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1 Introduction

A phase transition at zero temperature may occur as the ground state of a many-body

system is changed by tuning an external parameter. The boundary between the two phases

is a quantum critical point [1, 2], characterized by a ‘Lifshitz’ scaling symmetry t →

λzt, xi → λxi, where t is time and xi, i = 1, . . . , d are space coordinates. The number z is

the dynamical critical exponent. For an ordinary relativistic conformal field theory z = 1,

but for general systems its value can be arbitrary. Quantum critical points are believed to

underlie the exotic properties of heavy fermion compounds and other materials including

high Tc superconductors [3, 4].

At non-zero temperature, the low energy behavior of a quantum critical system may

be well described by hydrodynamics. A hydrodynamic description is valid when the char-

acteristic length of thermal fluctuations ℓT ∼ 1/T 1/z is much smaller than the correlation

length ℓc ≫ ℓT . This is the case in a V-shaped region of the phase diagram, and includes

part of the superconducting dome where a symmetry is spontaneously broken, as in figure

1. If the size of the system L is smaller than the correlation length then deviations from

criticality will be unimportant, but in the hydrodynamic approximation we also demand

that gradients are much smaller than the temperature ℓc ≫ L ≫ ℓT .

The hydrodynamics of a neutral fluid with Lifshitz symmetry has been constructed

in [5], and that of a charged Lifshitz fluid in [6]. As noted above, Lifshitz scaling is po-

tentially relevant in phases where a symmetry (global or local) is spontaneously broken

and is interesting, for instance, in the study of high Tc superconductors. In the super-

fluid/superconducting Lifshitz phase one should consider the formation of a condensate.
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Figure 1. The phase diagram with a quantum critical point (QCP) hidden under the superconduct-

ing dome. T is the temperature and g is a quantum tuning parameter (e.g. doping, magnetic field).

This leads to a hydrodynamic framework where the Lifshitz superfluid flow is a combination

of two motions, a normal fluid component that carries entropy and a super-flow component

(the gradient of the condensate phase ∂µφ) that has zero viscosity and carries no entropy.

This is the case both for relativistic (see e.g. [7–9]) and non-relativistic superfluids [10, 11].

For a superconductor one considers the gauge-invariant combination of the gradient of the

condensate phase and the external gauge field ξµ = ∂µφ−Aµ.

The aim of this paper is to construct the hydrodynamics of a Lifshitz superfluid and

superconductor. The Lifshitz superfluid is characterized by the breaking of boost invariance

(Lorentzian or Galilean). In the relativistic theory the breaking is manifest, since boosts

mix space and time coordinates and the scaling symmetry introduces an anisotropy between

them. We realize the breaking of Galilean invariance by taking the non-relativistic limit of

a theory with broken Lorentz invariance. The currents associated to Lorentz symmetries

are Jµαβ = xαTµβ − xβTµα (see e.g. chapter 7 of [12]). The divergence of these Lorentz

currents is given by:

∂µJ
µαβ = Tαβ − T βα. (1.1)

Therefore, if the theory is Lorentz-invariant the energy-momentum tensor is symmetric.

We incorporate the breaking, without introducing new hydrodynamic variables,1 by allow-

ing an antisymmetric contribution to the fluid stress-energy tensor. We define the local

notion of the time direction as the time direction in the local rest frame of the fluid, thus

the Lorentz/Galilean symmetry group is broken only in the direction of the normal-fluid

velocity. We consider both relativistic and non-relativistic velocities.

We analyze new effects allowed by the lack of boost invariance in a parity preserving

superfluid and constrain them by the local second law of thermodynamics. We find eight

new transport coefficients satisfying Onsager’s relations, associated with flows proportional

to the acceleration of the normal fluid. These transport coefficients are not present in a

1We do not add an external time direction vector to the system. This is very similar to the way in which

the collective description of phonons does not require an external vector representing the lattice structure.
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boost invariant superfluid and introduce new measurable effects. Our results are valid for

any number of spatial dimensions d ≥ 2.

The paper is organized as follows: in section 2 we generalize the constitutive relations

of a relativistic Lifshitz fluid to a superfluid. We study dissipative terms to first order in

the derivative expansion and derive the constraints imposed by the local increase of the

entropy density. In section 3 we take the non-relativistic limit and obtain the hydrodynamic

equations of non-relativistic Lifshitz superfluid. In section 4 we compare Lifshitz and non-

Lifshitz superfluids and discuss possible new physical effects due to the breaking of boost

invariance. In appendix section A we present details of the non-relativistic limit of the

Lifshitz superfluid.

2 Lifshitz superfluid hydrodynamics

Our construction of the first order Lifshitz superfluid hydrodynamics relies on previous

works on Lifshitz hydrodynamics [5, 6] and on superfluid hydrodynamics [7–9]. We will

use similar notations to the ones presented in those papers. The energy-momentum tensor

and current:

Tµν = (εn + p)uµuν + pηµν + fξµξν + πµν

Jµ = qnu
µ − fξµ + Jµ

diss ,
(2.1)

where uµ is the velocity (ηµνu
µuν = −1), εn the energy and qn the charge density of the

normal component of the fluid. p is the pressure, ξµ is proportional to the gradient of the

phase of the condensate and f determines the superfluid charge density. For a theory with

Lifshitz scaling invariance, the scaling dimensions of the temperature and the chemical

potential depend on the dynamical exponent [T ] = [µ] = z. The speed of light is also taken

as a quantity with non-zero scaling dimension [c] = z − 1. Then, the scaling dimensions of

the terms appearing in the ideal energy-momentum tensor and current are as follows:

[uµ] = 0, [εn] = [p] = d+ z, [qn] = d, [f ] = d− z, [ξµ] = z. (2.2)

Note that derivatives have all the same scaling dimension [∂µ] = 1.2 In general, transport

coefficients with a scaling dimension ∆ will have a dependence on thermodynamic quantities

of the form:

∼ T
∆
z F

(
µ

T
,
ξ2

T 2

)
, (2.3)

where F is an arbitrary function.

Our basic assumption is that no new hydrodynamic variables are needed for the de-

scription when boost symmetry is broken, and the effect of the broken symmetry is encoded

in the antisymmetric contribution to the fluid stress-energy tensor. The thermodynamic

relations are:

εn + p = Ts+ µqn, dp = sdT + qndµ+
f

2
d(ξ2) , (2.4)

2Note that ∂0 ≡ 1
c
∂t.
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and the Josephson relation:

uµξµ = µ+ µdiss .

µdiss, J
µ
diss, π

µν are first order corrections in a derivative expansion. At the derivative order,

one has to choose a frame, due to the ambiguity in the hydrodynamic description. The

frame will be specified by five frame fixing conditions (associated to T , µ and uµ). In prin-

ciple the superfluid velocity has a microscopic definition as the gradient of the Goldstone

phase and it is not free for us to redefine. We will actually work in a modified phase frame

where ξ differs from the phase gradient by dissipative terms and can be treated as a normal

thermodynamic variable. The frame is fixed by changing ξ → ξ0 with the conditions:3

ξµ0 = ζµ − µuµ, Jµ
diss = 0, πµνuµuν = 0, (2.5)

where ζµ is the transverse component (with respect to uµ) of the phase gradient. The

first condition corresponds to the modified phase prescription, while the other two take

us to the Clark-Putterman frame. In particular this frame is better suited for taking the

non-relativistic limit. A thorough discussion of the different frames can be found in the

original reference [7].

The main innovation with respect to previous works is that in a Lifshitz superfluid we

allow an antisymmetric part for the stress-energy tensor of the form:

π
[µν]
A = u[µV

ν]
A , (2.6)

where V A
µ is any vector that can be built from the fluid data and we have allowed for

breaking of boost symmetry only, rotations must be kept intact.4 In the following we will

use the local second law of thermodynamics to constrain the first derivative corrections to

the constitutive relations and the Josephson equation.

2.1 Ideal hydrodynamics

One may wonder why we did not consider at the ideal level an additional term in the

stress-energy tensor of the form:

T
[µν]
A = Cu[µξ

ν]
0 . (2.7)

The reason is that such a term is not consistent with vanishing entropy production that is

required at the ideal order. The equation for the entropy production rate is constructed at

zeroth order as follows:

0 = ∂µT
µνuν + µ∂µJ

µ = −T∂µ(su
µ) .

We ask whether it is possible to modify the entropy current, charge current, stress-energy

tensor and the thermal relations, such that the entropy production rate vanishes.

3Thermodynamic relations still take the form (2.4) with ξ → ξ0.
4More explicitly, the two conditions we impose are TµνuµP

λ
ν 6= TµνP λ

µ uν and TµνP σ
µ P λ

ν =

TµνP λ
µ P σ

ν [5, 6].
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By carefully considering all these possibilities one can show that a term of the form (2.7)

cannot be absorbed by the above redefinitions for any C 6= 0. The reason for this is

the appearance of a ξµaµ term in the entropy production rate where the acceleration is

aµ ≡ uν∂νuµ. This term cannot be compensated for by any of the redefinitions described

above. We therefore conclude that (2.1) are the most general constitutive relations allowed

at zeroth order.

2.2 The first dissipative order

Consider next the first derivative order. Since we assumed that no new hydrodynamic

variables are needed for our description of a superfluid with broken boost invariance, the full

classification of scalars/vectors/tensors can be built from the one derivative fluid data that

can be found in table (3) of [8]. The classification of tensors is according to the “explicit”

breaking of Lorentz symmetry by the presence of a normal and superfluid velocities to an

SO(d− 1) symmetry group (see [8] for details).

From the frame conditions (2.5) it follows that we can decompose the symmetric part

of the stress-energy tensor as

π(µν) = (Qµuν +Qνuµ) + ΠPµν +Πµν
t , (2.8)

where

Qµuµ = 0, Πµν
t uν = 0, Πµν

t Pµν = 0 . (2.9)

To describe the Lifshitz superfluid we add an antisymmetric part to the stress-energy

tensor of the form:

π
[µν]
A = u[µV

ν]
A , (2.10)

where V µ
A is any vector constructed from fluid data at first order in derivatives. The

stress-energy tensor then takes the form:

Tµν = (εn + p)uµuν + pηµν + fξµ0 ξ
ν
0 + π(µν) + π

[µν]
A , (2.11)

where all thermal functions are functions of µ, T, ξ0.

In section 3.2 of [8] a listing of all possible corrections to the entropy current was

presented and their contributions to the divergence of the entropy current were evaluated.

The analysis is left unchanged in our case.5

In the modified Clark-Putterman frame the entropy current takes the following form:

Jµ
s = suµ −

uν
T
πµν +

f

T
µdissζ

µ , (2.12)

5The derivation of [8] is almost unchanged in our case. The only difference is the appearance of a ∂µT ·V µ
A

term in the divergence of the entropy current which allows for quadratic terms of the form (∂µT )(∂
µT )

in the entropy current’s divergence. However, note that for the argument of [8] section 3.2 it was enough

not to have a term quadratic in P̃α
µ ∂νQ

µν where P̃µν is the projector transverse to both the normal and

superfluid velocities and Qµν = T (ξ[µuν]). Since this term is still not present in our case the argument

keeps working.
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and its divergence is given by:6

∂µJ
µ
s =− ∂µ

(uν
T

)
πµν + µdissP

µν∂µ

(
fζν
T

)
. (2.13)

In the derivation we have used the curl free condition ∂µξν − ∂νξµ = 0, or in terms of ξ0,

∂µξ0 ν − ∂νξ0µ = ∂µ(µdissuν)− ∂ν(µdissuµ) . (2.14)

In the relativistic Clark-Putterman frame (2.5) the divergence of the entropy current

is thus modified by a new term depending on V µ
A :

∂µJ
µ
s = −

[Π(∂µu
µ) + Πµν

t σµν ]

T
−

Qµ

T

[
aµ + Pµν ∂νT

T

]
+ µdissP

µν∂µ

(
fζν
T

)

−
VAµ

2T

[
aµ − Pµν ∂νT

T

]
,

(2.15)

where σαβ ≡ ∂〈αuβ〉 ≡ Pα
µ P

β
ν (∂(αuβ) − Pαβ(∂ · u)/d) is the shear tensor of the normal fluid

velocity. The right hand side of (2.15) can be written as a sum of three classes of quadratic

forms in one derivative data - scalars, vectors and tensors (under the group SO(d − 1)

which leaves uµ, ξµ unchanged). In principle all possible independent fluid data could

enter in the dissipative corrections, but actually only those that appear explicitly in (2.15)

contracted with the dissipative corrections to the currents are allowed. The reason is

that the condition of positive entropy production rate translates into the requirement that

equation (2.15) should be a positive sum of squares. If we denote by x one of the factors

that appear explicitly in (2.15) and we allow dissipative terms to contain both x and other

fluid data y that does not appear explicitly, then in the divergence of the entropy current

there will be quadratic terms of the form x2 + cxy where x and y are independent pieces

of fluid data. This cannot be positive definite unless c = 0.7

Let us now list the independent fluid data. For convenience we will define the vectors

bµ± = aµ ± Pµν ∂νT

T
. (2.16)

We have in the scalar sector 6 independent scalars. We choose 5 of them to be

Σ0 = nνb
ν
−, Σ1 = nνb

ν
+, Σ2 = nµσµνn

ν , Σ3 = ∂µu
µ, Σ4 = TPµν∂µ

(
f ζν
T

)
, (2.17)

where we have defined nµ = ζµ/ζ and we will also use the projector P̃µν = Pµν − nµnν .

In the vector sector we have 5 independent vectors. We choose 3 of them to be

W
µ
0 = P̃µνb− ν , W

µ
1 = P̃µνb+ ν , W

µ
2 = nβσβαP̃

αµ. (2.18)

6For a derivation see section 2.6 of [8].
7A general analysis like the one presented in [8] would require considering additional transport coefficients

on the right hand side of (2.15) that can be recast in the form of total derivatives, and therefore reabsorbed

by modifying the definition of the entropy current. We have checked that no such terms are allowed in our

case, see also footnote 5.
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We also have two tensors available for our construction. We choose one of them to be

Tµν =P̃α
µ P̃

β
ν σαβ . (2.19)

Note that any term involving the acceleration is in fact related to heat transfer by the

transverse projection of the ideal order equations of motion ∂µT
µν = 0:

aµ ≡ uα∂αu
µ = −Pµσ

(
∂σT

T
+

qnT

εn + p
∂σ

µ

T

)
− ζµ

∂σ (fξ
σ
0 )

εn + p
. (2.20)

For a theory with Lifshitz scaling we can read the scaling dimensions of all these terms

using (2.2). They are:

[Σi≤3] = [Wµ
i ] = [Tµν ] = 1, [Σ4] = d+ 1. (2.21)

We can now write the most general allowed form for the first order corrections to the

constitutive relations:8

µdiss =
4∑

i=0

µiΣi + · · ·

−Π =

4∑

i=0

πiΣi + · · ·

−Qµ = nµ
4∑

i=0

Q
(s)
i Σi +

2∑

i=0

Q
(v)
i W

µ
i + · · ·

−V µ
A = 2nµ

4∑

i=0

V
(s)
i Σi + 2

2∑

i=0

V
(v)
i W

µ
i + · · ·

−Πµν
t =

(
nµnν −

1

d
Pµν

) 4∑

i=0

PiΣi +
2∑

i=0

EiW
(µ
i nν)

+ τ

[
2T̃ µν +

2Σ2

d− 1

(
nµnν −

1

d
Pµν

)]
+ · · · ,

(2.22)

where the factors of T were inserted for later convenience. The “· · · ” stand for the ad-

ditional scalars/vectors/tensors completing our basis (2.17), (2.18), (2.19) of independent

fluid data to 6 scalars, 5 vectors and 2 independent tensors. Their explicit form will not be

needed in what follows since, as explained below (2.15), they are ruled out by positivity of

the entropy production rate. We can determine the scaling dimensions of the coefficients

from (2.21) and using the fact that [Tµν ] = d+ z and [µ] = z. We get:

[µi] = [π4] = [Q
(s)
4 ] = [V

(s)
4 ] = [P4] = z − 1, i ≤ 3, [µ4] = z − (d+ 1) ,

[πi] = [Q
(s)
i ] = [V

(s)
i ] = [Q

(v)
i ] = [V

(v)
i ] = [Pi] = [Ei] = [τ ] = d+ z − 1, i ≤ 3 .

(2.23)

8Note that the orthogonal scalar basis for the tensor decomposition was chosen to be Pµν , nµnν −Pµν/d

rather then the more intuitive P̃µν , nµnν . This is merely for numerical convenience in taking the non-

relativistic limit. T̃ µν = T µν +Σ2/(d− 1) · P̃µν is the traceless part of T µν .
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This partially fixes the dependence of the transport coefficients on the thermodynamic

variables to be general functions of the form (2.3).

Plugging (2.22) into (2.15) we can write the divergence of the entropy current as a

linear sum of three different quadratic forms (involving the tensor terms, vector terms and

scalar terms respectively):

∂µJ
µ
s =

1

T
(Qs +QV +QT ) , (2.24)

where,

QT = 2τT 2 ,

QV =
∑

i=0...2

[
V

(v)
i Wi · W0 +Q

(v)
i Wi · W1 + EiWi · W2

]
,

QS =
∑

i=0...4

[
V

(s)
i ΣiΣ0 +Q

(s)
i ΣiΣ1 + PiΣiΣ2 + πiΣiΣ3 + µiΣiΣ4

]
.

(2.25)

All these coefficients can be rearranged into matrices as follows:

QV =
[
W0 W1 W2

]


V

(v)
0 Q

(v)
0 E0

V
(v)
1 Q

(v)
1 E1

V
(v)
2 Q

(v)
2 E2






W0

W1

W2


 ≡ ~WT

[
~V (v), ~Q(v), ~E

]
~W ,

QS =
[
Σ0 Σ1 Σ2 Σ3 Σ4

]




V
(s)
0 Q

(s)
0 P0 π0 µ0

V
(s)
1 Q

(s)
1 P1 π1 µ1

V
(s)
2 Q

(s)
2 P2 π2 µ2

V
(s)
3 Q

(s)
3 P3 π3 µ3

V
(s)
4 Q

(s)
4 P4 π4 µ4







Σ0

Σ1

Σ2

Σ3

Σ4



≡ ~ΣT

[
~V (s), ~Q(s), ~P , ~π, ~µ

]
~Σ .

To have a positive entropy production rate these matrices are required to be positive

semi-definite. We can split the matrices into symmetric and antisymmetric parts. The

antisymmetric part will vanish if we impose Onsager’s relations that follows from the

requirement of time reversal invariance. When time-reversal invariance is broken, the

antisymmetric part can be non-zero, but it drops from the contribution to the entropy

current divergence, i.e. it is non-dissipative. The remaining symmetric contributions can

then be diagonalized through an orthogonal transformation, and the positivity condition

becomes a condition on the eigenvalues. In the usual relativistic superfluid, the first row

and column of the matrices above would be absent. The number of transport coefficients

for the superfluid is summarized in the table below:

T− preserving T− breaking

non− Lifshitz 14 7

Lifshitz 22 13

Since we do not allow parity breaking, all the transport coefficients are parity even.
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3 Non-relativistic Lifshitz superfluid

In the non-relativistic limit c → ∞ the relativistic superfluid equations should become

Landau’s two-fluid hydrodynamic description [10, 11]. Although this is a straightforward

exercise, the details are a bit cumbersome and we relegate them to appendix A. We will

just present here the result of taking the limit and analyze it.

In Landau’s description, there is a mass density ρ which is the sum of the contributions

from the normal (ρn) and the superfluid (ρs) components. The motions of the normal and

superfluid components are independent and are described by different velocities vi and vis,

respectively. An important role is played by the ‘counterflow’, the difference between the

normal and superfluid velocities, that we define as wi = vis− vi. Note that the counterflow

is invariant under Galilean boosts.

In terms of these variables, the hydrodynamic equations become:

∂t(ρn + ρs) + ∂i(ρnv
i + ρsv

i
s) = 0 ,

∂t(ρnv
i + ρsv

i
s) + ∂k(ρnv

ivk + ρsv
i
sv

k
s ) + ∂ip+ νi = 0 ,

T (∂ts+ ∂ij
i
s) + νs = 0 ,

∂tv
i
s + ∂i

(
v2s
2

+ µ+H

)
= 0 ,

(3.1)

where jis is the entropy current and νs and νi are dissipative terms that we will specify

below. The chemical potential µ is not the same variable as in the relativistic theory,

but they are closely related, the details can be found in the appendix. H = cµdiss is a

dissipative term. The equations can be identified as the continuity equation for the mass,

the generalization of the Navier-Stokes equations for the superfluid and the equation for

the entropy current, respectively. The last equation implies that vis is the gradient of a

scalar and is often referred to as the law of potential flow.

Assuming Lifshitz symmetry, the scaling dimensions of the thermodynamic variables

and velocities should be the following:9

[∂t] = [T ] = z, [∂i] = 1, [vi] = [vis] = z − 1, [µ] = 2(z − 1) ,

[p] = z + d, [ρn] = [ρs] = d+ 2− z, [s] = d .
(3.2)

The scaling dimensions of the dissipative terms are then fixed to be:

[H] = 2(z − 1), [νi] = z + d+ 1, [νs] = 2z + d . (3.3)

A coefficient with scaling dimension ∆ will have the following general dependence on the

thermodynamic variables:

∼ T
∆
z F

(
µ

T
2(z−1)

z

,
w2

T
2(z−1)

z

)
. (3.4)

9The scaling dimension of the chemical potential is different from the one in the relativistic theory

because it is associated to the mass density, so it is divided by a factor with scaling dimension [m] = 2− z

relative to the relativistic case.
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In the non-relativistic limit the qualitatively new contributions to the superfluid motion

come from the terms that contain Σ0 +Σ1 and W
µ
0 +W

µ
1 (that is, the acceleration aµ). In

order to simplify the notation we define the projector:

P ij
w = δij −

wiwj

w2
. (3.5)

Then, the new contributions take the form:

Σ0 +Σ1 ∼
wi

w
Dtvi, W i

0 +W i
1 ∼ P ij

w Dtvi + · · · . (3.6)

Where we have defined the ‘material derivative’ Dt as:

Dtv
i = (∂t + vk∂k)vi . (3.7)

We see that the qualitatively new dissipative terms contain the acceleration (projected

with respect to the counterflow direction), which are absent in non-Lifshitz superfluids.

The dissipative terms contain 14 transport coefficients that coincide with the non-

Lifshitz superfluid and that can be found in the literature (see for instance [7, 10]). In the

Lifshitz fluid there are 8 additional transport coefficients that satisfy Onsager’s relations.

In order to find the non-relativistic form of the dissipative terms we expand the relativistic

terms in powers of the speed of light:

πµν =
∑

n

1

cn
πµν
(n) , (3.8)

where n ≥ −1 depending on the component we pick. The entropy current and non-

relativistic dissipative terms are:

jis = svi +
1

T

(
πi0
(1) − πik

(0)vk

)
,

νs =
(
πi0
(1) − πik

(0)vk

) ∂iT

T
+ π0i

(−1)∂tvi + πki
(0)∂kvi +H∂i(ρsw

i) ,

νi = ∂tπ
0i
(−1) + ∂kπ

ki
(0) .

(3.9)

Note that the relativistic description is covariant, and the same must be true in the non-

relativistic limit, but the term proportional to π0i
(−1) is not covariant. In order to recover

covariance, πij must contain an asymmetric term:

πij
(0) = viπ0j

(−1) + π
(ij)
T (0) , (3.10)

where π
(ij)
T (0) is a symmetric contribution originating from the transverse terms in πµν .

The origin of the asymmetric term can be understood from (2.8) and (2.10). The leading

term appears in π0i
(−1) through the combination π0i ∼ V i

A + Qi, while the combination

appearing in πi0 ∼ −V i
A + Qi is suppressed. Both combinations appear in πij , but in the

non-relativistic limit only one survives at the right order πij ∼ vi

c (V
j
A+Qj). Therefore, we

can rewrite the dissipative terms as:

νs =
(
πi0
(1) − πik

(0)vk

) ∂iT

T
+ π0i

(−1)Dtvi + π
(ki)
T (0)∂kvi +H∂i(ρsw

i) ,

νi = ∂tπ
0i
(−1) + ∂k

(
vkπ0i

(−1)

)
+ ∂kπ

(ki)
T (0) .

(3.11)
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The 5 independent scalars of the relativistic superfluid map to:10

S0 = wiDtvi, S1 = wi∂iT, S2 = wiwjσij , S3 = ∂iv
i, S4 = ∂i

(
ρsw

i
)
, (3.12)

where σij = ∂(ivj) −
1
dδij∂kv

k is the shear tensor. The 3 independent vectors map to:

W i
0 = P ij

w Dtvj , W i
1 = P ij

w ∂jT, W i
2 = wjP ik

w σjk. (3.13)

The independent tensor maps to:

T̃ ij = P ik
w P jl

w σkl . (3.14)

Compared to the non-Lifshitz fluid, S0 and W i
0 are new allowed terms. Using (3.2) we can

determine the scaling dimensions of these terms in a theory with Lifshitz symmetry:

[S0] = [S2] = 3z − 2, [S1] = 2z, [S3] = z, [S4] = d+ 2 ,

[W i
0] = [W i

2] = 2z − 1, [W i
1] = z + 1, [T̃ ij ] = z .

(3.15)

In this basis we can expand the dissipative terms as:

H = −

4∑

A=0

As
ASA ,

πi0
(1) − πik

(0)vk = −wi
4∑

A=0

Bs
ASA −

2∑

A=0

Bv
AW

i
A ,

π0i
(−1) = −wi

4∑

A=0

Cs
ASA −

2∑

A=0

Cv
AW

i
A ,

π
(ij)
T (0) = −wiwj

4∑

A=0

Ds
ASA − P ij

w

4∑

A=0

Es
ASA −

2∑

A=0

Dv
Aw

(iW
j)
A − ηT̃ ij .

(3.16)

Possible powers of the speed of light have been absorbed in the definition of the transport

coefficients, that now depend on the thermodynamic variables T , µ and w2. The dissipative

terms appearing in the equation for the entropy should be negative semi-definite:

νs ≤ 0 . (3.17)

In order for this to happen, we should be able to group them in complete squares, leading

to the same kind of positivity conditions that we derived in the relativistic case.

10The map involves different linear combinations of the Σi scalars in the non-relativistic limit.
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With the help of (3.2), (3.3), (3.11), (3.15) and (3.16), we can derive the following

scaling dimensions for the transport coefficients:

[A0] = [A2] = −z, [A1] = −2, [A3] = z − 2, [A4] = 2(z − 2)− d ,

[Bs
0] = [Bs

2] = d− 2(z − 1), [Bs
1] = d− z, [Bs

3] = d, [Bs
4] = z − 2 ,

[Bv
0 ] = [Bv

2 ] = d, [Bv
1 ] = z + d− 2 ,

[Cs
0 ] = [Cs

2 ] = d− 4(z − 1), [Cs
1 ] = d+ 2− 3z, [Cs

3 ] = d− 2(z − 1), [Cs
4 ] = −z ,

[Cv
0 ] = [Cv

2 ] = d− 2(z − 1), [Cv
1 ] = d− z ,

[Ds
0] = [Ds

2] = d− 4(z − 1), [Ds
1] = d− 3z + 2, [Ds

3] = d− 2(z − 1), [Ds
4] = −z ,

[Es
0] = [Es

2] = d− 2(z − 1), [Es
1] = d− z, [Es

3] = d, [Es
4] = z − 2 ,

[Dv
0 ] = [Dv

2 ] = d− 2(z − 1), [Dv
1 ] = d− z, [η] = d .

(3.18)

The dependence on the thermodynamic variables of the coefficients is then partially fixed

to be of the form (3.4). Using (2.20) in the non-relativistic limit we find that to leading

order the acceleration is given by:

ai ≃
1

c2
Dtv

i ≃ −
1

c2

[
∂i

(
µ+

w2

2

)
+

wi

ρn

[
Dtρs + ρs∂kv

k + ∂k(ρsw
k)
]
+

Ts

ρn

∂iT

T

]
. (3.19)

Note, that the qualitatively new terms involve the gradient of the chemical potential to-

gether with the time derivative of the superfluid density. Using the equations of motion at

the ideal order, an alternative choice of independent scalars and vectors could be to take:

S̃0 = wi∂i

(
µ+

w2

2

)
+

w2

ρn
Dtρs ,

W̃ i
0 = P ij

w ∂j

(
µ+

w2

2

)
.

(3.20)

4 Discussion

In this work we constructed the first order hydrodynamics of quantum critical points with

Lifshitz scaling and a spontaneously broken symmetry. In the time-reversal invariant case,

we found eight new parity even transport coefficients associated with flows proportional to

the normal-fluid acceleration. In fact we encountered two new basic terms ((3.20) in the

non-relativistic case). One is associated with the projection of the normal-fluid acceleration

in the direction of the superfluid velocity and the second one with its transverse part. These

structures were not present in the case of a superfluid without broken boost invariance.

One can think of setups in which acceleration related transport terms can be measured.

An acceleration can be induced by chemical potential difference, e.g. the flow generated

between two different height levels of a fluid in an open dam. For an accelerating normal

fluid component in a background superfluid velocity, an anisotropy would be generated in

the heat flow between the parallel and the perpendicular directions with respect to the

superfluid velocity. We find it, however, difficult in general to disentangle this anisotropic

contribution from the shear one induced by S2 and W i
2, which would vanish only if the
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acceleration is homogeneous throughout the fluid. Nevertheless, we can use other setups

to measure the normal fluid viscosity (such as the drag imposed on a rotating cylinder in

a superfluid vessel). Subtracting this effect, we should be able to see the anisotropic heat

flow due to acceleration.

The generalization of the analysis to a superconductor is done by adding the external

gauge field to the condensate phase gradient. We suspect that the new terms depending on

the acceleration may be attenuated in real (solid) superconductors due to drag terms. One

can apply an alternating electric field to the superconductor in order to excite such terms.

However, since the superconducting flow exhibits zero electric resistivity, it is possible that,

for frequencies where the hydrodynamic approximation is valid, the normal flow (of finite

resistance) would be negligible and therefore a non-zero acceleration cannot be generated.

An important generalization of our work that we intend to study in the future is the

study of parity violating effects. We expect such new effects (in addition to e.g. the chiral

electric effect of [9]), in the hydrodynamics of Lifshitz superfluids and parity breaking

Lifshitz superconductors.
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A Landau’s superfluid hydrodynamics from relativistic superfluid

The relativistic energy-momentum tensor is:

Tµν = (εn + p)uµuν + pηµν + fξµ0 ξ
ν
0 + πµν , (A.1)

We will take the c → ∞ limit. The expansion of the components of the normal-fluid

velocity are, to leading order:

uµ =

(
1 +

v2

2c2

)
×

(
1 ,

vi

c

)
. (A.2)

The expansion of the components of the superfluid velocity is:

ξ00 = −c

√
ρs
f

[
1 +

Us

2ρsc2

]
, (A.3)

ξi0 = −

√
ρs
f

[
vis +

U i
s

ρsc2

]
, (A.4)

where f itself has also an expansion in 1/c, f = ρs(1 + δf/c2). The condition (2.14) leads

to:

∂tv
i
s + ∂i

(
H +

Us

2ρs
−

δf

2

)
= 0 , (A.5)
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where we have defined µdiss = H/c. As we will see below, Us = ρsv
2
s/2. Then, in order to

recover Landau’s equation for the time derivative of the superfluid velocity:

∂tv
i
s + ∂i

(
v2s
2

+ µ+H

)
= 0 , (A.6)

we should impose:

δf = −
v2s
2

− 2µ . (A.7)

We can now evaluate the Josephson condition to leading order:

uµξ0µ ≃ c

[
1 +

1

c2

(
µ+

w2

2

)]
. (A.8)

We see that the relativistic and non-relativistic chemical potentials are related as:

µrel = c+
1

c

(
µ+

w2

2

)
. (A.9)

A.1 Thermodynamic relations

In the relativistic theory the energy, pressure, etc., are functions of T , µrel and ξ0 =√
−ξµ0 ξ0µ. They satisfy the thermodynamic relations:

εn + p = Ts+ µrelqn ,

dεn = Tds+ µreldqn −
f

2
dξ20 .

(A.10)

In order to take the non-relativistic limit consistently we do the following expansion of the

normal energy and charge densities:

εn ≃ ρnc
2 + Un − ρn

v2

2
, (A.11)

qn ≃ ρnc−
1

c

(
ρn

v2

2
− µρs

)
, (A.12)

and use the expansions of the chemical potential and superfluid velocity:

µrel ≃ c+
1

c

(
µ+

w2

2

)
, (A.13)

ξ20 ≃ c2 + 2µ , (A.14)

f ≃ ρs . (A.15)

Using these expressions it is easy to check that to order O(c2) the thermodynamic identities

are trivial and to O(1) they become:

Un + p = Ts+ µρ+ ρn
w2

2
,

dUn = Tds+ µdρ+
w2

2
dρn .

(A.16)

The ‘internal energy density’ Un derived from the non-relativistic limit is not exactly the

internal energy U0 used in textbooks [10, 11]. However, both are simply related by the

shift:

U0 = Un + ρn
w2

2
. (A.17)
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A.2 Hydrodynamic equations

The equation for the conservation of momentum:

1

c
∂tT

0i + ∂kT
ki = 0 , (A.18)

becomes, at O(c0), the Navier-Stokes equation:

∂t(ρnv
i + ρsv

i
s) + ∂k(ρnv

ivk + ρsv
i
sv

k
s ) + ∂ip+Di = 0 , (A.19)

where we have defined:

Di = ∂tπ
0i
(−1) + ∂kπ

ki
(0) . (A.20)

The conservation of the energy:

1

c
∂tT

00 + ∂iT
i0 = 0 , (A.21)

gives two equations. At O(c), it is the mass current conservation:

∂t(ρn + ρs) + ∂i(ρnv
i + ρsv

i
s) = 0 . (A.22)

At O(1/c) it is the energy conservation equation:

∂t

(
Un + ρn

v2

2
+ Us

)
+ ∂i

((
Un + ρn

v2

2
+ p

)
vi + U i

s +
Us

2
vis

)
+D0 = 0 , (A.23)

where we have defined:

D0 = ∂tπ
00
(0) + ∂iπ

i0
(1) . (A.24)

We will now combine (A.23) −v· (A.19) +v2

2 (A.22). We will also set:

Us = ρs
v2s
2

, U i
s =

Us

2
vis + uis , wi = vis − vi . (A.25)

We get:

∂tUn + ∂i
(
Unv

i + uis
)
+ p∂iv

i +
w2

2
(∂tρs + ∂i(ρsv

i
s))+

+ρsw
i
[
∂tv

i
s + ∂kv

i
sv

k
s

]
+D0 − viDi = 0 .

(A.26)

We can now use:11

∂kvs i = ∂ivs k , (A.27)

and combine (A.26) −
(
µ+ w2

2

)
(A.22).12 We also set:

uis = (µ+H)ρsw
i . (A.28)

11This is a consequence of the curl free condition (2.14).
12This corresponds to the relativistic combination ∂µT

µνuν + µ∂µJ
µ leading to entropy production.
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This leads to the equation:

∂tUn+∂i
(
Unv

i
)
+

(
p−ρn

w2

2
−µρ

)
∂iv

i−µ(∂tρ+vi∂iρ)−
w2

2
(∂tρn+vi∂iρn)+

+H∂i(ρsw
i) + ρsw

i

[
∂tv

i
s + ∂i

v2s
2

+ ∂i(µ+H)

]
+D0 − viDi=0 ,

(A.29)

where ρ ≡ ρn+ρs is the total mass density. We now use the thermodynamic relations (A.16)

and derive the conservation of the entropy current to ideal order by using the equation for

the time derivative of the superfluid velocity (A.6).

Including dissipative terms, the entropy equation is:

T (∂ts+ ∂i(sv
i)) +D0 − viDi +H∂i(ρsw

i) = 0 . (A.30)

More explicitly:

T (∂ts+ ∂i(sv
i)) + ∂tπ

00
(0) + ∂iπ

i0
(1) − vi(∂tπ

0i
(−1) + ∂kπ

ki
(0)) +H∂i(ρsw

i) = 0 . (A.31)

We have used that πi0
(0) = 0 and allowed for a term O(c) in π0i (this is clearly only possible

if we have asymmetric terms). Using now:

∂µX = T∂µ

(
X

T

)
+X

∂µT

T
, (A.32)

we can rewrite the entropy equation as:

T

[
∂t

(
s+

1

T

(
π00
(0) − π0i

(−1)vi

))
+ ∂i

(
svi +

1

T

(
πi0
(1) − πik

(0)vk

))]
+

+
(
π00
(0) − π0i

(−1)vi

) ∂tT

T
+
(
πi0
(1) − πik

(0)vk

) ∂iT

T
+ π0i

(−1)∂tvi + πki
(0)∂kvi+

+H∂i(ρsw
i) = 0 .

(A.33)

We will now use the frame condition in the non-relativistic limit:

0 = πµνuµuν ≃ π00
(0) − π0i

(−1)vi +O(1/c) . (A.34)

The entropy equation then becomes:

T

[
∂ts+ ∂i

(
svi +

1

T

(
πi0
(1) − πik

(0)vk

))]
+

+
(
πi0
(1) − πik

(0)vk

) ∂iT

T
+ π0i

(−1)∂tvi + πki
(0)∂kvi+

+H∂i(ρsw
i) = 0 .

(A.35)

A.3 Terms depending on the acceleration

From the derivation above we see that in the Lifshitz superfluid new dissipative terms

proportional to the acceleration Dtv
i are allowed.

One can use the ideal equations of motion of the relativistic superfluid to derive the

relation (2.20) between the acceleration and the gradients of temperature and chemical
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potential that is valid to leading order in the derivative expansion. In the non-relativistic

limit, the expansion of the gradient terms is to leading order:

Pµσ

[
∂σT

T
+

qnT

εn + p
∂σ

µ

T
+ ζσ

∂α (fξ
α
0 )

εn + p

]

≃
δµi

c2

[
∂i

(
µ+

w2

2

)
+

Ts

ρn

∂iT

T
+

wi

ρn
(∂tρs + ∂k(ρsv

k
s ))

]
.

(A.36)

Then, to leading order, the acceleration only has non-zero spatial components:

ai ≃
1

c2
Dtvi = −

1

c2

[
∂i

(
µ+

w2

2

)
+

Ts

ρn

∂iT

T
+ wi

Dtρs + ρs∂kv
k + ∂k(ρsw

k)

ρn

]
. (A.37)

Therefore, in this approximation we can trade the terms proportional to the acceleration

by terms depending on gradients of the chemical potential.

Open Access. This article is distributed under the terms of the Creative Commons
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