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Introduction. As expressed by John Wheeler’s statement, “Black holes have no hair” [1],

black holes (BHs) in four spacetime dimensions are remarkably simple objects. The topol-

ogy, rigidity, uniqueness, and no-hair theorems ensure that Kerr BHs are the only sta-

tionary, vacuum, and asymptotically flat solutions to general relativity, and that they are

uniquely specified by their mass M and angular momentum J [2]. Because Kerr BHs are

also linear mode stable [3], any stellar object undergoing gravitational collapse towards a

BH is expected to settle to the Kerr solution.

Yet, the uniqueness of the Kerr BH may seem surprising given the close connection be-

tween gravity and fluids. According to the membrane paradigm [4], external observers will

find that BH horizons behave like fluid membranes, endowed with a viscosity, conductivity,

temperature, entropy, etc. Moreover, in certain circumstances there are formal mappings

between solutions of general relativity and solutions of Navier-Stokes [5, 6]. Fluids, how-

ever, lack strong uniqueness theorems and admit a rich structure of solutions. Indeed,

rotational instabilities appear in fluid droplets and non-spherical solutions develop [7]. In

particular, a ring configuration is preferred for high spin. Therefore, it may be natural to

suspect that BHs behave like fluid droplets and have a greater diversity of solutions. This

is the emerging picture in d > 4 spacetime dimensions.

In higher dimensions, gravity becomes weaker as it spreads out over extra dimensions.

Horizons are therefore more flexible, creating new gravitational phenomena with no four-

dimensional counterparts. For example, in d ≥ 5 black strings exist and suffer from the

Gregory-Laflamme instability [8]. This instability leads to a fractal-like array of spherical

BHs and cosmic censorship violation [9, 10]. This behaviour is similar to the Rayleigh-

Plateau instability, where a fluid jet breaks into an array of spherical droplets [11].

In addition, there are black rings with horizon topology S1 × Sd−3. These have been

constructed in closed analytic form in d = 5 [12] and numerically in d = 6 [13]. (The list of

other BH horizon topologies that are allowed in d > 4 were discussed in [14]). In any d ≥ 5,

black rings can be found perturbatively using the blackfold approach if the S1 radius is

much larger than the Sd−3 radius [15]. In addition to new topologies, these rings introduce

non-uniqueness since there are different ring solutions with the same M and J .

Given this rich structure, understanding the space of BH solutions in higher dimensions

is an open and difficult task. Though, it is also an important task in scenarios where higher

dimensions are unavoidable, such as those arising from string theory or holography.

Let us therefore summarise of the state of the art, focusing on asymptotically flat

stationary solutions. In d = 4 Kerr BHs are the only such solutions. For a fixed mass M ,

increasing the angular momentum J decreases the BH temperature TH and the horizon

area AH , until the BH reaches extremality at J = GM2, where the BH has vanishing

temperature but non-vanishing horizon area [16].

The higher dimensional analogues to Kerr BHs are the Myers-Perry (MP) solutions [17].

Also in higher dimensions, BHs can have
⌊
d−1
2

⌋
independent angular momenta. For sim-

plicity, we only consider the singly-spinning case with one non-zero J .

Like Kerr BHs, singly-spinning MP BHs in d = 5 at fixed M will have decreasing

TH and AH with increasing J . Unlike Kerr BHs however, both TH and AH vanish at

extremality [16], giving a naked singularity. This singularity is the merger point between
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the MP solutions and the S1 × S2 black rings [12]. As mentioned earlier, these rings are

not uniquely specified by M and J . There are two branches: the “fat” branch connected to

the naked singularity, and a “thin” branch which for large J resembles bent black strings.

There is also an infinite family of solutions with disconnected horizons, such as black

saturns [18] and black di-rings [19], which all connect to the black ring and MP BH at the

naked singularity.

In d ≥ 6, singly-spinning MP BHs can have arbitrarily large angular momentum. For

large rotation, the horizon becomes thin as it spreads along the plane of rotation. These

BHs can become unstable to the ultraspinning instability, which is of Gregory-Laflamme

type [20–22]. It was conjectured that the threshold mode of this instability signals a

bifurcation to a new branch of axisymmetric rotating BHs with lumpy or rippled Sd−2

horizons. These “lumpy” BHs are also conjectured to connect to black rings [15, 20]. More

lumpy BH solutions may appear from the threshold of higher harmonic modes and connect

to black saturns and di-rings, etc.

In this manuscript, we will take a firm step towards the completion of the phase

diagram of singly-spinning asymptotically flat solutions of general relativity in d ≥ 6. We

confirm the existence of lumpy BHs by explicit numerical construction in d = 6 and d = 7.

We also numerically construct black rings in d = 6 (reproducing [13]) and in d = 7. We

find that there are two families of lumpy BHs that bifurcate from the same MP solution.

Our results give robust evidence that one of these lumpy BH branches connects to the fat

black ring via a topology changing merger. The existence of the complementary branch of

lumpy BHs was not anticipated in previous studies [15], and we find that they approach

a solution containing large curvature. As a byproduct of our analysis, we are also able to

check the finite-size corrections to the blackfold approach for the thin black rings in d = 7.

We find excellent agreement between these analytic results and our numerics, even for an

adimensional angular momentum of order one.

Method. The singly-spinning MP BHs, the lumpy BHs, and the black rings all have

an asymptotic timelike Killing vector ∂t and rotate with angular velocity ΩH along the

rotational Killing vector ∂ψ such that K = ∂t + ΩH∂ψ generates a Killing horizon. These

geometries can be written in the form

ds2 = −Adt2 +B dy2 + C(dx+ Fdy)2

+S1 (dψ −Wdt)2 + S2 dΩ2
d−4 (1)

where dΩ2
d−4 is the line element of a unit (d − 4)-sphere, and A,B,C, S1, S2,W, F are

functions of the coordinates y and x. For the MP and lumpy BHs, y is a radial coordinate

and x is an angular coordinate. For the black ring, x and y resemble the bipolar ring

coordinates in [23]. We choose these functions to vanish smoothly in the appropriate places

to yield horizons with the correct topology, and demand that they have flat asymptotics.

To find A,B,C, S1, S2,W, F , we use the DeTurck method [24, 25]. This method re-

quires no à priori gauge fixing and yields elliptic equations for these kinds of boundary

value problems [26]. We use pseudospectral collocation on a Chebyshev grid (a patched
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grid for the rings) to discretise our PDE system. The resulting system of nonlinear alge-

braic equations is solved using Newton-Raphson relaxation. In our case, there are no Ricci

solitons meaning the so-called DeTurck vector ξ must vanish. We therefore check that

|ξ| = 0 with an error smaller than 10−8, and that |ξ| vanishes exponentially with increasing

grid size, as predicted by pseudospectral methods. For the black rings, we also confirm

that our results do not depend on our specific choice of gauge or patch boundary.

We compute the mass M and angular momentum J from a Komar Integral at infinity,

and obtain the angular velocity ΩH , entropy SH = AH/4 and temperature TH . We verify

that the Smarr relation d−3
d−2 M = TH SH+ΩHJ and the first law dM = THdSH+ΩHdJ are

satisfied to less than 5% error.1 The lumpy BHs are parametrised by a rotation parameter

in horizon radius units a/r+. The black rings are parametrised by ΩH/TH . More details

concerning the quality of the numerics can be found in the appendix.

Results. The phase diagram of stationary solutions is best described by thermodynamic

quantities. A meaningful comparison can be made between solutions if one introduces the

dimensionless spin j, area aH , angular velocity ωH , and temperature tH via [15]

jd−3 = cj
Jd−3

GMd−2
, ad−3

H = ca
Ad−3
H

(GM)d−2
, (2)

ωH = cω ΩH (GM)
1

d−3 , tH = ct TH (GM)
1

d−3 ,

where the constants cj , ca, cω, ct can be found in [15].

Figure 1 shows the horizon area aH as a function of the angular momentum j in

d = 6. The solid green line describes the singly spinning MP BH [17]. The large red square

indicates the zero mode of the ultraspinning instability [21, 22]. Two families of the lumpy

BHs (the black squares and brown dots) branch from this zero mode in a second-order

phase transition. Note, however, that the lumpy BHs follow a curve that is close to the

MP curve. To better understand their relationship, figure 2 shows ∆aH as a function

of j, where ∆aH is the difference in aH between a given solution and the MP BH with

the same j.

Note that the brown dots move towards a higher j with a higher entropy than MP, hits

a cusp, and then decreases in aH and j, eventually having a lower entropy than the MP

BH. This implies that the lumpy BHs are non-unique even among their own family, and

provide the first example of non-uniqueness among an asymptotically flat vacuum spherical

family.2 Continuing along this curve, we find that this branch of lumpy BHs approaches

the black ring solutions given by the blue circles. (This black ring curve extends and agrees

with the curve in [13]). A topology-changing merger between the lumpy BHs and the black

rings is expected to occur through a conical geometry [27–30]. Indeed, we find that the

Ricci scalar of the induced horizon geometry grows as we approach the merger.

As further evidence for a merger, we plot the other thermodynamic variables as a

function of j in figure 3 and figure 4. Again, we find the black ring and lumpy BHs

approaching each other. In these plots, the cusps are described by smooth turning points.

1We compute M using the Smarr relation in our plots, but use the Komar integral to check our numerics.
2Such non-uniqueness can also be present in spherically charged BHs [35].
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Figure 1. Horizon area aH versus the spin j in d = 6. The solid green curve describes the single

spinning MP BH; the large red square indicates the onset of the ultraspinning instability; the brown

dots and black squares describe the two branches of lumpy BHs. The branch given by brown dots

leads around a cusp and then towards the black rings (blue circles). The dashed red curve is the

blackfold prediction for the black rings. Isolated magenta squares on the MP BH curve are the

onset of higher harmonics of the ultraspinning instability. The inset plot is a zoomed out plot.
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Figure 2. Difference in horizon area ∆aH between a given solution and the MP BH with the same

spin j, as a function of j. (Same colour scheme as figure 1.) The inset is a zoomed in plot.
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Figure 3. Temperature tH as a function of the spin j. The inset plot is a zoomed out plot. (Same

colour scheme as figure 1.)

The second family of lumpy BHs (the black squares) was not anticipated. To un-

derstand their existence, consider a perturbative expansion of the lumpy BHs around the

ultraspinning merger point. At leading order, the amplitude of the lumpy BHs can be pos-

itive or negative and their entropy is linear in the amplitude; hence we have two branches

of solutions. Note that previous studies [15] drew intuition from the Kaluza-Klein (non)-

uniform black string system [8, 9] where periodicity ensures that the entropy is instead

quadratic in the linear amplitude.

Predicting where these lumpy BHs lead is difficult; we can only conjecture a few

possibilities. As we move along this family away from the merger with MP BH (red

square), we find that curvature invariants of these lumpy BHs grow large.3 The curvature

is largest where the function S2 in (1) vanishes. This suggests (but by no means implies)

a possible topological transition to a S2 × Sd−4 solution4 with rotation on the S2. Such a

solution would be supported by spin-spin interaction and hence does not have a blackfold

approximation at lowest order [31]. We admit that there are other possibilities such as a

double MP BH (also supported by spin-spin repulsion). This lumpy BH branch might also

simply end in a nakedly singular configuration. A zero-temperature limit is also possible,

but figure 3 suggests we are still far from zero temperature.

We have repeated our calculation in d = 7 and find similar behaviour. The phase

diagrams are displayed in figure 5 and figure 6.

We can compare our numerical black ring results to analytical results from the blackfold

approximation, which is valid for large j. In d = 6, this is given by aH ' 1
j , tH ' 4j, ωH '

1
4j2

, and is shown by the dashed red line in figures 1, 3 and 4. These results agree with our

3The Ricci scalar of the induced horizon geometry approaches O(104) in mass units.
4Such solutions were found in d = 5, but these conical singularities [36].
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Figure 4. Angular velocity ωH as a function of the spin j. The inset plot is a zoomed out plot.

(Same colour scheme as figure 1).
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Figure 5. Phase diagrams in d = 7. The main plot is the horizon area aH as a function of the spin

j. The inset is the difference in area ∆aH vs the spin j. (Same colour scheme as figure 1.) The

added solid red line is the blackfold curve with finite-size corrections.

numerics for large j. In d > 6, one can also include finite-size corrections to the blackfold

approximation (which only become dominant over self-gravitational effects in d > 6 [32]).

For d = 7, these are given by [33]

ωH =
1

2j

(
1 +

6ξ0

j8/3

)
, tH =

3j1/3

2
1
12

(
1− 3ξ0

j8/3

)
,

aH =
2

1
12

j1/3

(
1 +

ξ0

j8/3

)
, where ξ0 =

13Γ(43)2

(120)
(
2

2
3

)(
3

1
2

)
Γ(56)2

. (3)
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Figure 6. Temperature tH as a function of spin j. The inset shows the angular velocity ωH as a

function of j. (Same colour scheme as figure 5.)

This is illustrated for d = 7 in figure 5 and figure 6, where the dashed red line is the

leading order blackfold result and the solid red line includes finite-size corrections. With

the corrections, the agreement is impressive, even giving aH to ∼ 1% when j ∼ O(1). This

is the first time these corrections have been compared to a numerical solution.

Finally, note that in figures 1, 3, 4, 5, and 6, the isolated magenta squares describe the

zero modes of the ultraspinning higher harmonics [21, 22]. Given our results, we conjecture

that two families of lumpy solutions will branch from each of these points, one of which

will connect to (possibly lumpy) black saturns or black di-rings etc.
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performed at the cluster “Baltasar-Sete-Sóis” and supported by the DyBHo-256667 ERC

Starting Grant.

A Numerical details

In this appendix we give some numerical details regarding the construction of both the

lumpy black holes and black rings. We first test numerical convergence. Since we are using

– 7 –



J
H
E
P
0
7
(
2
0
1
4
)
0
4
5

Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê
Ê

‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡
‡

Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï
Ï

20 30 40 50 60 70 80

10
-13

10
-11

10
-9

10
-7

N

»C
2

m
e
d
ia
n

æ

æ æ

æ
æ

æ

æ
æ

æ æ æ æ æ æ æ æ
æ æ æ æ æ æ æ æ

æ æ

à

à

à
à
à

à

à à

à

à

à
à

à

à

à

à

à

à à

à

à

à

à à à

ì
ì ì

ì
ì

ì

ì

ì

ì

ì ì ì ì
ì
ì
ì

ì

ì

ì

ì

ì
ì ì

ì
ì

20 25 30 35 40

10
-13

10
-11

10
-9

10
-7

10
-5

N

ÈΞ
2

¥

Figure 7. Left: convergence test for the Weyl tensor for lumpy black holes in d = 7. We plot

1− |C2(N)|∞/|C2(N + 1)|∞, as a function of the number of grid points N . From bottom to top, we

have j = 1.097, 1.117 and 1.136. Right: convergence test of the norm of the DeTurck vector |ξ2|∞
for rings in d = 7 as a function of the grid points (N +N)×N . From top to bottom, j = 1.05 (fat

branch), j = 1.01 (thin branch), j = 1.64 (thin branch). The j = 1.64 plot plateaus after reaching

the limits of machine precision.

spectral collocation methods, we expect to find exponential convergence as the number of

points is varied. This is exactly what we see in figure 7. On the left panel of figure 7, we

consider some lumpy BHs and show how the square of the Weyl tensor C2 = CabcdCabcd
varies as the number of points is changed.

Another quantity we can use to test convergence is the norm of the deTurck vector

ξ2. In the DeTurck method [24, 25] this is the vector ξµ = gαβ
(

Γµαβ + Γ̄µαβ

)
, where Γ̄µαβ is

the Levi-Civita connection for a chosen reference metric ḡ. For the boundary value prob-

lems considered here, the solutions found are necessarily solutions of the vacuum Einstein

equations in the gauge ξµ = 0, so the norm of the deTurck vector is a measure of how well

the gauge condition is satisfied. On the right panel of figure 7, we take some black ring

solutions and we plot the norm of the DeTurck vector as a function of grid points. We

again see exponential convergence.

There is another test of numerical accuracy for the energy and angular momentum

extracted from our solutions. Since our solutions are asymptotically flat, the expansion of

the metric off spatial infinity is controlled by perturbations of flat space in a given gauge.

We can then take advantage of the fact that flat space can be written as a warped product

of a two-dimensional space (spanned by t, R, say) and a round Sd−2 sphere. We can thus

use the expansion of [34], to catalog the possible boundary behaviours of our functions

in terms of spherical harmonics on the Sd−2 sphere that preserve the SO(2) × SO(d − 3)

symmetry of the line element (1). If we fix the metric at infinity to have the following form:

ds2 = −dt2 + dR2 +R2(dθ2 + cos2 θdΩ2
d−4 + sin2 θdψ2) , (A.1)

– 8 –



J
H
E
P
0
7
(
2
0
1
4
)
0
4
5

then the asymptotic behavior of gtt and gtψ take the following simple form

gtt = −1 + E0
Y0(θ)

Rd−3
+O(R−(d−1)) (A.2)

gtψ = J0
Y1
ψ(θ)

Rd−3
+O(R−(d−1)) , (A.3)

where Y`s(θ) and Y`va (θ) are scalar and vector harmonics on Sd−2 with quantum numbers

`s ≥ 0 and `v ≥ 1, respectively, and both E0 and J0 are constants. Note that these metric

functions are gauge invariant for spacetimes with the symmetries detailed above. Both the

energy and angular momentum can solely be written as linear functions of these constants.

In d = 7, our radial coordinate is asymptotically defined as y ∝ R−1/2, which means we

can extract E0 by taking two numerical derivatives of gtt. In d = 6, our radial coordinate

is asymptotically y ∝ 1/R, so we require three derivatives to extract E0. In any dimension,

we defined our metric functions such that J0 could be extracted by taking a single numerical

derivative. A good test of accuracy is to measure if these two coefficients are constants.

This can be best done by performing a χ2 fit, and extracting the standard error. For all of

our solutions, we find that the error in E0 is smaller than 10−3%, except for the last few

points close to the merger, in which case the error increases to 0.1% for the lumpy black

holes, and 1% for the rings. The errors in J0 are much smaller (∼ 10−5%).

A final test can be extracted from the the Smarr law. Since we can independently

compute the energy, angular momentum, angular velocity, entropy and temperature, we

can test whether the Smarr law is satisfied. Again, for the solutions in d = 7, we find that

to be true within 10−3%, except for the last couple of points close to the merger where it

increases to 0.1%. We find that the d = 6 rings satisfy the Smarr law to within 10−3%

except for the points close to the merger, where the error increases to 5%.

We emphasise that the error in the Smarr law and in the energy is a generous overes-

timation of the error in our plots. In our plots for the rings, the energy is obtained directly

from the Smarr law after first obtaining the angular momentum, angular velocity, entropy,

and temperature. This is more accurate since it only involves taking a single derivative for

the angular momentum.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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