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1 Introduction

Quantum field theory in curved spacetimes [1, 2] is a subject of great relevance that has lead

to many interesting areas of research in the past few decades. Although it is believed to be

a good physical description in circumstances where quantum gravitational effects do not

play a dominant role, the reader must also be aware of its limitations. For instance, current

research suggests that effective QFT might break down in places where the curvature of

spacetime is not so large, leading to various well-known puzzles and paradoxes [3–5]. Albeit

gravity is treated classically, QFT in a fixed background has provided us historically with

a tool to investigate qualitatively some of the most fundamental questions in quantum

gravity, e.g. understanding various aspects of black hole thermodynamics and deriving the

physical consequences of inflation and modern cosmology.

QFT in curved spacetimes is often discussed in terms of free field theory but it has

been extended to perturbative studies of weakly coupled field theories. While most of the

qualitative features are visible at this level, understanding the strong-coupling and non-

perturbative dynamics is of interest. Indeed, in the context of cosmology it is plausible

that strong dynamics might have played an important role in the early universe.

In recent years, the discovery of the AdS/CFT correspondence [6–8] has provided

tools for the study of a large class of strongly-coupled QFTs. To date, there have been a

number of proposals for holographic theories living in de Sitter space and other cosmological

backgrounds [9–28]. The purpose of the present paper is to study entanglement generated

during the cosmological evolution [29–38]. Entanglement entropy (or geometric entropy) is

an important concept and a useful tool in quantum field theories and quantum many body

systems, and serves as a probe to characterize states of matter with long range correlations.

As a first step we will consider strongly coupled gauge theories in de Sitter spacetime in the

large-N limit and we will analytically compute entanglement entropies of spherical regions

in the conformally flat patch and the static patch using the holographic prescription. We

will then use entanglement entropy as a tool to study thermalization of out of equilibrium

configurations in de Sitter space.

It is well known that entanglement entropy of a spatial region in a local field theory is

UV-divergent

S = Sdiv + Sfinite .

The remarkable feature of the entanglement entropy in de Sitter is that Sdiv is fully regu-

lated by subtracting the flat space result.1 On the other hand, Sfinite contains information

about the long range entanglement and it is expected to be more sensitive to the curvature

of space-time. Another local way to deal with the UV divergences was introduced in [39]

which amounts to compare entanglement entropies of spheres of similar radii.

Let us now focus on the finite part Sfinite. When the size of the sphere is much smaller

than the de Sitter horizon, R � H−1, Sfinite is expected to be the same as in flat space-

time. However, for a particular conformal field theory2 (CFT) which has a gravity dual

1It is also known that the divergent piece of the entanglement entropy at finite temperature in the flat

space-time can also be regulated by subtracting the zero temperature result.
2Note that in de Sitter there are gravitational conformal anomalies in even space-time dimensions.
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we will show that Sfinite in (1 + 1) and (2 + 1) dimensions is exactly the same as in flat

space-time for R < H−1.

In (3+1)-dimensions, Sfinite is more sensitive to the curvature and we find for R < H−1

SH(R)− S0(R) = −c AH2 ,

where c is a constant and A is the proper area of the sphere. We will also show that the

entanglement entropy of a sphere of radius R in the static patch of de Sitter is the same as

the entanglement entropy of a sphere of proper radius R in the conformally flat patch of de

Sitter when the size of the sphere is smaller than the size of the event horizon. Behaviors

of the extremal surfaces for radii smaller and larger than the horizon are entirely different

and as a consequence the entanglement entropy undergoes a phase transition at R = H−1.

This phase transition is a signal of a drastic change in correlations at distance R = H−1.

It is important to note that only a super-observer can “see” this phase transition of the

entanglement entropy.

The above feature is more prominent in the so-called renormalized entanglement en-

tropy, introduced in [39], which is a derived quantity that has some advantages over entan-

glement entropy. Entanglement entropy of a region of size R is sensitive to the physics from

scale R all the way down to the short distance cut-off ε, whereas renormalized entangle-

ment entropy Sd(R) is expected to be most sensitive to degrees of freedom at scale R and

it somewhat naturally describes the RG flow of the entanglement entropy. In particular,

for the vacuum of Lorentz invariant, unitary QFTs Sd(R) in (1 + 1) and (2 + 1) dimen-

sions is monotonically decreasing and non-negative, providing a central function out of the

entanglement entropy. In de Sitter we will show that Sd(R) = constant when R < H−1.

In (1 + 1) and (2 + 1) dimensions Sd(R) = 0 when R > H−1 because regions separated

by a distance R > 1/H are causally disconnected. In (3 + 1)-dimensions, the renormalized

entanglement entropy is more complicated and it is neither monotonic nor positive for

R > H−1. It is perhaps an indication that the definition of S4(R) should be modified in

order to construct a central function out of the entanglement entropy.

Entanglement is also a useful probe in out-of-equilibrium configurations. For instance

it has been shown that, in comparison to other non-local observables (two-point functions

and Wilson loops), entanglement entropy equilibrates the latest when the system undergoes

a global quench [40–42], thus setting the relevant time-scale for the approach to thermal

equilibrium. We will explore the issue of thermalization in dS space and we will use

entanglement entropy to characterize the time evolution of the system. The time-dependent

configurations relevant in the present context are achieved by turning on for a short time

interval a uniform density of sources. The relevant interval of time δt is taken to be much

smaller than any other scale in the system, and then is turned off. The work done by

the sources take the system to an excited state which subsequently equilibrates under the

evolution of the same Hamiltonian before the quench.

In the context of QFT, the study of such non-equilibrium situations is a serious chal-

lenge and a topic of current research. In a recent paper [43], Calabrese and Cardy showed

that for a variety of (1 + 1)-dimensional CFTs as well as for some lattice models, entangle-
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ment entropy for a segment of length ` grows linearly in time as

∆S(t) ∼ t

tsat
Ssat,

and then reaches saturation at some t = tsat. Here, ∆S represents the difference of the

entanglement entropy with respect to the initial state, and Ssat is the equilibrium value

after it reaches saturation. They argued that this remarkably simple behavior can be under-

stood from a simple model of entanglement propagation using free-streaming quasiparticles

traveling at the speed of light.

This kind of non-equilibrium configurations has also been considered holographically

by studying the gravitational collapse of a shell of null dust in AdS, i.e. by means of the

so-called Vaidya geometries, starting with the seminal works [44–46] and continuing with

a large body of work that includes the recent additions [47–74]. Of particular relevance for

the present context are the results of [69, 74]. In these papers Liu and Suh showed that,

for holographic theories with a gravity dual, entanglement entropy also undergoes a series

of regimes resembling those in phase transitions: pre-local-equilibration quadratic growth,

post-local-equilibration linear growth, memory loss, and saturation. These results apply

for strongly-coupled QFTs in Minkowski space.

A natural question that arises here is that if these universal features also show up in

theories living in different backgrounds, and in de Sitter space in particular. The study of

out-of-equilibrium physics in the theories we are considering in the present paper is also

interesting on its own right. On one hand, it is known that the early universe went through

a series of epochs with varying temperature and intricate strongly-coupled dynamics. While

there are known techniques in field theory that allows us to handle certain non-equilibrium

problems [75–77], the fact that the theories under consideration are strongly-coupled render

the perturbative methods unreliable. Here is where holography plays a useful role.

This rest of the paper is organized as follows: in section 2, we study gravity solutions

that are dual to field theories in a fixed de Sitter background. We show explicitly two

possible slicings, one that is dual to the static patch and a second one that is dual to the

conformally flat patch. In section 3 we give a brief review of entanglement entropy, the

Ryu-Takayanagi prescription and two useful derived quantities that we shall study in the

present context: mutual information and renormalized entanglement entropy. In section 4

and 5 we compute the entanglement entropy in the Bunch-Davies vacuum of de Sitter

QFTs in various dimensions. Section 6 is devoted to study the evolution of entanglement

entropy in time-dependent configurations. Finally, in section 7 we make some comments

about our results and close with conclusions.

2 Gravity solutions with dS slices

The purpose of this section is to study gravity solutions to Einstein’s equations with a

foliation such that the boundary metric corresponds to de Sitter space in a given coordinate

system. In (d + 1)-dimensions, the Einstein-Hilbert action with negative cosmological

constant is given by

S =
1

2κ2

∫
dd+1x

√
−g (R− 2Λ) , (2.1)

– 4 –
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which gives the following equations of motion

Rµν −
1

2
(R− 2Λ) gµν = 0 . (2.2)

Here κ2 = 8πG
(d+1)
N and Λ = −d(d− 1)/2L2.

Any asymptotically AdS metric can be written in the Fefferman-Graham form [78]

ds2 =
L2

z2

(
gµν(z, x)dxµdxν + dz2

)
, (2.3)

from which the dual CFT metric ds2 = gµν(x)dxµdxν can be directly read off as gµν(x) =

gµν(0, x). The full function gµν(z, x) also encodes data dual to the expectation value of

the CFT stress-energy tensor Tµν(x). More specifically, in terms of the near-boundary

expansion

gµν(z, x) = gµν(x) + z2g(2)
µν (x) + . . .+ zdg(d)

µν (x) + zd log(z2)h(d)
µν (x) + . . . , (2.4)

the standard GKPW recipe for correlation functions [7, 8] leads after appropriate holo-

graphic renormalization to [79–81]

〈Tµν(x)〉 =
dLd−1

16πG
(d+1)
N

(
g(d)
µν (x) +X(d)

µν (x)
)
, (2.5)

where X
(d)
µν = 0 ∀ odd d (reflecting the fact that for odd boundary dimensions, there are

no gravitational conformal anomalies),

X(2)
µν = −gµνg(2)α

α , (2.6)

X(4)
µν = −1

8
gµν

[(
g(2)α
α

)2
− g(2)β

α g
(2)α
β

]
− 1

2
g(2)α
µ g(2)

αν +
1

4
g(2)
µν g

(2)α
α ,

and X
(2d)
µν for d ≥ 3 given by similar but longer expressions that we will not transcribe

here. In (2.6) it is understood that the indices of the tensors g
(n)
µν (x) are raised with the

inverse boundary metric gµν(x).

2.1 The static patch

The de Sitter spacetime in d-dimensions has an isometry group of SO(d, 1). For free

field theory, there is a family of de-Sitter invariant vacuum states and it is known as

the α-vacua [82, 83]. However, among these states only the Bunch-Davies (or Euclidean)

vacuum [84] reduces to the standard Minkowski vacuum in the limit H → 0.

This state is well defined on the entire manifold but, for concreteness, in this section we

will center our discussion in the static patch of de Sitter, which covers the causal diamond

associated with a single geodesic observer,

ds2 = −
(
1−H2r2

)
dt2 +

dr2

1−H2r2
+ r2dΩ2

d−2. (2.7)
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The name “static” comes from the fact that it has a killing vector ∂t associated with the

isometry of time translations. Therefore, energy as well as entropy are well defined quan-

tities. For such an observer, the Bunch-Davies vacuum is characterized by a temperature

TdS = H/2π that is associated to the presence of a cosmological horizon at r = 1/H, where

H denotes the value of the Hubble constant [85]. This can be obtained by continuing to

Euclidian space and imposing regularity on the horizon.

To obtain a solution dual to a QFT in a given background we start by writing the

d + 1-dimensional metric of the bulk in the Fefferman-Graham form. In particular, for

static dS we can assume that the bulk is independent of time,

ds2 =
L2

z2

(
−f(r, z)dt2 + j(r, z)dr2 + h(r, z)dΩ2

d−2 + dz2
)
. (2.8)

The next step is to write the functions f(r, z), j(r, z) and h(r, z) as a series expansion in z

and solve order by order the Einstein equations (2.2).

f(r, z) = f0(r) + f2(r)z2 + f4(r)z4 + · · · ,
j(r, z) = j0(r) + j2(r)z2 + j4(r)z4 + · · · , (2.9)

h(r, z) = h0(r) + h2(r)z2 + h4(r)z4 + · · · .

The first coefficients in the above expansions are related to the boundary metric, so if

we want the boundary theory to be defined on the static patch of de Sitter we have to

impose that

f0(r) = 1−H2r2, j0(r) =
1

1−H2r2
, and h0(r) = r2. (2.10)

After plugging the ansatz (2.10) in Einstein equations (2.2), we find that for all d the

solutions are truncated at order O(z4),

f(r, z) =
(
1−H2r2

)(
1− H2z2

4

)2

,

j(r, z) =
1

1−H2r2

(
1− H2z2

4

)2

, (2.11)

h(r, z) = r2

(
1− H2z2

4

)2

.

For these metrics, the curvature scalars are given by

RµνσρRµνσρ =
2d(d+ 1)

L4
, (2.12)

RµνRµν =
d2(d+ 1)

L4
, (2.13)

R = −d(d+ 1)

L2
, (2.14)

which show that these backgrounds are completely smooth and absent of singularities. The

solutions have a regular Killing horizon at z = 2/H with constant surface gravity, and this

– 6 –
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is in fact related to the temperature of the field theory TdS = H/2π. In addition, there is

also the expected horizon at r = 1/H ∀ z.
It is interesting to note that the authors of [24] derived a family of solutions dual to

QFTs in de Sitter space for arbitrary temperature (not necessarily on the de Sitter invariant

vacuum). These solutions are found to be related by a bulk diffeomorphism (that acts as

a boundary conformal transformation) to the so-called hyperbolic (or topological) black

holes described in [86–88]. We will come back to these solutions in section 6.

The energy-momentum tensor of the boundary theory can be obtained from (2.5), and

turns out to be 〈Tµν(x)〉 = 0 ∀ odd d,

〈Tµν〉 = − L

2κ2
H2diag

{
−
(
1−H2r2

)
,

1

1−H2r2

}
for d = 2, (2.15)

〈Tµν〉 = − L3

2κ2

3H4

4
diag

{
−
(
1−H2r2

)
,

1

1−H2r2
, r2, r2 sin2 θ

}
for d = 4 . (2.16)

This result captures the correct conformal anomaly present in even dimensions.

2.2 The conformally flat patch

To obtain a gravity solution dual to a QFT living in another dS chart we can proceed

as we did in the previous section. However, note that for our previous background, the

Fefferman-Graham metric (2.3) factorizes such that gµν(z, x) = f(z)gdS
µν(x), with

f(z) =

(
1− H2z2

4

)2

, (2.17)

and gdS
µν(x) being the d-dimensional de Sitter metric. This fact provide us with a convenient

shortcut: the bulk metric for any other dS chart can be obtained just by a coordinate

transformation of (2.8). We can thus express gdS
µν(x) in any coordinate system and it will

immediately related to our previous solution via a trivial diffeomorphism that does not

mix the z-coordinate (and thus preserving the Fefferman-Graham form).

Here we are interested in the planar patch of de Sitter. The planar patch is conformally

related to Minkowski space and it covers one half of global de Sitter,

ds2 =
1

H2η2

(
−dη2 + d~x2

)
. (2.18)

Here η is the so-called conformal time and is related to the usual FRW time by the relation

dη ≡ dt

a(t)
=

dt

eHt
. (2.19)

For this coordinate system then, the corresponding bulk metric reads

ds2 =
L2

z2

(
f(z)

H2η2

(
−dη2 + d~x2

)
+ dz2

)
, (2.20)

where the function f(z) is given in (2.17).

– 7 –
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A

B

Figure 1. Tshe total system can be divided into two subsystems A and B ≡ Ac; the entanglement

entropy measures the amount of information loss because of smearing out in region B.

The analysis of curvature invariants is the same as in equations (2.12)–(2.14). The

boundary stress-energy tensor is related to the one in the static patch by a trivial diffeo-

morphism:

〈Tµν〉 = − L

2κ2η2
diag {−1, 1} for d = 2, (2.21)

〈Tµν〉 = − L3

2κ2

3H2

4η2
diag {−1, 1, 1, 1} for d = 4 (2.22)

and 〈Tµν(x)〉 = 0 ∀ odd d.

3 Entanglement entropy, mutual information and number of degrees of

freedom

When we consider an arbitrary quantum field theory with many degrees of freedom, we

can ask about the entanglement of the system. To describe the system, we define a density

matrix, ρ, which is a self-adjoint, positive semi-definite, trace class operator. Now, on

a constant time Cauchy surface let us imagine dividing the system into two subsystems

A and Ac, where Ac is the complement of A. The total Hilbert space then factorizes as

Htotal = HA ⊗HAc , see figure 1. For an observer who has access only to the subsystem A,

the relevant quantity is the reduced density matrix defined as

ρA = trAc ρ . (3.1)

The entanglement between A and Ac is measured by the entanglement entropy, which

is defined as the von Neuman entropy using this reduced density matrix

SA = −trA ρA log ρA . (3.2)

In AdS/CFT, Ryu and Takayanagi [89] conjectured a formula to compute the entanglement

entropy of quantum systems with a static (d + 1) dimensional gravitational dual. The

– 8 –
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Figure 2. A schematic diagram of the extremal surface used for calculation of the entanglement

entropy.

entanglement entropy of a region A of the quantum field theory is given by

SA =
1

4G
(d+1)
N

min [Area (γA)] , (3.3)

where GN is the bulk Newton’s constant, and γA is the (d − 1)-dimensional area surface

such that ∂γA = ∂A, see figure 2. For background with time dependence, this proposal

has been successfully generalized to [90]

SA =
1

4G
(d+1)
N

ext [Area (γA)] , (3.4)

where now minimal area surface is replaced by extremal surface. It is well known that

entanglement entropy of a spatial region in a local field theory is UV-divergent

S = Sdiv + Sfinite . (3.5)

Only local physics contributes to the UV-divergent piece Sdiv. On the other hand Sfinite

contains information about the long range entanglement.

Mutual information is a quantity that is derived from entanglement entropy. Mutual

information between two disjoint sub-systems A and B is defined as

I(A,B) = SA + SB − SA∪B (3.6)

where SA, SB and SA∪B denote entanglement entropy of the region A, B and A ∪ B
respectively with the rest of the system (see figure 3 for an example). Mutual information

is a UV-finite quantity and hence it does not depend on regularization scheme. Moreover,

as showed in [91], given an operator OA in the region A and OB in the region B, mutual

information sets an upper bound

I(A,B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2〈O2
A〉〈O2

B〉
(3.7)

and thus measures the total correlation between the two sub-systems: including both

classical and quantum correlations.

– 9 –
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Figure 3. The two disjoint sub-systems A and B, each of length l along X-direction and separated

by a distance x. The schematic diagram on the right shows the possible candidates for minimal

area surfaces which is relevant for computing SA∪B . See [92] for a detailed discussion.

Renormalized entanglement entropy, introduced in [39], is another derived quantity

which is UV-finite. For a region A with a single length scale R, it is defined as

Sd(R) =
1

(d−2)!!

(
R
d

dR
− 1

)(
R
d

dR
− 3

)
. . .

(
R
d

dR
− (d− 2)

)
Sd(R) d odd

=
1

(d− 2)!!
R
d

dR

(
R
d

dR
− 2

)
. . .

(
R
d

dR
− (d− 2)

)
Sd(R) d even , (3.8)

where Sd(R) is the entanglement entropy of the region A. Renormalized entanglement

entropy Sd(R) has some nice properties: (i) for a CFT Sd(R) is a constant, (ii) for a

renormalizable quantum field theory both Sd(R → 0) and Sd(R → ∞) are constants and

as R is increased from zero to infinity Sd(R) interpolates between them, (iii) Sd(R) is

expected to be most sensitive to degrees of freedom at scale R. Sd(R) somewhat naturally

describes the RG flow of the entanglement entropy with distance scale [39, 93].

Particularly, for d = 2, 3 and 4, Sd(R) is given by

S2(R) = R
dS2(R)

dR
, (3.9)

S3(R) = R
dS3(R)

dR
− S3(R) , (3.10)

S4(R) =
1

2

(
R2d

2S4(R)

dR2
−RdS4(R)

dR

)
. (3.11)

4 Entanglement entropy in (1 + 1) dimensions

In this section we will compute the entanglement entropy of an interval x ∈
[
−a

2 ,
a
2

]
at

time η = η0 for a strongly coupled QFT living in the conformally flat patch of de Sitter

in (1 + 1) dimensions, using the holographic prescription (3.4). We choose the standard

– 10 –
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Bunch-Davies vacuum state of the field theory and the dual bulk metric is given by (2.20).

The minimal area surface can be parametrized by two functions: x(z) and η(z) with the

boundary conditions

x(z = 0) = ±a
2
, η(z = 0) = η0. (4.1)

The area functional is given by,

A = L

∫
dz

z

√
1 +

f(z)

H2η2
(x′2 − η′2) . (4.2)

Before, we proceed, let us perform a change of variable that will make our life easier

η(z) = − 1

H

e−Hτ(z)√
1−H2r(z)2

, (4.3)

x(z) = −Hη(z)r(z). (4.4)

Note that ∆r(0) = ∆x(0)/H|η0| is the proper length of the interval ∆x(0). In terms of

these new functions, the action becomes

A = L

∫
dz

z

√
1 + f(z)

(
r′2

1−H2r2
− (1−H2r2) τ ′2

)
(4.5)

with boundary conditions:

r(z = 0) = ± l
2
, τ(z = 0) = τ0 (4.6)

where τ0 is related to η0 and l is the proper length of the interval a. The action is

independent of η, however now we are restricted to lH < 2, i.e. the interval is smaller than

the size of the horizon.

Equations (4.2), (4.5) lead to two conserved quantities:

f(z)(1−H2r2)τ ′

zL
= c1 , (4.7)

f(z)x′

zH2η2L
= c2 , (4.8)

where, c1, c2 are constants and

L =

√
1 +

f(z)

H2η2
(x′2 − η′2) =

√
1 + f(z)

(
r′2

1−H2r2
− (1−H2r2) τ ′2

)
. (4.9)

Therefore, for lH < 2, we obtain
dτ

dx
= eHτ

c1

c2
. (4.10)
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4.1 Connected solution

When lH < 2, we can use action (4.5) to obtain U-shaped solutions. From the action (4.5)

it is clear that for these solutions τ(z) = τ0 and only r(z) has a nontrivial profile. Let us

introduce rH = sin θ and in terms of θ(z), equation of motion is obtained to be

Hθ′(z) = ±
Hz
√
f(zc)

zc

√
f(z)2 − f(zc)f(z)z2

z2c

(4.11)

and the area is given by

A = 2L

∫ zc

ε

dz

z

f(z)√
f(z)2 − f(zc)f(z)z2

z2c

= −2L ln ε+ 2L ln

(
8zc

4 +H2z2
c

)
, (4.12)

where, zc is the closest approach point obtained from the boundary condition

l =
2

H
sin

∫ zc

0

dzHz
√
f(zc)

zc

√
f(z)2 − f(zc)f(z)z2

z2c

 =
8zc

4 +H2z2
c

. (4.13)

Therefore, the entanglement entropy is given by,

S =
c

3
ln

(
l

ε

)
=
c

3
ln
(a
ε

)
− c

3
ln(H|η0|) , (4.14)

where, c = 3L

2G
(2+1)
N

.

4.2 Disconnected solution

The disconnected solution is given by: x(z) = ±a
2 , η(z) = η0 and the corresponding entan-

glement entropy is given by

S = − c
3

log(εH) +
c

3
log 2 . (4.15)

Therefore, there is a transition from the connected solution to the disconnected solution

at lH = 2. It is important to note that l < 2/H is the region accessible to a single ob-

server and hence only a “super-observer” can “see” this transition of entanglement entropy

(see figure 4).

Finally the entanglement entropy is given by,

S =
c

3
ln

(
l

ε

)
Θ(2− lH) +

c

3
ln

(
2

εH

)
Θ(lH − 2) , (4.16)

where, Θ is the Heaviside theta function. Few comments are in order: note that in (1 + 1)

dimensions, entanglement entropy of an interval of length l in flat space is the same as

entanglement entropy of an interval of proper length l in the conformally flat patch of de

Sitter, when the interval is smaller than the size of the horizon for a single observer. How-

ever, a “super-observer” will see a difference in the behavior of the entanglement entropy.
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0.5
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Figure 4. Extremal surfaces for d = 2 in (r, z) coordinates; zH = 0 is the boundary and zH = 2

is the Killing horizon. Blue lines are U-shaped extremal surfaces for lH < 2 and red lines are

disconnected extremal surfaces for lH > 2. Dashed brown line is the extremal surface for lH = 2.

4.3 Mutual information

Let us now calculate mutual information of two intervals A and B of length a (proper

length l) separated by a distance b (proper length x). Mutual information undergoes an in-

teresting entanglement/disentanglement “phase-transition” (see figure 5) which is qualita-

tively different from what has been discussed in [92]. We will consider three separate cases.

4.3.1 Case I: x + 2l ≤ 2/H

In this case, mutual information is independent of H:

I(A,B) =
c

3
ln

(
l2

x(2l + x)

)
=
c

3
ln

(
a2

b(2a+ b)

)
b

a
=
x

l
≤ 0.414

= 0
b

a
=
x

l
> 0.414. (4.17)

4.3.2 Case II: l ≤ 2/H and x + 2l ≥ 2/H

I(A,B) =
c

3
ln

(
Hl2

2x

)
Hl2 ≥ 2x

= 0 Hl2 < 2x. (4.18)

4.3.3 Case III: l ≥ 2/H

I(A,B) =
c

3
ln

(
2

xH

)
Hx ≤ 2

= 0 Hx > 2. (4.19)
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Figure 5. Entanglement/disentanglement transition of mutual information in (1 + 1)−dimensions.

Mutual information is nonzero only in the shaded region. Dashed black line is the transition curve

in flat space.

Let us now comment on a few key features of mutual information in this case. When

the intervals are comparable to the horizon size (i.e. lH ∼ O(1)), entanglement between

them increases. However, mutual information between any two intervals separated by a

proper distance xH ≥ 2 is identically zero. It implies that for any two intervals A and B,

separated by a distance larger than the horizon size, ρA∪B = ρA ⊗ ρB and hence they are

completely disentangled.

4.4 Renormalized entanglement entropy

For d = 2, S2(R) is monotonically decreasing for all Lorentz-invariant, unitary QFTs and

hence it indeed describes RG flow of the entanglement entropy. It is interesting to investi-

gate how S2(R) behaves for de Sitter QFTs in the Bunch-Davies vacuum state. Particularly,

when lH < 2, renormalized entanglement entropy is non-zero and independent of lH

S2(l) =
c

3
. (4.20)

However, for lH > 2 it vanishes

S2(l) = 0 . (4.21)

Thus, the renormalized entanglement entropy undergoes a phase transition. This is not

very surprising since S2(l) measures entanglement correlations of a system at distance scale

l and two points separated by a distance l > 2/H are causally disconnected.
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5 Entanglement entropy of a sphere in d-dimensions

In this section, we will compute the entanglement entropy of a spherical region
∑d−1

i=1 x
2
i ≤

a2 for a field theory living in the conformally flat patch of d−dimensional de Sitter space-

time. We choose the Bunch-Davies vacuum state and the corresponding dual (d + 1)-

dimensional bulk metric is given by (2.20). We will show that the entanglement entropy of

a sphere of radius R in the static patch of de Sitter is the same as entanglement entropy

of a sphere of proper radius R in the conformally flat patch of de Sitter when the size of

the sphere is smaller than the size of the horizon.

Because of the spherical symmetry, the extremal surface can be parametrized by two

functions: ρ(z) and η(z) and the area functional is given by

A = Ld−1Ωd−1

∫
dz

zd−1

f(z)(d−2)/2ρd−2

(Hη)d−2

√
1 +

f(z)

H2η2
(ρ′2 − η′2) , (5.1)

where, Ωd−1 is the area of a unit sphere in d− 1 dimensions. The boundary conditions are

η(ε) = η0, ρ(ε) = a , (5.2)

where, ε is the short distance cut-off that we need to introduce in order to regularize the

area of the extremal surface. The proper radius of the sphere is given by, R = a/(|η|H).

5.1 RH < 1: connected solution

When ρ(z)/|η(z)| < 1, we can again perform a change of variables:3

η(z) = − 1

H

e−Hτ(z)√
1−H2r(z)2

, (5.3)

ρ(z) = −Hη(z)r(z) , (5.4)

where, Hr(z) < 1. In terms of these new functions, the action becomes

A = Ld−1Ωd−1

∫
dz

zd−1
f(z)(d−2)/2rd−2

√
1 + f(z)

(
r′2

1−H2r2
− (1−H2r2) τ ′2

)
(5.5)

with boundary conditions:

r(z = ε) = R, τ(z = ε) = τ0 (5.6)

where τ0 is related to η0 by equation (5.3) and R is the proper radius. Before proceeding

further, a few comments are in order: first, note that the action (5.5) is independent of τ

and hence it is clear that τ(z) = τ0 is a solution. Also note that the action (5.5) is identical

to that for a spherical region in the static patch of de Sitter, where the bulk metric is given

by (2.8). Therefore, entanglement entropy of a sphere of radius R in the static patch of de

Sitter with the observer at the center of the sphere, is the same as entanglement entropy

3This change of variable is useful only for spherical regions.
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of a sphere of proper radius R in the conformally flat patch of de Sitter, provided the size

of the sphere is smaller than the size of the horizon. However, it is not very clear how to

generalize this result for non-spherical regions because boundary conditions are different

in different coordinates. In the conformally flat patch, temporal boundary condition is

given by η =constant, whereas, in the static patch it is given by τ =constant. These two

boundary conditions are identical only for spherical regions.

Now we will obtain the equation of motion for the radial profile using the action (5.5)

r3
[
r′
(
2(d− 1)f − dzf ′

)
− 2zfr′′

]
+ 2zr2

[
(d− 1)fr′2 + 2(d− 2)

]
− 2(d− 2)z

[
fr′2 + 1

]
+ r

[
r′
(
−(d−1)f

(
2f − zf ′

)
r′2 + dzf ′ − 2df + 2f

)
+ 2zfr′′

]
− 2(d− 2)zr4 = 0 . (5.7)

It has a simple solution:

r(z) =

√
R2

0 −
z2
(
1−H2R2

0

)
f(z)

, (5.8)

where R0 is a constant which can be computed using the boundary condition r(ε) = R,

yielding

R =

√
R2

0 −
ε2
(
1−H2R2

0

)
f(ε)

. (5.9)

Now the area is given by,

A =
Ld−1Ωd−1R0

zc

∫ 1

ε/zc

du

ud−1

√
f(u)

(
R2

0

f(u)

zc
− u2

)(d−3)/2

, (5.10)

where,

zc =
2
(

1−
√

1−H2R2
0

)
H2R0

, f(u) =

(
1− H2z2

cu
2

4

)2

, (5.11)

such that r(zc) = 0.

5.2 RH > 1: disconnected solution

Now we will do the following change of variable,

η(z) = − 1

H

e−Hτ(z)√
H2r(z)2 − 1

, (5.12)

ρ(z) = −Hη(z)r(z). (5.13)

This change of variable is valid only for Hr > 1. In terms of these new functions, the

action becomes

A = Ld−1Ω

∫
dz

zd−1
f(z)(d−2)/2rd−2

√
1 + f(z)

(
− r′2

H2r2 − 1
+ (H2r2 − 1) τ ′2

)
. (5.14)

The boundary conditions are

r(z = 0) = R, τ(z = 0) = τ0 (5.15)
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with RH > 1 and τ0 is related to η0 and R is the proper radius. Note that the action is

again independent of τ . Solutions of the equations of motion are

τ(z) = τ0, (5.16)

r(z) =

√
R2

0 +
z2
(
H2R2

0 − 1
)

f(z)
. (5.17)

Because the area of the extremal surface is divergent, we will again introduce a short

distance cut-off z = ε such that r(ε) = R. Therefore,

R =

√
R2

0 +
ε2
(
H2R2

0 − 1
)

f(ε)
. (5.18)

Behaviors of the extremal surfaces for RH < 1 and RH > 1 are entirely different and for

RH > 1, extremal surfaces do not penetrate the region inside RH = 1; this feature is

schematically shown in figure 6.4 Also note that the behavior of the extremal surfaces near

the Killing horizon is rather unique, since the near horizon region of the bulk contributes

insignificantly to the area of the surfaces.5 Presence of the Killing horizon is the bulk

reflection of the boundary causal structure and it is responsible for the phase transition of

the entanglement entropy.

5.3 Entanglement entropy in (2 + 1)-dimensions

For H = 0 and d = 3, we recover the flat space results:

A = 2πL2R

(
1

ε
− 1

R

)
. (5.19)

For non-zero H and RH < 1, we obtain

A = 2πL2R

(
1

ε
− 1

R

)
. (5.20)

Therefore, for RH < 1

SH(R) = S0(R) = 2πc3R

(
1

ε
− 1

R

)
, (5.21)

where, c3 = L2/4G3+1
N . The fact that SH(R) = S0(R), for regions smaller than the size of

horizon, is probably related to the absence of conformal anomaly in odd dimensions.

For RH > 1, entanglement entropy is an area-worth quantity

SH(R) = 2πc3R

(
1

ε
−H

)
. (5.22)

There is a “phase transition” of the entanglement entropy at RH = 1 where the first

derivative of the entanglement entropy is discontinuous:

S′H(RH → 1)|− − S′H(RH → 1)|+ = 2πc3H . (5.23)

4A similar behavior of the extremal surfaces has also been observed for Kasner-AdS soliton back-

ground [35].
5For a discussion on behavior of the extremal surfaces near an event horizon see [94, 95].
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Figure 6. Extremal surfaces for d > 2 in (r, z) coordinates; zH = 0 is the boundary and zH = 2 is

the Killing horizon. Blue lines are extremal surfaces for RH < 1 and red lines are extremal surfaces

for RH > 1. Dashed brown line is the extremal surface for RH = 1. Note that for RH > 1,

extremal surfaces do not penetrate the region inside RH = 1.

5.4 Entanglement entropy in (3 + 1)-dimensions

For H = 0 in d = 4, we have

A = πL3

(
2R2

0

ε2
+ 2 log

(
ε

2R0

)
− 1

)
= πL3

(
2R2

ε2
+ 2 log

( ε

2R

)
+ 1

)
. (5.24)

For non-zero H and RH < 1, we obtain

A = πL3

(
2R2

0

ε2
+ 2 log

(
ε

2R0

)
+R2

0H
2 − 1

)
= πL3

(
2R2

ε2
+ 2 log

( ε

2R

)
−R2H2 + 1

)
. (5.25)

Hence,

SH(R)− S0(R) = −c4 πR
2H2, (5.26)

where, c4 = L3/4G4+1
N . Note that in d = 4, energy momentum tensor of the boundary

theory 〈Tµν(x)〉 6= 0. It is also interesting to note that at finite temperature in flat space-

time ST (R) − S0(R) ∼ R4T 4. Whereas in de Sitter at strong coupling SH(R) − S0(R) ∼
−R2T 2

dS and hence the behavior is completely different from what one would obtain for the

same field theory in flat space-time at T = TdS .
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For RH > 1, the entanglement entropy is given by

SH(R) = πc4

(
2R2

ε2
+ 2 log

( ε

2R

)
+ 1−H2R2 − 2RH

√
−1 +H2R2

+2 log
[
RH +

√
H2R2 − 1

])
. (5.27)

Again there is a phase transition at RH = 1. This phase transition is a signal of a drastic

change in correlations at distance R = 1/H. It is important to note that R < 1/H is the

region accessible to a single observer and hence only a super-observer can “see” this phase

transition of the entanglement entropy.

In the limit R� 1/H, we obtain

SH(R) ≈ πc4

(
2R2

ε2
+ 2 log (εH)− 3H2R2

)
, (5.28)

and hence the finite piece is proportional to the proper area of the sphere. Note that in the

limit R � 1/H, we do not have a term proportional to the number of e-foldings mainly

because our extremal surfaces are disconnected in this limit. If one imposes smoothness

of the solution as an additional criterion for it to be a good Ryu-Takayanagi surface, then

in the limit R � 1/H one will get an extra term which is proportional to the number of

e-foldings [32].

5.5 Renormalized entanglement entropy

The entanglement entropy of a sphere is continuous but not smooth at R = 1/H. As

a consequence, the renormalized entanglement entropy undergoes a phase transition at

R = 1/H where it is discontinuous; however a single observer will never see this phase

transition.

5.5.1 d = 3

For the vacuum of Lorentz invariant, unitary QFTs S3(R) is monotonically decreasing

and non-negative [96], providing a central function for the F-theorem. It is interesting

to investigate how S3(R) behaves for de Sitter QFTs in the Bunch-Davies vacuum state.

When RH < 1, renormalized entanglement entropy is given by,

S3(R) = 2πc3 . (5.29)

For RH > 1,

S3(R) = 0 . (5.30)

Thus, the renormalized entanglement entropy undergoes a phase transition. This is ex-

pected since S3(R) measures entanglement correlations of a system at distance scale R and

two regions separated by a distance R > 1/H are causally disconnected.
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5.5.2 d = 4

In d ≥ 4 dimensions, the renormalized entanglement entropy is more complicated, since

there are indications that it is neither monotonic nor non-negative [39].6 However it is

still expected that S4(R → 0) > S4(R → ∞) because of the a-theorem [97, 98]. A

similar behavior is observed for QFTs in de Sitter space-time. For RH < 1, renormalized

entanglement entropy is a constant

S4(R) = 2πc4 . (5.31)

The renormalized entanglement entropy undergoes a phase transition at R = 1/H and for

RH > 1, S4(R) is neither positive nor monotonically decreasing function of R

S4(R) = 2c4π

(
1− RH√

R2H2 − 1

)
. (5.32)

However, S4(R → 0) > S4(R → ∞) still holds. One perhaps can argue that the behavior

of S4(R) is still acceptable because non-monotonic, non-positive regions are not accessible

to a single observer. It is also possible that non-positive, non-monotonic behavior of S4(R)

is an indication that the definition of S4(R) should be modified in order to construct a

central function out of the entanglement entropy.

6 Thermalization of dS QFTs

In this section we are interested in studying entanglement entropy in a thermalizing state of

the same dS QFTs. We start by revisiting some generalities of the solutions found in [24]

for holographic theories of dS with T 6= TdS and then we construct the time-dependent

generalization of these geometries. We can think of these bulk solutions as the Vaidya

version of the so-called hyperbolic black holes described in [86–88].

6.1 Hyperbolic black holes and dS QFTs with T 6= TdS

The basic idea goes as follows: the static patch of dSd is conformally related to the

Lorentzian hyperbolic cylinder R×Hd−1 where Hd−1 is the Euclidean hyperboloid,

ds2 =
(
1−H2 r2

)(
−dt2 +

dr2

(1−H2 r2)2 +
r2

1−H2 r2
dΩ2

d−2

)
. (6.1)

Moreover, holographic duals for theories living in the hyperbolic cylinder with Euclidean

time period given by β = 1/T are know. These are the so-called hyperbolic (or topological)

black holes,

ds2 = −f(ρ) dt2 +
dρ2

f(ρ)
+ ρ2 dΣ2

d−1 , (6.2)

f(ρ) =
ρ2

L2
− 1− µ

ρd−2
, (6.3)

6It is known that S4(R) is non-monotonic and negative for several systems; for example GPPZ flow which

describes the flow of N = 4 SYM to a confining theory under a mass deformation (which has UV-dimensions

∆ = 3) [39].
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where dΣ2
d−1 = dξ2 + sinh2 ξ dΩ2

d−2 is the metric of the Euclidean hyperboloid. Alterna-

tively, the mass can be given as

µ = ρd−2
+

(
ρ2

+

L2
− 1

)
, (6.4)

where ρ+ is the radius of the event horizon, given by the largest positive positive root

of f(ρ). To find the Hawking temperature T for this solution, we must impose that the

Euclidian time tE be periodically identified with appropriate period, tE ∼ tE +β. A simple

calculation shows that

T =
1

4π

d

dρ
f(ρ)

∣∣∣∣
ρ+

=
ρ2

+d− (d− 2)L2

4πL2ρ+
. (6.5)

This relation can be inverted to find

ρ+ =
2πTL2

d

[
1 +

√
1 +

d(d− 2)

4π2T 2L2

]
, (6.6)

which allows us to take T as the parameter that determines the solution. The case µ = 0 is

isometric to AdS and is not properly a black hole as it is completely non-singular. However,

it covers a smaller portion of the entire manifold and the coordinate patch breaks down

at ρ = ρ+ = L. The Killing horizon in this case is analogous to a Rindler horizon, with

associated inverse temperature β = 2πL, and non-vanishing area. Solutions with µ 6= 0

possess a true singularity at ρ = 0.

In contrast with the regular AdS black holes, the zero temperature solution of (6.2) is

different from the one that is isometric to AdS. In fact, there is a range of negative values for

µ such that the solutions still possess regular horizons and have sensible thermodynamics.

The minimum values of µ and ρ+ allowed, for which the horizon degenerates, are

µext = − 2

d− 2

(
d− 2

d

)d/2
Ld−2 , ρext

+ =

√
d− 2

d
L . (6.7)

For these values the corresponding black hole is extremal. In general, the Hawking temper-

ature is monotonically increasing with respect to the black hole mass. In figure 7 we can

see this behaviour for black holes of various dimensions. Interestingly, the Penrose diagram

for a hyperbolic black hole with negative µ is like that of a Reissner-Nordström-AdS black

hole. For positive µ it is instead like that of a Schwarzschild-AdS black hole [99–105].

Now, the field theory dual to the hyperbolic black hole (6.2) lives in the hyperbolic

cylinder which, according to (6.1), is conformal to the static patch of de Sitter. The fact

that we are dealing with a CFT presents us with an interesting possibility: among the

infinite number of conformal frames available to us, we can choose the one related to

R × Hd−1 via the specific Weyl transformation ds2 → (1 − H2r2)ds2. As first explained

in [106], Weyl transformations in the boundary are dual to specific bulk diffeomorphism.7

7In fact, in the context of AdS/CFT a given bulk metric is understood to induce not a specific boundary

metric, but a specific boundary conformal structure [8].
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Figure 7. Hawking temperature as a function of the black hole mass for d = 2 (red), 3 (pink) and

4 (purple). In order to make the plots we have set L = 1 so both T and µ are measured in units of

the AdS radius.

In our case, the desired transformation can be achieved by defining a new coordinate

r =
1

H
tanh ξ , (6.8)

which brings the metric (6.2) into the form

ds2 =
H2 ρ2

1−H2 r2

(
− f(ρ)

H2 ρ2

(
1−H2 r2

)
dt2 +

dr2

1−H2 r2
+ r2 dΩ2

d−2

)
+

dρ2

f(ρ)
. (6.9)

This bulk geometry is now dual to a CFT on the static patch of dSd at a temperature

given by (6.5), which does not have to coincide with the de Sitter temperature TdS. For

the particular case T = TdS, the background (6.9) differs from (2.8) only by a simple

coordinate transformation.

From the boundary theory perspective, we are taking the period of the Euclidean time

to be 1/T instead of 2π/H. Of course, unless T = TdS, the Euclidean manifold has a conical

singularity which map in the Lorentzian signature to the de Sitter horizon. Nevertheless,

as long as we restrict our attention to study the physics inside the horizon, there is nothing

wrong about the corresponding Lorentzian spacetime. Physically, we can think of this as

having an external heat bath sitting at the de Sitter horizon which keeps the system at

a temperature different from TdS. Therefore, the geometry does not smoothly continue

through the horizon because we run into the thermal bath, which is visible as the conical

singularity in the Euclidean space. The nature of this external bath becomes clear upon

inspection of the holographic stress tensor, which implies that it can be identified as a

radiation source. More specifically, separating the trace-free and trace parts, the energy-
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momentum tensor of the boundary theory is found to be [24]:

T ν
µ =

LH2

2κ2

[
F2(T,H)

1−H2 r2
diag

{
− 1, 1

}
+ diag

{
1, 1
}]

for d = 2 , (6.10)

T ν
µ =

L3H4

2κ2

[
F4(T,H)

(1−H2 r2)2
diag

{
− 3, 1, 1, 1

}
+

3

4
diag

{
1, 1, 1, 1

}]
for d = 4 , (6.11)

while

T ν
µ =

Ld−1Hd

2κ2

[
Fd(T,H)

(1−H2 r2)
d
2

diag {1− d, 1, 1, · · · , 1}

]
∀ odd d . (6.12)

The function Fd(T,H) has the property that it vanishes for T = TdS.

Thus, as we can see, the holographic stress tensor provides a smooth interpolation

between the theory on de Sitter space at temperature TdS and finite temperature physics

in Minkowski space. The extra piece that appears for even dimensions comes naturally

upon integration of the gravitational conformal anomaly.

6.2 Gravitational collapse and black hole formation

Our goal is to study the approach to thermalization of entanglement entropy in a time-

dependent setup. The time-dependent configuration we are looking for here should capture

the physics of gravitational collapse in the bulk which translates into the study of black

hole formation. Thus, we will construct a generalized version of the Vaidya spacetimes for

the so-called hyperbolic black holes.

To find the corresponding background, we have to couple the action in (2.1) with an

external source

S = S0 + αSext , (6.13)

where α is a constant. For the physics we want to study in the present context we do

not need to specify the form of Sext. The equations of motion in this case will take the

following form

Rµν −
1

2
(R− 2Λ) gµν = 2ακ2 T ext

µν . (6.14)

These field equations lead to the well-known AdS-Vaidya solution. For black holes with

planar horizons, the relevant physics is restricted to the Poincaré patch and the metric

takes the form

ds2 =
L2

z2

(
−f(v, z)dv2 − 2dvdz + d~x2

)
, (6.15)

f(z, v) = 1−m(v)zd . (6.16)

This background has been used extensively in the program of holographic thermaliza-

tion [40–42]. The metric (6.15) is written in terms of Eddington-Finkelstein coordinates

(so that v labels ingoing null trajectories) and represents a (d + 1)-dimensional infalling

shell of null dust.8 To see this directly, let us analize the matter contents that leads

to the above solution. The function m(v) is arbitrary and captures the information of

8For m(v) = M = constant, the metric (6.15) reduces to the usual AdS-Schwarzschild black hole.
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the black hole formation. Quite generally, m(v) is chosen to interpolate between zero as

v → −∞ (corresponding to pure AdS) and a constant value as v → ∞ (corresponding to

AdS-Schwarzschild). A particular example of such a function is

m(v) =
M

2

(
1 + tanh

v

v0

)
, (6.17)

where v0 is a parameter that fixes the thickness of the shell. With this choice, the external

source must yield the following energy-momentum tensor

2ακ2 T ext
µν =

(d− 1)zd−1

2L2(d−1)

dm

dv
δµvδνv . (6.18)

If we identify kµ = δµv, then we get [40]

T ext
µν ∼ kµkν , with k2 = 0 , (6.19)

which is characteristic of null dust.

We can proceed in the same way and generalize the hyperbolic black holes (6.9) to

include a time-dependent mass. We find it convenient to define an inverse radius z =

L2/ρ, so that the boundary of AdS now lies at z → 0. Going to Eddington-Finkelstein

coordinates, where the coordinate v is defined as

dv = dt− dz

f(z, v)
, (6.20)

we obtain9,10

ds2 =
L2

z2

(
−f(z, v)dv2 − 2dvdz +

H2 L2

(1−H2 r2)2dr
2 +

H2 L2

(1−H2 r2)
r2dΩ2

d−2

)
, (6.21)

f(z, v) = 1−m(v)zd − z2

L2
. (6.22)

Similar to the planar AdS-Vaidya (6.15), the energy-momentum tensor of the external

source yields

2ακ2 T ext
µν =

d− 1

2
zd−1dm

dv
δµvδνv , (6.23)

which implies that the infalling shell is made of null dust.

In order to avoid possible issues in the boundary theory, we want to constrain the

mass function in order to satisfy the null energy condition in the bulk.11 This implies in

particular that m(v) should be an increasing function of v. In the context of the hyperbolic

black holes we are considering here, however, there is a novel possibility that is not present

in the traditional AdS-Vaidya backgrounds: we can start in a state with zero mass and

end up with a finite positive mass or we can start with a negative mass (equal or above the

9Here, we have rescaled the mass according to m = µ/L2(d−1).
10From here on we will set the AdS radius L equal to 1. This implies that all dimensionful quantities will

be measured in units of this scale.
11The contrary is known to lead to violations of the strong subadditivity inequality [107–109].
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Figure 8. Normalized mass functions m1(v)/|M1| and m2(v)/M2 for various values of v0 = 0.01

(red), 0.1 (pink) and 0.2 (blue).

extremal value) and finish with an increased mass (positive or negative). For concreteness,

and with the aim of studying a situation of physical relevance, we will focus in the following

mass function:

m1(v) =
M1

2

(
1− tanh

v

v0

)
, (6.24)

where M ext ≤ M1 < 0. In the boundary theory, this choice is equivalent to prepare the

system in a state with T < TdS and then letting it evolve to the Bunch-Davies vacuum; in

other words, the system undergoes a period of particle production and ends as a thermal

bath of quanta at temperature T = TdS. To be even more specific, we will set

M1 = M ext = − 2

d− 2

(
d− 2

d

)d/2
, (6.25)

so that the initial state is at zero temperature. We will see later that the relevant physics

we are interested here is not affected by the specific value of M1.

We can also consider a mass function of the type,

m2(v) =
M2

2

(
1 + tanh

v

v0

)
, (6.26)

withM2 > 0. This corresponds to a situation in which we start in the Bunch-Davies vacuum

and then evolve to a state with T > TdS. We will briefly comment on this possibility.

In figure 8 we plot the behavior of the mass functions m1(v)/|M1| and m2(v)/M2 with

respect to v for various values of v0. It is clear that in the thin shell limit, i.e. as v0 → 0,

the variation of the mass functions is sharply localized around v = 0 and approximates to

a step function. Also, we have to bear in mind that the value of M1 will depend on the

dimension d according to (6.25).

In the remainder of this section, we will study the evolution of entanglement entropy

in these time-dependent backgrounds in the thin-shell approximation.
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6.3 Holographic thermalization

We are now ready to compute the entanglement entropy in our dynamical background. For

the ease of the computation, we will take as our entangling surface a spherical region of

radius R inside the static patch, so that RH ≤ 1. We define a rescaled radius, r̃ = rH,

and parametrize the extremal surface by functions z(r̃) and v(r̃). The area functional in

this case is given by

A = Ωd−2

∫ R̃

0

dr̃

zd−1

r̃d−2

(1− r̃2)(d−2)/2

√
1

(1− r̃2)2
− f(z, v)v′2 − 2v′z′ , (6.27)

with R̃ = RH ≤ 1. Here the mass function is time-dependent and is given by either (6.24)

or (6.26). The equations of motion resulting from the above area functional are quite

involved and therefore we do not present them explicitly. Also note that we do not have

any conservation equation since the action depends explicitly on r.

To solve these equations we impose the following boundary conditions

z(ε) = z∗ + corrections , z′(ε) = 0 + corrections , (6.28)

v(ε) = v∗ + corrections , v′(ε) = 0 + corrections , (6.29)

where z∗ and v∗ are two free parameters, and ε is a small number. The “corrections” in

the above expressions are obtained in the following way: we first write z(r̃) and v(r̃) as

power series in r̃ and then we expand the equations of motion around r̃ = 0. Finally, we

solve the resulting equations order by order and then we evaluate the solutions at r̃ = ε.

So far z∗ and v∗ are two free parameters that generate the numerical solutions for z(r̃)

and v(r̃). The boundary data can be obtained from

z(R̃) = z0 , v(R̃) = t̃ , (6.30)

where z0 is an UV cut-off and t̃ ≡ tH is the boundary time. In figure 9 we plot sample

numerical solutions for z(r̃) for fixed v∗ and various values of z∗. Some of them cross the

shell located at v = 0 and refract. For a fixed R̃ this always happens for arbitrary early

times (arbitrary negative v∗). However, the converse is not always true. In flat space the

extremal surfaces always cross the shell for arbitrary large volumes. However, in dS space

we need RH ≤ 1 in order to have connected solutions. Hence, if we fix v∗, not always it is

possible to find solutions that go deep enough into the bulk to cross the shell.

To generate the corresponding thermalization curves S(t) for a fixed R̃, we do the

following: for a fixed v∗ we vary z∗ until the read-off value of R̃ hits the desired value. This

generates profiles for z(r̃) and v(x̃), which we can use to compute the area functional as

well as the boundary time. Then, we vary v∗ and repeat the process again.

We are interested in the finite contribution to the entanglement entropy S(t) for a

fixed radius R̃. In order to study this quantity numerically, we fix the UV cutoff ε to

be a small number, typically of the order of 10−3, and we define a rescaled entanglement

entropy ∆S(t) by subtracting the entropy of the initial state ∆S(t) = S(t)− S(−∞).12,13

12With this subtraction, the entanglement entropy ∆S(t) starts at zero in the infinite past.
13Another way to regularize would be by subtracting the entropy of a reference sphere of some fixed

radius R, ∆SR(t) = SR̃(t) − SR(t). One can actually show that this quantity is finite, reflecting the fact

that UV divergences do not depend on the value of H. However, time dependence varies with respect to

the length-scale, so this quantity would not be useful in the present context.
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Figure 9. Sample numerical solutions for z(r̃) in d = 2. To obtain these plots we fixed v∗ = −1

and chose various values of z∗. For this value of v∗, surfaces for which RH & 0.9 cross the shell and

refract. For d > 2 the behavior is qualitatively similar.

Exploring the behavior of ∆S(t) as we change the radius R̃, we note some general prop-

erties. Qualitatively, our results agree with those of [69, 74] for Vaidya geometries with

planar horizons. First, the evolution for very early times appears to be weakly dependent

on the sphere size. The pre-local-equilibration regime is almost quadratic in time and it

is followed by a post-local-equilibration linear growth phase at intermediate times. The

entropy grows faster as R̃ is increased. Finally, there is a period of memory loss prior

to equilibration and then the entropy abruptly flattens out at late times after it reaches

saturation. In figure 10 (left panel) we plot this behavior for different values of the sphere

radius. The saturation time t̃sat, on the other hand, shows a strong dependence on the

sphere radius. It first increases linearly as R̃ is increased, with a slope of order unity, and

then blows up logarithmically as R̃ approaches the horizon. This is surprising, it suggests

the existence of light-like degrees of freedom that do not random walk, in agreement with

the results of [43]. To see this, note that a radially outward light rays in de Sitter space

obey the geodesic equation
dr

dt
= 1−H2r2 , (6.31)

which can be solved and inverted to obtain t̃ = tanh−1(r̃). For r̃ � 1 we get t̃ = r̃+O(r̃2),

whereas for r̃ ∼ 1 the leading contribution behaves like t̃ = 1
2 (log(2)− log(1− r))+O(1−r̃).

This result holds true for arbitrary dimension. We verified numerically this behavior for

different values of d = 2, 3, 4 and we found agreement to high accuracy. The results are

plotted in figure 10 (right panel). It is important to mention that this behavior might be

particular for spherical regions. If this holds true for more general situations, one might

conjecture that the saturation time is given by the time it takes for a light-ray to reach

the farthest point of a particular entangling surface with respect to the observer. However,

to prove this conjecture one would need a microscopic description of the thermalization

process, which is beyond the scope of this paper.
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Figure 10. Left panel: evolution of ∆S in d = 2 for different values of RH = 0.3, 0.5, 0.7 and

0.9 from bottom to top. The situation is qualitatively similar for higher dimensions. Right panel:

saturation time t̃sat as a function of the sphere radius RH. Red dots correspond to numerical values

for t̃sat while the solid purple curve represent the fitting function t̃sat = tanh−1
(
R̃
)
.

Finally, we also explored the possibility of varying the initial and final masses of the

black hole, corresponding to quenches evolving from and to different thermal states. One

of such examples was the mass function given by equation (6.26). While the equilibration

value of Ssat showed a significant variation depending on the situation (and on the value

of d), the behavior of t̃sat was found to be a robust feature, and quite insensitive to the

details of the quench.

7 Conclusions and future directions

In this paper we have studied several properties of entanglement entropy in QFTs in de

Sitter space, both in the static patch and the conformally flat patch. The theories in con-

sideration have bulk duals coming from the standard Einstein-Hilbert action with negative

cosmological constant and hence can be thought as models that belong to a universality

class of strongly-coupled CFTs in the large-N limit.

We started by choosing the standard vacuum state and obtained analytically extremal

surfaces in the bulk with boundary condition taken as a spherical region of definite radius.

According to the Ryu-Takayanagi prescription, the area of these solutions is interpreted as

entanglement entropy for a spherical region in the boundary theory. Behaviors of extremal

surfaces for R < H−1 and R > H−1 are qualitatively different. This implies that the

entanglement entropy and renormalized entanglement entropy undergo phase transitions

at R = H−1. When R < H−1, extremal surfaces are connected and U-shaped; whereas

for R > H−1, extremal surfaces are disconnected. We believe this is a bulk refection of a

drastic decrease in entanglement at distancesR > H−1 in the boundary theory. For realistic

cosmological scenarios where a period of accelerated expansion is followed by decelerated

expansion, regions outside the horizon will re-enter the horizon. It is reasonable to speculate

that in that case, the extremal surfaces will go through transitions from disconnected to

connected shapes and consequently the entanglement entropy will also undergo a reverse

phase transition. We will investigate this transition in more detail in the future.
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We have also studied the rich phase structure of entanglement/disentanglement phase-

transition of mutual information in (1 + 1) dimensions. We found that mutual information

between any two intervals separated by a proper distance x ≥ 2/H is identically zero,

implying that for any two intervals A and B, separated by a distance larger than the horizon

size, the density matrix ρA∪B = ρA⊗ ρB and hence they are completely disentangled. It is

difficult to compute mutual information of spherical regions in higher dimensions, however,

we expect qualitatively a similar behavior of mutual information in higher dimensions. A

detailed calculation of mutual informations in higher dimensions would undoubtedly be

useful to make this conclusion more robust.

We also considered out-of-equilibrium configurations in which the theory is undergoing

a thermal quench. In order to do so, we constructed the Vaidya version of the well-known

hyperbolic (or topological) black holes. In the static case, these solutions represent other

states of the boundary theory (non-Bunch-Davies states) that are maintained externally in

thermal equilibrium at a temperature T 6= TdS. When time dependence is introduced, we

claim that these bulk backgrounds describe the dynamics of dS QFTs in a thermalizing,

out-of-equilibrium state. We gave particular attention to situations in which the initial state

is taken to be at zero temperature and ends as a thermal bath at temperature T = TdS, but

we showed that our results hold for more general situations. For a fixed spherical region,

the entanglement entropy follows a series of stages similar to what was found in [69, 74]

for theories living in flat space. The saturation time tsat, on the other hand, is found to

depend on the sphere radius R: for RH � 1 it increases linearly but then it blows up as

RH → 1. This result accounts for the fact that, for a static observer, any signal that is

sent radially outwards takes an infinitely amount of time to reach the horizon due to an

infinite blueshift. The behavior of tsat is independent of the number of dimensions. We

argue that this behavior could be accounted for if we think of the process of thermalization

in terms of a streaming of light-like degrees of freedom.

Last but not least, it is worth emphasizing that the theories we are considering in

the present paper are conformal field theories. In addition, we took spherical regions for

the entangling surfaces which preserve the symmetries of the static patch. It would be

interesting to investigate entanglement entropy for other shapes of the entangling surface,

although it would be computationally more challenging. Another interesting possibility

to address in the future would be to investigate the behavior of entanglement entropy in

non-conformal theories on de Sitter space (see for instance [9, 10, 18, 28]) and study the

interplay between H and the different phase transitions.

Acknowledgments

We are grateful to D. Marolf, G. Pimentel and M. Rangamani for useful correspondences.

This material is based upon work supported by the National Science Foundation under

Grant Numbers PHY-1316033 and PHY-0969020, and by Texas Cosmology Center, which

is supported by the College of Natural Sciences and the Department of Astronomy at the

University of Texas at Austin and the McDonald Observatory.

– 29 –



J
H
E
P
0
7
(
2
0
1
4
)
0
2
1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N.D. Birrell and P.C.W. Davies, Quantum Fields In Curved Space, Cambridge University

Press, U.K. (1982), pg. 340.

[2] R.M. Wald, Quantum field theory in curved space-time and black hole thermodynamics,

Chicago University Press, U.S.A. (1994), pg. 205.

[3] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black Holes: Complementarity or

Firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[4] A. Almheiri, D. Marolf, J. Polchinski, D. Stanford and J. Sully, An Apologia for Firewalls,

JHEP 09 (2013) 018 [arXiv:1304.6483] [INSPIRE].
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