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1 Introduction

The current picture of three-flavour neutrino oscillations has been completed by the mea-

surement of a non-zero reactor mixing angle θ13 [1], yielding a self-consistent picture, see

refs. [2–4] for global fits. More recently, perhaps even some hint for a CP-violating phase

δCP has been already seen in the combination of different experiments [4]. On the other

hand, several anomalies at short baselines indicate that the picture may in fact not be

complete, and it thus may have to be extended by one or more sterile neutrinos at the

eV-scale (and maybe at other scales, too). In greater detail, evidence for ν̄µ → ν̄e ap-

pearance has been found in the LSND experiment [5], which has been confirmed by the

MiniBooNE experiment in both the neutrino [6] and antineutrino [7] modes. These evi-

dences are compatible with one or more extra sterile neutrinos at the eV-scale. On the

other hand, recent re-calculations of the reactor ν̄e fluxes [8, 9] are in tension with the cor-

responding short-baseline disappearance measurements, indicating that a fraction of the

electron antineutrinos may have already disappeared into sterile species by oscillations. Fi-

nally, somewhat lower event rates than predicted were measured in solar gallium neutrino

experiments, yielding a 3σ indication that electron neutrinos from the Sun are missing, too,

which again suggests that these may have partially disappeared into a sterile species [10].
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While each of these observations may be interpreted by adding (at least) one extra ster-

ile neutrino, there is a well-known tension between appearance and disappearance data

in the global fits, see refs. [11, 12] for recent works. Several new experiments have been

proposed [13–17] to solve these issues and to draw a self-consistent picture, see ref. [18] for

an extensive review on sterile neutrino phenomenology and experimental prospects.

Due to the increasing amount of experimental indications for eV-scale sterile neutrinos,

and also due to slightly heavier (keV-scale) sterile neutrinos being viable candidates for

Dark Matter if a suitable production mechanism is used [19–29], the problem of explaining

very light sterile neutrinos has attracted the attention of model builders, see ref. [30] for a

recent review.

The basic problem is two-fold:

1. One has to come up with an explanation for the mass of at least one sterile neutrino

being very small (and being protected against radiative corrections), compared to

the “natural” mass scale for right-handed neutrinos which is thought to be very high

(around the scale of grand unification).

2. In addition, one needs to explain the active-sterile mixing θi4. Depending on the

case, this mixing would either need to be sizable, of θi4 ∼ O(0.1), for eV-sterile

neutrinos [11, 12] or it should be really tiny, at most of θi4 ∼ O(10−4), for keV-sterile

neutrinos [31–43].

Both these requirements are not easy to achieve. Nevertheless, many models have

been proposed to solve these problems. A rough classification among the known models

distinguishes whether a model attempts to find a unified explanation for both problems,

or whether the mechanism to generate a light sterile neutrino mass and the generation

of the mixing pattern are separate ingredients. Naturally the former ansatz tends to be

much more constrained but, on the other hand, its benefit is being more predictive. Most

of the mechanisms to explain light sterile neutrino masses either rely on the principle of

suppressing one (or more) sterile neutrino mass eigenvalues or on forcing the natural mass

of one sterile neutrino to be zero which is then lifted to a finite but small value by some

correction (e.g., by sub-leading terms arising from symmetry breaking).

Models which attempt a simultaneous solution of the light mass problem and of the

active-sterile mixing are typically based on flavour symmetries. Known examples include

a non-standard Le − Lµ − Lτ lepton number [44–46] or a Q6 symmetry [47], which both

force the lightest sterile neutrino to be exactly massless in the symmetry limit but generate

a small non-zero mass once the symmetry is broken. Alternatively, a certain mechanism

could be used to suppress masses and mixings at the same time, and proposals include the

use of the Froggatt-Nielsen mechanism [48] to explain light sterile neutrinos [49] as well

as the use of exponential suppressions arising from extra spatial dimensions [50, 51]. Both

these proposals have the nice feature that the low energy seesaw mechanism is guaranteed

to work, however, they also have the disadvantage that no exact mixing angles can be

predicted. Another approach is the use of intermediate scales, which can arise in several

extensions of the seesaw mechanism [52–54]. In general, the most flexible scenarios combine

– 2 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
9

a mass suppression mechanism with a flavour symmetry motivating the mixing, as done for

example in the models which use an A4 symmetry in settings where the sterile neutrino mass

is suppressed by the Froggatt-Nielsen [52, 55], split seesaw [56], or extended seesaw [53]

mechanisms. Most of the known models fall into one of the above categories [57–67],

although a notable exception exist in which light Dirac-type sterile neutrinos are motivated

as composite states [68, 69].

In general, it is interesting to ask the question if there are other ways to connect the

active and sterile neutrino sectors. We will assume in this paper that some mechanism is at

work to explain one very light sterile neutrino — however, we would like to stress that it is

not of great relevance which of the known or yet to be found mechanisms does this job. We

then show how the mixings in both active and sterile sectors can be tightly connected in

a very simple framework. In particular, the situation considered will allow for predictions

in neutrino oscillation experiments which are testable in the very near future.

If the evidence for sterile neutrinos at the eV-scale is to be taken seriously, global

solutions typically point towards

Ue3 ' Ue4 ∼ λC , (1.1)

where U is the 4× 4 unitary matrix that diagonalises the 4× 4 neutrino mass matrix and

λC ≈ 0.2. This means that the active-sterile and reactor neutrino mixing angles will be

of the same order of magnitude. It is therefore suggestive to investigate scenarios where

the active 3 × 3 sub-sector of the neutrino mass matrix enforces θ13 = 0 by a symmetry

structure, such as tri-bimaximal (TBM) mixing [70] or the µ − τ symmetric case [71–74].

For these scenarios well-known flavour symmetry models exist, such as refs. [75, 76] for

the µ− τ exchange symmetry case and refs. [77–81] for TBM. By the addition of a sterile

species, the mass matrix will be modified and both active-sterile and reactor mixings may

be generated. In flavour symmetry models, however, this option turns out to be not that

straightforward: the vacuum alignment of the flavon vacuum expectation values (VEVs)

prohibits the direct generation of a non-zero θ13, see refs. [52, 55]. We therefore split the

problem into two pieces: we first study the requirements for the vacuum alignment in a

generic way to produce both active-sterile and reactor mixings of similar magnitudes. Then

we discuss the model requirements and how these restrict our generic findings.

We notice that TBM is a special case of the µ − τ symmetric case where the solar

angle is not free but trimaximal, i.e., sin2 θsol = 1/3. Since we are interested in studying a

possible new origin for the reactor angle independently of the particular value of the solar

angle, we consider the general class of µ − τ symmetric neutrino mass matrices in this

paper. In principle our results could be applied to the subclass of TBM models as well.

The paper is organised as follow: in section 2, we describe our general method and

set the stage for the remainder of the paper. Then, in section 3, we discuss at length our

results and their phenomenological consequences. We indicate in section 4 how the results

can be obtained and sharpened in concrete models, but the discussion of the mathematical

details of the models is postponed to section 5. We finally conclude in section 6.
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2 Method

Let us consider the 3 × 3 generic µ − τ invariant Majorana neutrino mass matrix given

in [74],

Mµ−τ =

A′ B′ B′

B′ C ′ D′

B′ D′ C ′

 , (2.1)

where A′, B′, C ′, D′ are free parameters. Such a matrix is diagonalised by the orthogonal

matrix

O =

−c12 s12 0
s12√
2

c12√
2
− 1√

2
s12√
2

c12√
2

1√
2

 , (2.2)

which has the eigenvector (0,−1/
√

2, 1/
√

2)T . This leads to a zero reactor angle and a max-

imal atmospheric angle, while the solar angle is a function of the parameters A′, B′, C ′, D′.

We assume only one sterile neutrino νs, and therefore the neutrino mass matrix is given

by a 4× 4 (symmetric) matrix.1 We furthermore assume the following structure (with the

charged leptons being diagonal) in the basis (νe, νµ, ντ , νs):

M4×4
ν =

(
Mµ−τ A

AT ms

)
, (2.3)

where ms is the mass contribution of the sterile neutrino assumed to be of the order of 1 eV

and A = (a, b, c)T is a 3 × 1 vector. The vector A can induce mixing effects of the active

neutrinos, as discussed in ref. [82]. In the limit A→ 0 (or if A is an eigenvector of Mµ−τ )

the reactor angle is zero, but otherwise the reactor angle can deviate from zero and this

deviation is proportional to the active-sterile mixing, as we will show. In this framework

the active-sterile matrix elements M4×4
ν,i4 (with i = e, µ, τ) are the origin for the reactor

angle. It is noteworthy to add that a model predicting an “extended µ-τ symmetry” could

also affect the active-sterile mixings leading to b = c. These are not the models we consider

in this study, as they would necessarily lead to θ13 = 0. However, we will demonstrate that

|b| = |c| with different phases is compatible with our ansatz, see the discussion in section 4.2.

Using the neutrino mass matrix eq. (2.3), our purpose is two-fold:

1) we want to study if any phenomenological consequences or interplay between the

active-sterile mixings emerges from that structure and

2) we want to investigate the structure of the vector A and which consequences it could

have for model builders.

Previous works have studied such interplay in the context of TBM (that is a subclass

of our framework [52, 55]), but our approach is substantially different because the reactor

angle originates from the sterile sector only, while in [55] deviations from TBM together

1Introducing several sterile neutrinos does not improve the global fits significantly, at least for a 3+2

instead of a 3+1 model. See e.g. ref. [12].

– 4 –



J
H
E
P
0
7
(
2
0
1
4
)
0
3
9

plus a sterile neutrino are necessary (in our case, next-to-leading order contributions would

not be sufficient to generate an acceptable reactor angle).

In this paper, we will embark a numerical analysis of our considerations, supplemented

by some analytical approximations. Indeed, it turns out that many aspects are much easier

to see numerically than analytically, which simply originates from the fact that, after

all, the diagonalisation of a 4 × 4 mass matrix does involve some complicated formulae.

Nevertheless, as we will see, some global tendencies can be seen analytically and, indeed,

our general expectations will be confirmed by the numerics.

In our calculation, we first of all assume a general 4 × 4 neutrino mass matrix by

rotating from the mass into the flavour basis assuming Majorana neutrinos,

M4×4
ν = U∗4×4diag(m1,m2,m3,m4)U

†
4×4 ≡


me1 me2 me3 me4

me2 mµ2 mµ3 mµ4

me3 mµ3 mτ3 mτ4

me4 mµ4 mτ4 ms4

 , (2.4)

which is of course symmetric.

In principle there are many different parameterisations of U4×4 see e.g. [83], since the

order of the sub-rotations is arbitrary. Following refs. [84–88], we choose the parameteri-

sation

U4×4 = R34(θ34, γ) R24(θ24, β) R14(θ14, α) R23(θ23, δ3) R13(θ13, δ2) R12(θ12, δ1) . (2.5)

In eq. (2.5), Rij(θij , ϕ) are the complex rotation matrices in the ij-plane, defined as:

[Rij(θij , ϕ)]pq =



cos θij p = q = i, j ,

1 p = q 6= i, j ,

sin θij e
−iϕ p = i; q = j ,

− sin θij e
iϕ p = j; q = i ,

0 otherwise .

(2.6)

This means that δ2 becomes δCP in the three flavour limit. This parameterisation has the

advantage that the standard leptonic mixing matrix has to be recovered in the case of

vanishing new mixing angles. Note that the order of the 34-24-14-rotations is arbitrary.

We chose the 34-angle as the left-most one, which makes it hardest to observe (it affects

only ντ -νs-mixing). Changing the order here does not change the fact that one of the

rotations is difficult to extract. Even though the Majorana phases (α, β, γ) are absent in

the oscillation parameters, they do play an important role for the structure of the mass

matrix itself, and in particular for the correlations between different observables. However,

there are nevertheless cases in which they have trivial values as predicted by a certain

model under consideration. To cover the general tendencies, we will present most of our

results first for (α, β, γ) = (0, 0, 0), in which case even detailed analytical predictions are

possible, and we then generalise to arbitrary (α, β, γ). As will be visible in our plots, the

former case will always be a subset of the latter, as to be expected, which confirms the

consistency of our numerical procedure.

– 5 –
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We therefore have a total of 4+6+3 = 13 real parameters, plus potentially 3 Majorana

phases:

• Four masses (m1,m2,m3,m4), where we assume for simplicity normal ordering (m1 <

m2 < m3) and the fourth (mainly sterile) mass eigenstate to be the heaviest (“3 + 1

scheme”: m1,2,3 < m4). A generalisation to other scenarios is straightforward.

• Six mixing angles, three of them (θ12,13,23) describing the ordinary mixing between

active neutrinos and three further angles (θ14,24,34) describing the mixing between

active and sterile neutrinos.

• Three Dirac phases δ1,2,3, which describe all the CP violation that is potentially

measurable in neutrino oscillation experiments.

• If applicable: Three Majorana phases (α, β, γ), which could only be measured in

neutrinoless double beta decay [89].2

These parameters can be easily related to short- and long-baseline neutrino oscillation

probabilities, see ref. [87] for details. To leading order in the small mixing angles, the most

relevant short baseline probabilities can be written as:

Pee '1− sin2 (2θ14) sin2 ∆41, (2.7)

Pµµ '1− sin2 (2θ24) sin2 ∆41, (2.8)

Peµ = Pµe '
1

4
sin2 (2θ14) sin2 (2θ24) sin2 ∆41, (2.9)

Peτ '
1

4
sin2 (2θ14) sin2 (2θ34) sin2 ∆41, (2.10)

Pµτ '
1

4
sin2 (2θ24) sin2 (2θ34) sin2 ∆41, (2.11)

where ∆41 ≡ ∆m2
41L/(4E). Note that the CP violating phases and also the light neutrino

mass square differences would show up as corrections to eqs. (2.7) to (2.11) at longer

distances. One can easily see in these formulae that, if LSND and MiniBooNE measured

the transition in eq. (2.9) which is quadratic in both θ14 and θ24, both electron neutrino

disappearance in eq. (2.7) and muon neutrino disappearance in eq. (2.8) would follow as

a consequence. The electron (∝ θ214) and muon (∝ θ224) neutrino disappearance searches

have, so far, not found anything directly, which leads to the well-known tension between

appearance and disappearance data. The third mixing angle in our parameterisation, θ34,

only enters in ντ appearance searches, which are much harder to perform because of the

high τ production threshold.

In our numerical analysis, we have fixed the lightest neutrino mass to be zero, m1 = 0,

and the heaviest one to be m4 = 1 eV as an example (with one exception, where we illus-

trate the effect of m1 6= 0). Of course we could vary these masses, which would not spoil

our principal results but only blur them. We have fixed the other two neutrino masses

by imposing the best-fit values [2] for the two mass-square differences, ∆m2
� and ∆m2

A.

2We leave a detailed study of the predictions for neutrinoless double beta decay for future work.
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Furthermore, we have set θ12 to its best-fit value and we have also set θ23 = π/4 in order

to ensure that the breaking of the µ–τ symmetry indeed arises from the three parame-

ters (a, b, c) = (me4,mµ4,mτ4).
3 We then generated random values for the parameters

θ13 (linear distribution within the 3σ range of sin θ13), θ24 (log-scale distribution within

[10−5, 10−0.75]), and δ2 (linear distribution within [0, 2π]). In cases where the Majorana

phases (α, β, γ) have been varied, too, we have also generated random values for each of

them, following a linear distribution within [0, 2π].

The next step is to impose µ–τ symmetry onto the upper left 3 × 3 block of the full

mass matrix M4×4
ν by requiring the two complex equations equations me2 = −me3 and

mµ2 = mτ3 to hold and solving them for the remaining parameters θ14,34 and δ1,2. By

this procedure, we have obtained a set of 100, 000 points4 which all fulfill the criteria of

leading to mass matrices with the desired form of the upper left 3× 3 block and which are

phenomenologically valid except for, maybe, their value for θ13, which is exactly what we

would like to investigate.

We furthermore have done a similar procedure for two concrete alignments, both of

which we will motivate in section 5 in concrete models. For now, we only observe that for

concrete models e.g. the family symmetries A4 and D4 can be used. The vector (a, b, c)

so far considered can transform as a triplet under A4, or as a singlet plus a doublet in

the D4 case. Thus, in concrete models, the vector (a, b, c) is not arbitrary but it is given

by the minimisation of the scalar potential invariant under the flavour symmetry of the

particular setting considered. Typically, in A4 the following sets of triplet VEV alignments

have been studied:

〈(a, b, c)〉 ∼ (a, 0, 0) , a(1, 1, 1) , (a, b, b∗) , a(1, 4, 2) , (2.12)

where the first two alignments are the ones used for TBM, see for instance [78], the third

alignment is motivated by certain models based on discrete symmetries [90], and the fourth

one is phenomenologically motivated in [91, 92]. In the same way in models based on a

D4 family symmetry we can have different possibilities for the VEV alignments of the

doublet, namely

〈(b, c)〉 ∼ (b, 0) , b(1, 1) , (0, c) . (2.13)

3Note that, alternatively, we could have left θ23 to be a free parameter. Indeed, the contributions

from the sterile neutrinos can pull that angle away from its maximal value. However, since the active-

sterile mixing angles considered are small after all, it turns out that the resulting interval for θ23 would

nevertheless be centered around the maximal value. In particular, the corrections from the sterile sector

are not large enough to pull this angle to one of its two best-fit values [2] in the first or second octant,

thus comprising an indirect signature of our setting. The correlations shown in our plots would, had we

left θ23 free, of course loosen but they would not be wiped out. Thus, for the clarity of the plots and to

illustrate the global tendencies of the setting under consideration rather than the influence of experimental

uncertainties, we have decided to stick to the choice of θ23 = π/4. An example of the effect of letting θ23
vary will nevertheless be shown in figure 1, upper right panel.

4Note that, in the actual plots presented, we show for each region only subsets of the data with a few

thousand points each. We have checked that the plots would look practically identical when including all

the data so that, had we included all of them, only the file size of the plots would be increased without any

significant gain.
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We consider two example alignments: the first one, (a, b, c) = (a, b, b∗), is motivated

by an A4 flavour symmetry, while the second one, (a, b, c) = (a, 0, c), can be obtained

in models based on D4. From now on, the only important point for us in what concerns

phenomenology is that each of these alignments imposes one more complex equation (c = b∗

and b = 0, respectively), which we can use to eliminate two real parameters. Thus, in the

generation of numerical mass matrices which fulfill one of the two alignments, we have

only generated random values for θ13 and for the Majorana phases if applicable (as in the

general case), but numerically solved for θ24 and δ2.

In the plots, we have also indicated certain bounds and/or experimentally favoured

regions for light sterile neutrinos. However, we want to stress that — at the moment —

not all the data sets stemming from different experiments seem to fit together, see ref. [93]

for a concise discussion. Thus, the best we can do is to show some example bounds and let

future experiments decide which of them, if any, are correct. We have therefore extracted

three different bounds from ref. [12], where we have in each case used the active-sterile

mixing angle regions obtained for ∆m2
41 = 1 eV2.5

The chosen regions are:

• all νe disappearance reactor and solar data (light green region in our plots; see figure 2

in [12]): 8.24 · 10−3 ≤ |Ue4|2 ≤ 1.94 · 10−2, where Ue4 = sin θ14,

• null results combined from atmospheric and short/long baseline accelerator experi-

ments (region below the thick orange line in our plots; see figure 4a in [12]): |Uµ4|2 ≤
2.74 · 10−2, where Uµ4 = cos θ14 sin θ24,

• combined results from νµ → νe and ν̄µ → ν̄e appearance data (light purple region

in our plots; see figure 7 in [12]): 2.40 · 10−3 ≤ sin2(2θeµ) ≤ 4.20 · 10−3, where

sin2(2θeµ) = 4|Ue4|2|Uµ4|2.

As we had already pointed out, the different data sets available do not seem to fit

together at the moment. Accordingly, the setting discussed here cannot be consistent with

all of them simultaneously, and thus one should keep in mind that the bounds and favoured

regions presented comprise example data sets and are not to be taken fully representative.

However, from the current perspective it seems likely that one of them might survive

future experimental tests and/or that they will be resolved in terms of the discovery of an

unknown systematic error in one type of experiment or maybe even by the discovery of

more than one type of light sterile neutrino. On the other hand, no matter which data set

is favoured by the reader, our general findings remain correct: it is possible to generate a

sizable reactor angle from sterile neutrino contributions to the light neutrino mass matrix.

3 Experimental consequences: what phenomenologists are interested in

We will now discuss our numerical results for the mixing angles. For the moment, let us

focus on the general case of a 4 × 4 light neutrino Majorana mass matrix with a µ − τ
5For the one case we show where m1 = 0.05 eV instead of zero, this would strictly speaking require

a largest mass of m4 = 1.00125 eV, which however is so close to 1 eV that we have neglected this tiny

difference.
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The different panels correspond to zero Majorana phases, m1 = 0, and θ23 = π/4 (upper left),

zero Majorana phases, m1 = 0, and θ23 ∈ 3σ (upper right), complex Majorana phases, m1 = 0,

and θ23 = π/4 (lower left), and zero Majorana phases, m1 = 0.05 eV, and θ23 = π/4 (lower

right). In addition, some example experimental constraints are displayed [12] (“νe disapp.” for the

region compatible with νe disappearance data, “Null. res. (upper)” for the upper limit from νµ
disappearance, “Comb.” for the region compatible with combined short-baseline appearance data;

see text for details). It is implied that large θ14 generates large θ13 of the same order, while θ24
could have any value. As visible from the two examples shown, choosing a certain alignment allows

to select narrow regions within the general correlated parameter space. For example, one can fix θ24
to be relatively large [A4-like alignment (a, b, c) = (a, b, b∗): red points] or relatively small [D4-like

alignment (a, b, c) = (a, 0, c): blue points]. Thus a concrete model can give very clear predictions

for the observables.

symmetric upper left 3 × 3 block, which corresponds to the light gray points in all plots.

The specific alignments (red and blue points) will be discussed later on.
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3.1 General case for alignments

Let us now discuss the correlations which appear — first for m1 = 0, (α, β, γ) = (0, 0, 0),

and fixed θ23. In the upper left panel of figure 1, we present the correlation between sin θ14
and sin θ24, where we have selected the gray points from the lists of numerical mass matrices

generated by requiring that sin θ13 lies within its experimental 3σ interval [2]. The result

is a clear correlation between the two active-sterile mixing angles. Indeed, one can see that

a sizable (within the 3σ range) reactor angle θ13 also implies a large mixing angle θ14, i.e.,

sin θ14 ≈ 0.02 to 0.4, while sin θ24 can essentially assume all values between 0.2 and zero.

This is a clear tendency we have seen in our data: indeed, had we also included smaller

(unphysical) values of θ13 in the plot, we would have seen that θ14 is always of the same

order as θ13, while θ24 is in general not strongly constrained. Looking closer, we can see

that there exist in fact two branches of the correlation between sin θ14 and sin θ24. Notably,

the “upper” branch also strongly constrains sin θ24 to be & 0.03, so that in a large number

of cases that angle is also sizable.

Let us now allow for some more freedom, starting with general Majorana phases

(α, β, γ) while we still keep m1 = 0 and θ23 = π/4. This is the case we will through-

out the paper present below the corresponding plot with (α, β, γ) = (0, 0, 0), so that we

should now look at the lower left panel of figure 1. As can be seen, the two distinct

branches of the correlation are now completely indistinguishable, as can be seen form the

gray points.6 However, what remains is nevertheless the tendency of not having a too small

θ14, unless θ24 is very large.

For completeness, we have (only for this correlation) also illustrated the effects of

relaxing one of the other two assumptions, i.e., either varying θ23 within its 3σ interval

(upper right panel) or taking m1 6= 0 (lower right panel). For these two cases we have again

chosen (α, β, γ) = (0, 0, 0), in order not to lose sight of which relaxation has which effect.

Starting with the case were θ23 is allowed to be non-maximal, the principal tendencies are

not really changed, but the allowed spread of points is increased. This blurs the correlation

to some extend (as to be expected). Interestingly, it also leads to at least a few general (light

gray) points which are consistent with the region favoured by the combined appearance

data (marked by the purple strip, as we will explain below), contrary to the points allowed

for θ23 taken to be exactly maximal. Thus, allowing θ23 to vary seems to have, at least at

first sight, a similar effect as varying the Majorana phases. A less dramatic effect happens

if we instead increase m1 to 0.05 eV, see the lower right panel. Even though m1 is now

considerably different from zero, and in fact m1 ∼
√

∆m2
A, the qualitative features of the

correlation are not destroyed. The two branches are still visible, although not as clearly as

for the m1 = 0 case, which comes from the slight change in the shape. The only qualitative

change is the few gray points on the upper right of the plot, which did not exist for m1 = 0.

More dramatic changes will be present for the alignments, as we will see later.

As already mentioned, we have also displayed the favoured regions from all νe disap-

pearance data (green region in the plots labeled by “νe disapp.”) and from the combined e

6Note that, in order not to unnecessarily produce too many unphysical points, we have limited our

numerical scan to | sin θi4| < 0.5, as can be seen in the plot. This does not present any physical restriction.
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to µ appearance data (purple region in the plots labeled by “Comb.”), as well as the upper

bound from all null results combined (orange thick line in the plots labeled by “Null res.

(upper)”). As can be seen, our general region is for fixed Majorana phases incompatible

with the combined appearance data if θ23 is maximal (which means in particular that it

is incompatible with the LSND results, because the bounds from MiniBooNE are not as

stringent for ∆m2 = 1 eV2). However, the points are easily compatible with all null results

(only a very marginal region at the top of the region of interest is cut away by that bound)

and also the νe disappearance data can be fitted if sin θ14 ∼ 0.10 and sin θ24 ∼ 0.05. If

θ23 is varied (upper right panel) or if the Majorana are varied (lower left panel), however,

there exist at least a few points consistent with the combined appearance region.

Going to figure 2, the correlation between sin θ14 (sin θ24) and sin θ34 is displayed on

the left (right) panels. Starting with the left panel and (α, β, γ) = (0, 0, 0), it is visible

that θ34 is not constrained by the current data, as this angle would correspond to ντ → νs
transitions which are experimentally hardly accessible. This is why the only favoured region

displayed is the green band stemming from the νe disappearance data. The null results

do not constrain sin θ14, and the combined appearance data would not exclude any of the

gray points in the sin θ14–sin θ34 plane, which is why we have decided not to plot it here.

Similarly to the previous case, a clear correlation between sin θ14 and sin θ34 is found, again

consisting of two distinct branches. However, the difference compared to sin θ24 is that

sin θ34 (and thus θ34) cannot be arbitrarily small in any branch but is bound to be between

roughly 0.2 and 0.03 (upper branch) or 0.003 (lower branch). If the νe disappearance data

is to be reproduced, we are forced to have sin θ34 ∼ 0.05 (and again sin θ14 ∼ 0.10). In

the upper right panel, the remaining combination of angles (the correlation between sin θ24
and sin θ34) is displayed, which is perfectly consistent with the previous two correlations

(one can even make out the correspondences between the different branches). This figure

is less favourable in what concerns the experimental bounds, since the upper bound from

the null results only appears as a straight line, due to the missing dependence on θ14 in

this plot. However, in the region of interest, this does not make a significant difference.

Varying the Majorana phases (lower two panels of figure 2), the correlations are con-

siderably broadened. In particular, it is not possible anymore to distinguish the different

branches. Furthermore, also very small values for sin θ34 are possible in this case. How-

ever, it remains true that sin θ34 and sin θ14 (or sin θ34 and sin θ24) cannot simultaneously

be small. This fact can be understood analytically, as we will see later on.

3.2 Specific alignments

We will now investigate what changes if we choose a certain vacuum alignment, i.e., a

particular form of the vector A = (a, b, c). Such relations are no arbitrary assumptions but

they can be derived within concrete models, as we will illustrate later. However, we chose

to first present our results to increase the clarity, such that it is easy to see the effect of

the alignments, while the inclined reader who is interested in the theoretical details behind

the alignments is advised to consult the dedicated section 5.

Looking again at the two leftmost panels of figure 1, we have displayed the resulting

regions for two different alignments, one of which can be motivated by models based on
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Figure 2. Correlations between sin θ14 & sin θ34 (left panels) and sin θ24 & sin θ34 (right panels).

The Majorana phases are chosen to be zero in the upper row and are varied in the lower row. The

allowed regions to describe certain data are shown as well, see caption of figure 1. As can be seen

from both panels, θ34 does have a certain minimal value, while θ24 could be essentially zero (at

least in the upper branch of the correlation shown on the right), in consistency with figure 1.

an A4 symmetry [(a, b, c) = (a, b, b∗), cf. eq. (2.12): red points in the plots] and one of

which can be derived from D4 models [(a, b, c) = (a, 0, c), cf. eq. (2.13): blue points in the

plots]. The effect of the alignments is immediate: they single out very small patches of the

general (light gray) region which, in turn, leads to a high predictivity of the corresponding

models. In the case of vanishing Majorana phases, figures 1 and 2 together tell us that

the first alignment (the one with c = b∗) predicts (sin θ14, sin θ24, sin θ34) ∼ (0.03, 0.2, 0.2)

while the second one (where b = 0) leads to (sin θ14, sin θ24, sin θ34) ∼ (0.3, 2 · 10−4, 0.04).

Indeed, both alignments are highly predictive, so much so that the A4-like (red) alignment

(if θ23 = π/4) is not only incompatible with both the νe disappearance and the combined

appearance results (the latter point is not too much of a surprise, given that already
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the general gray region had been incompatible with this data set), but it is even barely

compatible with the not very stringent null results combined. Thus, this alignment case

could in fact be excluded very soon. The D4-like (blue) alignment is also only compatible

with the null results, but here the predicted value of sin θ24 is so small that a near-future

exclusion of that setting seems more than unlikely.

It is worth to note that varying θ23 does not only spread out the generally allowed

set of points, but also the regions allowed for a certain alignment, as can be seen from

the upper right panel of figure 1. While this effect seems very tiny for the D4-like (blue)

alignment, the allowed region for the A4-like (red) alignment is considerably increased. In

particular, it is now possible to find red points which match the region allowed by the νe
disappearance data, even without varying the Majorana phases. This is very good news,

since it means that the red alignment will in fact be a valid possibility if the green region

persists, since we cannot expect θ23 to be exactly maximal (and the global fits tell us that

a non-maximal value even seems more likely [2], however our setting is unable to reach any

of the θ23 best-fit points as both are too far away from π/4).

Going back to the case where θ23 is taken to be maximal and comparing the upper left

panels of figures 1 and 2, it is intriguing that sin θ24 ' sin θ34 holds for the A4-like (red)

alignment. The D4-like (blue) alignment, in turn, leads to a very small angle θ24, whereas

θ34 is bound to be on the upper branch of the correlation and thus sin θ34 ∼ 0.03.

What changes if we allow the Majorana phases to vary? As to be expected, also the

regions allowed by the alignments are blown up, cf. lower left panel of figure 1 and lower

panels of figure 2. The former plot in particular reveals that now, it is not only possible

to meet the region favoured by the νe disappearance data for both alignments, but the

red alignment can even be consistent with the purple combined e to µ appearance data.

However, the alignments nevertheless clearly reveal certain distinct patterns within the

set of gray points. Furthermore, the alignment regions for (α, β, γ) = (0, 0, 0) are clearly

contained in the more general alignment regions where the Majorana phases are varied,

which again confirms the consistency of our numerics. Not too surprisingly, the alignment

regions are also blow up for the other correlations, cf. lower panels of figure 2. However,

what is very remarkable is that the red alignment clearly predicts sin θ24 ' sin θ34, even

if the Majorana phases are varied. This strongly indicates a clear prediction of the red

alignment which indeed can be analytically derived as we will see in the next section.

Finally, the most dramatic change of the alignments happens of we choose m1 6= 0.

While the red alignment is only shifted to slightly larger values of sin θ14, the blue alignment

seems to enforce sin θ14 ≡ 1 according to our numerics, and thus violates our condition

sin θ14 < 0.5, which is why it does not appear in the plot. This is clearly unphysical, since

a maximal active-sterile mixing angle would have been detected already. This is a good

example for the predictivity of alignments: while they do allow for some freedom, forcing

the mixing angles to be within their physically tolerable ranges might restrict the neutrino

masses such that only a certain mass scale between 0 and 1 eV is allowed. Turning it

round, if the mass scale is known, an alignment can make concrete predictions for at least

active-sterile mixings.

The principal tendency we wanted to reveal was that non-trivial sterile mixing can
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generate a non-zero reactor angle θ13. This can indeed be seen from the plots in figures 1

and 2, which for (α, β, γ) = (0, 0, 0) clearly demonstrate that both θ14 and θ34 must be

large to generate a sizable reactor angle θ13. On the other hand, θ24 could be small or

large, depending on the branch of the correlation. If we allow the Majorana phases to vary,

than each of the three active-sterile mixing angles can in principle be small, but not all at

the same time: at least one active-sterile mixing angle must be large, in order for a sizable

reactor angle θ13 to be generated.

3.3 Analytical understanding

Let us try to get some analytical understanding of the behaviour shown in the plots.

Using eqs. (2.3), (2.4), (2.5), and (2.6), together with the approximations m1,2 ' 0, m3 '√
∆m2

A, an expansion to first order in s14,24,34, and neglecting terms like
√

∆m2
As13si4

when compared with terms containing m4 and a smaller number of suppressions yields the

following approximations for some of the entries in the neutrino mass matrix:

me2 ' m4e
−i(α+β)s14s24 +

√
∆m2

Ae
−i(δ2+δ3)s13c13s23,

me3 ' m4e
−i(α+γ)s14s34 +

√
∆m2

Ae
−iδ2s13c13c23,

mµ2 '
√

∆m2
Ae
−2iδ3c213s

2
23,

mτ3 '
√

∆m2
Ac

2
13c

2
23. (3.1)

As already mentioned in section 2, the conditions for a µ − τ symmetric upper left 3 × 3

block are:

me2 = −me3 and mµ2 = mτ3. (3.2)

Applying the latter condition to eq. (3.1), one obtains e−2iδ3s223 ' c223, which immediately

implies δ3 ' 0 and

sin θ23 ' cos θ23 '
1√
2
⇒ θ23 '

π

4
. (3.3)

This confirms that θ23 should be very close to maximal, as we had already mentioned.

Then, using the first condition from eq. (3.2) and inserting δ3 ' 0 and s23 ' c23 ' 1/
√

2,

one obtains

s14(s24e
−iβ + s34e

−iγ) ' −

√
2∆m2

A

m4
e−i(α−δ2)s13c13 ≈ 0.01, (3.4)

where we have in the final step inserted the best-fit values of the remaining oscillation

parameters as well as m4 = 1 eV and δ2 ' π, the latter being implied for vanishing

Majorana phases, (α, β, γ) = (0, 0, 0). It is this equation which teaches us quite a bit about

the plots presented in figures 1 and 2. As we had anticipated in section 2, the equation

proves our central point: up to terms of O(s313) arising from the cosine of θ13, it is indeed

true that the reactor mixing is proportional to the active-sterile mixing.

Let us again start with the case of vanishing Majorana phases, (α, β, γ) = (0, 0, 0).

Then, in particular one would necessarily switch off the reactor mixing angle θ13 if either
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θ14 or θ24,34 were zero. Second, in order for the numerical version of eq. (3.4) to hold,

s14 must be of O(0.01) or even larger, which is consistent with the limit sin θ14 & 0.02

obtained from the plots. Third, only one of s24,34 can be small. This fact explains the two

branches in figures 1 and 2: in the upper left panel of figure 1 (figure 2), the upper branch

is obtained for sizable s24 (s34), while the lower branch allows for very small values of s24
(significantly smaller values of s34). The overlap regions of each pair of branches indicate

the both angles s24,34 are sizable. The differences between s24 and s34 can be attributed

to the sub-leading terms neglected in eq. (3.1). These considerations basically remain true

for general phases (α, β, γ). The absolute value of the right-hand side of eq. (3.4) will be

sizable for non-zero reactor angle θ13 and, while the terms in parentheses on the right-hand

side could in principle cancel even for large θ24 = θ34 if β = γ + π, they cannot sum up to

a large number if all angles are small. Thus, even in the general case, a relatively large θ13
enforces a large θ14 and either θ24 or θ34 to be sizable, too.

We can also get some analytical understanding of the effect of the alignments: again

using eqs. (2.3), (2.4), (2.5), and (2.6), it is easy to see that in the limit m1,2,3 � m4, one

obtains

a ' m4e
−iα sin θ14 · cos θ14 cos θ24 cos θ34,

b ' m4e
−iβ sin θ24 · cos2 θ14 cos θ24 cos θ34,

c ' m4e
−iγ sin θ34 · cos2 θ14 cos2 θ24 cos θ34. (3.5)

TheD4-like (blue) alignment requires b = 0 and we thus know that cos2 θ14 sin(2θ24) cos θ34 '
0. Furthermore, cos θ14 and cos θ34 cannot be zero since θ14,34 must be somewhat small.

This immediately leads to sin(2θ24) ' 0 and thus requires a very small angle θ24, which

is perfectly consistent with our numerical results, cf. figure 1 and right panel of figure 2,

even in the general case of arbitrary Majorana phases. Using a similar approximation as

in eq. (3.1), we could alternatively have derived

b ' m4e
−iβs24 −

√
∆m2

A

2

[
e−i(α−δ2)s13c13s14 + c213

s24e
iβ + s34e

iγ

√
2

]
!

= 0, (3.6)

where we have already inserted s23 ' c23 ' 1/
√

2. For vanishing (α, β, γ), which also

implies δ2 ' π, this equation cannot be solved for s34 ' 0, since the left-hand side would

then necessarily be positive. However, in the “opposite” limit, s24 ' 0, one can easily

find a solution s34 ≈
√

2 tan θ13s14 which, inserting the best-fit value for θ13, implies that

s14 ≈ 5s34. Looking at the upper left panel of figure 2, this relation indeed seems to

be approximately fulfilled for the blue alignment. Glancing at the figures with arbitrary

Majorana phases, it is visible that the general tendency of avoiding s34 ' 0 again remains

true for the blue alignment, although the allowed regions of course open up a little.

For the A4-like (red) alignment, in turn, c = b∗ is enforced, where

c ' m4e
−iγs34 −

√
∆m2

A

2

[
e−i(α−δ2)s13c13s14 + c213

s24e
iβ + s34e

iγ

√
2

]
!

= 0, (3.7)

which immediately implies that b −m4e
−iβs24 ' c −m4e

−iγs34. For (α, β, γ) = (0, 0, 0),

combining eqs. (3.6) and (3.7) results in sin θ34 ' tan θ24, which is approximately equal
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to sin θ24 due to the angle θ24 being small. Thus, this alignment leads to sin θ34 ' sin θ24
and it is exactly that part of the general region which is numerically predicted by the red

alignment, cf. upper right panel of figure 2. Furthermore, when using eq. (3.4) in addition,

one can also see that s14s24,34 ∼ 0.005. In in the upper left panel of figure 1 (figure 2),

one can read off s14 ∼ 0.03 and s24 ∼ 0.2 (s34 ∼ 0.2) for the red alignment, which is in

good agreement with our analytical estimate. Remarkably, the prediction sin θ34 ' sin θ24
for the red alignment remains perfectly valid even in the case of non-vanishing (α, β, γ), cf.

lower right panel of figure 2. This can be seen most easily by approximating
√

∆m2
A ≈ 0

in eqs. (3.6) and (3.7), which is justified because this quantity is always multiplied by the

sines of angles which are not too large. Then, c = b∗ and thus |b| = |c| immediately implies

sin θ34 ' sin θ24, which confirms our numerical results.

4 Results for the mass matrix: what model builders want to know

The next question to ask is about the concrete connection between the mass matrix entries

a = me4, b = mµ4, and c = mτ4 and the active-sterile mixing angles. These are the results

which are interesting for model builders, because they will reveal which alignments, i.e.,

“directions” of the complex vector (a, b, c) are compatible with the allowed regions in our

plots. Again, we will first of all present our general results, i.e., the elements (a, b, c) are

arbitrary as long as the resulting points are experimentally valid, and afterwards we will

discuss more specifically how certain alignments, i.e., special choices of (a, b, c) as derived

within the framework of flavour models which can dramatically sharpen the predictions.

4.1 Correlations between observables and absolute values of the alignments

As examples we display in figure 3 the correlations between sin θ14 and |b|/|a| (left panels)

and |b|/|c| (right panels).7 Starting with the correlation of |b|/|a| and again assuming

vanishing (α, β, γ) for the start, cf. upper left panel, it is clearly visible that there is

practically a one-to-one correspondence between the value of |b|/|a| and that of sin θ14.

Naturally, |b|/|a| is bound to be positive, but it can be nearly zero for large values of

sin θ14 & 0.2. Lower values of sin θ14 quickly increase the ratio |b|/|a| to roughly 5 for the

smallest possible value of sin θ14 ∼ 0.03. This can again be understood analytically: using

eq. (3.5) for α = β = 0, it is easy to see that |b|/|a| ' sin θ24/ tan θ14. This is clearly

reflected in the curve depicted in the upper left panel of figure 3. Imposing the restriction

from the example data sets (which is only the νe disappearance data in this case), one can

see that |b| ∼ 0.1|a| or, more generally, |b| � |a| is enforced. Allowing for varying Majorana

phases (cf. lower left panel), the correlation between |b|/|a| and sin θ14 gets broader, but

it is not wiped out. In particular for large values of |b|, there is still a rough one-to-one

correspondence left. However, for very small values of |b|, such as enforced by the blue

alignment, the allowed range for sin θ14 becomes quite large.

Looking at the alignments for (α, β, γ) = (0, 0, 0), the A4-like (red) alignment cor-

responds to the upper range of |b|/|a| ∼ 5, due to sin θ14 being very close to its lowest

7Note that we could have chosen sin θ24,34 instead, but these plots would not add anything significant.
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Figure 3. Correlations between sin θ14 and the ratios |b|/|a| and |b|/|c| in the left and right

columns, respectively. The Majorana phases are chosen to be zero in the upper row, and are varied

in the lower row. Again, the connection between the different quantities is very clear for vanishing

Majorana phases: a certain value of |b|/|a| corresponds to a very definite value of θ14 and the same

is true for |b|/|c|, although there exist two different possibilities for that quantity for a given θ14.

When varying the phases, some correlation persists for |b|/|a|, while it is wiped out completely for

|b|/|c|.

predicted value in that case. Note that, in this alignment, a relation like |b| � |a| has

never been imposed, but it is instead a consequence of the tightness of the parameter space

and thus a reflection of the predictivity of the concrete alignment. The D4-like (blue)

alignment in turn enforces b = 0 (and hence trivially |b|/|a| = 0), which is confirmed by

the resulting points and thus comprises a sanity check of our numerical calculations. As

before, sin θ14 is slightly smaller than 0.3 for this alignment. Varying the Majorana phases

allows the red alignment to go much further down to lower values of |b|/|a|, however, a clear
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one-to-one correspondence between |b|/|a| and sin θ14 remains present to some extend. As

anticipated for the blue alignment, having |b| = 0 opens up many possibilities for sin θ14,

which can now be as small as about 0.04.

On the right panels, the correlation between θ14 and |b|/|c| is displayed. For vanishing

(α, β, γ), cf. upper right panel, it consists of two branches. For very small values of θ14
(close to the lowest value possible, sin θ14 ∼ 0.03), both branches meet and enforce |b| ' |c|.
For larger values of θ14, however, the two branches split and enforce |b| 6= |c|. For the

upper branch, a rough bound of |c| < |b| . 2.5|c| is visible, although there are a few

points above that boundary. For the lower branch, in turn, there is no limit except for the

trivial one, |b|/|c| ≥ 0. Note that this curve cannot be understood as easily on analytical

grounds: eq. (3.5) only implies that |b|/|c| ' tan θ24/ sin θ34, and thus the dependence on

θ14 must arise from sub-leading terms. Imposing the νe disappearance data enforces either

|b| ∼ 1.25|c| or |b| ∼ 0.8|c|. While these tendencies are nicely visible, the lower right panel

of figure 3 reveals that the correlation between θ14 and |b|/|c| is practically wiped out for

general phases (α, β, γ). Thus, in this case, getting useful information is only possible for

models which predict fixed values of the Majorana phases.

The picture looks similar for the alignments. As already mentioned, in the case of

vanishing Majorana phases the A4-like (red) alignment yields quite a small θ14. Here we

can see why: (a, b, c) = (a, b, b∗) trivially imposes |b| = |c|, and this is only possible for

small θ14, as can be seen from the gray points. The D4-like (blue) alignment in turn

leads to a pretty large θ14. Also this is clear from this figure: (a, b, c) = (a, 0, c) requires

|b|/|c| = 0, which can only be fulfilled if θ14 is large enough. Both these tendencies get

practically wiped out if the phases are allowed to have arbitrary values, in which case the

alignments do not give more of a prediction than the trivial ones, i.e., |b|/|c| = 1 (red) and

|b|/|c| = 0 (blue).

4.2 Correlations between observables and phases of the alignments

A further interesting relation could potentially arise between the absolute values and the

phases of the matrix elements (a, b, c), which is displayed for b and c as examples in figure 4.

Let us again have a look at the upper panels first, for which the Majorana phases are all

taken to be zero. Note that, in this figure, the same data set is displayed in two different

ways in order to reveal certain features. Let us first look at the upper left panel. Here we

plot the quantity arg(b) + arg(c) versus the ratio |b|/|c|. As can be seen, the ball-park of

the valid points requires that either arg(b) = −arg(c) (i.e. if plotted in the complex plane

and normalised to unit length, the two vectors b and c would transform into each other

by a reflection on the real axis) or that |b| = 0 (in which case the phase of b is not well

defined and thus arg(b) = −arg(c) can be trivially fulfilled). This means in particular that

these points cannot be obtained by alignments such as (a, b, c) = (1, 4, 2)a [91, 92]. There

are also a few outlier points visible at phases ±π. These values are in principle accessible

(even though not “likely” from the parameter scan), as exemplified by the D4-like (blue)

alignment. Note that this alignment again does not enforce arg(c) = π by itself, but it

does so when combined with µ−τ symmetry. The A4-like (red) alignment trivially imposes

|b|/|c| = 1, in which case arg(b) + arg(c) = 0 is enforced.
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Figure 4. Correlation between the complex parameters b and c. In order to clearly reveal the

different features, the same data are plotted in two different ways in the left and right columns,

respectively; see main text for details. The Majorana phases are chosen to be zero in the upper

row, and are varied in the lower row.

Now we turn to the upper right panel of figure 4. Here, the same data set is displayed,

however, this time as a function of arg(b)/arg(c) instead of arg(b)+arg(c). The reason is the

following: as we had already mentioned, we need b 6= c in order not to obtain a 4×4 matrix

with an extended µ − τ symmetry, which would enforce θ13 ≡ 0. Thus, if our numerical

calculation is sensible, there should be no gray points found at b = c or, equivalently,

around the point (|b|/|c|, arg(b)/arg(c)) = (1, 1). In the left panel, this point could not be

displayed properly, since arg(b) = arg(c) would still allow for any value of arg(b) + arg(c),

but in the right panel it is marked in dark yellow. Indeed, although the same two branches

of the correlations appear in the figure, no gray points are visible around (1, 1), which is

correct since none of them could possibly yield sin θ13 = 0. Note that, while this feature is
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clearly visible in that plot, the two alignments could not be displayed properly in the right

panel: since the A4-like (red) alignment together with the µ − τ symmetry would force b

to be zero, the parameter arg(b)/arg(b∗) would for those points essentially be a division of

two (numerical) zeros in the case of varying Majorana phases. Similarly, for the D4-like

(blue) alignment, our numerical calculation would essentially find all kinds of values for

arg(b), which would be meaningless since |b| = 0, however, they would mess up the plot on

the right panel. Indeed, for the information contained, there seems to be no optimum way

to capture all the features in one single plot.

Unfortunately, nearly all these tendencies are again wiped out completely if the Ma-

jorana phases are taken to have general values, cf. lower panels of figure 4. While some

white patches may or may not be visible, there is certainly no correlation left for the gray

points. For the red alignment, one can see that, in addition to |b| = |c|, we cannot only

see that trivially arg(b) + arg(c) = 0 (lower left panel) or arg(b)/arg(c) = −1 (lower right

panel), as we could have anticipated from c = b∗. However, the lower right panel reveals

that, for the blue alignment, in addition to the trivial case arg(b) = 0, it could also be that

arg(b)/arg(c) = −1. Unfortunately, this does not have any effect as long as |b| = 0. The

only really solid prediction is that, even for the general case, the point (1, 1) is still avoided

by the gray dots. This is not easy to see by eye in the large version of the plot in the lower

right panel, but the enlarged region in the inset shows that it is nevertheless correct.

4.3 Alignments required to reproduce νe disappearance results

Finally, we would like to ask the question which alignment (a, b, c) we have to choose if we

would like to successfully reproduce a certain part of the data. Since the null results only

yield an upper bound and since our general (gray) region is incompatible with the combined

appearance data as long as θ23 is taken to be maximal and the Majorana phases are taken

to be zero, but it can easily fit the νe disappearance results, it would be interesting to see

how (a, b, c) have to be chosen for that data to be matched. This is shown in figure 5,

where we plot the absolute real and imaginary parts of (a, b, c) on the left, and some ratios

between moduli and arguments on the right.

Starting with the upper left panel, it can be seen that for all points, the real parts

dominate while the imaginary parts are comparatively small. Furthermore, while Re(a)

can be positive or negative, Re(b, c) are practically always positive. Furthermore, there

is a clear tendency for |Re(a)| to be considerably larger than Re(b, c). The latter two are

practically of the same size, although a very slight tendency for Re(b) < Re(c) is visible.

Note that, since we display absolute elements of the neutrino mass matrix, all points given

carry the unit eV.

Allowing for the Majorana phases to vary reveals the actual correlation, cf. lower left

panel of figure 1. While the allowed regions for b and c form crosses that lie on top of each

other (in fact, the corresponding points in the upper left panel also lie pratically on top

of each other, which makes it a bit difficult to distinguish them visually), the points for

a suitable entry a lie on a circle around the origin with a radius of roughly |a| ∼ 0.1 eV.

Thus, while b and/or c can in principle be zero, the e4 element a of the 4×4 neutrino mass

matrix must be non-zero with a well determined absolute value. Glancing at the upper
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Q̂ L̂ ûc1, d̂
c
1, ê

c
1 ûc2, d̂

c
2, ê

c
2 ûc3, d̂

c
3, ê

c
3 φ̂1,2 Û Û c D̂ D̂c Ê Êc χ̂

A4 3 3 1 1′ 1′′ 1 3 3 3 3 3 3 3

Z3 1 1 ω ω ω 1 1 1 1 1 1 1 ω2

Table 1. Matter assignment of the model of ref. [75]. Note that ω3 = 1 and 1 + ω + ω2 = 0.

left panel again, it is visible that setting the Majorana phases to zero essentially pics some

of the regions of the circle and of the crosses which intersect (or, rather, are close to) the

line with zero imaginary part, as to be expected from eqs. (3.5). However, in addition the

points where b, c > 0 are much more likely in that case, which is a feature that is non-trivial

to understand.

On the upper right panel, in turn, we instead show certain ratios of quantities, namely

|b|/|c| vs. |a|/|b| (dark yellow points) and arg(b)/arg(c) vs. arg(a)/arg(b) (purple points),

again for vanishing (α, β, γ). Also here, clear correlations are visible. In particular there is a

tendency for the phases of b and c to have different signs, while the phases of a and b always

have the same sign. Furthermore, the inset shows a region where arg(a)/arg(b)� 1 while

arg(b)/arg(c) ' −0.6, which simply means that for these points both arg(b, c) are very

small (i.e., b and c are nearly real), but there is a fixed ratio between the two arguments.

Allowing the Majorana phases to vary, cf. lower right panel, again increases the allowed

regions considerably. However, at least some general tendencies are visible, namely that

|b| should be somewhat small, unless |a| is small, and quite generally most of the poitns

cluster around (a, b, c) having non-identical values which are however of the same order

of magnitude.

Further such tendencies could be read off this plot and, hopefully, they will give an

indication to model builders where in the parameter space to look for a prediction that

yields an active-sterile mixing in the correct region.

5 Ideas for model building

In the literature there are many interesting examples of models giving a µ− τ symmetric

neutrino mass matrix in the basis where the charged leptons are diagonal. Here we consider

two examples to show how we can apply our results. The first example is based on A4 [75,

94] and the second one on a D4 [76] flavour symmetry. We shortly describe the main

features of both models and we show how we can extend them by a sterile neutrino in

order to generate the reactor angle.

5.1 A4 model

The model from ref. [75] is supersymmetric and it is based on the flavour symmetry A4.

This is the finite group of even permutations of four objects. It has three singlet and

one triplet irreducible representations, and it is the smallest non-Abelian discrete group

featuring triplets.
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Figure 5. Alignment points which can successfully reproduce the νe-disappearance data. In

the left column, we show the absolute sizes of the real and imaginary parts, where the different

colour codings correspond to a, b, and c, respectively. In the right column, we show the ratios

among different quantities, where the different colour codings correspond to the absolute values

and phases, respectively. The Majorana phases are chosen to be zero in the upper row, and they

are varied in the lower row.

The usual quark, lepton, and Higgs superfields transform under A4 as detailed in

table 1, where extra heavy SU(2) singlet quark, lepton, and Higgs superfields are also

added. The superpotential is given by

Ŵ = MU ÛiÛ
c
i + fuQ̂iÛ

c
i φ̂2 + huijkÛiû

c
jχ̂k +MDD̂iD̂

c
i + fdQ̂iD̂

c
i φ̂1 + hdijkD̂id̂

c
jχ̂k

+MEÊiÊ
c
i + feL̂iÊ

c
i φ̂1 + heijkÊiê

c
jχ̂k + µφ̂1φ̂2

+
1

2
Mχχ̂iχ̂i + hχχ̂1χ̂2χ̂3. (5.1)
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The Z3 auxiliary symmetry is explicitly broken softly by Mχ 6= 0. The scalar potential for

the fields χi is given by

V = |Mχχ1 + hχχ2χ3|2 + |Mχχ2 + hχχ3χ1|2 + |Mχχ3 + hχχ1χ2|2, (5.2)

and from its minimisation we get:

〈χ1〉 = 〈χ2〉 = 〈χ3〉 = u = −Mχ/hχ. (5.3)

Consider now the 6× 6 Dirac mass matrix linking (ei, Ei) to (ecj , E
c
j ),

MeE =



0 0 0 fev1 0 0

0 0 0 0 fev1 0

0 0 0 0 0 fev1
he1u he2u he3u ME 0 0

he1u he2ωu he3ω
2u 0 ME 0

he1u he2ω
2u he3ωu 0 0 ME


, (5.4)

where v1 = 〈φ01〉. The quark mass matrices look similar. The reduced 3× 3 charged lepton

mass matrix is

Me = UL

 he1
′ 0 0

0 he2
′ 0

0 0 he3
′

 √3fev1u

ME
, (5.5)

where hei
′ ≡ hei [1 + (heiu)2/M2

E ]−1/2 and

UL =
1√
3

 1 1 1

1 ω ω2

1 ω2 ω

 . (5.6)

Clearly, the up and down quark mass matrices are obtained in the same way and are

both diagonalised by UL, so that the charged-current mixing Cabibbo-Kobayashi-Maskawa

(CKM) matrix VCKM is the identity matrix. The small measured CKM angles may be

generated from corrections associated to the structure of the soft supersymmetry breaking

sector to make the model viable.

In this model the neutrino masses arise from the dimension-5 Weinberg operator,

fν
Λ
L̂iφ̂2L̂iφ̂2. (5.7)

The effective Majorana neutrino mass matrix in the basis where the charged lepton

mass matrix is diagonal is given by

Mν =
fνv

2
2

Λ
UTLUL =

f2ν v
2
2

Λ

 1 0 0

0 0 1

0 1 0

 ≡ fνv
2
2

Λ
λ0, (5.8)

giving (at this stage) a maximal atmospheric mixing angle but degenerate light neutrino

masses.
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Going down to the electroweak scale, λ0 in eq. (5.8) is corrected by the wave-function

renormalisations of νe, νµ, and ντ , as well as by the corresponding vertex renormalisa-

tions, i.e. λ0 → λ, which breaks the neutrino mass degeneracy. The radiative corrections

associated with a general slepton mass matrix in softly broken supersymmetry (related to

νi → νj transitions) are given by the matrix

R =

 δee δeµ δeτ
δeµ δµµ δµτ
δeτ δµτ δττ

 , (5.9)

so that at the low scale λ is:

λ = λ0 +Rλ0 + λ0RT =

 1 + 2δee δeµ + δeτ δeµ + δeτ
δeµ + δeτ 2δµτ 1 + δµµ + δττ
δeµ + δeτ 1 + δµµ + δττ 2δµτ

 , (5.10)

where we have assumed all parameters to be real for simplicity. The above mass matrix,

Mν , is clearly µ−τ invariant and yields a zero reactor angle as well as maximal atmospheric

mixing.

In order to generate a non-zero reactor angle in this model, we can use the method

described in this paper that makes use of one sterile neutrino ν̂s which transforms as a

singlet under A4. We assume that the sterile neutrino is charged under an extra auxiliary

symmetry Z2. We also add to the particle content of the model a scalar electroweak singlet

flavon ξ that is charged under Z2 (this parity ensures that the flavon ξ can glue only to

the sterile neutrino) and that transforms as a triplet under A4: ξ = (ξ1, ξ2, ξ3). Thus, the

superpotential contains the following extra term that mixes the active and sterile neutrinos

and also adds a sterile neutrino mass term,

Ŵ ⊃ fs
Λ
L̂iφ̂2νsξi +

ms

2
ν̂sν̂s, (5.11)

where Λ is an effective scale.

The fourth column of the neutrino mass matrix is then proportional to the VEVs of

the flavons ξi, giving

a =
fs
Λ
v2〈ξ1〉 , b =

fs
Λ
v2〈ξ2〉 , c =

fs
Λ
v2〈ξ3〉 . (5.12)

From the model-independent numerical analysis in sections 2 to 4 it is clear that the

two scalar A4 triplets ξ and χ must take VEVs in different directions of A4,

〈χ〉 ∼ (1, 1, 1) 6= (a, b, c) ∼ 〈ξ〉. (5.13)

It is well-known that, given two different A4 scalar triplets ξ and χ, the minimisation

of their scalar potential V (ξ, χ) yields as a natural solution 〈χ〉 ∼ 〈ξ〉, i.e., the VEVs

of the two fields are aligned. This is in contrast to the requirement obtained from our

numerical results, because we had found that the two triplets must take VEVs in different

A4-directions. Typically, in order to solve such a problem, it is required to break the flavour
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Le ec Lµ,τ µc, τ c νc1 νc2,3 H1 H2 H3 χ1,2

D4 1++ 1++ 2 2 1++ 2 1++ 1++ 1+− 2

Zaux
2 + − + + − − − + − +

Table 2. Matter content of the model from ref. [76].

symmetry explicitly in the scalar potential or to make use of extra dimensions. It is not the

purpose of this paper to give a complete model, but just to suggest possible strategies that

could be followed. Using explicit A4 breaking terms it is quite straightforward to obtain

the VEV misalignment required, and we do not embark this enterprise in more detail. We

also want to comment on the possibility to use extra dimensions. In this case we could

assume that, following the general idea of [78], νs and ξ live on the y = L ultraviolet (UV)

brane while all the other fields stay on the Standard Model (SM) y = 0 brane. Since in

this framework χ and ξ are located on different branes, their potentials are separated and

can easily have independent minima. However the sets of scalar fields that live on different

branes can interact at higher order, giving a deviation of the vacuum alignments. But such

a deviation is typically of order 1/(ΛL)4 (see [78] for a detailed discussion), where Λ is the

effective scale of the model. It is clear that, for sufficiently large L, the vacuum alignment

corrections are negligible. A detailed study of these corrections is beyond the scope of the

present paper because we have only sketched some possible ideas, while for a complete

study it is necessary to fix a particular model.

5.2 D4 model

This model is based on the dihedral group D4 [76]8 which has five irreducible representa-

tions, four singlets 1++, 1+−, 1−+, 1−−, and one doublet 2. The product of two doublets

is 2⊗2 = 1++⊕1+−⊕1−+⊕1−−, and the products of the singlets are trivial (for example,

1+− ⊗ 1−+ = 1−−). Differently from the previous one, this model is not supersymmet-

ric. The SM is only extended by adding three right-handed neutrinos νc1,2,3, three Higgs

doublets H1,2,3, and two neutral scalar singlets χ1,2, as detailed in table 2.

The Lagrangian is given by

L = [y1Leν
c
1 + y2(Lµν

c
2 + Lτν

c
3)]H̃1 +

+y3Lee
c
1H1 + y4(Lµµ

c + Lττ
c)H2 + y5(Lµµ

c − Lττ c)H3 +

+yχν
c
1
T (νc2χ1 + νc2χ2) +Mνc1

T νc1 +M ′(νc2
T νc2 + νc3

T νc3) +H.c. (5.14)

After flavour symmetry breaking, the χ-fields take VEVs 〈χ1〉 = 〈χ2〉, giving a µ − τ

invariant neutrino mass matrix (with maximal atmospheric and zero reactor mixings),

while the charged lepton mass matrix is diagonal. Here we do not give other details and

we refer interested readers to the original paper.

Like in the previous case based on the A4 group, we can generate a deviation of the

reactor angle from zero by the use of a sterile neutrino νs. It is also required to introduce

8The dihedral group D4 is isomorphic to the group of permutation of three objects S3.
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three extra scalar fields, ξ1 ∼ 1++ and (ξ2, ξ3) ∼ 2 under D4, which are gauge singlets.

Then, the following new terms are allowed in the Lagrangian:

L ⊃ fs1
Λ
LeH̃1νsξ1 +

fs2
Λ

[Lµξ2 + Lτξ3]H̃1νs +
ms

2
νcsνs +H.c. (5.15)

As in the A4 case, we assume that the fields νs and ξ1,2,3 transform non-trivially under an

extra Z2 symmetry. In order to generate the reactor angle, the VEV of the D4-doublet

(ξ2, ξ3) must break the µ − τ symmetry, by 〈ξ2〉 6= 〈ξ3〉. This may be in contrast to the

alignment 〈χ1〉 = 〈χ2〉. Such misalignment problems can again be solved easily by using

extra dimensions, just like in the A4 case. A detailed study of this possibility goes beyond

the scope of the present paper.

6 Summary and conclusions

In this paper we have considered the possibility that the recently measured reactor angle

and the active-sterile mixings, needed to describe the short-baseline anomalies, have a

common origin. This is suggested from the fact that the active-sterile mixings obtained in

fits of the short-baseline data in 3 +N models are of the same order as the reactor angle.

We have assumed the simplest framework possible, with only one sterile neutrino (giving a

4×4 neutrino mass matrix). We have postulated that the reactor neutrino mixing vanishes

in the active-active mass matrix part, which is why we have considered the 3 × 3 active

neutrino mass matrix to be µ− τ invariant. This assumption implies that the atmospheric

mixing angle is almost maximal, in compatibility with data. As a consequence, both a

non-zero value of θ13 and the active-sterile mixings originate from the active-sterile mass

matrix elements and are potentially of the same order of magnitude.

There have been several important questions of our analysis: 1) Which correlations

among or constraints on the observables are implied in this framework?, 2) Can the short-

baseline anomalies be reproduced?, 3) What are the requirements for the vacuum align-

ments of the VEVs?, and 4) What does that imply for flavour models?

We have demonstrated that θ14, which in our parameterisation leads to electron neu-

trino disappearance, must be non-zero in this framework. On the other hand, either θ24,

leading to muon neutrino disappearance, or θ34 can vanish (but not both at the same

time — they are anti-correlated). Therefore, this framework is perfectly consistent with

the reactor and gallium anomalies, and with the non-observation of muon neutrino disap-

pearance. It is more difficult to reconcile this approach with the LSND results, as this is

possible only for specific choices of the Majorana phases.

We have also shown how the active-sterile mixing and the non-zero value of θ13 emerge

from the misalignment of the active-sterile VEVs, i.e., the explicit breaking of the µ − τ
symmetry. We have noted that “misalignment” could refer to the absolute values and/or

phases of the VEVs, which can both be the origin of the breaking of the µ− τ symmetry.

We have also demonstrated that specific assumptions for the alignments, which can be

found in the literature based on A4 and D4 models, are in fact very predictive. These

choices may also impact the predictions for neutrinoless double beta decay. A detailed
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study is beyond the scope of this work, as the phenomenology of neutrinoless double beta

can considerably change in the presence of light sterile neutrinos, see e.g. refs. [52, 95, 96].

As far as the implications for flavour models are concerned, we have sketched the

requirements in terms of two well-known example models based on A4 and D4, respectively.

For instance, in the A4 model, scalar electroweak singlet flavons are needed which must be

triplets under A4 to generate neutrino masses. It is however well-known that it is difficult

for these triplets to take VEVs in different directions of A4. We have proposed either an

explicit breaking of A4 or the use of extra spatial dimensions. In the latter case, the sterile

neutrino and one of the flavon triplets would live on the UV brane, whereas the other flavon

and SM fields reside on the infrared/SM brane.

We conclude that, if sterile neutrinos exist, it is possible for active-sterile mixings and

the non-zero value of θ13 to have a common origin in terms of flavour models. While we have

studied the simplest setting possible, models with more than one sterile neutrino may have

much wider possibilities. Our starting point has been the µ− τ symmetric case, but other

possibilities are viable as well — as for example tri-bimaximal mixing. In such alternative

approaches, it may also be possible to describe a non-zero θ13 and strong deviations from

maximal atmospheric mixing at the same time, whereas our framework has implied θ23
being close to maximal.
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