back to the infinite past, perhaps after

a discrete shift along the imaginary time axis. Consider now the evolution of the Bäcklund

field ψ; as t runs over t ∈ (−∞,+∞), ψ evolves from −∞ to +∞, passing through ψ = 0

in particular. Chasing this through the classical Bäcklund transformation, one sees that

eφ then runs from zero to ∞, jumps to −∞, and runs back down to zero; in other words,

the trajectory of the timelike field φ is precisely what one wants for the calculation of

‘in-in’ amplitudes.

Perhaps the simplest examples of this structure are provided by the spatially homoge-

neous solutions (3.5), for example the hyperbolic solution
√
Λeφ = −ε/ sinh[εt]. Consider

this semiclassical trajectory, and define the classical Liouville field through the Bäcklund

transformation of the free field ψ = εt; let ψ propagate freely along an infinite 2d cylin-

drical geometry. There is no conformal boundary at finite t in the ψ representation, and

thus no confusion about the ‘cosmological final state’; instead all possible final states in the

vicinity of t = 0 are summed over automatically. The location of the slice where φ = +∞
fluctuates in a natural way, and we have an ensemble of late-time states in the cosmology.

5A rare instance where the answer to a titular question may be ‘yes’.
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At large positive coordinate time t one has a flipped copy of the ‘in’ state, satisfying the

other half of the constraints that were not imposed on the original ‘in’ state.

A hint that the integral over all values of the Bäcklund field ψ in a plane wave state

corresponds to this sort of path in φ space is provided by the Bäcklund transform at

the level of minisuperspace quantum mechanics. The integral transform with kernel eiW ,

W = eφ coshψ, maps a plane wave in ψ to the Hankel wavefunction for Liouville

iπ e−πε/2H
(1)
iε (eφ) =

∫ ∞

−∞
dψ exp

[

i eφ coshψ
]

exp[−iεψ] (5.55)

but the inverse transform yields a cosine

−2i eπε/2

ε sinh(πε)
cos(εψ) =

∫ ∞

−∞
dφ exp

[

i eφ coshψ
]

H
(1)
iε (eφ) (5.56)

(equivalently, the Hankel function H
(1)
iε (eφ) and the cosine cos(ψ) are a dual transform pair

on the half-line ψ < 0). If one asks what Bessel function integrates to a pure plane wave

under the inverse transform with kernel eiW , the answer is

i coth(πε)

ε
exp[−iεψ] =

∫ ∞

−∞
dφ exp

[

i eφ coshψ
]

Jiε(e
φ) (5.57)

=

∫ ∞

−∞
dφ exp

[

i eφ coshψ
] 1

2

(

H
(1)
iε (eφ) +H

(1)
iε (eφ)

)

=

∫ ∞

−∞
dφ exp

[

i eφ coshψ
] 1

2

(

H
(1)
iε (eφ)− e−πεH

(1)
iε (−eφ)

)

.

In other words, the plane wave state in ψ is the Bäcklund transform of the Hankel function

along a contour that runs up the real φ axis to infinity and then back after a shift by iπ.

In the full 2d field theory, the interpretation of the plane wave state of the Bäcklund field

may involve a similar path in φ space. The analysis of [42] lends support to the notion of

using such complex integration contours.

5.9 On the probability of a probability interpretation

The Hamiltonian constraint is a wave operator on functionals that is second order in

functional derivatives. Thus it has a structure more akin to the Klein-Gordon equation

than the Schrödinger equation. As a consequence, there is no natural positive definite

inner product on the space of solutions; the best one can do is a Klein-Gordon style norm,

but it is not clear what form such a norm would take in the present context. In string

theory in asymptotically flat spacetime, one imagines defining such a norm for each of the

gauge-fixed mass eigenstates of the string. In the string theory interpretation of timelike

Liouville theory, this structure holds in the far past (small scale factor eφ), but in the far

future (large scale factor eφ) the behavior becomes a bit wilder. The ‘normal modes’ of

φ are in some sense the free left- and right-moving modes of A(x+), B(x−) which also

classically define the Bäcklund field ψ; however, as we saw above, small fluctuations of A,

B lead to wild excursions of φ at late times.
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The Klein-Gordon norm is not positive definite. In Klein-Gordon field theory, this

property implies that there is in general no probability interpretation at the level of single

particle states — one must pass to a field-theoretic description. The probability interpre-

tation is at the level of the Fock space of multiparticle (rather, ‘multi-universe’) states. As

mentioned in section 4.3, the pair production rate in this class of ‘tachyon’ backgrounds

diverges — through the production of excited states if their entropy is large enough [45],

but also through the on-shell production of tachyons themselves. This leads to a ‘measure

problem’ which seems not all that different, at least in spirit, to that encountered in eternal

inflation — the universe one wants to study in the ensemble of all universes has measure

zero in that ensemble. Nevertheless, the description of that single universe seems to make

sense, at least at the semiclassical level; we should also note that the Bäcklund presenta-

tion seems not to have such an explosion of pair production occurring. Furthermore, this

proliferation of universes is different from that usually considered in eternal inflation in

that there is no drift of the inflaton relative to classical expectations.

A different inner product is given by the two-point function of conformal field theory,

which leads to the Zamolodchikov metric on the Hilbert space [71–73]. This inner product

is an integral over all the configuration space, including the timelike coordinate φ, rather

than a spacelike slice. It is not clear what interpretation to give this quantity in the

present context given that, as mentioned earlier, the CFT two-point function given by the

conformal bootstrap does not seem to be diagonal in the conformal weight [38, 41, 45].

We leave the question of the appropriate notion of norm, and the probability interpre-

tation, as an interesting topic of further research.
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