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1 Introduction

At sufficiently high energies it becomes kinematically possible to produce a high multiplic-

ity final state with n ∼ 1/α particles in the weakly interacting theory. In this case the

well-known problem of the factorial divergencies [1] of large orders of perturbation theory

now becomes critical as it can affect the high-n-point amplitudes already at leading order

in the weakly coupled perturbation theory. It was pointed out in [2, 3] that the facto-

rial growth could arise from the large numbers of Feynman diagrams contributing to the

scattering amplitude An at large n. This line of reasoning should be robust in any quan-

tum field theory which does not exhibit significant cancellations between the diagrams in

computations of on-shell quantities. In particular, in the scalar field theory with λφ4-type

interactions tree graphs all have the same sign, and the leading-order high-multiplicity am-

plitudes acquire the factorial behaviour, An ∼ λn/2 n! which (assuming that the amplitudes

do not decrease very rapidly in moving off the threshold) leads to the factorial growth of

the cross-section, σtreen ∼ λn n!× fn(kinematics), in violation of unitarity. This signals the

breakdown of perturbative description of these observables for n > 1/λ.

Multi-particle amplitudes in scalar field theory were studied in depth in the literature

in 1990’s, see papers [4–14] and references therein. In section 2 we will briefly review their

results for the tree-level amplitudes at threshold, relevant for us in this paper. We will also

discuss aspects of multi-boson production away from the threshold and the role of the loop

corrections in the Conclusions section.

The factorial growth of the amplitudes in scalar QFT is to be contrasted with their

behaviour in gauge theory. In the massless gauge theory, for example in QCD, the gauge

invariance, on-shell conditions and other symmetries result in dramatic cancellations be-

tween Feynman diagrams for on-shell quantities such as scattering amplitudes. As the

result there is no manifest factorial growth in amplitudes. For example the maximal helic-

ity violating (MHV) amplitudes (those with 2 negative and n− 2 positive helicity gluons)

are given for any n by the single-term Parke-Taylor expression [15],

AtreeMHV
n =

〈rs〉4

〈12〉〈23〉 . . . 〈n1〉
, (1.1)
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where the two negative-helicity gluons have momenta pr and ps; all others are of positive

helicity, and 〈ij〉 is the familiar holomorphic spinor product, see e.g. [16, 17] for a review

of the spinor helicity formalism.

The main motivation of this paper is to answer the question of whether the weak

sector of the Standard Model (SM), as approximated by the spontaneously broken SU(2)

gauge theory, will retain the factorial growth of the multi-particle tree-level amplitudes

found in the scalar QFT, or will it follow the regular behaviour of QCD amplitudes. The

Gauge-Higgs theory will be analysed in section 3 using the generalisation of the Brown’s

generating function technique [6] of section 2.

Another motivation for studying the high-multiplicity production in the electroweak

sector at high energies is the close analogy and complementarity between these perturba-

tive processes and the instanton-like processes over the sphaleron barrier [18–25] which,

if observable at the next generation of hadron colliders, would violate the Baryon minus

Lepton (B − L) number in the SM.

2 Summing tree graphs at threshold in scalar φ4 theory

Working at tree level amounts to switching off loop effects controlled by the Planck’s con-

stant h̄, thus tree-level on-shell amplitudes or currents are essentially classical quantities.

As such, they should be governed by classical equations of the system with an appropri-

ate source term added to distinguish between different multi-particle states. An elegant

formalism for computing all tree-level multiboson amplitudes at threshold in terms of a

classical generating function was introduced by Brown [6] for scalar field theory, which

we will briefly review below. Based on solving classical equations directly this approach

readily bypasses summation over individual Feynman diagrams.

The amplitude A1→n for the field φ to create n particles in the real scalar field theory

with the Lagrangian

Lρ(φ) =
1

2
(∂φ)2 − 1

2
M2φ2 − 1

4
λφ4 + ρ φ , (2.1)

is derived by differentiating the matrix element of the initial state, 〈0out|φ(0)|0in〉ρ with

respect to the source ρ(x) and applying the LSZ reduction,

〈n|φ(x)|0〉 = lim
ρ→0

 n∏
j=1

lim
p2j→M2

∫
d4xje

ipj ·xj (M2 − p2j )
δ

δρ(xj)

 〈0out|φ(x)|0in〉ρ . (2.2)

Tree-level approximation is obtained by replacing the matrix element 〈0out|φ(x)|0in〉ρ −→
φcl(x) by a solution to the classical field equation corresponding to the Lagrangian Lρ(φ),

including the source ρ(x) term. This defines the classical field as the functional of the

source, φcl[ρ].

Next step is to go to the threshold limit where all the outgoing particles are produced

at rest, ~pj = 0. In this limit, it is sufficient to consider the spatially-independent source

ρ(t). Specifically, before taking the p2j → M2 limit in (2.2), we set all outgoing momenta
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to pµj = (ω,~0), and choose ρ(t) = ρ0(ω) eiωt. This amounts to the substitution

(M2 − p2j )
δ

δρ(xj)
−→ (M2 − ω2)

δ

δρ(tj)
=

δ

δz(tj)
, (2.3)

where we defined

z(t) :=
ρ0(ω) eiωt

M2 − ω2 − iε
:= z0 e

iωt . (2.4)

When the classical solution φcl is re-expressed as the functional of the new variable z(t)

rather than the original source ρ(t), one can take the required on-shell limit ω → M

simultaneously with sending the amplitude of the source to zero, ρ0(ω) → 0 such that z0
remains finite [6]. For each external leg operator acting on φcl in (2.2) we have,∫

d4xje
ipj ·xj (M2 − p2j )

δ

δρ(xj)
· φcl(t) = eiωt

∂φcl
∂z(t)

=
∂φcl
∂z0

. (2.5)

The tree-level amplitude A1→n at the n-particle threshold is thus given by

A1→n = 〈n|φ(0)|0〉 =

(
∂

∂z

)n
φcl

∣∣∣∣
z=0

, (2.6)

where the generating function φcl(z(t)) is a particular classical solution which we will now

determine. As we already noted, φcl(z(t)) is unaffected by the double scaling limit, ω → m

with ρ0(ω)→ 0, and at the same time the source term drops out from its defining classical

equation. It reduces to an ordinary differential equation for φ(t) with no source term. For

the theory described by the Lagrangian (2.1) it reads,

d2tφ+M2φ+ λφ3 = 0 . (2.7)

To give the generating function of amplitudes at multiparticle thresholds, the solution must

contain only the positive frequency components of the form e+inMt where n is the number of

final state particles in the amplitude A1→n. This follows immediately from (2.6). Thus, the

solution we are after is given by the Taylor expansion in powers of the complex variable z(t),

φcl(t) = z(t) +

∞∑
n=2

dn z(t)
n (2.8)

In the limit where interactions are switched off, λ = 0, the correctly normalised solution

is φcl = z(t) and this fixes the coefficient of the first term on the r.h.s. of (2.8). As the

solution contains only positive frequency harmonics, it is a complex function of Minkowski

time. This also fixes the initial conditions of the solution, φcl(t) → 0 as Im(t) → ∞. In

Euclidean time the solution is real.

Coefficients dn determine the actual amplitudes via (2.6),

A1→n = n! dn , (2.9)

they can either be read off the classical soluton when it is known, or otherwise be found

directly by solving equations of motion iteratively in powers of z.
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The classical generating function approach of [6] amounts to finding the ~x-independent

solution of the Euler-Lagrange equations as an analytic function of z in the form (2.8), and

computing the amplitudes via (2.6) or (2.9).

The classical generating function for the theory defined by (2.1) is surprisingly simple

and can be written in closed form [6],

φcl(t) =
z(t)

1− λ
8M2 z(t)2

. (2.10)

It is easily checked that the expression in (2.10) solves the classical equation (2.7) and has

the correct form, φcl = z+ . . . as z → 0. Scattering amplitudes at threshold are then given

by [4, 6]

A1→n =

(
∂

∂z

)n
φcl

∣∣∣∣
z=0

= n!

(
λ

8M2

)n−1
2

. (2.11)

We see that the leading order (tree-level) amplitudes in scalar QFT grow factorially with

n, which ultimately is the consequence of the growth in the number of diagrams in pertur-

bation theory.

The generating functions formalism works equally well also in the real scalar field

theory with spontaneously broken Z2 symmetry. For future reference we will denote the

scalar field of this model as h(x). The Lagrangian takes the familiar form,

L(h) =
1

2
(∂h)2 − λ

4

(
h2 − v2

)2
, (2.12)

where v is the VEV of h(x). The classical equation for the spatially uniform field h(t),

d2th = −λh3 + λv2 h , (2.13)

again has a simple closed-form solution [6]:

hcl(t) = v
1 + z(t)

2v

1− z(t)
2v

(2.14)

with the correct form of initial conditions, hcl = v+z+ . . . as z → 0. The Taylor expansion

of the generating function (2.14) can be recast in the form (cf. (2.8)),

hcl(t) = 2v
∞∑
n=0

(
z(t)

2v

)n
dn = v + 2

∞∑
n=1

(
z(t)

2v

)n
, (2.15)

i.e. with d0 = 1/2 and all dn≥1 = 1. Scattering amplitudes at threshold in this theory are

given by [5, 6]

A1→n =

(
∂

∂z

)n
hcl

∣∣∣∣
z=0

= n! (2v)1−n . (2.16)

This theory of a single real scalar field with a spontaneously broken h → −h discrete

symmetry is a toy version of the Higgs sector of the SM. The field h looks lie the SM

Higgs in the unitary gauge, but without the accompaniment of longitudinal massive vector

bosons. In the following section we will apply the generating functions method to the

spontaneously broken gauge theory and examine if the factorial growth, which is manifest

in (2.16), also persists in the Gauge-Higgs theory.

– 4 –



J
H
E
P
0
7
(
2
0
1
4
)
0
0
8

3 Multiparticle production in the Gauge-Higgs theory

For concreteness we will concentrate on the simplest Non-Abelian case of interest — the

SU(2) gauge theory spontaneously broken by the vacuum expectation value v of the Higgs

doublet,

L = −1

4
F aµνF aµν + |DµH|2 − λ

(
|H|2 − v2

2

)2

. (3.1)

This theory describes the weak sector of the SM in the limit of the vanishing θW. In the

unitary gauge,

H =
1√
2

(0, h) , (3.2)

and the Higgs potential in terms of h takes the same form as in eq. (2.12). The particle

content of the model is given by the neutral Higgs state, h, and a triplet of massive vector

bosons, W± and Z0, described by Aaµ with a = 1, 2, 3, which we will collectively refer to as

V . The Higgs mass and the mass of the vector boson triplet are given by,

Mh =
√

2λ v ' 125.66 GeV , MV =
gv

2
' 80.384 GeV , (3.3)

where we have also shown their numerical values, set by the SM Higgs and W boson masses,

which will be uses in our calculations of the amplitudes below.

The kinematic regime of interest is when a single virtual state — the Higgs or a gauge

boson, decays into n Higgs bosons and m vector bosons, all with vanishing spatial momenta.

In the rest frame of the initial virtual boson we have

pµin = (nMh +mMV ,~0) →
n∑
j=1

pµj +

m∑
k=1

pµk , where pµj = (Mh,~0) , pµk = (MV ,~0) .

(3.4)

This system can be Lorentz boosted, giving all momenta a non-vanishing p3 component.

The process in this frame corresponds to the highly virtual boson being produced in the pp

collision (e.g. the gluon gluon fusion to a Higgs) which decays to a maximal kinematically

allowed number of Higgses and massive vector bosons. The boosted direction along p3 is the

longitudinal direction. All momenta in the boosted frame have the form, pµ = (p0, 0, 0, p3).

For the rest of the analysis we return to the rest frame (3.4) where p3 is vanishing (or

infinitesimally small). The transversality condition, pµAaµ = 0, allows us to set Aa0 = 0.

We thus are left with the following degrees of freedom: {h(t), Aam(t)} with m = 1, 2, 3, the

first two being the transverse and the third — the longitudinal polarisations of the triplet

(a = 1, 2, 3) of massive vector bosons.

The Lagrangian (3.1) reduced on these spatially-independent components reads,

L =
1

2
(dtA

a
m)2 +

1

2
(dth)2 − g2

8
h2(Aam)2 − g2

4

(
(Aam)2(Abn)2 − (AamA

a
n)2
)
− λ

4

(
h2 − v2

)2
(3.5)

and the equations of motion for hcl(t) and Aam cl(t) are,

d2th = −λh3 + λv2 h− g2

4
(Aam)2h , (3.6)

d2tA
a
m = −g

2

4
h2Aam − g2

(
(Abn)2Aam − (AanA

b
n)Abm

)
(3.7)
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This system of equations can now be solved iteratively.

To simplify the derivation we will assume that the final state does not contain trans-

verse polarisations of the vector bosons, and concentrate on the production of longitudinal

polarisations, Aa3 and Higgses h. The ‘commutator’ term in (3.5) and (3.7) then drops out

and we get,

d2th = −λh3 + λv2 h− g2

4
(AaL)2h , (3.8)

d2tA
a
L = −g

2

4
h2AaL . (3.9)

The classical solutions required to give the generating function of the amplitudes on the

multi-h, multi-VL threshold, should be the analytic functions (i.e. given by the double

Taylor expansion in terms) of two variables,

z(t) = z0 e
iMht , wa(t) = wa0 e

iMV t , (3.10)

with the leading-order terms being,

hcl(t) = v + z(t) + . . . , AaL cl(t) = wa(t) + . . . , (3.11)

The system of equations (3.8)–(3.9) can be shown to depend only on a single parameter, by

re-writing them in terms of dimensionless variabeles, t = Mht, h = h/v and AaL = AaL/v,

d2t h = −1

2
(h3 − h)− κ2(AaL)2h , (3.12)

d2tA
a
L = −κ2h2AaL , (3.13)

with

κ :=
g

2
√

2λ
=

MV

Mh
. (3.14)

Before we write down the double Taylor expansion of the generating functions hcl and AaL cl,

we define the scalar function Acl for vector bosons via

AaL cl = wa Acl , (3.15)

and introduce the new combination,

W = wawa . (3.16)

We now write in the double Taylor expansion in the form,

hcl(z,W ) =

∞∑
n=0

∞∑
k=0

dn,k z
nW k , with d0,0 = 1 and d1,0 = 1 , (3.17)

Acl(z,W ) =

∞∑
n=0

∞∑
k=0

an,k z
nW k , with a0,0 = 1 . (3.18)

– 6 –
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Differentiating these expressions twice with t we write down the equations (3.12)–(3.13) in

the form,1

dn,k(n+ 2κ k)2 znW k =

[
1

2
(h3 − h) + κ2W A2h

]∣∣∣∣
znWk

, (3.19)

an,k(n+ κ+ 2κ k)2 znW k =
[
κ2h2 A

]∣∣
znWk . (3.20)

These equations are solved iteratively as follows. First we set k = 0 and solve the

Higgs equations (3.19) for all values of n thus determining all coefficients2 dn,0. No other

coefficients enter this equation for k = 0. Then we solve the A-equations (3.20) for the

coefficients an,0 for each n. Next we set k = 1, and solve equations (3.19) for all n to

determine dn,1. Following this, the coefficients an,1 are found by solving (3.20) at k = 1 for

all values of n. This procedure is repeated for all values of k.

After implementing this iterative algorithm in Mathematica we can solve for dn,k and

an,k to any desired values of n and k numerically.

There is not much hope to find a simple analytical solution for the generating functions

as was the case in the scalar field theory; even at k = 0 the an,0 coefficients start becoming

increasingly complicated already at relatively low values of n,

a4,0 =
κ2(9 + 33κ+ 75κ2 + 90κ3 + 64κ4 + 24κ5 + 4κ6)

24(1 + κ)(2 + κ)(1 + 2κ)(3 + 2κ)

a5,0 =
κ2(90 + 375κ+ 987κ2 + 1500κ3 + 1474κ4 + 920κ5 + 360κ6 + 80κ7 + 8κ8)

120(1 + κ)(2 + κ)(1 + 2κ)(3 + 2κ)(5 + 2κ)

However, the closed form solution is not really needed in order to determine amplitudes

at threshold as they are described by the coefficients dn,k and an,k which are computed

straightforwardly in our iterative procedure, as described above.

Before we list the coefficients we solved for, we re-write the double Taylor expansion of

the generating functions back in terms of physical dimensionful variables, with an additional

rescaling by factors of 2 — to make the comparison with eq. (2.15) more manifest. We

define the rescaled coeffiecients

d(n, 2k) := 2n+2k−1 dn,k , a(n, 2k) := 2n+2k an,k , (3.21)

and write down the double Taylor expansion of the generating functions in terms of these

as follows,

hcl(z, w
a) = 2v

∞∑
n=0

∞∑
k=0

d(n, 2k)
( z

2v

)n (wawa
(2v)2

)k
, (3.22)

AaL cl(z, w
a) = wa

∞∑
n=0

∞∑
k=0

a(n, 2k) zn
( z

2v

)n (wawa
(2v)2

)k
, (3.23)

where z(t) and wa(t) are given by eqs. (3.10).

1Recall that in terms of our dimensionless variables, z(t) = z0 e
it, w(t) = w0 e

iκt and W = w2
0 e

i2κt.
2Not surprisingly, we find dn≥1,0 = 1/2n−1 in accordance with (2.15).
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dHn,mL m = 0 2 4 6 8 10 12 14 16

n=0
1

2

1.285 1.462 1.604 1.763 1.937 2.127 2.336 2.561

1 1 2.508 4.304 6.422 8.914 1.183´10
1

1.523´10
1

1.917´10
1

2.373´10
1

2 1 3.69 8.53 1.607´10
1

2.696´10
1

4.196´10
1

6.199´10
1

8.809´10
1

1.215´10
2

3 1 4.868 1.414´10
1

3.215´10
1

6.327´10
1

1.131´10
2

1.886´10
2

2.988´10
2

4.545´10
2

4 1 6.045 2.112´10
1

5.628´10
1

1.271´10
2

2.566´10
2

4.772´10
2

8.338´10
2

1.387´10
3

5 1 7.22 2.947´10
1

9.006´10
1

2.297´10
2

5.167´10
2

1.06´10
3

2.027´10
3

3.661´10
3

6 1 8.394 3.92´10
1

1.351´10
2

3.839´10
2

9.528´10
2

2.138´10
3

4.439´10
3

8.656´10
3

7 1 9.568 5.031´10
1

1.93´10
2

6.047´10
2

1.641´10
3

4. ´10
3

8.962´10
3

1.876´10
4

8 1 1.074´10
1

6.278´10
1

2.654´10
2

9.089´10
2

2.678´10
3

7.045´10
3

1.695´10
4

3.792´10
4

9 1 1.191´10
1

7.662´10
1

3.538´10
2

1.315´10
3

4.181´10
3

1.181´10
4

3.035´10
4

7.229´10
4

10 1 1.309´10
1

9.184´10
1

4.599´10
2

1.844´10
3

6.292´10
3

1.898´10
4

5.194´10
4

1.312´10
5

11 1 1.426´10
1

1.084´10
2

5.853´10
2

2.517´10
3

9.177´10
3

2.947´10
4

8.55´10
4

2.283´10
5

12 1 1.543´10
1

1.264´10
2

7.316´10
2

3.36´10
3

1.303´10
4

4.437´10
4

1.361´10
5

3.832´10
5

13 1 1.66´10
1

1.457´10
2

9.003´10
2

4.398´10
3

1.809´10
4

6.508´10
4

2.104´10
5

6.228´10
5

14 1 1.777´10
1

1.664´10
2

1.093´10
3

5.66´10
3

2.459´10
4

9.327´10
4

3.17´10
5

9.843´10
5

15 1 1.894´10
1

1.885´10
2

1.312´10
3

7.175´10
3

3.285´10
4

1.31´10
5

4.669´10
5

1.517´10
6

16 1 2.011´10
1

2.119´10
2

1.557´10
3

8.974´10
3

4.319´10
4

1.805´10
5

6.737´10
5

2.287´10
6

17 1 2.129´10
1

2.367´10
2

1.832´10
3

1.109´10
4

5.597´10
4

2.449´10
5

9.543´10
5

3.378´10
6

18 1 2.246´10
1

2.629´10
2

2.137´10
3

1.357´10
4

7.161´10
4

3.272´10
5

1.33´10
6

4.9´10
6

19 1 2.363´10
1

2.904´10
2

2.475´10
3

1.643´10
4

9.057´10
4

4.314´10
5

1.825´10
6

6.991´10
6

20 1 2.48´10
1

3.193´10
2

2.846´10
3

1.972´10
4

1.133´10
5

5.62´10
5

2.471´10
6

9.823´10
6

21 1 2.597´10
1

3.496´10
2

3.252´10
3

2.349´10
4

1.405´10
5

7.238´10
5

3.303´10
6

1.361´10
7
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Figure 1. Coefficients d(n,m) for n = 0 . . . 32 and m = 0 . . . 16 of the virtual Higgs decay ampli-

tudes A(h→ n×h+m×VL) = n!m! d(n,m) (2v)1−n−m at the (n+m)-particle threshold. VL are

the longitudinal components of the W±, Z0 massive SU(2) vector bosons. The value of κ is set to

the SM value, κ = MW /Mh = 80.384/125.66 ' 0.6397.
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Figure 2. Second half of the coefficients d(n,m) for m = 16 . . . 32 of the virtual Higgs decay

amplitudes A(h → n × h + m × VL) = n!m! d(n,m) (2v)1−n−m at the (n + m)-particle threshold.

κ = MW /Mh = 80.384/125.66 ' 0.6397.
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Figure 3. Coefficients a(n,m) for n = 0 . . . 32 and m = 0 . . . 16 of the virtual vector boson decay

amplitudes A(VL → n×h+(m+1)×VL) = n! (m+1)! a(n,m)/(2v)n+m at the (n+m+1)-particle

threshold. The value of κ is set to the SM value, κ = MW /Mh = 80.384/125.66 ' 0.6397.

The scattering amplitudes on multiparticle thresholds are obtained by repeatedly dif-

ferentiating the generating functions in (3.22)–(3.23) with respect to z and wa. For exam-

ple, for the Higgs to n Higgses and m longitudinal Z bosons threshold amplitude we get,

A(h→ n× h+m× ZL) = (2v)1−n−m n!m! d(n,m) , (3.24)
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20 1.447´10
7

4.814´10
7

1.503´10
8

4.437´10
8

1.246´10
9

3.344´10
9

8.617´10
9

2.14´10
10

21 2.078´10
7

7.154´10
7

2.308´10
8

7.035´10
8

2.037´10
9

5.633´10
9

1.495´10
10

3.818´10
10

22 2.944´10
7

1.047´10
8

3.488´10
8

1.096´10
9

3.271´10
9

9.312´10
9

2.541´10
10

6.674´10
10

23 4.115´10
7

1.511´10
8

5.191´10
8

1.681´10
9

5.164´10
9

1.512´10
10

4.243´10
10

1.144´10
11

24 5.684´10
7

2.152´10
8

7.619´10
8

2.54´10
9

8.027´10
9

2.417´10
10

6.964´10
10

1.928´10
11

25 7.762´10
7

3.029´10
8

1.104´10
9

3.786´10
9

1.23´10
10

3.803´10
10

1.125´10
11

3.195´10
11

26 1.049´10
8

4.214´10
8

1.58´10
9

5.569´10
9

1.858´10
10

5.899´10
10

1.79´10
11

5.211´10
11

27 1.404´10
8

5.801´10
8

2.235´10
9

8.094´10
9

2.772´10
10

9.027´10
10

2.808´10
11

8.378´10
11

28 1.861´10
8

7.905´10
8

3.129´10
9

1.163´10
10

4.086´10
10

1.364´10
11

4.348´10
11

1.328´10
12

29 2.446´10
8

1.067´10
9

4.337´10
9

1.654´10
10

5.956´10
10

2.037´10
11

6.649´10
11

2.079´10
12

30 3.189´10
8

1.428´10
9

5.954´10
9

2.327´10
10

8.588´10
10

3.008´10
11

1.005´10
12

3.214´10
12

31 4.127´10
8

1.896´10
9

8.101´10
9

3.244´10
10

1.226´10
11

4.395´10
11

1.502´10
12

4.911´10
12

32 5.301´10
8

2.497´10
9

1.093´10
10

4.482´10
10

1.733´10
11

6.357´10
11

2.221´10
12

7.422´10
12

Figure 4. Second half of the coefficients a(n,m) for m = 16 . . . 32 of the virtual vector boson

decay amplitudes A(VL → n× h+ (m+ 1)× VL) at the (n+m+ 1)-particle threshold. As before,

κ = MW /Mh = 80.384/125.66 ' 0.6397.

and for the longitudinal Z decaying into n Higgses and m+ 1 vector bosons we have,

A(ZL → n× h+ (m+ 1)× ZL) =
1

(2v)n+m
n! (m+ 1)! a(n,m) . (3.25)
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Figure 5. Coefficients d(n,m) and a(n,m) for generating functions of amplitudes at threshold.

κ = MW /Mh = 80.384/125.66 ' 0.6397. The label n = 0 . . . 32 is shown along the horizontal axis

and the sequences of curves correspond to m = 0, 2, . . . , 32 from bottom to top.

The amplitudes with all varieties of W±L and ZL in the final state, one should simply

differentiate with respect to wa with the appropriate values of the isospin index a = 1, 2, 3.

In the tables in figures 1–4 we list the values of the coefficients d(n,m) and a(n,m)

describing the amplitudes with up to n = 32 Higgs bosons plus m = 32 longitudinal vector

bosons in the final state. In solving for these coefficients we have set κ = MW /Mh =

80.384/125.66 ' 0.6397.

In our normalisation conventions where the generating functions and amplitudes in-

clude inverse powers of 2v, the coefficients of pure multi-Higgs production, d(n, 0) for all

n ≥ 1, are all equal to 1, as can be seen in the first table in figure 1. This provides a useful

reference point for the size of other generating function’s coefficients. Note that by allowing

the production of longitudinal vector bosons, i.e. after switching on m > 0, the coefficients

of the generating functions grow steadily with m, reaching d(n,m) ∼ 108 at m ≥ 16 and

n ≥ 27; and d(n,m) ∼ 1013 at m = 32 and n = 31, cf. the table in figure 1. Similar growth

with m occurs for the a(n,m) coefficients of the gauge field generating function, see tables

in figures 3–4. This numerical growth of the coefficients is in addition to the multiplicative

n! and m! factors in the amplitudes in (3.24)–(3.25).

In figure 5 we show the logarithmic plots of all d(n,m) and a(n,m) for n = 0 . . . 32

and m = 0, 2, . . . , 32. These plots can be interpreted as sequences of curves, each curve

representing d(n,m) and a(n,m) as functions of n for a fixed value of m. Increasing values

of m = 0, 2, . . . , 32 corresponds to moving upwards from lower to higher curves.

For the relative comparison between the coefficients it might be more appropriate to

normalise vector boson and Higgs legs by their respective masses rather than a universal

factor of 2v. This would be characterised by rescaling the coefficients by κm. These are

shown in figure 6, from which we see that there is still more than six orders of magnitude

growth in coefficients as one increases m to ∼ 30.

The importance of multiple vector boson emissions relative to the multi-Higgs produc-

tion should decrease as one decreases the vector boson mass relative to the Higgs mass,

so that in the asymptotic case of MV = 0 we are left only with d(n, 0), as the classical

equations would dictate. This is indeed the case as can be seen from figure 7 which shows
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Figure 6. Amplitude coefficients of figure 5 rescaled by κm (where κ ' 0.6397).
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Figure 7. The light vector boson case, MV � Mh, with the non-SM choice κ = MV /Mh = 0.1.

The amplitude coefficients d(n,m) and a(n,m) are shown as functions of n = 0 . . . 32. The sequences

of curves correspond to m = 0, 2, . . . , 32 from top to bottom.

the (unrescaled) coefficients d(n,m) and a(n,m) for the case of the vector boson taken to

be 10 times lighter than the Higgs. In this case, the coefficients actually steadily decrease

when one increases m.

4 Conclusions

In the spontaneously broken gauge theory we have computed tree-level amplitudes for pro-

duction of high multiplicities of longitudinal vector bosons and Higgs bosons at threshold.

We found that these amplitudes grow factorially ∼ m!n! with the numbers of vector and

Higgs bosons in the final state, thus extending the known factorial growth in scalar QFT

to the massive Gauge-Higgs theory. We have also shown that in addition to the m!n!

factorial growth, the amplitudes involving high multiplicities of longitudinal vector bosons

grow faster than the amplitudes with only the multiple Higgs production.

These findings imply that broken gauge theory shows a very different perturbative

behaviour at high multiplicities from massless gauge theories, such as QCD. In the latter

case the factorial growth of the number of Feynman diagrams is not inherited by multi-

gluon amplitudes, as can be seen from e.g. the applications of MHV rules [26] or the BCFW

recursion relations [27].
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Before we conclude we would like to comment on the limitations, extensions and im-

plications of these results.

1. In this paper we have not considered the production of transversely polarised

massive vector bosons. This task can be approached by solving iteratively the full eq. (3.7)

including the commutator term. It would be interesting to find out whether or not the

production of mT transverse vector bosons shows any signs of growth with respect to mT

and to compare this behaviour with QCD. In either case, at tree-level this would not affect

the factorial growth of longitudinal vector and Higgs production found here.

2. What about higher loop corrections to our tree-level amplitudes at threshold? A

simple scaling estimate of of the size of one-loop correction to an n-point amplitude in

a generic theory is A1−loop
n ∼ αnn2Atree

n , where the factor of n2 comes from the number

of ways one can attach an internal propagator between n external legs, and α represents

the generic coupling constant (αW or λ). In scalar field theory this scaling argument was

confirmed in [8, 9] by computing the 1-loop tadpole graph in the background of the classical

generating function (2.10) or (2.14). For example, the 1-loop corrected threshold amplitude

in the real scalar QFT (2.12) is given by [9]

φ4 theory eq. (2.12) : Atree+1loop
1→n = n! (2v)1−n

(
1 + n(n− 1)

√
3λ

8π

)
. (4.1)

The (n2× coupling constant) behaviour of the loop corrections does not eliminate the fac-

torial growth found at tree-level, in fact at the interesting for us multiplicities, n ∼ 1/λ ∼
1/αW , it indicates a complete breakdown of the fixed order perturbation theory for high

multiplicity amplitudes at threshold. Based on the rather general nature of the scaling

argument, we expect that this conclusion also applies to the massive Gauge-Higgs theory.

There are strong indications, based on the analysis of leading singularities of the multi-

loop expansion around singular generating functions in scalar field theory, that the 1-loop

correction exponentiates [10],

A1→n = Atree
1→n × exp

[
B λn2 + O(λn)

]
(4.2)

in the limit λ→ 0, n→∞ with λn2 fixed. Here B is the constant factor determined from

the 1-loop calculation,

φ4 theory eq. (2.1) : B = − 1

64π2

(
log(7 + 4

√
3)− iπ

)
, (4.3)

φ4 theory eq. (2.12) : B = +

√
3

8π
, (4.4)

where the last equation is in agreement with (4.1) and leads to the exponential enhancement

of the tree-level threshold amplitude at least in the leading order in n2λ. It would be

interesting to investigate how the vector boson emission and loops would affect this result

and if the overall sign of Re(B) in the Gauge-Higgs theory will remain positive. Of course,

the higher-order corrections ∼ nλ are also important, as we are interested in multiplicities

n ∼ 1/λ.
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3. Going near or off the threshold. Remarkable progress has been made in the mid

90’s in understanding the scalar QFT case, see [14] for a review of these developments.

To characterise the behaviour of the amplitude off the threshold it is convenient to define

the average kinetic energy per particle (per mass) in the final state [10], which in the

non-relativistic limit near the threshold becomes,

ε :=
E − nM
nM

→ 1

2nM2

n∑
j=1

~p 2
j . (4.5)

In the non-relativistic multi-particle limit n → ∞, ε → 0 with εn fixed, one can solve the

recursion relations for the scattering amplitudes, but now incorporating the dependence

on ε. For the simple φ4 theory (2.1), the result is [10] (cf. (2.11)),

A1→n = n!

(
λ

8M2

)n−1
2

× exp

[
−5

6
nε

]
, (4.6)

which solves the recursion relations to order ε.

Combining these results for the off-threshold non-relativistic amplitudes (4.6) and the

exponentiation of the 1-loop corrections (4.2), the authors of [14] have argued that the

multi-particle cross-sections in the case of scalar field theory take the form,

σn ∼ exp
[
λ−1 F (λn, ε)

]
. (4.7)

At tree-level the ‘holy-grail’ function F in the model (2.1) takes the form [10, 14],

λ−1F tree = n

[
log

(
λn

16

)
− 1

]
+ n

3

2

[
log
( ε

3π

)
+ 1
]
− n ε 17

12
. (4.8)

What is particularly important for our purposes of understanding the role played by

the amplitudes on threshold in the more general theory, such as the Gauge-Higgs theory

considered in this paper, is that all terms on the r.h.s. of (4.8) have a clear physical

interpretation in terms of the original tree-level threshold amplitude. The first term in

square brackets is the logarithm of the tree-level squared amplitude at threshold, |Atree
1→n|2.

The second term is the result of integrating this constant amplitude over the non-relativistic

n-particle phase space. Finally, the third term on the r.h.s. of (4.8) is the correction coming

from integrating the ε-dependent non-relativistic expression (4.6).

It is then natural to conjecture that the in our Gauge-Higgs theory the high-multiplicity

tree-level cross-section (e.g. with the virtual Higgs in the intermediate state) take the form,

log σtreen+m ∼ 2 log(d(n,m)) + n

[
log

(
λn

4

)
− 1

]
+ m

[
log
(
4g2n

)
− 1
]

+n
3

2

[
log
( εh

3π

)
+ 1
]

+ m
3

2

[
log
(εV
π

)
+ 1
]

+O(n εh +mεV ) , (4.9)

where εh and εV are the non-relativistic kinetic energies of the n Higgs bosons and m

longitudinal vector bosons in the final state,

εh =
1

2nM2
h

n∑
j=1

~p 2
j , εV =

1

2nM2
V

m∑
k=1

~p 2
k . (4.10)
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One can also consider computing the off-shell Gauge-Higgs amplitudes directly. The

recent progress in scattering amplitudes calculations in gauge theory based on on-shell

methods is largely reliant on massless states. These methods were extended to incorporate

one or few massive stats: the Higgs boson in [28], the massive vector boson currents in [29]

and few massive particles in the BCFW rules in [30, 31]. Nevertheless, these results do not

capture directly the high-multiplicity production of massive states we are interested in in

the broken gauge theory.

One promising way forward would be to use the approach developed in [32] for com-

puting colour-ordered amplitudes in the broken gauge theory. Combining colour-ordering

with the Berends-Giele-type recursion relations, the authors of [32] have computed nu-

merically tree-level scattering amplitudes of up to 9 massive vector bosons (with generic

polarisations, in a generic kinematics, and no Higgses). It should be possible to extend

these results to ∼ 20− 30 gauge and Higgs bosons with external momenta near (and also

away from) the threshold.

For the case of the scalar theory with SSB (2.14) it was advocated in [11] that the

1→ n process should proceed via producing a non-perturbative bubble in the intermediate

state, 1→ n = 1→ B → n, with the bubble B developing an exponentially damping form-

factor as soon as the 3-momenta of external states exceed the inverse radius of the bubble.

The bubble interpretation was based on the fact that in Euclidean time the generating

function (2.14) is the kink solution of the model. The conclusion of [11] was that the

bubble form-factor suppression would lead to a non-perturbative exponential suppression

of the 1 → n processes in this theory. In the Gauge-Higgs theory the generating function

does not have a kink form as soon as the vector boson fields are taken into account. The

imaginary-time solution to (3.9) is more of the free-fall type — not unlike the solution (2.10)

which reaches infinite field values in finite time. This then also affects the Higgs field

in (3.8). We do not expect that in the Gauge-Higgs theory the high-multiplicity process

would proceed though a non-singlular and relatively long-lived semi-classical state (which

the bubble was in the scalar SSB case) to provide for a sharp semi-classical form-factor

which would suppress processes of the threshold.

4. The main conclusion we want to draw from the computations presented in this

paper is that the energies which should be available at the next generation of pp colliders,

will kinematically allow for sufficiently high multiplicities of Higgses and longitudinal W ’s

and Z’s production where the electroweak sector of the Standard Model becomes strong

and the perturbation theory breaks down. To answer the question whether these very high

multiplicity processes become observable and even unsuppressed requires physics beyond

perturbation theory in the weak sector. This is an interesting point on its own right, as

it is often generally assumed that collider phenomenology of the electroweak SM sector is

always perturbative.

5. Finally, as already mentioned, this ‘perturbative’ high-multiplicity n ∼ 1/αW pro-

duction in the topologically trivial sector is a logical counterpart of the more complicated

instanton-induced non-perturbative B − L processes, which also require n ∼ 1/αW elec-

troweak quanta in final states. There is a degree of complementarity between these two

processes, as one would expect that if the non-perturbative B − L processes passing over
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the sphaleron barrier become observable, the complementary perturbative processes at

same energies and multiplicities should become strong (or non-perturbative). Also it is

worthwhile pointing out that the phenomenological collider signatures of the final state for

these two types of processes would be largely indistinguishable unless one measures the net

charge of electrically charged leptons in the final state. If it will turn out that the very high

multiplicity processes in the topologically trivial sector become observable, there will be

fewer theoretical obstacles for the B-L processes overcoming their exponential suppression

in high energy collisions.
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